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CHAPTER 1

INTRODUCTION

Pipeline systems range from the very simple ones to very large and quite complex ones.
They may be as uncomplicated as a single pipe conveying water from one reservoir to
another or they may be as elaborate as an interconnected set of water distribution networks
for a major metropolitan area. Individual pipelines may contain any of several kinds of
pumps at one end or at an interior point; they may deliver water to or from storage tanks.
A system may consist of a number of sub-networks separated by differing energy lines or
pressure levels that serve neighborhoods at different elevations, and some of these may have
pressurized tanks so that pumps need not operate continuously. So these conveyance
systems will adequately fulfill their intended functions, they may require the inclusion of
pressure reducing or pressure sustaining valves. To protect the physical integrity of a
pipeline system, there may be a need to install surge control devices, such as surge relief
valves, surge tanks, or air-vacuum valves, at various points in the system.

How do these systems work? What principles are involved, and how are the systems
successfully analyzed and understood? How can the behavior of a preliminary design be
evaluated, and how can the design be modified to correct deficiencies? These are some, of
many, questions that immediately confront any engineer who is involved in creating the
physical infrastructure to satisfy a basic need of mankind: the delivery of water when and
where it is wanted at a price that is affordable. It is the primary objective of these engineers
to develop and apply their knowledge to make the system work. Success at this task first
requires an adequate knowledge of some fundamental principles of fluid mechanics. Some
experience with the solution of hydraulic flow problems is certainly desirable, and it will
come with time and effort. These days an understanding of some particular numerical
methods and the ability to implement them on a computer, sometimes for the solution of
very large problems, is also a vitally needed skill. =~ Computations associated with
engineering practice have changed dramatically in the past quarter century from the
estimation of a few key values by using a slide rule to the generation of pages of computer
output that are the result of detailed simulations of system performance in response to
various alternative designs, so that the consequences of various ideas can be ascertained
quantitatively. The volume of computer output can overwhelm one's ability to glean the
most pertinent information from the numbers. The purpose of this book is to empower the
reader with the knowledge, experience, and tools to accomplish this objective.

This book will present to the reader a comprehensive and yet relatively practical study of
pipeline hydraulics, with a substantial component being the use of computers for detailed
computations that are not practical to perform by hand. The intent of the authors was to
create a book, and an accompanying CD, that will serve well any of the following roles:
(1) as a text for senior-level courses for BS students electing to specialize in fluid
mechanics, hydraulics, water supply and distribution, and/or water resources; (2) as a text
for graduate engineering courses in the same subject areas; (3) to provide instructional
material for professional practicing engineers who wish to update their knowledge of
specialties associated with the distribution, conveyance, and control of fluids in pipelines;
(4) to provide resource material for engineers in governmental agencies at all levels who
have responsibilities to design and/or approve plans for pipeline systems; and (5) to
provide reference material for consultants who are asked to solve problems, review plans, or
suggest project alternatives in the subject areas of this book.

© 2000 by CRC Press LLC


http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806

The study of the hydraulics of pipeline systems builds on a small number of
fundamental principles that are found in a first course on fluid mechanics; such a course is
normally taken in the third full year of college study by all students in civil and
environmental engineering, mechanical engineering, agricultural and irrigation engineering,
and in some related engineering fields. Ideally this course is a judicious mix of the
development of basic theory and its application, but it is not uncommon for such a course
to emphasize theory over practice or vice versa. The authors will assume that readers have
already acquired some knowledge of fundamental fluid mechanics principles; it is hoped
that they also have in their individual libraries an elementary text on fluid mechanics that
can be a resource for (1) refreshing their understanding of the basic concepts and (2)
finding an occasional supplementary equation when it is needed to enhance the
understanding and application of the developments in this book. Such a reference will also
be useful as a source of data on fluid properties.

To establish a base on which to build in subsequent chapters, the authors begin in
Chapter 2 with a review of elements of basic fluid mechanics that are pertinent to pipe
system hydraulics. Because pumps are such a common part of (especially the larger)
pipeline systems, Chapter 2 includes a short primer on pump behavior and the summary of
such behavior by pump characteristic curves. Chapter 2 concludes with several basic flow
examples that are much like those that are usually found in a first course. The remainder of
the book then addresses three general categories of pipeline system analysis. The first
category, examined in Chapter 3, considers pipe manifolds, relatively the least complex
type of pipe system. Although any pipe manifold is basically a relatively large pipe which
delivers fluid to many outflow points or ports, it is an example of a spatially varied flow;
such flows are often not studied in undergraduate books on fluid mechanics, so some care is
needed to avoid conceptual errors. A single manifold pipe is examined at several levels of
completeness, and the chapter ends with a design example and some comments about
developing a manifold design with the aid of a computer program.

The second category is steady-state pipe network analysis. The largest single segment
of the book is devoted to this topic. Relative to the coverage of this topic in other books,
the exploration of the topic here is both broad and thorough (or, as some say, 'in-depth’).
(Even so, much that is known about optimal design technniques could not be included here,
owing to limitations on the size and cost of this book!) The study of networks progresses
from the simple to the complex. The simple networks are used to emphasize the
principles, and the larger networks allow one to experience a taste of the real world and to
learn to cope with additional complexity.  Enough details of the numerical and
programming techniques are presented so the reader can see how the entire analysis works.
Chapter 4 concentrates on analysis techniques and completely describes the three primary
alternative approaches to the formulation of a mathematical model for a pipeline system;
then a method for solving each of them is presented. The primary elements of each
solution method, in this and subsequent chapters, are implemented in Fortran and C
programs that are contained in the CD that accompanies this book. The logic that is
required to integrate the relatively complicated pressure reducing and back pressure valves
into a system is carefully described. Chapter 5 goes on to describe effective approaches to
the design of pipe networks; the first objective of most pipeline system designs is to
determine the smallest acceptable, and commercially available, pipe diameters to fulfill
specified delivery requirements, and in this chapter one finds out how to formulate a
problem with some of the pipe diameters as unknown variables. This approach is in
distinct contrast to the usual design approach of initially estimating (guessing?) all of the
pipe sizes, conducting an analysis of the resulting network, and then iteratively adjusting
the sizes until a satisfactory design is found. Methods will be described that allow one to
decide rationally which component(s) of a large network should be altered to eliminate most
effectively a deficiency in the network's performance; this decision process is based on the
quantification of the sensitivities of dependent variables to independent variables. For
example, the pumping station (with power as the independent variable) that produces the

© 2000 by CRC Press LLC


http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806

largest sensitivity to pressure at the node with the lowest pressure (the dependent variable)
should be enlarged to eliminate a problem involving excessively low pressures. Finally,
in Chapter 6 the reader is introduced to extended time simulations and additional economic
considerations in network design.

The last of the major topics in this book is the analysis of several types of transient
flow in pipelines and in networks. These chapters begin with a relatively brief section in
Chapter 7 on slowly-varying flows that can be called quasi-steady. Chapter 7 then goes on
to introduce two types of true transients, those in which only inertial effects are important
and those for which the additional consideration of the elasticity of both pipe and fluid is
essential to capture the true behavior of these flows. In Chapters 8 through 13 various
transient flows in systems that range from single pipelines to entire pipeline networks are
examined, as well as procedures and devices for controlling these transients.

Even if it is not already clear to the reader at the outset, it will become clear during the
reading and study of this book that the solution of pipeline hydraulics problems, especially
as the systems become larger, can require substantial computational effort. The routine
computation of solutions to larger problems in either networks or transients can involve
the heavy use of a modern desktop computer or a workstation. This type of computation,
which normally requires the solution of either a moderate to large set of initially nonlinear
algebraic equations or one to many differential equations, depends heavily on the use of
reliable and reasonably efficient methods from numerical analysis, a branch of applied
mathematics that also has some input from computer science.

In the steady-state analysis and design of networks, large systems of nonlinear algebraic
equations must be solved; this book will emphasize the relatively reliable Newton method
for the solution of these equation sets. The inclusion of inertia in unsteady flows will
require us to solve a system, which can become very large for networks, of differential and
algebraic equations, also called DAE's. Although research papers on the solution of DAE's
began to appear in the 1980s, relatively little of this subject appears to have been
previously applied to pipeline hydraulics problems, so far as the authors can tell, even
though there are many applications in engineering practice in which such combined
systems of equations govern. The presentation of a technique for the solution of these
systems of equations is one of the contributions of this book. As the future requires more
sophisticated simulations of engineering problems, similar solution techniques will become
commonplace.

An exposition on the hydraulics of pipeline systems can approach this topic in any of
several ways, ranging from one extreme where only hydraulic theory and the accompanying
descriptive mathematical equation sets are presented, to the other extreme where an array of
problem descriptions, computer files and fill-in-the-data sets of instructions for the use of
computer programs is presented. In the authors' opinions neither extreme is deserving of
commendation. But it is also understood by the authors that individual readers will have
goals that do not agree entirely with those of either the authors or other readers of this
book. After some deliberation the authors have chosen an intermediate approach to the
subject. The first step in each major topic is to present the governing principles and their
expression in mathematical equations. The examples of the application of the principles
will usually progress from the smaller and simpler to the larger, more realistic and more
difficult, both in the text and in the problem sections at the end of most chapters. Most of
the numerical and procedural detail of problem solving will be examined when the smaller
problems are discussed. Some readers may desire to know more in the way of details in the
numerical analysis and/or the computer coding than is presented in the body of the text. To
some extent this outcome is an unavoidable consequence of the authors' choice to take the
intermediate approach, but those who desire more details on the numerical techniques and
the actual computer programming can learn more! Appendix A presents a primer on some
numerical analysis techniques. We also encourage readers to extract the source code of
computer programs from the CD to list them, to study them, and to use them to solve a
variety of problems. The CD contains approximately 250 separate files (not including
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the executable elements); seven files are document files to explain the use the major
executable programs such as USU-NETWK which are on the CD. With few exceptions
the source programs are provided in both Fortran and C. The CD contains slightly under
one hundred Fortran source programs, ranging in size from less than a page (when listed) up
to several pages. Among these are subroutines (also written as C functions) to perform
numerical solutions of single, or systems of, ordinary differential equations or tasks such as
cubic spline interpolations. In solving many of the problems at the ends of the chapters
the reader will find it advantageous to use the vast additional resources on the CD. An
INSTALL program on the CD permits the user to extract and decompress the files on the
CD by type, or to make individual or group selections.

While this book has been written primarily to describe the hydraulics of pipeline
systems, an important secondary objective is to describe with care, and to present examples
of the application of, some reliable numerical methods for the solution of the larger, more
complex problems that the practicing engineer encounters. Although the examples herein
are all pipeline problems, the numerical methods themselves have potentially a far wider
range of applications to any topic that can be modeled with similar sets of equations.
Engineering colleges everywhere have for many years been debating the relative merits of
teaching to their students a procedural programming language such as Fortran, C, or Pascal,
vs. the teaching of the use of spreadsheets and interpretative languages as implemented in
MathCAD, TK-Solver, or Mathematica. The authors' opinion, formed by observing many
students during their university years and after graduation, is that computer programming is
a very important, if not a vital, skill today when computers have become an integral part of
our professional and personal lives. Individuals who can effectively use a procedural
programming language seem to assimilate the use of application software packages more
readily than those whose university experience was only with application packages.
Consequently the authors conclude that there is much merit is learning how to program
effectively not only to complete a task but also because programming requires a concise and
correct application of fundamental principles, and the experience enhances an understanding
of these principles even more than the solution of small problems that can be done by
hand. Butif a programming language is to be employed in this book, which language is
the language? With the years, more and more languages appear, in some respects like the
seasons. For example, depending on one's year of birth, the readers and the authors have
seen one to several generations of Basic and Fortran, and then Pascal, and more recently C
and C++, Java and still other languages appear, each with its own special attributes. How
do the authors create a text that addresses the issues without forcing literacy in a particular
programming language on the reader? (The answer probably is, with some difficulty, but
the authors have tried.) The 'solution' follows in the next paragraph.

The authors have started from the premise that nearly all readers of this book will have
some knowledge of computing methods. The authors have also assumed that many readers
will be familiar with either Fortran or C as a programming language; however, it is also
assumed that not all readers will have this background. Hence, included on the CD are
executable program elements which can be used directly, without compilation, for the
solution of some but not all of the problems in this book. In addition, the CD contains a
few TK-Solver models; they are included because they present equations and the selection
of dependent variables in a clear way. It was tempting to include not only more TK-Solver
models but also MathCAD models in the text, until it was realized that page limitations
would not permit more. It would be a valuable experience for readers to develop their own
TK-Solver, MathCAD, Mathematica, spread-sheet, or other software models with
interpretative capabilities to solve some of the example problems and problems at the ends
of the chapters. The source programs have already been mentioned; of course, each of
them may serve as a base from which the reader may create new, specialized programs for
their own individual purposes. Any modification of a program will, of course, require its
recompilation which, in turn, requires access to the appropriate
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Pcompiler. As a reminder to the reader that these programs, which the authors believe are
correct, are nevertheless provided as a service to the readers without a guarantee, some of the
text programs explicitly contain the following caution:

THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.

* X Ok 3k *

The authors intend that the reader understand that this caution applies to all of the codes in
this book and on the CD, although the caution is not repeated on every file.

The authors are confident that the reader will find the many applications of the basic
principles of hydraulics to a wide range of practical problems to be challenging, yet
manageable, and useful in either advanced education or professional practice. The authors
further hope that the considerable number and range of applicability of the computer
programs will provide the user with the tools to analyze a wide range of pipeline systems.
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CHAPTER 2

REVIEW OF FUNDAMENTALS

This chapter will review the fundamental concepts and principles upon which the
hydraulics of pipeline systems is based. The review is intended to be sufficiently complete
that readers who have taken a good first course in elementary fluid mechanics, but not
necessarily recently, will be reminded of, and updated in, the essential conceptual building
blocks that are the foundation of the material in this book. We will begin with an
introduction to the fundamental equations that are the foundation of most of the subsequent
developments in the book. Because the concept of the energy grade line (EGL or simply
EL) and the hydraulic grade line (HGL) is so useful, we shall look at this idea separately.
Next we look at some length at various head loss formulas. How turbomachines with
rotating impellers, particularly pumps, function is vitally important to the understanding
of many parts of this book, so their theory of operation and basic characteristics will be
examined. The chapter will conclude with several steady-flow examples and a range of
problems that will allow readers to test their readiness for the coming chapters. If a
thorough review is desired, one might consult Miller (1984).

2.1 THE FUNDAMENTAL PRINCIPLES

2.1.1. THE BASIC EQUATIONS
Conservation of mass is the most basic principle. In general, the fluid density p may
vary in response to changes in the fluid temperature and/or pressure. For a fixed control

volume V¥ enclosed by a surface S, a general statement of mass conservation is

%fpd’% +fp17-ﬁdS=0 2.1)
¥ S

in which v is a velocity at a point and 7 is an outer normal unit vector to the surface
S, and ¢ is time. The first term represents the accumulation of mass over time in the
control volume; for steady flows it is zero. At a surface point the dot product v-n gives
the component of the velocity which crosses the surface, so the second term computes the
net outflow of fluid across the entire control surface. For steady incompressible flow of a
liquid in a pipe, the conservation of mass is generally referred to as the continuity principle,
or simply continuity, and it is written

0 = f vdA = ViA| = VoA, (2.2)
A

in which Q is the volumetric discharge through a pipe cross section, which can also be
written as the product of the mean velocity V and cross-sectional area A of the pipe.

The second, equally important, principle is the work-energy principle, sometimes
called simply the energy principle. Some also call it the Bernoulli equation, but in general
it is distinctly more than that. For the steady one-dimensional flow of a liquid in a pipe,
per unit weight of fluid, the principle can be written between two sections or stations as
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In this equation V2/2g is the velocity head or kinetic energy, p/y is the pressure head or
flow work, and z elevation head or potential energy, all per unit weight. If the last two
terms on the right were absent, the equation would be the classical Bernoulli equation. The
last two terms, however, are extremely important in the study of the hydraulics of pipe
lines. The head loss term, or the accumulated energy loss per unit weight, Xhy, is the
sum, between sections 1 and 2, of the individual head losses in the reach caused by
frictional effects. The last term, h;;,, is the mechanical energy per unit weight added to the

flow by hydraulic machinery. A pump adds energy to the flow so A, is then positive and
called hp; a turbine extracts energy from the flow so h;,, would then be negative and
called Ay.

Fluid power, sometimes denoted by P, is the product of the energy gain or loss per unit
weight A, and the weight rate of flow Qy, or P = Qyh,,. A unit conversion factor can

be applied to this result to express the power in, say, horsepower or kilowatts. Depending
on the purpose of the computation, an efficiency factor 1 may be used as a multiplier or
divisor of the power.

The last of the major principles considers linear momentum, which is governed by
the impulse-momentum equation

%fpﬁd# +f17(p\7-ﬁ)dS = F,, =F,+F, (2.4)
¥ S

in which the net force on the contents of the control volume, fluid and solid, which can be
divided into surface forces and body forces, is equal to the rate of accumulation of
momentum within the control volume plus the net flux of momentum through the surface
of the control volume. In a steady flow the first term is again zero. For steady,
incompressible, one-dimensional flow through a pipe, the component momentum equation
along the direction of flow is

Foop = p0(V2 - V1) (2.5)

in which we assume flow into the pipe at the left section, section 1, and flow from the pipe
at the right section, section 2. If the pipe cross-sectional area is constant between the end

sections and the pipe is straight, then the velocities are equal, and the equation simplifies
further to  F,,; =0. Since Eq. 2.5 is a vector equation, it can always be written in
component form; for two-dimensional flow in the x-y plane, the components of this

equation are
EF pQV (pQVx)l = (pAV)%)Z —(pAV)%)l

(2.5a,b)
_ 2\ _ 2
E Fy pQV - (pQVy)l - (pAVy )2 (pAVy )1
2.1.2. ENERGY AND HYDRAULIC GRADE LINES
The Energy Grade Line, also called the Energy Line or simply EL, is a plot of the sum
of the three terms in the work-energy equation, which is also the Bernoulli sum:
2
L=V P, (2.6)
28 v

© 2000 by CRC Press LLC



Since each term has units of length, we can conveniently superimpose a diagram of the
behavior of each energy term, and the sum, on a drawing of the physical flow problem.
For example, a Pitot tube, inserted into a flow to cause locally at its tip a point of zero
velocity so the velocity head is converted into additional pressure head there, will cause the
liquid to rise to the elevation of the EL for that point in the flow.

The Hydraulic Grade Line, or HGL, is the sum of only the pressure and elevation
heads. The sum of these two terms is also called the piezometric head, which can be
conveniently measured by a piezometer tube inserted flush into the side of a pipe. It is
also important to recognize that any HGL can quickly be located on a diagram if the EL
has already been located; we simply measure downward by the amount of the local
velocity head from the EL to locate the HGL.

Figure 2.1 portrays the relation of the individual head terms to the EL and HGL and
the head that is lost between sections 1 and 2.

Vi ‘[ EL N
2g Lo
H —
il ' 2¢g
Y
P
Y

\<

S OU

Datum

Figure 2.1 The EL and HGL in relation to individual heads and the head loss.
2.2 HEAD LOSS FORMULAS

The head loss term in Eq. 2.3 is responsible for representing accurately two kinds of
real-fluid phenomena, head loss due to fluid shear at the pipe wall, called pipe friction, and
additional head loss caused by local disruptions of the fluid stream. The head loss due to
pipe friction is always present throughout the length of the pipe. The local disruptions,
called local losses, are caused by valves, pipe bends, and other such fittings. Local losses
may also be called minor losses if their effect, individually and/or collectively, will not
contribute significantly in the determination of the flow; indeed, sometimes minor losses
are expected to be inconsequential and are neglected. Or a preliminary survey of design
alternatives may ignore the local or minor losses, considering them only in a later design
stage. Each type of head loss will now be considered further.

2.2.1. PIPE FRICTION

If we were to select a small cylindrical control volume within a section of circular pipe,
with coordinates s in the flow direction and r radially, in steady flow and subject this
volume to analysis by the momentum equation, Eq. 2.4, we would find that the mean fluid
shear stress 7, as a function of the radius » from the pipe centerline, is

T=- 1yi(£+z) @2.7)
Y
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from which we learn two important facts:

1. The fluid shear stress T varies linearly in a pipe cross-section, from zero at the
centerline to a maximum, called t,,, at the pipe wall where r = D/2.

2. In the absence of a streamwise gradient of the piezometric head (p/y + z), the fluid
shear stress will be zero, and consequently no flow will exist at that section.

If we now expand the control volume to fill the pipe cross-section and integrate Eq. 2.7
over a length L of pipe of constant diameter, we learn with a bit of further work that the
frictional head loss hj, over that length is directly related to the wall shear stress T, via

D
Ty =Y/’lLE (2-8)

But this equation does not relate head loss to the mean velocity V' or the discharge Q.

2.2.2. DARCY-WEISBACH EQUATION
The completely general functional relation 7, = F(V, D, p, u, e) between the wall

shear stress 7,, and the mean velocity V, pipe diameter D, fluid density p, and

viscosity u, and the equivalent sand-grain roughness e can be reduced by dimensional
analysis to

) -/ (2.9)

I_W=F(@
' 8

£
w D

The combination of Eqgs. 2.8 and 2.9 to eliminate the wall shear stress produces the
fundamentally most sound and versatile equation for frictional head loss in a pipe, the
Darcy-Weisbach equation:
2 2
e - f2 g2 (2.10)
D 2g D 2gA

In Eq. 2.9 the friction factor f (and the factor 8 to coincide with the historical
development of the subject) is introduced as a shorthand notation for the function F. It is
a function of the pipe Reynolds number Re = VDp/u = VD/v and the equivalent sand-
grain roughness factor e/D. For each pipe material either a single value or range of e/D
values has been established; Table 2.1 presents common values for several materials.

Table 2.1 PIPE ROUGHNESSES

Material e, mm e, in
Riveted Steel 0.9 -9.0 0.035 - 0.35
Concrete 0.30 - 3.0 0.012 - 0.12
Cast Iron 0.26 0.010
Galvanized Iron 0.15 0.006
Asphalted Cast Iron 0.12 0.0048
Commercial or Welded Steel 0.045 0.0018
PVC, Drawn Tubing, Glass 0.0015 0.000 06

© 2000 by CRC Press LLC



a

a
A = oY Jequunu Sploukay

/%&ﬁ% g0l X — > +—— O] X — <, 0 X ——><—— (] X ——
s018 o:/w/ﬁo; 9s¥ € T 01896y ¢ T <OIg 9cpe T 01§ 9cp ¢ T 01 .
ﬁo,ooo.o,illl:: | ™ R [ 8000
< I | 600°0
NN 7 .
$0°000°0 A TR | 100
) III// /I
10000 b iy NN |
N N IIII III i Q 7
20000 X ~ TN Wooo& W
~ I/' III // .
L SN 100
. N ~u Y N\ |
e SEESSiiis SR
800070 = REmms=S /rmn/ |
1000 = =~ N\ \ 200
o hEY AW
I~ . N NN \
S 2000 - N "
5 L =, NN $70°0
g $000 N TSN :
Q"Dﬂ. I I /’/”// \ €00
= 9000 I e TN S
%8000 X T NN \=
I~ 100 S D 3 :
N f ~ N N \ o 700
S10°0 N RN -
. W u S \o
o | TN = {500
£0°0 B R \e
00 Y —— \& {900
o 7 N I s
$0'0 ﬂ ST L0°0
saodid y3nou ‘aouornginy a3o[dwo) W :wArm m: mNﬁ. Rrva VABoE \ 500
f . [eoni (:NEEmH‘ﬂ .
| U R R 600
| ST :/oﬂ.o

J 10108 UOTIOLL]
From L. F. Moody, "Friction factors for Pipe Flow," Trans. A.S.M.E., Vol. 66, 1944, with

permission.
Figure 2.2 The Moody diagram for the Darcy-Weisbach friction factor f.
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Because commercially available pipes of any material display some heterogeneity or
unevenness in roughness, any friction factor or its empirical equivalents can not be known
with multiple-digit precision. The functional behavior of f is displayed fully in the
Moody diagram in Fig. 2.2.

In the Moody diagram, which is Fig. 2.2, we see several zones that characterize different
kinds of pipe flow. First we note that the plot is logarithmic along both axes. Below the
Reynolds number Re = 2100 (some authors prefer 2300) there is only one line, which
can be derived solely from the laminar, viscous flow equations without experimental input;
the resulting friction factor for laminar flow is f = 64/Re. Because there is only one line
in this region, we say all pipes are hydraulically smooth in laminar flow. Then for
Reynolds numbers up to, say, 4000 is a so-called "critical" zone in which the flow
changes from laminar flow to weakly turbulent flow. For still larger Reynolds numbers
we find three flow zones that deserve comment:

1. A dashed line borders the upper right portion of the plot. In that zone, called wholly
rough flow or the region of complete turbulence for rough pipes, the friction factor f is a
function only of the roughness e¢/D and not of Re. For relatively rough pipes and/or
large discharges this is a common flow type. Thus, if the pipe material is known so e/D
is known, then the value of f follows immediately.

2. The lowest line is called the smooth-pipe line and is described by the empirical
equation

1/ = 2logip(Re f) - 0.8 @2.11)

This line continually slopes and never becomes horizontal, as in the wholly rough flow
zone, so f always depends on Re. Since the flow in PVC pipe is described by this
line, it has become increasingly important in some fields in recent years.

3. Between zones 1 and 2 is an important transitional band, called the turbulent
transition zone, in which f depends on both Reynolds number and e/D. The Colebrook-
White equation

9.35 )

22 2.12)
Re T )

1 [ e
— =114 - 210g10 — +
\f |p

is used, especially in computer codes, to replicate numerically the data in this zone of the
Moody diagram. In spite of our prior caution about limited precision in friction factors,
we sometimes need to allow more significant figures in computations to assure that the
computer algorithms do indeed converge. And additional significant figures in computed
values are also an aid in checking the success of computational examples, so we will
sometimes present results in this book with more digits for these reasons, even though
practical considerations may not seem to warrant it.

Table 2.2 summarizes the relations that describe the Darcy-Weisbach friction factor f.

Early in Chapter 5 procedures will be described for the computer solution of the
Colebrook-White and Darcy-Weisbach equations as an alternative to the use of the Moody
diagram itself. Readers who own a pocket calculator with the ability to solve implicit
equations should seriously consider writing the Colebrook-White equation, Eq. 2.12, into
the calculator memory for use in routinely computing friction factor values.

2.2.3. EMPIRICAL EQUATIONS

Empirical head loss equations have a long and honorable history of use in pipeline
problems. Their initial use preceded by decades the development of the Moody diagram,
and they are still commonly used today in professional practice. Some prefer to continue
to use such an equation owing simply to force of habit, while others prefer it to avoid
some of the difficulties of determining the friction factor in the Darcy-Weisbach equation.
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As is common with empirical equations, each contains a constant that depends on the
chosen unit system. Possibly the most widely used of these equations is the Hazen-

Williams equation.

Table 2.2 DARCY-WEISBACH FRICTION EQUATIONS

Type of Flow Equation for f Range
Laminar f=64/Re Re <2100
Smooth pipe [r _ ) _ Re > 4000
1/ = 2logip(Rev/f) - 0.8 Re> 4000
Transitional Re > 4000
Colebrook-White Eq. ; =114 - 2[og10(i + 9. 32\
\ \D " Re7)
Wholly Rough Re > 4000
y roue L 114 = 210g1e[ &)
N \D)
To compute the discharge, the equation takes the forms
0 = 1318 CyyARY®350%  ES units (2.13)
or
0 = 0.849 Cyyy A RY6350% ST units (2.14)

in which Cgw is the Hazen-Williams roughness coefficient, S = hyL is the slope of the
energy line, R = A/P is the hydraulic radius, A is the cross-sectional area, and P is the
wetted perimeter, so that pipes flowing full will always have R = D/4. Table 2.3 gives
values for Chw for some common pipe materials.

Another empirical equation, which was originally and primarily developed for flow in
open channels, is the Manning equation

0 = 1Y AR23512 BS units (2.15)
n
or
0 = Lagig12 ST units (2.16)

n

The pipe boundary roughness is described by the Manning n, for which some values are
listed in Table 2.3.

Table 2.3 HAZEN-WILLIAMS AND MANNING ROUGHNESSES

Pipe Material Cuw n
PVC 150 0.009
Very Smooth 140 0.010
Cement-lined Ductile Iron 140 0.012
New Cast Iron, Welded Steel 130 0.014
Wood, Concrete 120 0.016
Clay, New Riveted Steel 110 0.017
Old Cast Iron, Brick 100 0.020
Badly corroded Cast Iron 80 0.035
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A comparison of the Hazen-Williams and Manning equations with the Darcy-Weisbach
equation would show conclusively that the empirical equations are much more limited in
their ranges of applicability. Each is applicable only to the turbulent flow of water. The
Manning equation is only valid for flows which correspond to the wholly rough flow
regime in pipes. If the Hazen-Williams equation were plotted on the doubly-logarithmic
Moody chart, it would appear as a family of sloping (the slope is - 0.15) straight lines
across the turbulent transitional flow portion of the Moody diagram; hence each choice of
a Hazen-Williams coefficient can at most replicate only a part of an individual e¢/D line on
the Moody diagram.

2.2.4. EXPONENTIAL FORMULA

It will later be advantageous to express the head loss in each pipe in a network by an
exponential formula so one presentation of the theory covers all cases, regardless of
whether the Darcy-Weisbach equation, the Hazen-Williams equation or the Manning
equation is used to express the head loss as a function of discharge:

hy = KQ" (2.17)

The values for K and n change, depending on whether the Darcy-Weisbach, Hazen-
Williams, or Manning equation is used.

The Hazen-Williams and Manning equations can be solved for /¢ and put in the form
of the exponential formula. For the Hazen-Williams equation the exponent is n = 1.852
and the coefficient K is

__ xl 2.18
For the Manning equation the exponentis n =2 and K is
P L (2.19)
D5.33

in which the dimensional constant Cg is given for various choices of units in Table 2.4.

Table 2.4 The Coefficient Cg

Units of Hazen-Williams Manning
D L Ck in Eq. 2.18 Ck in Eq. 2.19
ft ft 4.73 4.66
in ft 8.53x10° 2.65x10°
m m 10.67 10.29

To find K and n for the Darcy-Weisbach equation, we note that f can be
approximated over a limited range on the Moody diagram by an equation of the form

f=asQb (2.20)
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This equation plots as a straight line on the Moody diagram (a log-log plot) if a and b
are constant. Substituting Eq. 2.20 into the Darcy-Weisbach equation and grouping terms
gives

n=2-b Q21)
and
K- > (2.22)
2gDA

Hence a determination of K and n for use in Eq. 2.17 is equivalent to a selection of
values for a and b in Eq. 2.20 which cause that equation to approximate f over the
expected discharge range. If the chosen range is too large, then K and n will cause Eq.
2.17 to produce frictional head losses that differ slightly from predictions that are obtained
directly from the Darcy-Weisbach and Colebrook-White equations. If the chosen range is
too small, then the actual discharge may fall outside this range, and K and n should be
redetermined. To obtain a and b, select an appropriate Reynolds number (discharge, or
velocity) range that brackets the expected discharge Q. Solve the Colebrook-White
equation with these two Reynolds numbers Re; and Re), obtaining both f; and f>

and the corresponding discharges Q; and Q). Taking the logarithm (either natural or

base-10 logarithms can be used) of both sides of Eq. 2.20 now gives two equations for a
and b:

Infy =Ilna - blnQ

(2.23)
Infy =lna - binQy
Subtracting the second equation from the first and solving for b produces
l /
p o ln/h) (2.24)
in(Q2/01)
Then a can be obtained as
b
a= fi0 (2.25)

Calculations to determine K and n can readily be done with a pocket calculator, but if
many are needed, the computations should be implemented in a spreadsheet or a computer
program. FORTRAN program 2.1, PIPK_N, is included on the CD for this purpose.

Example Problem 2.1
Determine the values of K and n in the exponential formula for the three pipes in the

table which follows (v = 1.217x103 ft2/s or v = 1.13x10"0 m2/s):

Pipe | Type Length | Diameter | e x 10* Caw n Approx. O
1 PVC 1000 ft 8 in 0.08 in 150 0.009 2.5 ft3/s
2 Riveted | 1000 ft 8 in 2.5 ft 110 0.015 0.8 ft3/s

steel
3 Ductile 3000 m 300 mm 500 mm 140 0.011 0.4 m3/s
iron

Only the solution details for pipe 1 are given here, but for practice the other answers
should be verified. For the Hazen-Williams and Manning equations K and n are
computed from Eqs. 2.18 and 2.19, respectively. For the Hazen-Williams equation n; =
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1.852 and K; = 4.73(1000)/(1501-8520.6674-87) = 3.17; for the Manning equation n;
=2.000, K; = 4.66(0.009)21000/0.6675-33 = 3.27. For the Darcy-Weisbach equation
first select two discharges that span the expected range, say Q7 =2 ft3/s and Q> = 3

ft3/s. Next, from the Colebrook-White equation find the friction factors f corresponding
to these two discharges, or f7 = 0.01435815, f> =0.01332301. For the accuracy that we
require, these values must be obtained from a pocket calculator or other computational
equipment and not just read from a Moody Diagram. Next compute b = {log f;/f>}/{log
02/01} =0.18454, leadingto n=2- b = 1.81546, and a :f]Q]b =0.016317, from

which K = aL/(2gDA2) = 3.2649. The remainder of the computations for each
determination of K and n for these three pipes is summarized in the following pair of
tables:

Pipe |0; 0, Re; Re, f1 S b a
1 2.0 3.0 314000 471000 0.0145 0.0133 0.1845 0.0163
2 0.4 1.2 62800 188000 0.0200 0.0160 0.1993 0.0166
3 0.2 0.6 751000 2250000 0.0146 0.0134 0.0543 0.0133
Darcy-Weisbach Hazen-Williams Manning
Pipe K n K n K n
1 3.2649 1.8155 3.1773 1.852 3.2649 2.000
2 9.0692 1.8007 5.6431 1.852 9.0691 2.000
3 2296.1 1.9957 1194.7 1.852 2296.1 2.000
® * *

In summary, the best equation for computing the frictional head loss in a given pipe for
a given discharge, or the best equation for the discharge if the head loss is known,
regardless of the fluid, is the Darcy-Weisbach equation. The range of applicability for the
empirical equations is much more restricted. Consequently, all engineers should consider
using the Darcy-Weisbach equation in professional practice even if it is sometimes more
difficult to use than the empirical equations.

2.2.5. LOCAL AND MINOR LOSSES

A local loss is any energy loss, in addition to that of pipe friction alone, caused by
some localized disruption of the flow by some flow appurtenances, such as valves, bends,
and other fittings. The actual dissipation of this energy occurs over a finite but not
necessarily short longitudinal section of the pipe line, but it is an accepted convention in
hydraulics to lump or concentrate the entire amount of this loss at the location of the
device that causes the flow disruption and loss. If a loss is sufficiently small in
comparison with other energy losses and with pipe friction, it may be regarded as a minor
loss. Often minor losses are neglected in preliminary studies or when they are known to
be quite small, as will often happen when the pipes are very long. However, some local
losses can be so large or significant that they will never be termed a minor loss, and they
must be retained; one example is a valve that is only partly open.

Normally, theory alone is unable to quantify the magnitudes of the energy losses caused
by these devices, so the representation of these losses depends heavily upon experimental
data. Local losses are usually computed from the equation

hy = Kj — (2.26)

in which V = Q/A is normally the downstream mean velocity. For enlargements the
following alternative formula applies:
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2
hy = Kg Vi-va) ;;/2) 2.27)

in which V; and V) are, respectively, the upstream and downstream velocities. In Eq.
2.27 the loss coefficient K; is unity for a sudden enlargement and takes on values
between 0.2 and 1.2 for assorted gradual conical enlargements. The head loss for flow
from a pipe into a reservoir is a special but important case of Eq. 2.27, called the exit loss;
in this case K7 =1 and V) =0, independent of the geometric details of the pipe exit
shape.

Local loss coefficients Kj for some common valve and pipe fittings are listed in Table
2.5. The energy losses for these fittings are mostly a consequence of fluid turbulence
caused by the device rather than by secondary motions which persist downstream.
Normally a locally accelerating flow will cause much less energy loss than does a
decelerating flow. If deceleration is too rapid, it causes separation, which results in
additional turbulence and a high velocity in the non-separated region. Some additional loss
coefficients from specific valve manufacturers and coefficient values as a function of the
amount of the valve opening can be found in Appendix C.

Table 2.5 Loss Coefficients for Fittings

Fitting K;

Globe valve, fully open 10.0
Angle valve, fully open 5.0
Butterfly valve, fully open 0.4
Gate valve, fully open 0.2

3/4 open 1.0

1/2 open 5.6

1/4 open 17.0
Check valve, swing type, fully open 23
Check valve, lift type, fully open 12.0
Check valve, ball type, fully open 70.0
Foot valve, fully open 15.0
Elbow, 45° 0.4
Long radius elbow, 90° 0.6
Medium radius elbow, 90° 0.8
Short radius (standard) elbow , 90° 0.9
Close return bend, 180° 2.2
Pipe entrance, rounded, r/D < 0.16 0.1
Pipe entrance, square-edged 0.5
Pipe entrance, re-entrant 0.8

An abrupt contraction has first a region of accelerating flow, followed by a region of
decelerating flow caused by flow separation. Though the region of accelerating flow may
be larger, the head loss is attributable principally to the deceleration and separation which
occurs immediately downstream from the contraction. The local loss coefficient for a pipe
contraction is given in Fig 2.3.

© 2000 by CRC Press LLC



0.5 I ! ! !

03[ -

0.1 [~ -

| | | |
0 02 04 06 08 10
D, /D,

Figure 2.3 Local loss coefficient for a sudden contraction as a function of diameter ratio.

2.3 PUMP THEORY AND CHARACTERISTICS

The addition of mechanical energy hy, = hp per unit weight to a fluid stream is accom-
plished by pumps, as was mentioned with Eq. 2.3. Although positive displacement
pumps sometimes play a role, by far the more important class of pumps contains a
rotating impeller to inject energy, in the form of an increased pressure head, into the
flowing fluid in the pipe. The characteristic shape of the impeller varies with the operating
regime of the pump. The energy addition is called the net head hj, of the pump. The
water power P,, that is delivered to the fluid stream is the product of the net head, the
discharge, and the unit weight of the fluid, or P,, = Qyhp. The mechanical power to
operate the pump must be larger; it is called the brake horsepower or bhp = Tw, in
which T and w are the torque and angular velocity of the pump drive shaft. The ratio 7
= P,,/bhp is the pump efficiency, which may be larger than 0.8 for large and/or efficient
pumps that are operating near their best efficiency point (bep), also called the design
point, but which may be much lower for small, old or worn pumps.

Pumps are sufficiently complex that they cannot be designed on the basis of theory
alone. To refine a new or revised design, model experiments are first conducted, and after
success is achieved with the model, then the full-scale or prototype pump is built. The
results of dimensional analysis are used to relate the model and prototype to each other.
First we assume that the model and prototype are similar in shape, called geometric
similarity, and second that the velocity fields also have a similar shape, called kinematic
similarity.  Devices satisfying these requirements are called homologous. The
nondimensional parameters that are used to complete the scaling process are called affinity
or scaling laws. They are three in number and are called the head, discharge, and power
coefficients Cp, Cg, and Cp, respectively:

%; Co = Q S (2.28)
N°D

Ch = — Cp
ND? pN3D?

The diameter of the rotating impeller is D. These coefficients may be computed in any
consistent set of units. If plots of one nondimensional coefficient vs. another are
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constructed, homologous units having different sizes and/or rotative speeds can be related to
each other. Or one can say for homologous units that

(N}lezjﬂ)l i (N;llzj)z)z; (%)1 ) (%)z; (pN?DS)l ) (PNI;DS)z -

In a way these relations are more versatile than Eqgs. (2.28) because the units no longer
must lead to a truly nondimensional group so long as each variable is measured in the
same units. Thus rotative speed can be in rad/s, rev/s or rev/min. If pumps 1 and 2
have the same diameter, Eqs. 2.29 show how hp, Q, and P respond to changes in N,

or for fixed N we see how the variables scale with the diameter D.

The specific speed Ng is a parameter for homologous pumps that contains the
important pump variables, the discharge Q and head A, without containing the unit size
D; different ranges of this parameter therefore capture the essential differences in shape, not
mere size, that separates the performance of one kind of pump from another type of pump.
The nondimensional form of pump specific speed, with N in rad/s, is

172
NQ
Ns = ——=7 (2.30)
(ghp)
In the United States, however, for many years it has been customary instead to use
' (rev/min)(gal/min)l/2 231
s = 374 (2.31)
[p(10)]

which is clearly far from dimensionless. Based on specific speed, pumps can be classified
into three categories, based on impeller shape, as given in Table 2.6.

Table 2.6
Pump Type vs. Specific Speed
|  Radial Flow Mixed Flow Axial Flow
NS NS < 1.46 1.46 < NS < 3.7 37 < NS

N'g 500 < N's <4000 4000 < N’g < 10000 10000 < N'g

For relatively low specific speed the most efficient pump uses a radial-flow impeller, that
is, the primary flow direction through the impeller is radially outward from the axis of
rotation of the impeller; this pump type has several names but is usually called a
centrifugal pump. For the highest specific speed range, the flow through the impeller is
nearly parallel to the axis of rotation and is called axial flow in pumps that are termed
propeller pumps. The transition from radial to axial flow occurs over the intermediate
range called mixed flow; the pumps are called turbine pumps. Certainly there is some
overlap between regions, and different authorities cite somewhat differing values for the
ends of the ranges.

The performance of an individual pump, or a family of pumps having the same pump
casing and several impellers that differ only in size, is usually described by a set of pump
characteristic curves, or simply pump curves, that are developed by manufacturers.
Appendix B contains eight sets of pump characteristic curves. Across the upper portion
of each figure is a plot of head (per stage) vs. discharge; although these curves are usually
approximated as straight lines or parabolic curves for subsequent analysis, the reader will
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quickly notice that the actual head curves are more complex. A change in the shape of a
curve normally means that the flow pattern within the pump has also changed. Crossing
the set of head curves are contour lines of constant efficiency. By each contour is the
numerical percentage value of the efficiency; usually the values are between 70 and 85%.
Across the bottom of each plot is a set of curves that relate brake horsepower to the
discharge; we see that straight lines would fit most of these lines rather well but not
perfectly. Finally, in the upper right corner of each plot is a plot of NPSH vs. discharge.

The Net Positive Suction Head (NPSH) for a pump is used to determine the head z;
that is needed at the pump inlet so that cavitation is avoided in the pump. Cavitation is
the conversion of liquid into vapor by locally low absolute pressure. The onset of
cavitation can also be inferred from tests to note impaired operational efficiency, excessive
noise and possibly damage to the pump. A useful form of the NPSH relation is

NPSH = Pam _ Py _ o 2.32)

in which pgs, and p, are the atmospheric and vapor pressure of the liquid, Ay is the
head loss in the inlet piping (often included in NPSH itself), and z; is the highest allow-

able or safe elevation for the pump impeller inlet. For the operating discharge, read
NPSH from the pump curve, and z; can then be computed.

2.4 STEADY FLOW ANALYSES

This section will touch on several kinds of steady flow problems. Although the
exponential formula or the empirical head loss equations could be used for this purpose, we
choose to employ the versatile Darcy-Weisbach formula here, sometimes simplifying by
assuming the value of the friction factor. We will look at series pipe flow first, with and
without consideration of local losses and a pump in line. Flow through parallel pipes will
follow, and the section concludes with a look at multiple-reservoir problems.

2.4.1. SERIES PIPE FLOW

The basic tools for analysis here are Eqgs. 2.2, 2.3 and 2.10, which are the continuity,
work-energy and Darcy-Weisbach equations. All series pipe flow problems fit one of three
computational categories, depending on which factors are known or given and which is
sought, as listed in Table 2.7:

Table 2.7 Problem Types

Category [ Known Quantities: To Find:
1 Q, pipeline properties hy,
2 h;, pipeline properties 0
3 0, hy Smallest size D

The problems in categories 1 and 2 are analysis problems; analysis of type 1 problems
is direct, without iteration, but iteration may be required for the second group. Category 3
is a design problem, which normally requires more assumptions and more iterative compu-
tations to solve. Pipeline properties include the length, diameter and material type so that
the relative roughness is known.

Example Problem 2.2
A cast iron pipe connects two reservoirs. The line is 1200 ft long and has a diameter

of 12 in. If it were to convey 8 ft3/s, what would be the frictional head loss for this
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pipe? [In this and following examples in this chapter, we assume the fluid is 60°F water

with a kinematic viscosity v = 1.2x10 ft2/s.]
This problem is a type 1 problem. The mean velocity in the pipe is

V=g=i=1018 ft/s.
A =/
Thus the pipe Reynolds number is
Re = Yp _a018)a) 8x10°

Upon consulting Table 2.1 for cast iron pipe, we determine e/D = 0.010/12 = 0.00083.
From the Moody diagram, Fig. 2.2, we find f = f(Re, ¢/D) = 0.0185. The Darcy-
Weisbach equation, Eq. 2.10, then produces

2 2
f_v_  (0.0185) 1200 (10.18)

AT 357 f
D 2g 12/12 2(32.2) f

* & *

Example Problem 2.3

The pipe in Example Problem 2.2 actually connects two reservoirs having a difference
in water surface level of only 20 ft, so that pipe is clearly incapable of conveying 8
ft3/s.

Now a new pipe has been installed between the reservoirs. It is made of welded steel
and has a diameter of 18 in.

(a) If only pipe friction is considered, what is the new discharge?

(b) If local losses for a sharp-edged entrance, a fully open gate valve near the pipe exit,
and the pipe exit itself are also considered, how much does the computed discharge change?

(c) If the gate valve in part (b) were only 1/4 open, what would then be the discharge?

All parts of this problem belong to category 2, since now Q and not Ay, is sought.
(a) We are told to assume in this case that

2
LV
1—-2 = 20ft = /’lf = fBZ—g

From Table 2.1 for welded steel, we find e/D = 0.0018/18 = 0.0001. If the flow is
assumed to be in the wholly rough flow zone of the Moody diagram, Fig. 2.2, f = 0.012.
Hence

1200 V2
18/12 2(32.2)

hy =20 = (0.012)

and V =11.6 ft/s. Now we must check Re = VD/v = 11.6(18/12)//1.2X10'5 = 1.4x106,
which is not in the wholly rough zone; this Re and the value of e/D imply f = 0.013.
Using 0.013 in place of 0.012 leads to V = 11.1 ft/s. The small change in Re will
cause no further change in f, so the discharge can now be computed as

Q= VA = (1L 1)“(3) (11.1)(1.77) = 19.6 f/s
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(b) In this case
2

L \%
20 = E hy = (Kent. + fB + Kyalve + Kexit) Z

The velocity head factors out only because each loss term is associated with the same pipe
size, area and velocity. Table 2.5 supplies 0.5 and 0.2 for the entrance and valve loss
coefficients; always K,y = 1.0. From part (a) we take our first estimate of the friction

factor as 0.013, leading to

2
2O=(O.5+0.013%+0.2+1.0\V—

\ 18/12 ) 2¢

and yielding V = 10.3 ft/s. Again check Re = VD/v = 10.3(18/12)//1.2x107 = 1.3x100,
so the initial estimate of f is adequate. Now Q = (10.3)(1.77) = 18.2 ft3/s  so the

discharge has decreased by 1.4 ft3/s, a bit under 8%, as a consequence of considering the
local losses.

(c) When the gate valve is only 1/4 open, we find from Table 2.5 that the valve loss
coefficient has increased from 0.2 to 17.0. The valve loss remains a local loss, but it is
no longer in any way a minor loss, since it will cause more head loss than the pipe friction
term. Replacing 0.2 in part (b) by 17.0, we recompute and find V = 6.68 ft/s. The new,
lower Reynolds number is Re = 8.4x10, so the new friction factor is f=0.0135. A re-
computation of the velocity gives V = 6.63 ft/s, and so Q = 11.7 ft3/s, a decrease of
about one third from the discharge in part (b).

* * *

2.4.2. SERIES PIPE FLOW WITH PUMP(S)

The solution of pipeflow problems involving pumps normally requires us to read data
from pump characteristic curves. However, if we prefer to use a computer to solve these
problems, such readings can no longer be done in this way. But the resolution of this
problem is not difficult. As part of the computer solution of this kind of problem, we
supply sufficient data to the program so that the head h, can be expressed as a

polynomial in discharge that fits the pump-curve data.
Let the pump characteristic curve for the head h;, be expressed by a second-order poly-

nomial hp = AQ2 + BQ + C, in which the coefficients A, B, and C are determined by
the use of three (hp, Q) data pairs that bracket the expected range of operation of the

pump. To obtain the coefficients, we write three equations by substituting each data pair
into the polynomial to obtain

AQ} +BQy +C =y
AQF +BQy +C=hy) (2.33)

AQF +BQ3 +C=hy3

In matrix notation Eq. 2.33 becomes

le O li[A hpi
03 & 1|IBl=1nym 2.34)
0} 03 1||C hy3
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which can be solved in various ways to determine the coefficients.
An alternative approach is to use the Lagrangian interpolation. Lagrange's formula is

. _(0-2)0-0s) o (e-a)e-g) | L+ (2-a)(0-0) 3 (2.35)

Pr(o-2)0-03) 7 (00-01)(0-03) 77 (05-01)(03 - 02)

The head h), is again expressed as a quadratic equation in Q, but the terms are rearranged

from the earlier approach. The coefficients A, B, and C can be found by expanding the
numerators. Letting

cp=hp1 /(O - )0 -D3)
2 =hpy /(02 =01 )N(Q2 - D3) (2.36)
c3=hp3/(Q3 - )(Q3-D2)

we find

cp+cp +c3
- 2[(Q2 + Q3 )Cl + (Q3 + Ql )6‘2 + (Ql + Q2 )C3] (2.37)
03¢ + Q301 + Q1 O3

C

Irrespective of which approach is used, the results can be inserted in a computer program so
that the need to read data from a pump characteristic curve during the solution process is
avoided. Additional uses of such polynomial representations and interpolations will be
found in later chapters, including Chapters 4, 5, and 10.

Example Problem 2.4

A single-stage Ingersoll-Dresser 15H277 pump, outfitted with the largest impeller
(Refer to Appendix B for the pump characteristic curves), is used to pump water from a
reservoir at elevation 1350 ft to another reservoir at elevation 1425 ft. The line is 6000
ft long and 18 in. in diameter with an equivalent sand grain roughness e = 0.015 in. (v

= 1.14x10- 3 £t%/s) Neglecting local losses, compute the discharge in the pipeline.

We begin by applying the work-energy equation, Eq. 2.3, between the two reservoir
water surfaces, points 1 and 2:

1350 = 1425 + hy - hy

or

= 75+19.970%

L 0%/A 75, 76000 0?2
2 L5 24(1.767)%

There are three unknowns in this equation: %, Q, and f. They must be determined by

using this equation, the pump curve and the Colebrook-White equation. We shall obtain
the solution in two ways, first by hand and then with the aid of a computer.

The hand solution begins by (a) selecting a trial discharge, (b) solving the Colebrook-
White equation, Eq. 2.12, for f, (c) calculating h, from the above work-energy

equation, (d) comparing this hj, with the value that is read from the pump characteristic
curve, and (e) repeating the process until the /,'s match, as summarized in the table:
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(@ (b) © (@
0 [ f h, hp, curve
| gal/min ft3/s ft ft
3000 6.68 0.01961 92.4 103
3500 7.80 0.01950 98.6 88
3300 7.35 0.01951 96.0 95
3280 7.31 0.01954 95.8 95.8

The discharge is 3280 gal/min by this method.
The pump curve must be defined by an algebraic equation if the computer is to be used
in solving for hp, Q, and f. A second-order polynomial can be fit to the Ingersoll-

Dresser 15H277 pump curve by applying Eqs. 2.33 and 2.34 and using the three data pairs
(103.0, 6.68), (95.0, 7.35), and (88.0, 7.80). Equation 2.34 gives the matrix form of
this problem as

or o 1](A 44.62 6.68 17(A 103
03 0, 1|IBl =|54.02 735 1Bl =195
0 05 1||C 60.84 7.80 1||C 88

yielding a solution A =-3.224, B =33.293, and C =24.472 so that the pump curve is
approximately

hp = - 3.22402 + 332930 + 24.472

Using MathCAD, TK-Solver or some other mathematics application software to solve our
three simultaneous equations leads to 1, =95.7 ft, O =7.30 ft3/s = 3280 gal/min, and
f=0.019546.

Example Problem 2.5

Repeat the problem in Example Problem 2.4 with two three-stage Ingersoll-Dresser
15H277 pumps in parallel; assume the smallest of the three impellers is used in each
pump stage.

The pipeline analysis itself in unchanged; hence

h, = 75+19.9fQ"

In this case £, is the total head developed in the three stages of either of the two pumps.

In addition, only half of the pipeline discharge passes through each pump. The table of
trial solutions can be developed as

Pump Q | Pipe QO f Right Side h, |h,/stage | Total h),
gal/min | gal/min ft ft ft
3000 6000 0.01921 143.3 67 201
3500 7000 0.01915 167.7 45 135
3300 6600 0.01917 157.5 54 162
3320 6640 0.01917 158.5 53 159

The total discharge is 6640 gal/min.
To set up the computer solution for this problem, we first obtain the polynomial
approximation to the pump curve by setting up the matrix
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(3]

of o 1](A 44.69 6.685 1](A 67
07 0, 1Bl =1|5402 735 1[/B! =155
03 o3 1||C 60.84 17.80 1||C 45

resulting in hj,; = - 3. 74643Q12 +34.5360Q) +3.552 for one stage. To account for the

number of stages, we multiply the coefficients by 3 so that i, = 3hp;. Since only half
of the pipe flow passes through each of the parallel pumps Q; = Q/2. The final
composite pump curve is therefore

h, = 3(~3.7464)(0/2)" +3(34.536)0 /2 + 3(3.552)

= ~2.809802 +51.8040 + 10.656

Solving this equation, the Colebrook-White equation and the work-energy equation
simultaneously gives hp =159.4 ft, Q = 14.878 ft3/s = 6680 gal/min, and f=0.01917.

% & k

2.4.3. PARALLEL PIPE FLOW, EQUIVALENT PIPES

In the flow of fluid in parallel pipes the roles of energy loss and discharge are reversed
from their roles in series pipe flow: for a series of pipes, as we have seen earlier, the
discharge is identical in each pipe of the series while the head losses are additive; for a set
of parallel pipes between two common junctions the head loss between the two junctions
is identical for each pipe while the total discharge is the sum of the individual discharges.

Since the analysis of flow in a series of pipes is more straightforward than the analysis
of flow through a combination of pipes that includes parallel pipes as a part of the
combination, it is advantageous to replace the set of parallel pipes by a single "equivalent
pipe." This equivalent pipe, which is devised so it has the same head loss as the original
set of parallel pipes and conveys the same total discharge, will in some cases allow the
analyst to avoid the use of iteration in seeking a solution. In other cases the amount of
iteration will be reduced.

The equivalent pipe formula can be constructed so it can be used with any pipe
combination having head loss characteristics that can be described by the exponential
formula, Eq. 2.17. Assume that pipes 1 and 2 are two parallel pipes with frictional

losses described by KQ'; then the equivalent pipe (unsubscripted) must satisfy

hy = KQ" = K1Qf' = K20 (2.38)

and
0=0+0 (2.39)

By solving Eqgs. 2.38 for Q; and Q> and inserting the results into Eq. 2.39, we find

)1/n=(KLl)

For the remainder of the problem the equivalent variables K and Q are then used in place
of the original parallel pipes. Once Q has been found, then a back-substitution into Eq.
2.38 determines Q; and Q). To treat several parallel pipes rather than two, simply add

one additional term to the right side of Eq. 2.40 for each pipe that is in parallel.

1/n 1/n

1
+ ( K_z) (2.40)
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Example Problem 2.6

Two reservoirs have a difference in water surface elevation of 40 ft. Water flows from
the higher reservoir through 4000 ft of 12-in-diameter pipe, which then joins a pair of
parallel 2000-ft-long pipes which end at the lower reservoir. One parallel pipe has a 10-
in diameter; the diameter of the other pipe is 8 in. For simplicity, assume f = 0.02 for
all pipes. Find the discharge in each pipe between the two reservoirs.

In this problem we use the exponential formula for head loss. For each pipe n=2 and

L1 1

"~ D2g A2

With the given data Kjp =2.01, Kjp9 =251 and Kg = 7.65. The equivalent pipe
coefficient K, is found from
172 172 172

I R U T O B S IR R AR B b

K, Ko ks) \251) T \7.65)
or K, =1.014. Omitting local losses, the work-energy equation for the change in water
surface elevation AWS between the reservoirs is

AWS = 40 = (Kj5 + K, )Q?

and Q = 3.64 ft3/s. From Eq. 2.38 we then find Q¢ =2.31 ft3/s and Qg= 1.33 ft3/s.

* * *

If the friction factor is known, no iteration is needed in such a problem. This will be
the case for problems involving large discharges and rough pipes, for the friction factor
will then come from the wholly rough flow region of the Moody diagram. For problems
in which the friction factors are found in the transitional turbulent region of the Moody
diagram, some iteration to determine the friction factors will be required, but it is iteration
only to determine the correct friction factors.

2.4.4. THREE RESERVOIR PROBLEM

Problems involving pipe flow between more than two reservoirs will always require
some form of iterative solution. Here we examine briefly an economical solution strategy
for these problems. In Chapter 4 a computer-oriented solution to such problems will be
detailed.

Example Problem 2.7

The figure below is a diagram of the three reservoir problem; the reservoirs are
connected by three pipes with an external demand at the common junction of the pipes.
The highest reservoir has a water surface elevation of 100 m; the middle reservoir water
surface elevation is 85 m; and the lowest reservoir has a water surface elevation of 60 m.
Determine the discharge in each pipe.
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100 m Diameters in m e =0.0005 m
Lengths in m v=131x10°m?s

93
205,
) Qy=006mYs 15

=0

60 m

Pipe K n

1 1469 | 1.974
2 2432 | 1.927
3 5646 [ 1.971

It is clear that flow is out of the upper reservoir and into the lowest reservoir. What is
unclear is the direction of flow in the pipe that connects the middle reservoir to the system.
The key step is to determine that direction in only one trial.

Let Hj be the head at the junction. The discharges in pipes 1 and 2 can then be

found from these two head loss equations:
100- K1Q" =H;  Hj - K305% =60

Now select Hjy= 85 m, the water surface elevation of the middle reservoir, so that there is
no flow in pipe 2 for the first trial solution. Inserting values of K and n from the
table, we find Q; = 0.0980 m3/s and 03 = 0.0639 m3/s. These values, combined with
the external demand QJy, do not satisfy continuity at the junction J. To satisfy junction
continuity we need more inflow to the junction, so Hj; must be less that 85 m; thus we
find that the flow in pipe 2 will be toward the junction and will be governed by

85- K»05> = Hy
The junction continuity error for each trial will be Q, = Q7 + Q2 - O3 - QJ;. Now we

select trial values for Hj, use the three head loss equations to compute the discharges and
finally compute the error Q,. Each trial outcome can be compactly recorded in a table:

H, 0; 0, 03 o,
m m3/s m3/s m3/s m3/s
85.0 0.0980 0.0 0.0639 - 0.0259

80.0 0.1134 0.0403 0.0571 0.0366
83.0 0.1045 0.0251 0.0613 0.0083
83.5 0.1029 0.0216 0.0620 0.0025
83.7 0.1023 0.0200 0.0622 0.0001

The systematic assignment of values to the head at the junction, which is itself usually not
of great interest, is the step which allows us to search methodically for the solution. This
approach can also be applied productively to similar problems which may even contain
more than three reservoirs. The repeated manual intervention in selecting the trial values
of H; may make other procedures more attractive for solutions by computer, however.
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2.5 PROBLEMS
2.1 For the following pipe flows determine whether the flow is laminar, turbulent
smooth, turbulent rough, or turbulent transition, using the Moody diagram, Fig. 2.2.

(a) A velocity of 3.05 m/s (10 ft/s) occurs in a cast iron pipe having e = 2.6x10" 4m
(8.5x10" 4 ft) which is 2.54 cm (1 in) in diameter. The fluid kinematic viscosity is v =
9.29x10 9 m2/s (10~ 3 £t2/s).

(b) A velocity of 2.44 m/s (8 ft/s) occurs in a cast iron pipe having e = 2.6x10- 4 m
(8.5x10~ 4 ft) which is 0.15 m (6 in) in diameter. Use v =9.29x10" 8 m2/s (10~ © ft2/s).

(c) The velocity is 2.44 m/s (8 ft/s) in a 0.91 m (3 ft) diameter welded steel pipe
having e = 4.6x10-5 m (1.5x10" 4 ft). Use v =9.29x10~ 5 m2/s (10~ 3 ft2/s).

(d) The velocity is 2.44 m/s (8 ft/s) in a 0.91 m (3 ft) diameter welded steel pipe
having e = 4.6x10-5 m (1.5x10" 4 ft). Use v =9.29x10" 7 m2/s (10~ 3 ft2/s).

2.2 A 250 mm diameter pipe is 1500 m long. When the discharge is 0.095 m3/s in
this pipe, the pressure drop between the ends of the pipe is measured as 98.06 kPa. The
elevation at the end of the pipe is 10 m below its beginning. What type of flow is this?
What is the equivalent sand-grain roughness of the pipe wall? What is the Hazen-Williams
roughness coefficient? How much energy is dissipated by fluid friction during each hour

that this flow continues? Use v = 1.31x10" © m2/s.

2.3 Find the pressure drop in 1000 m (3280 ft) of 0.10 m (0.33 ft) diameter pipe

carrying 0.015 m3/s 0.53 ft3/s) of olive oil at 10 °C (50 °F). The downstream end of
the pipe is 10 m (32.8 ft) below the upstream end.

2.4 Determine the discharge that will occur in a 450 mm diameter pipe that is 1000 m
long connecting two reservoirs with a difference in water surface elevations of 25 m. The
wall roughness of the pipe is ¢ =0.12 mm, and v = 1.31x10" ® m2/s. How much head
must a pump supply to reverse the flow, i.e. cause the same discharge to flow from the
lower to the upper reservoir? What power must be supplied by electricity to this pump if
the combined efficiency of the pump and motor is 75%?

2.5 A 0.305 m (1 ft) diameter concrete pipe that is 366 m (1200 ft) long carries water
from a reservoir with surface elevation 1086 m (3560 ft) to a ditch at elevation 1041 m
(3415 ft). If the Hazen-Williams roughness coefficient is 120, find the discharge through
the pipe.

2.6 Determine the minimum pipe size to convey 0.028 m3/s (1 ft3/s) of water at 15°C

(60°F) for new cast iron pipe that is 914 m (3000 ft) long with a change in HGL
between the ends of 15.2 m (50 ft).

2.7 Determine the values of K and n in the exponential formula hy = KQ", based on
the Darcy-Weisbach and Hazen-Williams formulas for these pipes:

(a) L=1000 ft, D =6 inches, e = 0.002 inches, Cgw =110, V = 8 ft/s.

(b) L=1000m, D=0.2m, ¢=0.005m, Cgw=140, V = 2 m/s.

(©) hf: 50 ft, L =3000 ft, D = 8 inches, e = 0.0102 inches, Cgw = 120.

2.8 Plotthe K and n values that were found in Example Problem 2.1 from the Darcy-
Weisbach equation on a Moody diagram. How close are the slopes of these lines on the
Moody diagram to the slopes of the Hazen-Williams and Manning equations? From this
comparison develop some guidelines for when the Hazen-Williams equation is most appro-
priate, and when the Manning equation may be more appropriate.
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2.9 Usethe K and n values that were found in Example Problem 2.1 from the Darcy-
Weisbach, Hazen-Williams and Manning equations to compute the head losses associated
with discharges thatare 50 and 200% of the given approximate (), and compare the
results.

2.10 If the friction factor is held constant, show that the Darcy-Weisbach equation
indicates that the head loss is proportional to the velocity squared, or the discharge squared,
just as the Manning equation does. For what flow type(s) is such a relation appropriate?

2.11 Determine the coefficient K and the exponent n in hy= KQ" for the pipes in the
table which follows by using both the Darcy-Weisbach and Hazen-Williams equations.
The water flows in the pipe at about 6 m/s and has a temperature of 10°C.

Pipe | Type Dia. | Length Darcy-Weisbach Hazen-Williams
No. m m K n K n
1 Smooth con-| 2.50 1000
crete
2 PVC 0.25 1500
3 Old castiron | 0.08 800
4 e =0.005 mm | 0.35 2000

2.12 For pipes 1 and 3 in Problem 2.11, determine the equivalent length of pipe that
could be used to replace the minor loss caused by a globe value (K = 10). If needed, as-
sume a velocity of 6 m/s in the pipe.

2.13 Determine the discharge of water at 20°C (68°F) through a 10 cm (4 in) diameter
concrete pipe that is 457 m (1500 ft) long. Assume the wall roughness is ¢ = 0.61 mm
(0.002 ft). The pipe connects two reservoirs with a 6.1 m (20 ft) difference in water
surface elevation.

2.14 One-tenth m3/s (3.53 ft3/s) of water at 20°C (68°F) flows through a 0.25 m
(0.82 ft) diameter cast iron pipe. Find the head loss in 200 m (656 ft) of this pipe.

2.15 Compare the head loss for a discharge of 0.1 m3/s (3.53 ft3/s) of water at 20°C
(68°F) through (a) a 0.20 m (8 in) diameter concrete pipe with (b) a 0.20 m (8 in)
diame-ter PVC pipe.

2.16 Water at 10°C (50°F) flows between reservoirs through a 0.30 m (1 ft) diameter
cast iron pipe thatis 1 km (3280 ft) long. Find the difference in elevation between the

reservoirs if the discharge is 0.2 m3/s (7.1 ft3/s).

2.17 Water is to be pumped from a lake to a canal which is 200 m (656 ft) distant and

20 m (65.6 ft) higher in elevation. If 0.5 m3/s (17.66 ft3/s) of water at 20°C (68°F)
is to be delivered through a 0.5 m (1.64 ft) concrete pipe, what power must the pump
deliver to the water?

2.18 Find the power which pumps must supply to 3 m3/s (106 ft3/s) of water at 20°C

(68°F) which is to be delivered from the Snake River to the plateau 180 m (591 ft)
above the river through 1100 m (3610 ft) of 1 m (3.28 ft) asphalt-dipped cast iron pipe.
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2.19 Use the Hazen-Williams formula to find hf when 0.013 m3/s (0.46 ft3/s) of

water at 20°C (68°F) flows through 300 m (984 ft) of 75 mm (0.25 ft) diameter
smooth pipe.

2.20 A power plant is 16 km (52,500 ft) from a reservoir. A discharge of 25 m3/s

(883 ft3/s) is to be delivered to the plant at an elevation thatis 1120 m (3,670 ft) below
the reservoir surface. What size of riveted steel pipe is required? Assume a temperature of

40C (40°F).

2.21 What diameter of commercial steel pipe will convey 0.003 m3/s (0.106 ft3/s) of
crude oil at 40°C (104°F) with a pressure drop of 15 kPa (2.18 1b/in?) per 30 m (98 ft)?

2.22 The pump shown below delivers 8 ft3/s of water. The recorded pressures at
sections 1 and 2 on the gauges are - 5.0 Ib/in2 and + 35.0 1b/in2. (a) Draw a
diagram of the system and locate the EL. and HGL at sections 1 and 2 in the diagram.
(b) Determine the required 4, and power that must be supplied by the pump to the water
to deliver this discharge. Neglect pipe friction and local losses. (c) If the rotative speed of
the pump impeller is 1000 rev/min, what type of pump is this?

2.23 You are asked to design a pipe line for a farmer which will carry 0.2 m3/s of water
from a lake on a mountainside at elevation 1905 m to a farm sprinkler system 6 km
away at elevation 1795 m. The sprinklers require a pressure of 400 kPa to operate

properly. PVC pipe is to be used. Assume a temperature of 10°C.

2.24 A farmer wants you to design his irrigation pipe line so it can be used in the winter
to generate electricity for his home. He wants to run a 20 kW turbine-generator (70%

efficient) from the 0.05 m3/s stream. The PVC pipe line is 1050 m long, and the up-
stream end is 75 m above the turbine. What pipe diameter should be selected? Assume a

temperature of 10°C.

2.25 Use a computer program to generate several tables of f versus Re for different
values of relative roughness e/D, and use these to plot several curves on a Moody diagram
with a spreadsheet or other graphing software.

2.26 How much energy per unit weight would be saved by using a long radius elbow
instead of a short radius elbow in a 0.30 m (1 ft) diameter pipe with a discharge of 0.23

m3/s (8 ft3/s) of water at 20°C (68°F)?
2.27 What loss is caused by a close return bend in a 0.15 m (0.49 ft) diameter pipe

carrying a discharge of 0.1 m3/s (3.53 ft3/s) of gasoline at 20°C (68°F)? How does this
loss compare with the use of two short radius bends? Two long radius elbows?
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2.28 A discharge of 0.283 m3/s (10 ft3/s) flows in a 0.30 m (1 ft) diameter pipe.
Compare the head losses for a completely open (a) angle valve, (b) gate valve, and (c)
globe valve. Under what conditions would you select the gate valve? One of the other
valves?

2.29 An irrigation siphon tube is 76 mm (3 in) in diameter and 3 m (9.84 ft) long.
Estimate the discharge for a head difference of 0.5 m (1.64 ft), assuming a re-entrant
entrance, an equivalent sand-grain roughness ¢ = 0.06 mm (2.36x10" 3 in), and two bends
with loss coefficients of 0.2. Draw the system, including the EL and HGL.

2.30 To obtain more electrical energy during the day when there is a shortage and use it
during the late night when there is a surplus, a power company plans to pump water from
a lake to a reservoir through a 0.5 m diameter pipe thatis 2500 m long (e = 0.001 m);
when the power is needed, the company will run that water through a turbine. The
elevation difference between the reservoir and lake water surfaces is 90 m. Surplus
electrical energy costs $0.02/kWh, prime time energy is worth $0.10/kWh, and the
efficiencies of the pump and turbine are 80 percent. Analyze the hydraulics and economics
of the proposed plan. Suggest the discharges that should be used.

2.31 Write a program for a computer or calculator for determining the unknown discharge
Q 1in a pipe line (Category 2), including local losses.

2.32 Write a program for a computer or calculator for determining the unknown diameter
of a pipe (Category 3), including local losses.
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CHAPTER 3

MANIFOLD FLOW
3.1 INTRODUCTION

Every hydraulic manifold consists of one relatively large pipe, or several in some kind
of series configuration, which may be called the barrel or main. Along each main pipe
there are numerous junctions with small pipes or there are numerous ports, all allowing
flow from the main or (Iless common) all allowing flow into the main. One characteristic
of manifolds is the presence of many junctions or ports, usually relatively closely spaced
but not so close that the flow at adjacent ports interacts. Every flow in a manifold is a
spatially varied flow, and flows in manifolds are almost always analyzed as steady flows, as
we will do in this chapter.

Although manifold flow is a less-frequently studied topic than the flow in networks or
the behavior of hydraulic transients, this flow type does have numerous practical applica-
tions. Manifold flow has several kinds of applications to farm irrigation systems (Jensen,
M. E., 1983; U. S. Soil Conservation Service, 1984; James, L. G., 1988; Cuenca, R. H.,
1989; Keller, J. and Bliesner, R. D., 1990), including recent research on trickle and
sprinkler systems (e.g., Scaloppi, E. J. and Allen, R. G., 1993; Hathoot, H. M. et al.,
1994). Protective fire sprinkler systems in buildings are another application. Marine
outfall systems (Vigander, S. et al., 1970; Grace, R. A., 1978) rely on manifolds for the
initial distribution of the wastewater into the receiving water body through multi-port
diffuser manifolds. The filling and emptying systems for large locks on navigable
waterways are basically manifolds (Richardson, G. C., 1964, 1969; Stockstill, R. L. et
al., 1991). And the ventilation of vehicle tunnels also relies in part on an understanding of
manifold flow (Pursall, B. R. and King, A. L., 1976).

This chapter will first describe several levels of analysis that are applicable to manifold
flow; they differ in whether friction is considered and whether junction losses are
considered. We will then look at one example of an analysis of the internal hydraulics of a
marine outfall diffuser and show how this approach can easily be aided with a short
computer program. Articles by McNown (1954) and Rawn et al. (1961) and the book by
Miller (1984) are good places to begin further study of this topic.

3.2 ANALYSIS OF MANIFOLD FLOW

In this section we will look at the analysis of flow in a manifold on three levels. The
first level will ignore all energy losses; although this assumption is unrealistic, it will
serve as an introduction to manifold flow and allow us to unlearn some flow behavior from
the flow in pipes which is not spatially varied. In the second and third levels we
progressively add friction in the barrel or main, and a consideration of energy losses at
junctions or ports. At the end of these analyses we can draw some conclusions about the
importance of barrel friction and junction losses in various applications.

3.2.1. NO FRICTION

Primarily as an introduction to the subject, let us look briefly at the schematic diagram
of a small, simple manifold having only a few equally-spaced circular exit ports, all of the
same diameter, as shown in Fig. 3.1. The downstream end of the main is a dead end. In
the complete absence of real-fluid effects, the reservoir level on the left sets the elevation of
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the horizontal energy line along the entire manifold, which is shown here as having five
single exit ports that are relatively closely spaced. A sectional view is shown on the right,

2
V54
2g

lf<

T

~

Nl

[0 =R

Figure 3.1 A small manifold, no pipe friction or junction losses.

with the transition region from the main to the exit point being rounded to suggest that
energy losses in the port region can indeed be neglected as a first approximation. For
convenience in the analyses, the ports are numbered from the downstream end toward the
reservoir, beginning with 1. The key feature here is the behavior of the hydraulic grade
line for this flow. As always, we can locate the hydraulic grade line by measuring down a
distance of V2/2g from the energy line to it, in which V is the mean velocity in the
barrel segment. Since this mean velocity becomes progressively larger as we move from
the lower- to higher-numbered ports, the hydraulic grade line, and therefore the pressure
head p/y, is farthest below the energy line at the upstream end of the barrel. Since it is
usual to think of the pressure in a horizontal pipe as decreasing in the direction of flow, we
have an immediate indication that some care will be required if we are to avoid reaching
incorrect conclusions as we study manifold flow.

In the absence of energy losses, the velocity from each port is V, = [2gHR 7172 The
discharge from each port is then identical if the ports are all the same. With identical
ports, only two factors can cause the discharge to change from port to port: differing
energy levels from port to port, and junction energy losses. We shall look at both factors
in the next two sections.

A reading of past literature will reveal two points of view on the physics of the flow out
of a port: Some articles assume that only the pressure head in the main is responsible for
driving the fluid out of an adjacent port. Others, including this text, write a work-energy
equation between the main and the exit point of the port; this approach assumes that the
full distance between the EL in the main and the exit point drives the flow. The existence
of loss coefficients and discharge coefficients, which play somewhat differing roles,
depending on the point of view, allows the two approaches to be made compatible with one
another.

3.2.2. BARREL FRICTION ONLY

When barrel friction is considered, then the energy line slopes downward as a sequence of
straight-line segments in the direction of flow in the barrel, as shown in Fig. 3.2. As we
look from port 1 to port 5, we find the velocity head in the barrel grows as it did in the
absence of friction, and each segment of the hydraulic grade line along the barrel also has a
slope that is parallel to the energy line above it. We find the port velocity is Vp; =

[2gH; 772 in which H ; 1s the vertical distance from the centerline of port i to the local

energy line above that port. And the discharge in the barrel changes in each segment, in
accordance with continuity at each junction.

In the manifold section of length L with five equally-spaced ports, we may record the
frictional head loss as
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Figure 3.2 A small manifold, n = 5 ports, with barrel friction but no junction losses.

L/4 V2 i, L/4 VA%_3Jr L/4 V32_2+ L/4 V3,
2g D 2g D 2g D 2g

2hp = f (3.1

if we assume that the pipe Reynolds number is sufficiently high that the Darcy-Weisbach
friction factor f is a constant over the range of flow in the barrel.

Various results can be developed from Eq. 3.1 or an equation like it, depending on the
diameters of the ports. For example, with a total discharge Q7 and the assumption that

the diameter of each port is chosen so that equal discharges issue from each of the five
ports, thatis, Qp = Q7/5, then in each barrel segment port continuity shows that V5.4 =

4V/5, Vg3 = 3V/5, V3.0 = 2V/5, and Va7 = V/5. Then Eq. 3.1 will simplify to

14\ (3 (2 (1 LV? LVv?
M—z[(z) (3 (%) ()]f IR ETR

with V= 07/A and A = cross-sectional area of the main. If instead there were n ports
with equal discharges Qp, = Qp/n, then by using mathematical induction we find that the
total frictional head loss for the section of the main containing the ports is

1 [rVa] Ly v2
or
1 1),LV?
2= (5 - a)f b2 69

However, the unhappy fact is that the diameter of each port must differ, if only slightly,
from the diameters of the other port openings for this expression to be completely
applicable. But Eq. 3.4 may still be useful in obtaining an approximation for the head
loss over a group of n uniformly spaced ports in a distance L in a barrel.

3.2.3. BARREL FRICTION WITH JUNCTION LOSSES

Now the state of affairs at the intersection of the barrel and a pipe lateral of smaller
diameter, both assumed here to lie in one horizontal plane, is relatively complex. We
begin with a diagram, Fig. 3.3, of one such barrel-lateral junction that displays the energy
line EL and hydraulic grade line HGL for the main and the lateral and also introduces a
set of locally-numbered variables: subscript 1 denotes a variable that is defined upstream
of the lateral in the main; subscript 2 denotes a variable that is defined downstream of the
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lateral in the main; and subscript 3 denotes a variable that is associated with the lateral
itself. It is assumed that the spacing of the laterals is such that the flow to successive
laterals does not interact. The energy line now has a loss hL1— ) along the main at the

Junction, and there is also an energy loss /;, . at the junction that is associated with the

flow that passes into the lateral. The hydraulic grade line experiences arise Ah along the
main as it passes the junction. We must keep in mind that it is the art/science of
approximation in hydraulics that expresses these energy and pressure changes as discrete
jumps at a precise location; actually all three factors represent phenomena that occur over a
larger but finite flow region, although we concentrate or lump the effect at a point. All
parts of the energy line slope downward in the direction of flow in the main and in the
lateral, owing to the

(>
<
o
|

— =
le

o

Figure 3.3 Diagram of a barrel-lateral junction with local notation.

effect of fluid friction. The flow from the lateral is presumed to exit as a jet into the
atmosphere.
From Fig. 3.3 we see that the pressure head rise along the main is

2 2
e, 65
2g 2 -
Dividing all by the upstream velocity head produces a nondimensional pressure head rise
coefficient
Ah v,\0 ok
EUNR (—2) LB, (3.6)
Vi/2g Vi Vi /2g
or
Ah P oh
—-1- (&) - 2 3.7)
V] / 2g Ql V] / 2g
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Applying continuity at the junction in the form Q;= 0+ Q3 leads to

2 2
Ah ( _&) e, _ 2(%) _ (&) o (3.8)
Vi /2g 0 Vi/2g O O Vi /2g

If we employ the usual terminology, the last term in Eq. 3.8 is the head loss coefficient
K, ,. Hence we can conclude that the pressure head rise coefficient is a function of only

two nondimensional factors, or

Ah / Q3 hLl -2 \

Vi/2g q)lk o Vi)

(3.9)

in which @7 is the function appearing in Eq. 3.8.

Statements about the functional behavior of the pressure head rise coefficient can be
made if we hypothesize how hL1_2 behaves; Figure 3.4 is the outcome of such an

inquiry.
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Figure 3.4 The expected range of pressure rise coefficients as a function of Q3/Q;.

To begin probing this point, it does not seem difficult to delimit the range of possible
values for hy, . Atthe low end it seems reasonable simply to assume (/y, , =0,

i.e., no loss. At the high end of the spectrum we note that the flow in the main at the

)min
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junction displays some of the character of the flow at a sudden enlargement, as a rapid
deceleration of the flow occurs in the barrel, accompanied by some increase in eddy motion
and other turbulence phenomena. Hence we expect

=)
() =5 (3-10)

This behavior for the pressure head rise coefficient is plotted in Fig. 3.4 as a function of
the discharge ratio Q3/Qy; curve 1 is the curve for minimum head loss, and curve 2 is

the result of using Eq. 3.10 to represent the head loss. Superimposed on Fig. 3.4 is a
dashed curve that is taken from Fig. 3.5, which shows experimental data (unpublished) for
the typical behavior of the pressure head rise coefficient as a function of the lateral-to-main
diameter ratio D3/Dj, assuming in this example that f = 0.02 and L3/D3 =5 for the

lateral.
Ah 0.8
Vifee 0.7 ///_\\\\
A
0.6

////\e%

L

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0
Qs/Qi

Figure 3.5 Typical experimental data for the pressure rise coefficient.

From Fig. 3.4 we find a remarkable result. The experimental pressure head rise
coefficient data do not fall within the rather generous region of expected behavior for
D3/Dj below about 1/3. The clear meaning is that the loss coefficient K Lo is

negative for small values of D3/D;. How can this be? It is not simply caused by
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experimental error but is a real phenomenon, another of the peculiarities of manifold flow,
the cause of which has been debated at some length. Experts conclude that the flow must
be something like the diagram in Fig. 3.6, in which a small fraction of the upstream
discharge is drawn into the lateral. This lateral fraction initially possessed less than the
average kinetic energy per unit weight of fluid, since the fluid near the pipe wall moves
more slowly than the central core fluid. Consequently the mean energy that remains to
flow to section 2 appears to have been enhanced by a small amount. In a one-
dimensional hydraulic representation of the flow, the effect shows up as a small "negative"
loss coefficient, however unrealistic that may seem. Additional study would show that a
loss in the overall flux of energy does still occur in this situation.

2\ Velocity profile
Q — Q

—>| 'S Dividing streamline

!

Q3

Figure 3.6 Flow at a lateral junction.

The behavior of the flow in the lateral must also be quantified. The habit began long
ago of treating these laterals as if they were orifices and assuming for convenience that the
flow through the lateral was driven by the pressure head y; that exists just upstream from

the entrance to the lateral. Thus we write

2
1 V3
c? 2

=CA3+/2gy; or y =

(3.11)

in which Aj3 :nD32 /4 is the cross-sectional area of a lateral of diameter D3, the

velocity V3 = Q3/A3, and C is the orifice coefficient, which can depend on several
variables, depending on the geometric details of the lateral.
We want to establish a relation between C and the head loss coefficient K, . for
flow from the main to the lateral
hy,
K = =3 (3.12)
b3 7 ving

since this coefficient can be found experimentally. Assuming that the lateral flows full and
has length L3 and a constant friction factor f3, from Fig. 3.3 we can write

2 V32
n+ _hL1—3 +hf3 +g (3.13)
with h fs being the frictional head loss in the lateral, or
2 2
LVE L Vg flGV3+V—3 (3.14)

c?2g  2g Ll*z Dy 2g  2g
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Dividing throughout by the velocity head in the lateral and rearranging,

2
St ) o
or
1 0 2 D 4 L,
- (KL1_3 -1)(Q—;) (F?) + (1+f3 33) (3.16)
In summary,
C = d)z( & KL1_3) (3.17)
O

in which @ is a shorthand notation for the function displayed in full in Eq. 3.16. When
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Figure 3.7 The loss coefficient K L3 @ a function of D3/D; and Q3/Q;.

appropriate experiments have been conducted to determine the behavior of K, ;> one
will usually find a relation that is similar to that shown in Fig. 3.7. And once f3 and
L3/D3 have been prescribed, then a plot of C vs. Q3/Q; can be prepared; for example,
Fig. 3.8 has been prepared from Fig. 3.7 by assuming f3 = 0.02 and L3/D3 =5. (Some

will be surprised to see how large the lateral loss coefficient may become; keep in mind,
however, that a lateral that is less than 1/3 the diameter of the main will normally convey
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1/3 or less of the upstream discharge to that junction, so such high loss coefficients are
rarely encountered in practice.)

C

09 - -

0.8

L L L L Q3/Q
0 0.2 0.4 0.6 0.8 1.0

Figure 3.8 An example of the behavior of the orifice coefficient C.

Example Problem 3.1

The 3-port manifold shown in the next diagram has a port-to-main diameter ratio
D3/Dj = D3/Dy, = 0.4, afriction factor f=0.02 in the main and all laterals, and L3/D3
=5 for each lateral. Considering fluid friction in the main and laterals and junction losses,
as described by Figs. 3.5, 3.7, and 3.8, compute the port discharges Q,, QOp, and Q.
The downstream end of the main is closed off by a blank plate.

This problem is more difficult than earlier problems where the junction losses were
ignored, but the results are valuable in helping us decide whether to include or ignore
junction losses in other similar problems.

Such a problem can be formulated in terms of a set of linear and nonlinear simultaneous
equations, but in the past solutions to this problem were normally sought by following the
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method that will now be used. The solution process typically begins by arbitrarily
selecting an energy line elevation at the downstream end of the manifold, and computations
are started there. Of course, the initial elevation will almost never be the correct final
elevation, but it is easy to adjust for this later in the computations. So we begin by
choosing EL = HGL = 10.0 ft downstream of port 1.

At port a the ratio Qjuteral/Omain = 93/01 = Qx/0 = 1.0. Just before this port we

see that y; + Ah = 10.00, with the discharge out the first port satisfying

JID?% R
0,=03= CTN/2gy1

From Fig. 3.5 we read =0.63, and from Fig. 3.8 we find C =0.84. Hence

vi/2g

( \ 40\

Qa i L+0.63 404 L=10.OO
L0.84 nD§J 2g LnDiJ 2¢g

with D3 =0.4(4)/12 =0.1333 ft and g = 32.2 ft/s2. From this equation we compute Q,,
= 0.296 ft3/s, from which V12 /2g= 0.179 ft and Ah = 0.113 ft, which establishes

the values of the EL and HGL immediately before port a as 10.066 ft and 9.887 ft,
respectively. With these values the frictional loss between port a and port b is 0.011 ft
from the Darcy-Weisbach equation, giving EL and HGL elevations of 10.077 ft and
9.898 ft just downstream of port b.

With no prior experience upon which to anticipate the flow behavior at port b, the
second port, the logical initial estimate for the discharge ratio is Qjuteral/Omain = Q0 =

0.50. Turning to the plots, from Fig. 3.5 we obtain 2Ah =0.680 and from Fig. 3.8
Vi/2g
C =0.795. With Q = Qp/0.5, the equation yj + Ah =9.898 ft at port b becomes
2 2
4(0,/0.5
[ 0 —42\ L 0680 12:0.5) > V'L g g0
kO. 795 nD3J 2g nD;, 2g

or Qp =0.274 ft3/s. The discharge in the main is then 0.296 + 0.274 = 0.570 ft3/s and
0p/0 =0.274/0.570 = 0.481, which is not 0.50 as assumed. Thus we repeat the
calculation using Qp/0 = 0.481, with 0.670 being read with some difficulty from Fig.
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35 and C =0.795 from Fig. 3.8. Also the discharge in the main shifts slightly to
become Q = Q0p/0.481 =2.08Q). The new result is Qp = 0.274 ft3/s again. For this

discharge we can compute V12 /2g= 0.662ft and Ah = 0.444 ft with y; = 9.465 ft,

leading to EL and HGL elevations just before port b of 10.127 ft and 9.465 ft. The
Darcy-Weisbach frictional loss between port b and port ¢ is then 0.040 ft so that the
EL and HGL elevations just downstream of port ¢ are 10.167 ft and 9.505 ft.

At port ¢ the uninformed initial estimate for the discharge ratio would be Q0 =
0.333. But from our experience at port b we may speculate that this ratio will be too
high and instead choose our first estimate to be Q-0 = 0.31 so that Q = Q./0.31 =

3.23Q.. Then Fig. 3.5 yields =0.545, and C =0.770 is obtained from Fig.

2
Vi/2g

3.8. The equation yj + Ah =9.505 ft at port c¢ is then

2 2

\ (4(3.230,))
Oc 4 N 1o sus MBS 1 g
0.770 7D | 2g L D> J 2¢

giving Q. = 0.255 ft3/s. Then in the main Q = 0.570 + 0.255 = 0.825 ft3/s, with a ratio
0/0 = 0.255/0.825 = 0.31. We have been fortunate in our choice of the estimate!

Otherwise we must repeat the computational cycle of adjusting the discharge ratio and the
coefficients that depend on it before again computing a new discharge at port ¢ and
checking the result for adequacy. By now it should be clear that a limiting factor in our
ability to obtain an accurate solution that agrees with our starting estimates is the accuracy
of the coefficients. Two factors affect this accuracy, the quality of the original experiments
that led to the preparation of the coefficient plots and our limited ability to read those
plots. As a result, Miller (1984) suggested that agreement within 2% is a reasonable
goal. At least some of the computations in this example exceed this limit, but the results
have been presented in this way so the computations can be followed more easily.

Some computations upstream of port ¢ remain. With the discharge upstream of port ¢

now computed, the velocity head in the main in this region is V2/2g = 1.388 ft, and y;
upstream of port ¢ is

2
y = 1 0.255 =8.739 ft
22 (0.770)(0.01396)

The EL at this section is the sum of these two terms, or 10.127 ft. Just downstream of
port ¢ the EL was computed as 10.167 ft., so we observe the phenomenon of an
apparent negative head loss occurring at port c. This effect is small, but it is not an error.
Continuing, we compute the effect of the frictional head loss in 30 ft of pipe leading to
the reservoir as

2
hy = f£v— -0. ozfi\(mss) =2.498 ft
D 2g \4/12)

so that the computed EL at the reservoir is 10.127 + 2.498 = 12.625 ft. Alas, this
value is actually specified as Hgr = 20 ft. Our work is not wasted, however. Each

velocity, and consequently each discharge, is proportional to the square root of the total
head that is available in the problem, so long as f is assumed to be a constant. To adjust
our estimated discharges to the true discharges, we need only multiply the estimates by the
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square root of the ratio of the true total head, 20 ft, to the computed head, 12.625 ft.
The discharge from each port, in ft3/s, is therefore

Htrue 172
Otrue = Qest[ Heg |
0, = 0. 296[1;()625i]/2 = 0.373 fi3/s
Qp =0. 274[%-1/2 =0.345 ft3/s
0. = 0. 255[%]1/2 = 0.321 f63/s

If it is desired, the actual elevation of each point on the EL and HGL could now be
computed directly since the discharges are known.

The foregoing hand solution has acquainted us with the complexities that come with the
inclusion of junction losses. The modern alternative to such a solution is to formulate the
problem in terms of a set of equations that can be solved simultaneously for a chosen set
of unknown variables. The CD contains both a MathCAD and a TK-Solver model of this
problem, listed under the names PRB3_1.MCD and PRB3_1.TK, respectively, which
are formulated in this way. For this example we denote the hydraulic grade line
downstream (y; + Ah) from the three ports by HGL,, HGL; and HGL.. In a similar

way the C's from Fig. 3.8 and the coefficients K from Fig. 3.5 will be given subscripts
a, b, and c. The following three equations are the result of adding y; and Ak at the

three ports:
(0, (2682) + 5,03 [2aa3) =,

(057G, )'/(2842) + Ky(Qu + 0, ) /(2242 ) = HGL,

(Qc/cc)%(ngg) ¥ K (Qu+0p+ QC)Z/(ng,%,) - HGL,

in which A, =(n/ 4)D32 is the area of each equally-sized port, and A, =(7/ 4)D,31.
Along the main three energy equations

HGLy, = HGL, + (fL,/D,, - K, )03 /(2242 )
HGL, = HGL, + (fL,/D,, - Ky )(Q, + 0,)" /(2242 )
Hy = HGL, + (1+ L/D,, - K. )(Q, + 0y + Q. ) /(2242

can be written, in which Lg =1 ft is the spacing between ports, L = 30 ft is the length
of the upstream main, and Hpg = 20 ft is the elevation of the reservoir water surface.
These six equations can be solved for six variables, which could be chosen as Qg,, Op, O,
HGL,, HGL,, and HGL.. Using any software that is capable of solving a nonlinear
system of equations produces Q, = 0.373 ft3/s, Qp = 0.345 ft3/s, Q. = 0.321 ft3/s,
HGL, = 15.844 ft, HGLj = 15.683 ft, and HGL, = 15.043 ft, if the coefficients that

were determined in the hand solution are used. If the source of these coefficients must be
Figs. 3.5 and 3.8, a solution can be obtained with trial coefficient values, the coefficients
can then be adjusted and improved, and the problem can be solved again. However, an
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improved computational approach would use "list functions" that would obtain the
coefficients from values that are found from tables that describe the curves in these figures.
If a function subprogram that solves the Colebrook-White equation (so one Colebrook-
White equation would be written to determine the friction factor f in each flow segment of
the main; in this case three equations) is added to the equation system, then one could
merely specify the pipe material (actually the equivalent sand grain roughness e for that
material) rather than specifying a value for f itself. Talozi (1998) has analyzed manifold
flow recently using some of these computational approaches.

* * *

A review of these computations allows us to come to several conclusions:
1. As the local ratio Q3/Q; changes, the experimentally determined coefficients

that describe the flow at each junction probably also change. The flow from a
port cannot be determined accurately unless the lateral discharge coefficient C and
the nondimensional pressure head rise coefficient are known reasonably well.

2. For practical manifold flows in which a large number (more than three or four is
large) of ports are present, the negative head loss phenomenon will in theory be
present at a large majority of the ports (all but the last few ports), but the actual
amount of the energy change across such a port will almost always be very small.
And if this energy change (gain) across a port along the main is neglected, the
effect of this neglect is a conservative one in the design process.

3. The first end-of-chapter problems will demonstrate that ports of equal diameter,
in the absence of the consideration of junction losses, display a trend of increasing
port discharge with increasing EL in the main. But Example Problem 3.1 is
one example where a consideration of junction losses leads to a decrease in port
discharge with an increasing EL as one moves upstream. When this trend was
observed many years ago along with a decrease in pressure head in the upstream
direction, it was concluded that it was the pressure head, and not the energy line
location, that determined the port discharge; old technical articles that emphasize
the importance of pressure head alone in manifold behavior should be viewed with
caution.

3.3 A HYDRAULIC DESIGN PROCEDURE

Whether the application is a submarine diffuser as part of a wastewater dispersal
operation or a drip irrigation system, some elements of the design procedure change little.
There are also some elements that vary from application to application, however. A
submarine diffuser, for example, normally is laid on a slope in water of a different density
than that of the wastewater, which leads to external pressure differences from port to port
that must be incorporated into the design computations. And the physical shape of a
submarine diffuser port differs substantially in size and other details from, say, a drip
irrigation emitter (port). With some exceptions the trend in recent years is toward a larger
number of smaller ports. And the ports within a major segment of the manifold, if not the
entire manifold, will be uniformly spaced and of uniform diameter for ease of construction.

In the design of a manifold there are several goals:

1. To assure that the manifold functions in the intended manner, it must always
flow full. For a simple manifold this is usually met by requiring the sum of the
individual port cross-sectional areas to be less than, typically about 90% of, the
cross-sectional area of the main. For larger manifolds with a stepped main, the
ratio of the sum of port areas downstream from a particular section to the cross-
sectional area of the main at that section is usually limited to some fraction
between 1/2 and 2/3.
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2. The ports and the main should both have a simple, clean design for several
reasons. A simple design will often lead to low hydraulic losses, which will
reduce operating expense by saving energy and will lead to a much simpler
hydraulic analysis if junction losses can be neglected. It ought also to reduce
maintenance costs.

3. The primary design goal, but not one that is strictly attainable, is an even or
relatively even distribution of flow between ports.

4. The range of acceptable velocities in the main should be examined carefully for
each application, especially if there is any possibility of some solids being
conveyed in the manifold. The velocity of the carrier fluid must then be high
enough to prevent the settlement of the solids, and it must also be low enough to
avoid a scour or abrasion problem. When solids are borne in water, the acceptable
range is between 2 and 15 ft/s but usually below 5 ft/s.

The computational sequence for manifold design that will be described in the following
paragraphs was developed in the 1960s and 1970s by several investigators and authors,
including Rawn et al. (1960), Vigander et al. (1970), and Grace (1978). A brief look into
these publications, however, will show the continuing influence of N. H. Brooks on all
these efforts. Notationally we follow the presentation of Grace (1978), which is diagramed
in Fig. 3.9. The procedure is organized so the entire sequence can be converted relatively
directly into computer code.

Segment j + 1 Segment j Segment j - 1
o | ® O <
— i1 p Qv pilp;
" Fluid, v | v,
qj+l‘ hj 4 Py Va q; l h
. ; .
Yiv1 uj@ !

Figure 3.9 A two-port segment of a manifold, to display notation.

The manifold ports and barrel segments are numbered from the downstream end toward
the upstream supply head or reservoir, with each port and segment number that is upstream
of it denoted by j, which will also be used as a subscript on the other variables to indicate
their location. Other variables are Q = discharge in the barrel segment, V =mean velocity
in the barrel segment, A = cross-sectional area of the barrel segment, D = diameter of the
barrel segment, ¢ = discharge from a port, u = mean velocity through a port, a = cross-
sectional area of a port, and d = diameter of a port.

To allow several different design environments, we assume that this design considers a
manifold or diffuser conveying a liquid fluid of constant unit weight y (the fluid is usually
water, but the design procedure is not restricted to water only) that is submerged in an
ambient body of fluid of constant unit weight y,. The horizontal surface of the exterior

fluid body serves as a datum where h =0; the submerged elevation of a port is then - A,
which will change from port to port if the manifold slopes. The pressure outside a port is
Pa = Ygh. If the ambient fluid is air, then we choose 7, = 0. The hydraulic model of flow
in a manifold has a discrete jump in pressure across a port; just upstream of port j the
internal pressure is pj, and just downstream of the next port the pressure is p';. Flow is
assumed to exit horizontally from ports having centerlines at the same elevation as the
centerline of the barrel.

The manifold computations begin at the downstream end. Select an estimate of the
average port discharge ¢p as the total discharge through the manifold divided by the
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number of ports. If the fluid flow in the manifold is to carry with it any settleable
material, then it is advisable to put a large port, with a discharge of roughly 4¢),, at the
downstream end to counteract the siltation that would otherwise occur in a dead end. The
discharge through this port is governed by an orifice equation, but the total head at this port
is not known; simply pick a value for the total head that is consistent with the port
discharge that is chosen, and it will be corrected later.

The computations at a port, say port j, are basically the same for every port. We
write an energy equation from a point inside the main, point 1, to a point in the port
efflux stream, point 2:

2 2 2
_hj+_f+p_1=_hj+_f+pﬂ+kL_f (3.18)
2¢ v 26 ¥ 2g

In this equation kj, is the port head loss coefficient. If we define an energy parameter E
at port j as

pi—py V2
E; = J T4, T (3.19)
Y 28
then the fluid exit velocity through the port is
! 1/2(2 E )1/2 (3.20)
u: = . .
J 1+ kL & J

The discharge through this port is the product of the port velocity and the flow cross-
sectional area of the jet from this port, or

qj =I/tjCCa]' (3.21)

or

)1/2 (3.22)

qj= CDaj(ZgEj
with the discharge coefficient Cp combining the effects of the port head loss and the local
contraction coefficient C, into

Cp=C,/(1+k;)"?

(3.23)
Since the local loss coefficient varies, for an unchanging individual port geometry, with
the ratio of the local velocity head to total head or its surrogate E;, these relations can be

contracted to

v2/2g
Cp; = Cp| -~ (3.24)

Ej

This function must initially be determined experimentally, and the results can be
summarized in any number of ways, in a graph or table, as an analytical curve fit or as data
pairs that can be interpolated by a computer program subroutine. For example, Grace
(1978) cites an empirical equation fitting data that describe the flow through a bell-mouth
port that is part of the diffuser manifold in an ocean outfall for the city of Honolulu, valid
only when di/Dj < 0.1, as
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) 3/8

V< /2g

Cp=0.975|1--1 (3.25)
Ej

and Rawn et al. (1960, p. 94) graphically present analogous curves for bell-mouth and
sharp-edged ports.
Along the main between points 3 and 1, we may write the energy equation as

2 ! 2
: >,
- j+1+2—fg TJz—hj+2—fg+71+th (3.26)

The velocity head terms cancel, the elevation terms are either known or zero, the pressure
head term at port j has been computed, and the last term, the frictional loss term along
the barrel, can be computed from the Darcy-Weisbach equation. Hence the pressure head

term pj'-/ Y downstream of port j+1 can be computed. Now we assume that it is

acceptably accurate to assume no head loss across a port along the main, leading to

2 2 '
Ve . Ve p.

j+1 4 p]+1 — J + J] (327)
28 Y 28 v

This last assumption may be questionable for the first two or three ports at the downstream
end, but thereafter it should be a very good and slightly conservative assumption. The
right side of this equation is entirely known. Since pgj; can be determined, then Ejy;
is known, but the two terms on the left side of Eq. 3.27 are not yet separately known.
Consequently we can not immediately find Cp at port j+1, since Eq. 3.24 shows that
we must know the upstream velocity head to do that. So we proceed as follows.

If we know gj47, then

Qj+1 = Q] + ‘Ij+1 (3.28)

and Vj;j can be found directly. But Eq. 3.22 clearly requires a value for Cpj1j. We can
iterate our way to a solution by first computing an estimate of gj+; as

)1/2

gj+1 = CDjaj+1(28Ej+1 (3.29)

with Cpj; based on (VJ2 /Zg)/Ej_H instead of (VJZ+1 /2g)/Ej+|’ and then in turn

computing Qj; from Eq. 3.28, Vji; from Qji, and then an improved value of
Cpj+1 based on Vjy1. This cycle will almost always converge in one or two iterations
to give an accurate value of Cp at port j+1. This computational routine is used at each
port.

This computational routine is repeated from one port to the next until the entire
manifold has been traversed. At this point the total head has been computed at the
upstream end of the manifold. For the manifold to function as the computations indicate,
this head or a larger head must be supplied to this point. Commonly the goal is either to
match some head here to a reservoir head or the head from a pumping plant, and the
computed total will rarely be the same as the target head. Two approaches are available for
the reconciliation of this difference: (1) Recognizing in the entire computational procedure
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that heads are proportional to the square of the velocities or discharges, all discharges can be
proportionally scaled, as was demonstrated in Example Problem 3.1,

H 172
Otrue = Qesl|: h;””e:| (3.30)
est

in which Hpqe is the desired target head, Q,; and H,g are the estimated discharges and
heads that are the outcome of the computation, and Qy, are the discharges that will

produce the desired head. (2) The other approach is simpler but still effective, and that is
simply to raise or lower the original head at port 1 in proportion to the amount by which
the target head is missed in the previous trial and to rerun the problem with the computer
program; continue these adjustments until the target head is met with acceptable accuracy.

Computer programs that perform this sequence of computations have been developed by
various individuals and organizations. Grace (1978, pp. 296-297) presents a typical set of
plots that are the outcome of such studies; the plots display the relatively small variation
of discharge from port to port that is attainable by good design. A relatively simple
version of a typical manifold program has been written and will be found with the other
programs on the CD in file MANIFOLD. A study of the program listing should help the
reader understand the details of implementing the computational procedure. The current
program follows the methodology in this section, including the neglect of head loss at a
port along the main. But the code also indicates where modifications are needed to include
this factor, if it is to be added to the program.
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3.4 PROBLEMS

3.1 In the manifold shown below, neglect all losses except pipe friction in the barrel, and
assume f=0.02 is a reasonable estimate for the Darcy friction factor in the barrel.

(a) Assume the discharge from each port i is Q; = 0.35 ft3/s. Compute each port
diameter d;, i =14, thatis required so that the assumption of equal discharges is true.
(b) Now assume that all four port diameters are each the size d; that was computed
in part (a) and compute the resulting discharge Q; from each port.

K

~<———3( ft ——=10 ftrj=10 ft|«10 ft

— _ o o o o |__<>%———>Vp
[ 4 3 2 1

D=4in

Hg = 20 ft

3.2 It is proposed to distribute water to irrigation furrows on two sides of a road, as
shown in the next figure, by a system which is supplied by an elevated reservoir and
consists of one 12-in-diameter used pipe (still in good condition) that serves both sides of
the road via many circular holes or ports on 5-ft intervals. The largest port diameter is to
be 2.0 in. Each port is to discharge 0.2 ft3/s. Assuming for simplicity that f = 0.02 is
a suitable friction factor and neglecting junction and other minor losses, estimate the
required water surface elevation in the reservoir to fulfill these requirements.

—Road—
00 00 5000 1-Elev. 100.0
| | | -
|21 portsl 100 ft 41 portsl
@5 ft @5 ft
ctrs. ctrs.

3.3 Consider n equally-spaced ports in a length L of pipe having diameter D and
friction factor f. Assume equal discharge g from each port.

(a) Including friction but not junction losses, is it possible for the hydraulic grade line
to have the same elevation at both ends of the manifold section of the pipe? Conclude
"yes" or "no" and then justify your answer by using equations.

(b) Does conclusion (a) depend on the overall discharge Q in the manifold, or is your
conclusion independent of discharge?

(c) If condition (a) were realized and ¢ 1is constant, does this mean that each port
diameter must be the same? Respond "yes" or "no" only.

(d) Comment briefly on whether a consideration of junction losses would alter your
reply to part (a).
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3.4  Compute the discharge from reservoir A to reservoir B for the system shown below.
Assume f = 0.02 and neglect local losses. The pump characteristic curve can be

represented by hp, =300 - 2002 with hy inftand Q in ft3/s.  Although the diameters

of the intake ports are not stated, assume as an approximation that they cause the inflow
over this section to be uniformly distributed.

El 150 ft —=—

L =60 ft
|

21 ports
@ 3 ft. ctrs.

3.5 Consider again the manifold shown for Problem 3.1, but now do not neglect junction
losses. The ratio of diameters between the laterals and the main is D3/D; = 0.2, and the

length of each lateral is 10 in. Assume f= 0.025.

(a) Using Fig. 3.5, develop and plot K7 ;.2 vs. Q3/Q;. Does the coefficient become
negative? Over what range of Q3/0;?
(b) Develop a plot similar to Fig. 3.8 which displays C as a function of Q3/Q;.

(c) Starting with a trial EL of 10 ft, determine the discharge from each port and the
total discharge from the manifold.
(d) What is the elevation of the actual EL. downstream of the ports?

3.6 Certain assumptions are made in the analysis of a major submarine diffuser manifold
for the disposal of wastewater. Indicate which of the following assumptions is both correct
and justified, and why the others are in some way incorrect or not justified.

(a) All losses at a junction are ignored.

(b) At a junction only port losses are considered.

(c) Only losses along the main are considered at a junction.
(d) All losses at a junction usually should be considered.

3.7 A city treats at least some wastewater by overland flow. It is proposed to deliver 0.1

ft3/s of dilute wastewater (same properties as water) through 50 ports, which are 5 feet
apart, to the land surface. The main delivery line is old 8-inch-diameter metal pipe coming
from a raised reservoir. You are asked to act as a consultant on the project.

(a) Itis proposed that the diameter of each port opening be 1.25 inch because it is
easy to build. Indicate whether this port size is an acceptable choice. Secondly, tell the

project workers whether 0.1 ft3/s can be delivered through each port this way.
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(b) For a preliminary design assume Qp =0.1 ft3/s from each port, f=0.02 and

neglect all local losses. Estimate the minimum reservoir surface elevation that can be
used successfully here.

(c) Do you think a consideration of junction losses would significantly change your
answer in part (b)? Do you think a more detailed analysis of the flow out each port is
needed? In each case, why do you think so? Reply briefly to both questions, but do no
additional calculations.

3.8 Devise a computational scheme to determine the head loss across a port in the main
line of a manifold. Implement the scheme in the manifold program MANIFOLD on the
CD, and test the scheme by running the program, using additional print statements to
obtain enough information to verify that the program operates correctly.

3.9 Trickle irrigation of a field may involve a hierarchy of manifolds; that is, a delivery
main can serve as the supply to several manifolds, and each manifold will in turn serve a
number of laterals. Finally, each lateral will contain along its length a number of
individual emitters. The manifold program on the CD is suitable for application to the
pipes that are called manifolds in this application, so long as care is taken to treat the port
exit pressures properly. However, each line called a lateral is itself a pipe containing
numerous emitters or "ports” and so is itself a kind of manifold having two significant
differences from the manifold which is modeled in the current manifold program: (1) At
each port the trickle emitter usually (but not always) has a "barb" that projects into the
main and causes a head loss at the port along the main; (2) Irrigation practitioners

represent the discharge from an individual emitter by g = KH™, in which K is a discharge
coefficient that is characteristic of the emitter, H = pressure head = (p - p,)/y, and the

exponent varies with the type of emitter over the range 0=x=<0.8. For example, for
simple orifice or nozzle emitters x = 0.5. For more information see James (1988) or
Keller and Bliesner (1990).

Modify the manifold program on the CD to simulate the flow in a trickle irrigation
"lateral":

(a) For barb losses along the main, called the lateral, irrigation references (e.g. James

1988, p. 281) describe the head loss in terms of an equivalent additional pipe length. If

the head loss along the main at a portis hy = K V2/2g, then the loss coefficient is of
the form
K=Cf/D"

with C being a pure number, f = Darcy friction factor, D = pipe inside diameter, and
m = exponent, usually approximately 3.

(b) Replace the port discharge formula that is in the program with ¢ = KH®*, and
modify the program input statements to read the new data that are required.
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CHAPTER 4

PIPE NETWORK ANALYSIS

4.1 INTRODUCTION

This chapter describes the analysis of steady flow in pipe systems. In any analysis
problem all of the physical features of the network are known, and the solution process
endeavors to determine the discharge in every pipe and the pressure, etc. at every node of the
network. Therefore in this chapter the diameters of all pipes, their lengths and their
roughnesses are known, as well as where reservoirs, pumps, pressure reduction valves, and
other fittings are located. The ways in which these devices influence the hydraulics of the
system will be specified. Design problems, on the other hand, try to select (wisely!) the
diameters of pipes, the capacities of pumps, the water surfaces elevations of reservoirs, and
so on. Thus, a design problem is distinguished from an analysis problem by the choice of
the variables that are regarded as unknown. At some risk we dare to generalize by saying
that design problems are usually more challenging to solve than are analysis problems, and
design problems usually require the simultaneous solution of a larger system of equations
than do analysis problems. A thorough understanding of the techniques of analysis for
large networks that are composed of known physical features is a prerequisite to the
understanding of the design of networks. The design of pipe networks is the focus of
Chapter 5 and is not discussed directly in this chapter.

The analysis of a pipe network can be one of the more complex mathematical problems
that engineers are called upon to solve, particularly if the network is large, as occurs in the
water distribution systems of even quite small cities. A significant fraction of the entire
set of equations consists of nonlinear equations, and a large number of these equations must
be solved simultaneously. Before digital computers were widely used in engineering
practice, it simply was not practical to solve such network problems, and consequently
many existing water distribution systems have "grown" with time, based primarily on the
best professional judgment of engineers, without any thorough or detailed analysis of the
pressures and discharges that could exist in the pipes of the network in response to various
combinations of demands on the system. The computer has made it possible to solve such
large network problems with ease, and as a result many municipalities and water districts
have benefited from the results of relatively detailed computer analyses of their systems in
recent years. We believe it is important for an engineer to understand what is being
accomplished in these computer solutions. To aid engineers in gaining this knowledge, we
begin with the basic principles, and the equations that embody them, that interrelate the
discharge in each pipe and the pressure at each node of the network.

The same few basic principles of fluid mechanics are the foundation of our work on
pipe network analyses. These basic principles are (1) conservation of mass, or the
continuity principle, (2) the work-energy principle, and (3) the relation between fluid
friction and energy dissipation. Chapter 2 has already introduced these principles. The task
here is to employ these ideas effectively in describing a large hydraulic system accurately
by means of equations, and then to solve these simultaneous equations efficiently.

The oldest systematic method for solving the problem of steady flow in a pipe network
is the Hardy Cross method, which is itself an early adaptation of the method of moment
dis-tribution from structural engineering in 1936. Before the ready availability of digital
computers in the late 1960s, this method was prized because it is so well suited for hand
computations. Then it became the basis of most early computer software, but because of
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convergence problems for large systems containing pumps and other appurtenances, it will
not be discussed herein. Over the past quarter century the Newton method has proven to be
superior in solving the nonlinear equations, and now networks of 2500 pipes or more can
be analyzed successfully with a desktop computer.

4.1.1. DEFINING AN APPROPRIATE PIPE SYSTEM

The first step in studying pipe systems is to decide what features are important and to
retain them in defining the network of pipes. For large water distribution systems some
"skeletonization" usually occurs in this process. In other words, not all pipes in the
system are included in the analysis. This skeletonization can take on many forms, such as
the following:

1. Not all connections to houses are considered as separate nodes or junctions, and all
of the distributed demands along one block of a street, or even a small subdivision,
may instead be aggregated or lumped at a single node;

2. Only those pipes that carry the water from the supply sources to the areas of
demand are included, i.e., only the main transmission system is considered;

3. Only a few pipes and their associated appurtenances are considered; these compo-
nents are regarded as vital to the proper operation of the system.

Any study of a pipe system may include one or even all of these levels of skeletoniza-
tion; the first preliminary study may start with a model of type (3), and subsequent, more
complete analyses may proceed back to type (1) as the adequacy of each is verified, or as
components are adjusted. After these analyses have been obtained and studied, it may then
be desirable to study intensively the network of pipes within a city block, or the pipes
within the area of a major water user, such as a large structure or a manufacturing facility.
Thus analyses can treat an entire delivery system, which is generally skeletonized, or a
more detailed analysis of the piping system or plumbing within a large building, or a golf
course, etc. When an analysis of a building's piping system is conducted, the exterior
pressures that are supplied by the larger system can be specified with some degree of
confidence since the analyses of the larger "delivery" networks provide this information.
There are no hard rules that dictate which pipes should be omitted. Such decisions are
often left to the professional judgment of the supervising engineer, and sometimes these
decisions are called "art,” but the insight gained from analyses at different levels of
skeletonization often indicate which pipes should be included in the next level of analysis.
Computers can now analyze a problem consisting of many more pipes (e.g., several
thousand) than the human mind can visualize in detail when deciding which features should
be changed to improve the performance and reduce the costs of the system.

Another vital part of defining the network problem is to determine which demands
should be specified. The demands on an existing system can be obtained from water usage
or billing records. Even for existing systems the data are seldom complete in describing
how these demands vary during a day, or from day to day. Analyses are usually needed for a
range of system demands, from peak hourly demands down to minimal demand periods
(e.g., 2-3 am.). During above-average demand periods tanks will have their storage
volumes partially depleted, but this loss of volume should be recovered when demands are
small. Since a water system may be designed for a 50-year life, the specified demands
must appropriately reflect future growth and increases (or possibly decreases) in per capita
consumption. In the design of a new system, the demands may have to be based on
comparisons with similar cities etc. However, if a system is to be designed to deliver
known quantities at specified times, then the problem of determining appropriate demands
does not exist. So we see that engineering experience, based on sound judgment, is often
required in defining the most appropriate piping system problems to analyze.

After the analyst has obtained one or several apparently reasonable solutions, the next
step is to verify by measurements in the actual system that reasonable agreement exists be-
tween the solution to the mathematical problem and the real system. This process is called
network verification. If significant disagreements occur, their causes must be identified.
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Are some valves in the real system unknowingly closed or partly closed; do some major
leaks exist in the real system; has the skeletonization process inappropriately excluded
some pipes that carry large flows? These and other possibilities should be explored until
reasonable agreement does exist. Firms specialize in field flow measurements to verify
that the actual pipe system is modeled properly.

After analysis has provided solutions to the network problem for various levels of de-
mands, non-ideal or simply inadequate performance parameters can be identified. Some
indicators of inadequate or poor performance consist of the following (many other
possibilities that are peculiar to an individual system do exist):

1. Pressures at some nodes are too low;

2. Pressures are too high at some nodes (If water is pumped, excessively high
pressures cost money, owing to larger power consumption than is needed, more
frequent pipe ruptures and the premature replacement of facilities.);

3. Discharges are inadequate and/or pressures are too low to meet emergency demands,
such as fire fighting;

4. Pumps are not operating near their peak efficiencies;

5. Some water storage facilities are always nearly empty, while others are nearly full
or overtopping (Are the tanks under- or over-sized and located at the best
elevations? Unless storage facilities perform near their capacities, they represent
investments with cost/benefit ratios that are too large.);

6. Pressure reduction valves, or back pressure valves, are inactive or open (Perhaps
they are not needed, or pipes should be removed or added.);

7. Too much of the supply is commg from expenswe sources, etc.

Upon identifying deficiencies, the engineer's next task is to determine the best, most
economical means of overcoming these deficiencies and improving the performance of the
system. How best to accomplish this will again require sound professional judgment, but
sound judgment seldom occurs in the absence of relevant information, i.e., the engineer
must understand the system. Section 5.7 of the next chapter discusses sensitivity analyses,
which could materially aid this evaluation process.

In the following work we will express the head loss in each pipe in a network by an

exponential formula hr= KQ", Eq.2.17, so one presentation of the theory covers all

cases, regardless of whether the Darcy-Weisbach equation, the Hazen-Williams equation or
the Manning equation is used to express the head loss as a function of discharge. Only the
values for K and n change, as we saw in Chapter 2.

4.1.2. BASIC RELATIONS BETWEEN NETWORK ELEMENTS

The two basic principles, upon which all network analysis is developed, are (1) the con-
servation of mass, or continuity, principle, and (2) the work-energy principle, including the
Darcy-Weisbach or Hazen-Williams equation to define the relation between the head loss
and the discharge in a pipe. The equations that are developed from the continuity principle
will be called Junction Continuity Equations, and those that are based on the work-energy
principle will be called Energy Loop Equations. The number of these equations that
constitutes a non-redundant system of equations is related directly to fundamental relations
between the number of pipes, number of nodes and number of independent loops that occur
in branched and looped pipe networks. In defining these relations NP will denote the
number of pipes in the network, NJ will denote the number of junctions in the network,
and NL will denote the number of loops around which independent equations can be
written. In defining junctions, a supply source will not be numbered as a junction. A
supply source is a point where the elevation of the energy line, or hydraulic grade line, is
established; a junction, or node, is a point where two or more pipes join. A node can
exist at each end of a "dead end" pipe; this instance is an exception to the usual rule, where
only one pipe is connected to a node. In a branched system there are by definition no
loops, and thus NL =0 for any branched system. In branched systems the number of
nodes is always one larger than the number of pipes, or NP = NJ - 1, unless a reservoir is
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shown at the end of one pipe and this is not considered to be a junction. Then NP = NJ.
(This situation actually occurs.) Figures 4.1a and 4.1b depict a small branched network
and also a small looped network.
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Figure 4.1 (a) A small branched system.
6 pipes, 7 nodes

(b) A small looped system.
12 pipes, 9 nodes

In the branched system the number of nodes is 7 and the number of pipes is 6 (one less
than the number of nodes), whereas in the looped system there are 12 pipes and 9 nodes,
i.e., the number of nodes is less than the number of pipes.

For a looped network the number of loops (around which independent energy equations
can be written) is given by

NL = NP - NJ 4.1
if the network contains two or more supply sources, or
NL=NP-(NJ-1)=NP-NJ+1 4.2)

If the network contains fewer than two supply sources and the flow from the single source
is determined by adding all of the other demands, then this source is shown as a negative
demand and the source is called a node. We note that this is the case in the small looped
network in 4.1.b, so we have NP =12, NJ=9 and NL=12- (9-1)=4.

Equation 4.2 also applies to a branched system with NL=NP - NJ + 1 =0, since a
branched system can have at most one supply source. Actually, every pipe system must
have at least one supply source, but sometimes the source is not shown since the discharge
from this supply source is known, and the source is replaced by a negative demand, which
is a flow coming into this junction, equal to the sum of the other demands. When this is
done, the elevation of the energy line (or HGL or pressure) must be specified at a node so
the other HGL elevations can be determined. Energy loops that begin at one supply
source and end at another are called pseudo loops, i.e., these loops do not close on
themselves. The number of pseudo loops, which are numbered as part of NL, equal the
number of supply sources minus one. In forming pseudo loops all supply sources must be
located at the end of a pseudo loop. It is generally possible to form more loops than are
needed to produce a set of independent equations. As each new loop is formed, see that at
least one pipe in the new loop is not a part of any prior loop; in this way the formation of
redundant loops can usually be avoided. For special devices, such as pressure reduction
valves, this rule of experience must be modified slightly, as will be described later.

4.2 EQUATION SYSTEMS FOR STEADY FLOW IN NETWORKS
Three different systems of equations can be developed for the solution of network
analysis problems. These systems of equations are named after the variables that are
regarded as the principal unknowns in that solution method. These systems of equations
are called the Q-equations (when the discharges in the pipes of the network are the
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principal unknowns), the H-equations (when the HGL-elevations, also simply called the
heads H, at the nodes are the principal unknowns), and the AQ-equations (when
corrective discharges, AQ, are the principal unknowns). Each of these three systems of
equations will be studied separately.

4.2.1. SYSTEM OF Q-EQUATIONS

The analysis of flow in pipe networks is based on the continuity and work-energy
principles. To satisfy continuity, the volumetric discharge into a junction must equal the
volumetric discharge from the junction. Thus at each of the NJ (or NJ- 1) junctions an
equation of the form of Eq. 4.3 is obtained:

QJ; -30; =0 4.3)

In this equation QJ; is the demand at the junction j, and each Q; is the discharge in one
of the pipes that join at junction j. These junction continuity equations are the first
portion of the Q-equations. The work-energy principle provides additional equations
which must be satisfied. These equations are obtained by summing head losses along both
real and pseudo loops to produce independent equations. There are NL of these equations,
and they are of the form of Eq. 4.4 or 4.5, depending upon whether the loop is a real loop
or a pseudo loop, respectively, and they are the second portion of the Q-equations:

Shp =0 (4.42)
Shy; = AWS (4.52)

When the head losses are expressed in terms of the exponential formula, then these
equations take the forms

D K,-Qi" =0 (4.4b)

S K0 = AWS (4.5b)

in which the summation includes the pipes that form the loop. If the direction of the flow
should oppose the direction that was assumed when the energy loop equations were written,
such that Q; becomes negative, then there are two alternatives: One is to reverse the sign
in front of this term, i.e., correct the direction of the flow. The second, which is generally
preferred when writing a program to solve these equations, is to rewrite the equations as
follows:

N K ailof"'=0 (440)

N ki 0ifo;|"'= aws (4.5¢)

To illustrate the system of (Q-equations, consider the small 5-pipe network shown in
Fig. 4.2. Since no supply sources are shown for this network, only NJ - 1 junction
continuity equations are available. Writing these continuity equations for nodes 1, 2, and
3 leads to
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Figure 4.2 Small network.

=01+03-4.45=0
Fry=-01+0 +04 +111
F3=-04-05+334=0

I
(=)

(4.6)

In these equations and throughout the text, F; for any number i is any equation which
has been arranged into the form F; = 0; this format is useful for identification purposes
and also for subsequent mathematical and numerical developments. The continuity
equation at node 4 is - Q3 - 0> + Q5 = 0. However, this equation is not independent of
the other three nodal equations since it is, except for sign, the sum of these three equations.
Now let us use the Hazen-Williams equation to define the head loss in each pipe. In
expressing these head losses, the exponential equation will be used. From Eq. 2.18 the
coefficients are the following:

Ky =2.018, Ky =5.722, K3 =19.674, K4 =4.847, K5 =1.009 4.7)
The energy equations around the two loops may be written as

Fy = KlQl 852k Q2852 K Ql 852 _ ¢
(4.8)
Fy = K40 1852 _ p Qé 852 _ g Ql 852 _ ¢
or

=2.1080]39% +5.7220485% ~19.6740}852 = ¢
4.9)
Fy = 4.84704%92 ~1.00001832 _ 57220182 - 0

which might alternatively be written as follows if the directions of the flows are uncertain:

+5.7220,|0, 32

~1.0090s| 5|2

~19.67403]03"%% =0

~5.7220, |Q |0852

- 2.1080 |Q] |0.852

Fy = 4.84704|04]

4.10
0.852 ( )

These two work-energy equations are obtained by starting at nodes 1 and 2, respectively,
and traversing the respective loops I and II in the clockwise direction. If the assumed
direction of flow opposes this traverse, a minus sign precedes the head loss term for that
pipe. The simultaneous equations, such as those appearing as Eqgs. 4.6 and 4.10, are called
(Q-equations because it is the Q's, the discharges in the pipes, that are the set of primary
unknown variables. After the Q's are found (and the head loss in each pipe is therefore
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also known) for each pipe, the HGL-elevations at the nodes can be found by starting at a
known HGL-elevation and repeatedly applying the exponential formula for head loss to
each pipe.

If the network is a branched system, then the (Q-equations consist of only the junction
continuity equations. These can be solved, giving the discharge in every pipe, with a linear
algebra solver, i.e. a pocket calculator that implements matrix algebra, a spreadsheet, TK-
solver, MathCAD or a solver such as SOLVEQ. Thereafter the individual heads are com-
puted from the head loss equation for each pipe. Methods for solving looped systems are
described later.

Example Problem 4.1

The coefficients K and n for the exponential formula are given in the table for each of
the three pipes in this branched system. Find the discharge in each pipe and the pressure at
each node. The elevation of the HGL at node 1 is H; = 100 ft.

3 1
2.5 ft3/s 17 1.2 ft3/s
1 2) [3]
0] 20 ) [2] 0.5 ft3/s
HGL, = 100 15 0.8 ft3/s
[4]
Pipe K n
1 3.772 1.944
2 5.730 1.926
3 16.29 1.889

A formal method for solving the Q-equations for this network is to use matrix algebra to
write the coefficient matrix, an unknown vector, and a known vector in the following way:

1 -1 071(Q 0.8

0 1 -1{0t=112

0 0 1]|0;3 0.5
The solution is

Q] (25
Qyl=117
Q| |05

We should note that it is easy to obtain this solution by inspection. Starting at the down-
stream end of a branch, the analyst can progressively satisfy each junction continuity equa-
tion while working upstream. After finding the discharges, the elevations H of the HGL
are determined by starting where the HGL is known, in this case at node 1, and computing
the head losses in the pipes that join this node; then the frictional head losses &y are sub-
tracted from the known values of H, etc. until all of the nodal heads have been
determined. The pressures are then determined by subtracting the nodal elevations z from
the heads H and multiplying this by the specific weight, i.e., p = y(H - z). The tables
which follow present the computed values for this network:

Pipe [0.f/s |[hy =KQ", ft

1 25 22.395
2 1.7 15.922
3 0.5 4.398
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Node | Hg,yn = Hyp - hy ft. Pressure, 1b/in?
1 100.0  Given 34.67
2 100.0 - 22.395 = 77.61 27.13
3 77.61 - 15922 = 61.69 19.37
4 61.69 - 4.398 = 57.29 18.76
s # #

Example Problem 4.2
Write the system of (-equations for this network. In these equations use the
parameters K; and n;, in which i is the pipe number.

K

Since two supply sources are present, four junction continuity equations are available.
They are the following:
Fi=01-0-04-0/1=0
Fr=0y-03-0J,=0
F3=03+04+05-05-0J3=0
Fyp=06-0J4=0

The number of energy loop equations is NL=NP - NJ =6 - 4 =2 (one pseudo and one
real loop). These equations follow:

F5 = Ky0)% + K305° - K40)* =0

Fo = K1O]" + K4Q* - K5Q5° - WS + WS =0

Since Fy4 requires Qg = QJ4, this dead end pipe could be removed from the network, and
the demand at node 3 would then be changed to QJ3 + QJ4. These steps would reduce
NP to 5 and NJ to 3, and they would eliminate any need for equation F4. After the
HGL elevation, H3, at node 3 has been determined by solving this equation set, then Hy
can be found by computing hgs and subtracting it from H3.

*® %k %

4.2.2. SYSTEM OF H-EQUATIONS

If the elevation of the energy line or hydraulic grade line throughout a network is
initially regarded as the primary set of unknown variables, then we develop and solve a
system of H-equations. One H-equation is written at each junction (or at NJ - 1
junctions if fewer than two supply sources exist). Since looped pipe networks have fewer
junctions than pipes, there will be fewer H-equations than (Q-equations. Every equation
in this smaller set is nonlinear, however, whereas the junction continuity equations are
linear in the system of Q-equations.
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To develop the system of H-equations, we begin by solving the exponential equation
for the discharge in the form

n;; Un;;
Qi =(hyii /K;i) " = [(H;~H}) /Ky ] (4.11a)

Here the frictional head loss has been replaced by the difference in HGL values between the
upstream and downstream nodes. In addition, in this equation a double subscript notation
has been introduced; the first subscript defines the upstream node of the pipe, and the
second subscript defines the downstream node. Thus Q;; and Kj; denote the discharge

and loss coefficient for the pipe from node i to node j. An alternative way of writing Eq.
4.11a is

Ok = (hpy /K )™ = [(H; —H} )/ K 7™ (4.11b)

in which k is the pipe number.
Substituting Eq. 4.11 into the junction continuity equations, Eq. 4.3, yields

QI = SII(H; = H)/Kig 1”7 Jy + S{ICH; = H) /Ky 1™ o =0 (4120)

in which the summations are over all pipes that flow to and from junction j, respectively.
If it is desired to automate the choice of sign, then Eq. 4.12a can be written as

1/n;; -1
QJ; = S{I(H;~H;)/Ky J(H; = Hj) /K| "7 Jy,
(4.12b)

-1
+S{I(Hj - H;) /Ky l[(Hj - H;) /K Jour =0

As an application of the H-equations with HGL-elevations at the nodes as the un-
knowns, consider the one-loop network in Fig. 4.3 which consists of three junctions and
three pipes. In this network two independent continuity equations are available, and conse-
quently the head at one of the junctions must be specified. In this case at node [1] the head
loss in the pipe that connects the reservoir to the network can first be determined, and then
this value can be subtracted from the reservoir water surface elevation to determine Hj.

[2]

(3]
Figure 4.3 A network with three pipes and three junctions.

The two continuity equations are

Q12 +013=0J1 =0Jy +0J3

(4.13)
Q1 +0x3=-0Jp (or=-012+0x3=-0J)
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Although in the second equation the flow in pipe 1-2 is toward the junction, the discharge
Qo7 is not preceded by a minus sign since the notation 2-1 takes care of this.
Alternatively the equations could have been written at junctions 2 and 3 instead of 1 and 2.
Substituting Eq. 4.11 into these continuity equations gives the following two equations to
determine H» and H3:

1/
Hy-Hy 2 N Hy - H3
K12 K13

1/1’!13
=0J2 +0J3
(4.14)

=-0J
Kio K>3

1/ 1/
[Hl—Hz} 2 +[H2—H3} 3
Since a negative value cannot be raised to a power, a minus sign must precede any term in
which the subscript notation opposes the direction of flow. Systems of these equations
will be called H-equations, since the HGL-elevations are the primary unknowns. After the
heads H are found, then the discharge in each pipe can be obtained from Eq. 4.11.

Example Problem 4.3
Write the system of H-equations for the network in Example Problem 4.2.

Refer to the figure in Example Problem 4.2. Only the junction continuity equations are
used in forming the H-equations, and each Q; is replaced by [(H,; - Hg;)/K; ]l/n" ,

in which subscript u is the upstream node and subscript d is the downstream node. The
system is

1/ny 1/n, 1/ny

WS - H Hy - H Hy - H
F=|—L==1 Y k) Bl A _(A-a3 ~QJ; =0
K K> Ky
1/ﬂ2 1/n3
£ oo | =M _|H2-Hj —QJy =0
K> K3
1/ 1/ 1/
Fy < [H2= s BOTH -H ™ (WS, —Hs S
K3 Ky Ks
1/116
H; - H.
3- 74 -QJ3=0
Ke
1/n6
Hz -Hy
F, -0J4 =0
4 K¢ } QJy
£ * k

4.2.3. SYSTEM OF AQ-EQUATIONS

The number of AQ-equations is normally about half the number of H-equations for a
network. This reduction in number is not necessarily an advantage, since all of the
equations are nonlinear and may contain many terms. These equations consider the loop
corrective discharges or AQ's as the primary unknowns. These corrective discharges or
AQ's will be determined from the energy equations that are written for NL loops in the
network, and thus NL of these corrective discharge equations must be developed. To
obtain these equations, we replace the discharge in each pipe of the network by an initial
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discharge, denoted by Q,;, plus the sum of all of the initially unknown corrective
discharges that circulate through pipe i, or

Q; = Qpi + 2 A0 (4.15)

in which the summation includes all of the corrective discharges passing through pipe i.
The initial discharges Q,; must satisfy all of the junction continuity equations. It is not

difficult to establish the initial discharge in each pipe so that the junction continuity equa-
tions are satisfied. However, these initial discharges usually will not satisfy the energy
equations that are written around the loops of the network.

Equation 4.15 is based on the fact that any adjustment can be added (accounting for sign)
to the initially assumed flow in each pipe in a loop of the network without violating
continuity at the junctions. It is very important to understand the validity of this
decompo-sition; it may help to note that any AQ entering a junction as it flows around a
loop must also leave that junction, and vice versa (See Fig. 4.4). Because of this fact, we
decide

Y 9% ¢

) D
1_) II-)

C C

J )

Figure 4.4 A two-loop portion of a network.

to establish NL energy loop equations around the NL loops of the network, in which
each initial discharge plus the sum of corrective loop discharges XAQj is used as the

discharge. The junction continuity equations are satisfied by the initial discharges Q,;

and are not a part of the system of equations. The corrective discharges can be chosen as
positive if they circulate around a loop in either the clockwise or counterclockwise
direction. It is necessary to be consistent within any one loop, but the sign convention
may change from loop to loop, if desired. A corrective discharge adds to the flow Q,; in

pipe i if it is in the same direction as the pipe flow, and it subtracts from the initial
discharge if it is in the opposite direction.

To summarize how the AQ-equations are obtained, replace the Q's in the energy loop
equations, Egs. 4.4 and 4.5, by

Q; = Qi = X A0k (4.16)

Here the summation includes all corrective discharges which pass through pipe i, and the
plus sign is used if the net corrective discharge and pipe flow are in the same direction;
otherwise the minus sign is used before the summation. Thus Eqs. 4.4 and 4.5 become

S K; {QOi =Y AQy }ni =0 for real loops (4.17a)
and

D Ki{Qoi = > AQ; }ni = AWS for pseudo loops (4.182)

To automate the choice of sign, these equations can be rewritten as

> Ki{Qoi + 3 AQy HQoi £y AQ/<|n’A_1 =0 for real loops (4.17b)
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and 3 Ki{Qoi = 3 AQY 0y = 3 AQ,|" ~l_ AWS for pseudo loops  (4.18b)

To illustrate the development of the system of AQ-equations, consider the network in
Fig. 4.5. If the Q-equations were used, there would be five junction continuity equations
and two loop equations, a total of seven equations. If the H-equations were used, there
would be an equation for the HGL-elevation at each of the five nodes where the head is
unknown (The head at one node must be known.). But there will be only two

3.5 ft¥/s 1 k=1793 (D 2] k=0755 (5 [5]

3.31t3/s
- n=1.929 . n=1917 (6)
=2 | o0 g‘ [\
e > = > AE
| L
= M g | o
0.7 ft3/s 4) 1.1 3 /s
K=4108 @ (1) k=168
[3] n=1921 [4] 5 i3 /Sn =1.878 [6]
Figure 4.5 A seven-pipe network.
AQ-equations, one for each real loop in this network. These two equations are
Fi = Ki(Qp1 +AQ) )" + K5 (Qpn + AQ; - AQ, )™
- K3(Qp3 - A0 ) - K4(Qps - AQy )™ =0
(01380 - K4(0,4 - 501 .

Fy == Ks5(Q,5 A0 )™ + Kg(Qp6 + AQ, )™

+K7(Q07 +80,)"7 = K5(Qr + A0y - A0, ) =0

The next step is to find an initial estimate for the discharge in each pipe that will satisfy
all of the junction continuity equations. One possible set of initial discharges is Q,; =

1.75 f63/s, Q2 = 3.55 f63/s, Qp3 = 1.05 ft3/s, Qpa = 1.75 1315, Q,5=1.8 ft3/s, Q,¢

=1.5 ft3/s, and Q,7 = 0.4 ft3/s. When these initial discharges and the parameters that

are listed on the network sketch are substituted into Eqs. 4.19, the following two equations
result; their solution will yield values for the two unknowns AQ; and AQ>:

1.929 1.938

Fy =L1793(L75+AQ;) "~ +0.497(3.55+ AQ, - AQ,)

- 4.108(1.05 - AQ) )" —2.717(1.75 - A0 ) ¥ = 0
(4.20)
Fy = - 0.755(18- A0,)""" +2.722(1.5+ AQ, )%
+1.628(0.4+ A0, )"*"® - 0.497(3.55 + AQ, - A0, )7 = 0

Upon obtaining the solution to these two equations for the two unknowns, AQ; and
AQ», the discharge in each pipe can easily be determined by adding these loop corrective

discharges to the initial discharges. From these discharges the head loss in each pipe can be
determined, and from these values the head at each node can be found.

The nonlinearities in these systems of equations create difficulties when we seek the
solution. Later in the chapter we apply the Newton method to overcome this problem.
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Example Problem 4.4
Write the system of AQ-equations for the network depicted in Example Problem 4.2.

The AQ-equations are based on the energy loop equations alone. Therefore these equa-
tions can be obtained by taking the equations for F5 and Fg directly from Example

Problem 4.3 and replacing each discharge Q; by Q,; =Y AQ; . The AQ-equations are

Fs = Kp(0p2 +A01)"™ + K3(Qp3 + A0 ) - K4(Qpg -~ AQy + AQ> )™ =0

Fg = K1(Qo1 + A0y )" + K4(Q04 — AQy + A0 )™ ~ K5(Qp5 - AQ» )" — WS) + WS, =0

With the writing of the AQ-equations we must also provide values for Q,; that satisfy

all of the junction continuity equations. For this purpose we assume that all four demands
are equal to 1.0. Then the following values could serve as an acceptable initialization of

the discharges: Q,7=3, Qp2=1, 0p3=0, Qpgs=1, Qp5=1, and Q,6 = 1.

* * *

4.3 PRESSURE REDUCTION AND BACK PRESSURE VALVES

A pressure-reducing valve (PRV) is designed to maintain a constant pressure at its
downstream side, independent of the value of the upstream pressure at the device. Only two
exceptions to the maintenance of this downstream pressure exist: (1) if the upstream
pressure becomes less than the valve setting; or (2) if the downstream pressure exceeds
the pressure setting of the valve so that flow would occur in the upstream direction if the
PRV were not present. If the first exception occurs, the valve has no effect on flow
conditions except to create a local loss; generally its effect is then like a globe valve in
dissipating additional head beyond the friction loss in that line. If the second condition
occurs, then the PRV acts as a check valve, preventing a reverse flow in the line. Then the
PRV allows the pressure immediately downstream from the valve to exceed its pressure
setting. In this way PRV's reduce pressures in portions of a pipe distribution system if the
pressure would otherwise be excessive, and they may also be used to control the choice of a
supply source in response to various demand levels. In the latter applications the PRV
acts as a check valve until the pressure is reduced to a critical level by large demands, at
which time additional supply sources become available.

A back-pressure valve (BPV) is designed to maintain a constant pressure upstream from
it, independent of the value of the downstream pressure. Like a PRV there are exceptions
to this normal mode of operation. Should the upstream pressure become less than the
pressure setting, the valve can not maintain the pressure setting since it is not an energy-
creating device, and the most it can do is shut down the flow in its line. Should the flow
want to reverse direction from the positive flow direction through the valve, the valve
opens completely and acts as a local loss device. A BPV is used in situations where the
pressure would otherwise become too low in elevated portions of the network. Such a
situation arises, for example, where a pump is needed to sustain adequate pressures in a
higher part of a network but is not needed in the lower portions of the network; without a
BPV, or possibly several BPV's, the flow pattern might then lead to discharges through
pressure relief valves in the lower portions of the network and possibly create excessively
large pressures in the lower region.

The equations that describe the behavior of a pipe network that contains PRV's or BPV's
must include new features to account properly for the effects of these valves on the
discharges and pressures throughout the network. Furthermore, the analysis of a pipe
network with such devices must be able to determine the correct operational conditions,
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i.e., determine whether the PRV's and BPV's are operating in their normal modes or in one
of their exceptional modes. Methods for adding such devices into network analyses are
described in these sections. The discussion begins with pressure reduction valves.

Underlying the writing of the three systems of equations described in Section 4.2 is the
basic assumption that a relation exists between the magnitude of the discharge in a pipe and
the amount of the head loss, or head difference, between the ends of this pipe. Such a
relation does not exist if a PRV (or a BPV) is present in the pipe. Therefore a pipe with a
PRYV in it should not appear in a normal energy loop equation. However, in the usual
mode of operation for a PRV a constant head is maintained at its downstream end; in this
way it behaves like a reservoir. Furthermore, regardless of its mode of operation the
discharge at the upstream node of a pipe containing a PRV will be the same as the
discharge at the downstream node of this pipe. The details of developing a proper system
of equations to describe a network containing one or more PRV's are different, depending
upon whether a system of (-equations, H-equations, or AQ-equations are desired.
Therefore, each of these will be described in a separate section.

4.3.1. O-EQUATIONS FOR NETWORKS WITH PRV'S/BPV'S

The procedure for developing the Q-equation system for a network containing PRV's is
as follows: (1) write the junction continuity equations in the usual manner, ignoring the
PRV's; (2) replace each PRV with an artificial reservoir which has a water surface
elevation equal to the HGL-elevation that is the sum of the pressure head set on the PRV
and its elevation in the pipeline; finally (3) write the energy equations around the loops
of this modified network. The resulting equations describe the normal mode of operation.

Let's try this procedure on the seven-pipe network shown in Fig. 4.6, in which a PRV
exists in pipe 6, located 500 ft. downstream from node 1, the upstream end of this pipe.
Since a PRV is a directional device, we must always identify the upstream and downstream

All e = 0.02"

1.0 ft3/s

Q Head
/s ft.
1.0 60
1.5 55
2.0 43

Figure 4.6 A seven-pipe network.
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ends of the pipe containing it. The system of (Q-equations for this network consists of
four junction continuity equations and three energy loop equations. According to the usual
rules, an independent junction continuity equation can be written for each of the four
junctions since there are two supply sources for this network. These junction continuity
equations are

Fi=-01+0+06+Q7=0
Fy=10-0y-03=0
F3=03-04+05-07=0
Fy=10-05-0=0

4.21)

These continuity equations are unaffected by the presence or absence of a PRV in the net-
work. We next modify the network so the upstream portion of the pipe containing the
PRV is removed and the PRV is replaced by a reservoir with a water surface elevation equal
to the HGL of the pressure setting of the PRV (see Fig. 4.7). Of the three loops that exist
in this modified network, only one is a real loop which traverses pipes 2, 3, and 7.
Two pseudo loops also exist. One pseudo loop connects the two original supply sources.
This loop can start at the reservoir and end at the source pump so it includes pipes 4, 7,
and 1. The second loop must extend from the artificial reservoir created by the PRV to
one of the other supply sources (or another artificial reservoir, if two or more PRV's exist
in the network). The shortest path for this second pseudo loop will traverse pipes 4, 35,
and 6. In writing the head loss in pipe 6, only that portion of the pipe downstream from
the PRV is used. A modified loss coefficient K' will be used to denote this change in the
exponential formula. The new coefficient K' equals the K for the pipe containing the
PRV, multiplied by the ratio of the pipe length from the PRV to the pipe's downstream
end divided by the total pipe length, or

K'=K(Ly/L) (4.22)

or in this example K6 = Kg(500/1000) = 0.5K¢.

100’

All e =0.02"

1.0 ft3/s

Figure 4.7 The modified seven-pipe network.
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The energy equations are

F5= Kng2 —K3Q§l3 —K7Qg7 =0 (real loop)
Fo = K40)* - K7077 = K1Q" +h,1 =100 +90 =0 (pseudo loop)  (4.23)

F7 = K40)* + K055 — K,0p® +55-100=0 (pseudo loop)

The head produced by the pump /4,7 can be defined by a second-order polynomial passing
through three points of the pump curve, or

hp1 = AQ} +BQy + C (4.24)

We have now formed seven independent equations that contain the seven unknown
discharges Q7, Q2,.. ., Q7. In this example the real loop that was lost by having a
PRV in pipe 6 is replaced by an additional pseudo loop. We see that the number of
equations again equals the number of unknown discharges.

To obtain a solution for this network by using the computer program NETWK, the in-
put data can be prepared (see the NETWK user manual for input data requirements or the
condensed description of this input on the CD) as listed in Fig. 4.8. The solution tables
from NETWK are reproduced in Fig. 4.9. A study of this output will show that the PRV
is operating in its normal mode of operation.

Example of a network containing a PRV

/*6 1 4 1000 RESER

PIPES 7 13 1500 1 4 100

101 1000 6 0.02 NODES PUMPS

212 10 50 1160 1.555 2 48 90
33 2 800 21 VALVE

4 0 3200 30 6 500 55

5 3 4 2000 4 1 20 RUN

Figure 4.8 Input data for the network shown in Figs. 4.6 and 4.7.

This solution indicates that the PRV is operating in its normal mode of maintaining
the set pressure at its downstream end because the reported downstream HGL-elevation
equals the value specified in the input data. If this had not been the case, the solution from
NETWK would have indicated either that the PRV had shut off the flow in pipe 6 or that
it was completely open and replaced by a minor loss. In solving the network equations, if
the discharge in pipe 6 had been negative, then the program would have noted that the PRV
would act as a check valve, preventing a reverse flow. If this situation should occur, then
the network problem would be altered so it would only have six pipes instead of seven
(pipe 6 would not exist in this modified network). The equations describing the flows in

LOSSES DUE TO FLUID FRICTION IN ALL PIPES

POWER LOSS = 11.51 H.P. = 8.585 KWATTS.

ENERGY LOSS = 206.0 KWHRS/DAY

PUMPS:

PIPE HEAD Q HORSEPOWER KILOWATT KWATT-HRS /DAY
1 59.1 1.11 7.43 5.54 133.0

ELEVATION OF HGL UPSTREAM AND DOWNSTREAM OF PRVS:

Figure 4.9 Output tables from NETWK.
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PIPE UPSTREAM DOWNSTREAM

HGL HGL

6 121.79 55.00
UNITS OF SOLUTION ARE:
DIAMETER,  inch
LENGTH, feet
HEAD, feet
ELEVATION, feet
PRESSURE,  1b/in?

DISCHARGE, ft3/s
DARCY-WEISBACH FORMULA USED FOR COMPUTING HEAD LOSSES

PIPE DATA

PIPE NODES L DIA. e Q VEL HEAD HLOSS/

NO. FROM TO x103 . LOSS 1000
ft. in in ft3/s ft/s ft.

1000 6.0 20.0 1.11 5.65 27.28 27.28
1000 6.0 20.0 1.07 5.43 25.26 25.26

800 6.0 20.0 0.07 0.34 0.10 0.12
200 6.0 20.0 0.89 4.54 3.55 17.74
2000 6.0 20.0 096 4.91 41.47 20.74
1000 6.0 20.0 0.04 0.18 0.04 0.04
1500 1.0 20.0 0.01 1.31 25.56 17.04

P N N U SR
—_— O N = O
WA B WWN =

AVE. VEL. = 3.19 ft/s, AVE. HL/1000 = 15.46, MAX. VEL. = 5.65 ft/s, MIN. VEL. = 0.18 ft/s
*Flow direction is reversed from input data.

NODE DATA
NODE D E M A ND ELEV. HEAD PRESSURE HGL ELEV.
ft3/s gal/min ft. ft. 1b/in? ft.
1 0.00 0.0 50. 71.81 31.1 121.81
2 1.00 448.8 50. 46.55 20.2 96.55
3 0.00 0.0 50. 46.45 20.1 96.45
4 1.00 448.8 20. 34.98 15.2 54.98

AVE.HEAD = 49.95 ft., AVE. HGL = 92.45 ft.
MAX. HEAD = 71.81 ft., MIN HEAD = 34.98 ft.

Figure 4.9, concluded. Output tables from NETWK.

this modified network would consist of the original equations with the last one omitted. If
the HGL elevation at node 1 had been lower than the HGL setting of the PRV, then it
would be known that the PRV would not be able to sustain its pressure setting, and the
network problem must then be solved by using equations that replace the PRV with a
minor loss device. For this last mode of operation the last energy equation would be
replaced by a real loop equation traversing pipes 5, 6, and 7. Pipe 6 would contain a
minor loss device to represent the PRV as being fully open.

The procedure for writing the system of (Q-equations should now be apparent for back-
pressure valves (BPV's) in networks. As with PRV's, the junction continuity equations are
written ignoring the presence of BPV's. The junction continuity equations are unaffected
by the existence of a BPV. In writing the energy equations, the upstream side of each BPV
is replaced by an artificial reservoir; in each case the pipe segment from the downstream
end of the BPV to its downstream node is then removed, and the energy equations are
written for this revised network.
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The writing of a system of (Q-equations will be illustrated with the network in Fig.
4.10, which has 9 pipes and 6 nodes, is supplied by a source pump and has two tanks

Ezoom 150 - 2000 [1] 250 - 1200
2 Yz, (1)
Diameters in mm @ 0.015 m3/s 070
Lengths in m 3) § @D
All ¢ = 0.02 mm 2
0.015 m3/sQ @ HGL7 195 m K0.02 m3/s
A 200 - 2000 || ~ 1180 m
23] @ ppyS0m @ =]
S &) 90
N©) VA 3
SIS N 0.03 m¥s
= 1500 Ze" ) [51 ) N
=~ 1450-1000 /41150 - 1200 4\\ 150 - 1500 <&
S 0.02 m¥s N
0.02 m3/s :

Figure 4.10 A 9-pipe, 6-node network.

(reservoirs) connected to it. Without a BPV (or some other device) this network would
cause the lower reservoir at the end of pipe 9 to overflow. There are six junctions in this
network. The corresponding six junction continuity equations are

F1=0.015-0,-0, +0; =0
Fy=0.020-0Q3+ 04 + Qg =0
F3=0.015-0, +Q5 =0
Fy=0.020- Qs + Qg - Qg =0
F5=0.020-0Q; - Qg =0
Fg=0.030-Qg +Q; =0

(4.25)

Before forming the loops around which the energy equations are written, an artificial reser-
voir is placed on the upstream side of the BPV with a water surface elevation equal to the
HGL resulting from the pressure setting of the valve. The pipe downstream from the BPV
is removed. When these changes are completed, the network appears as in Fig. 4.11, and
energy equations can next be written around the loops of this modified network. Three
loops are needed, since NL = NP - NJ =9 - 6 = 3. These are all pseudo loops and may be

EZOO m 150 - 2000 [1] 250 - 1200
: . P 7%, (O
Diameters in mm 0.015 m3/s 2
o @

Lengths in m
All e = 0.02 mm
0.015 m%s

300 - 1000

. 135m ) (6) [5] (7 A
——1150 - 1000/[4] 150 - 1200 (SN 150 - 1500 S

® 3
0.02 m3/s 0.02 m°/s N

Figure 4.11 The modified 9-pipe, 6-node network.
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composed in the following way: the pipes in loop 1 are 1 and 2; the pipes in loop 2
are 1, 3, and 4 (upstream portion); and the pipesinloop 3 are 9, 6, 7, 8§, and 4
(upstream portion). It is incorrect to write a loop through pipes 9, 5, and 4 (the
upstream portion) because a BPV sets the pressure on its upstream side. Hence the energy
equations in the Q-equation system are the following:

F7 = KjO"" - hy1 - K205 ~180+200 = 0
Fg = K1Q" ~hyy + K305 + K404 =180 +195 =0 (4.26)
Fo = K9Qy° + KeQg® -~ K7077 — KgQg® + KZ;QA’(4 —135+195=0

One possible input file to NETWK for the solution of this problem is presented in
Fig. 4.12, and the resulting solution tables are presented in Fig. 4.13.

Network Containing BPV 1 .015 140
/* 2 .02 140

$SPECIF NFLOW=3,NPGPM=3,NUNIT=4 $END 3 .015 70
PIPES 4 .02 60
101 1200 250 .02 5 .02 80

2 0 1 2000 150 6 .03 100
3 12 1000 300 RESER

4 2 3 2000 2 200

5 3 4 1000 150 9 135

6 4 5 1200 PUMPS

7 6 5 1500 1 .1 35 .15 32 .2 28 180
8 2 6 1500 200 BPVALVE

9 0 4 1000 150 4 1200 195
NODES RUN

Figure 4.12 The input data file to NETWK for the 9-pipe, 6-node network.

From this solution we see that the BPV dissipates 65.88 m of head to sustain the
upstream HGL setting of 195 m. This value is obtained by subtracting the downstream
HGL from the BPV setting. It is a worthwhile exercise to begin with the head losses in
the PIPE DATA table and verify the HGL elevations reported in the NODE DATA table;
it will lead to a better understanding of the BPV and its effect on pressures and discharges in
this network as the BPV operates in its normal mode. If the solution had shown a
negative flow through pipe 4, then the downstream pressure would actually be larger than
the BPV setting, and the valve would open up completely. For this occurrence the BPV
must be re-placed by a minor loss device, and then this modified network problem could be
studied. If the HGL atnode 2 (the node immediately upstream from the BPV) were less
than the HGL established by the BPV setting, then the BPV would close completely. The

pipe

LOSSES DUE TO FLUID FRICTION IN ALL PIPES

POWER LOSS = 65.18 H.P. = 48.63 KWATTS.

ENERGY LOSS = 1167.0 KWHRS/DAY

PUMPS:

PIPE  HEAD Q HORSEPOWER KILOWATT KWATT-HRS/DAY
1 34.88 10.0 46.9 35.0 839.8

HGL DOWNSTREAM AND UPSTREAM FROM BPV
4 129.12 195.00

Figure 4.13 The output tables from NETWK for the 9-pipe, 6-node network.
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PIPE DATA

PIPE NODES L DIA. e VEL. HEAD HLOSS/
NO. FROM TO x103 LOSS 1000
m mm mm m3/s m/s m

1 0 1 1200 250 20.0 0.102 2.09 15.58 12.98
2 0 1 2000 150 20.0 0.004 0.21 0.75 0.37
3 1 2 1000 300. 20.0 0.091 1.29 4.28 4.28
4 2 3 2000 300. 20.0 0.006 0.08 0.06 0.03
5 4 3 1000 150. 20.0 0.009 0.52 1.90 1.89
6 5 4 1200 150. 20.0 0.015 0.86 5.69 4.74
7 6 5 1500 150. 20.0 0.035 2.00 33.11 22.07
8 2 6 1500 200. 20.0 0.065 2.08 25.25 16.83
9 0 4 1000 150. 20.0 0.014 0.79 4.03 4.03

AVE. VEL. = 1.10 m/s, AVE. HL/1000 = 7.47, MAX. VEL. =2.09 m/s, MIN. VEL. = 0.08 m/s

NODE DATA
NODE D EM A ND ELEV. HEAD PRESSURE HGL ELEV.
m3/s ft3/s m m kPa m
1 0.015 0.53 140.0 59.25 580.7 199.25
2 0.020 0.71 140.0 55.02 539.2 195.02
3 0.015 0.53 70.0 59.08 579.0 129.08
4 0.020 0.71 60.0 70.97 695.6 130.97
5 0.020 0.71 80.0 56.66 555.3 136.66
6 0.030 1.06 100.0 69.78 683.8 169.78
AVE.HEAD = 61.79m, AVE. HGL = 160.13 m
MAX. HEAD = 70.97 m, MIN. HEAD = 55.02m

Figure 4.13 (Concluded) The output tables from NETWK for the 9-pipe, 6-node network.

containing the BPV should then be removed from the network, and the problem could then
be solved by using the equations for this modified network; then the BPV could not
maintain the pressure setting, and it would simply prevent any flow from passing through
the pipe in which it is installed.

4.3.2. H-EQUATIONS FOR NETWORKS WITH PRV'S/BPV'S

The procedure for writing the H-equations for a network that contains PRV's and/or
BPV's is described here. First, view the HGL resulting from the pressure setting of the de-
vice as a reservoir, since under normal operation the HGL is fixed by the device. Second,
place an additional unknown variable on the other side of the device to represent the eleva-
tion of the HGL there. We will denote this variable by H,;, in which i is the number

of the device. For the first PRV or BPV i =1, for the second i =2, etc. For a PRV the
value of H,; is the HGL-elevation immediately upstream from the valve, whereas H,;

is the HGL-elevation immediately downstream from the valve for a BPV. Third, the
junction continuity equations are written in the usual way, with the difference between the
upstream and downstream HGL-elevations, divided by K for this pipe, all raised to the

l/l’lk

reciprocal of the discharge exponent n, ie., QO ={(H;-H bi )/ Ky } Finally, since

an additional unknown is introduced for each PRV or BPV, one additional equation must be
added to the system of continuity equations for each device. These additional equations are
obtained by noting that the head losses in the upstream and downstream portions of the
pipe containing the device are proportional to these two lengths. For a PRV this equation
is
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(HGL-Hg)L, - (H, - Hy;)Lg =0 4.27)

in which L, and L; are the lengths upstream and downstream from the device, respec-
tively, and Hy and H, are the HGL-elevations at the downstream and upstream ends of

pipe i containing the device.
Using again the network depicted previously in Fig. 4.6 to illustrate the formation of
the H-equation system, we would first modify the network as shown in Fig. 4.14:

All e = 0.02"

1.0 ft3/s

Figure 4.14 A 9-pipe, 6-node network containing a BVP, as modified.

The final H-equations for this network are the following:

1/}’12

—{(90+hy,y - Hy) /Ky )™ +{(H| - Hy) /K> }

pl ~
1/n6 1/}’17 _
+{(H - vl)/K6} +{(H -H3)/K7 )77 =

LO—{(Hy - Hy)/Ky )™ —{(H3 - Hy) /K3 /™ =0

{(Hy - Hy)/K3 ]V — ((100 - Hy) /Ky /" (4.28)

+{(H3—H4)/K5}1/n5 -{(H - H3)/K7}1/n7 =

1.0—((Hy - Hy)/Ks )" = ((HGL, - Hy)/ Ky " =

(HGLy - Hy )Ly - (Hy - Hy1)Lg = (HGL - Hy ) - (H; - Hy1) =0

in which K(: and K6 are the coefficients for the upstream and downstream portions of

pipe 6, respectively.
The network in Fig. 4.10 that contains the BPV should now be viewed as shown in
Fig. 4.15, and the H-equation system for this network is presented as Eqs. 4.29.
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Fy =0.015~{(180 + , — H; ) /K J™

—{(200 - Hy) /K, )™ + {(H, - Hy ) /K3 )™ =0
Fy =0.020 - {(H, - Hy )/ K3 }/™

+{(Hy - HGL; ) /Ky }™ +{(Hy - Hg) /Kg ]"™ = 0
F3=0.015—((H,; - H3)/ Ky J"" + (Hy - Hy) /K5 ] =0
Fy =0.020 - {(Hs - Hy)/Ks }/"

+{(Hy - Hs)/Kg }''™ —{(135- Hy ) /Ky }'™ =0 (4.29)
Fs5 =0.020~{(Hy - Hs)/Kq J" - {(Hg - Hs)/ K7} =0

F7 =1200(H, - HGL; ) - 800(H,, - H3) = 0

EZOO m 150 -2000 [1] 250 - 1200
_ _ @) %%, (D
Diameters in mm 0.015 m3/s = %
Lengths in m = 3 @D
All e =0.02 mm - G)
0.015 m3/s ° 2| 0.02m¥s
O 195 m 4)
o H 800 m <
g (311200m *'v1 &
N[
(=)
E 135m(9) 2 (6) [5] (7) 6]
150 - 1000/[4] 150 - 1200 Q&\ 150 - 1500 QQ®
0.02 m3/s N

0.02 m3/s

Figure 4.15 A seven-pipe network, modified.

4.3.3. AQ-EQUATIONS FOR NETWORKS WITH PRV'S/BPV'S

Let us begin this section by reviewing the underlying concept that is used in writing
the AQ-equations: if the junction continuity equations are satisfied by the initial
discharges Q,;, then a corrective loop discharge, AQ, can flow around a loop without

violating the principle that the discharge into all junctions will still equal the discharge out
of these junctions, regardless of the magnitude of AQ. These corrective loop discharges
can be regarded as the primary unknowns, and the resulting solution to the system of
equations will produce discharges that also satisfy the energy equations around the loops.
Therefore the discharges Q; in the Q-equation loops were replaced by Q,; = > AQy .
For the junction continuity equations to remain valid for any values of AQp, these
corrective loop discharges must circulate around loops that are formed before any PRV's or
BPV's are converted into artificial reservoirs. Thus it is necessary to consider two sets of
loops with this method. The first set is the set of loops around which the AQ's circulate,
and the second set is the set of loops that is used in writing the energy equations. These
two sets of loops will be called the corrective discharge or AQ loops, and the energy
loops. The AQ loops are formed while ignoring the existence of PRV's or BPV's. These
devices are later replaced by artificial reservoirs, and the energy e quations are written for
this modified network. Thus the energy set of loops will always contain more pseudo
loops than does the AQ set of loops by the number of PRV's and/or BPV's that exist in
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the network. To track these two separate sets of loops in figures, the AQ loops will list
AQ; by the arc denoting the loop, and the energy loops will be numbered by roman
numerals I, II, etc.

To illustrate the writing of the AQ-equations, we examine again the network with a
PRV that is in Fig. 4.6. This network is redrawn below in Fig. 4.16 to display both the
corrective discharge loops and the energy loops. To emphasize that AQ loops are
different than energy loops, AQ3 is chosen to pass through pipes 4, 3, 2, and 1. A
more effi-cient route for this corrective discharge loop would traverse pipes 4, 7, and 1,
coinciding with energy loop II, because one less pipe is in this loop.

To obtain the AQ-equations, we replace each Q; in the energy equation portion of the

Q-equations by Q; = Q,; # Y AQy, in which the AQ's must be those circulating

through pipe i, as defined by the AQ loops, and the sign before each term in the sum is
determined by whether AQ agrees with or opposes the direction of the assumed discharge
Q,i. If the directions agree, the sign is positive; otherwise the sign is negative. The

resulting AQ-equations for this network are listed as Eqgs. 4.30.

All e =0.02"

Figure 4.16 The network in Fig. 4.6, modified for solution with the AQ-equations.

Fi = K»(Qp2 + AQ; - AQ3 )™ - K3(0,3 - AQy +AQ3)"™
- K7(Qp7 - AQ + A0y )" =0
Fy = K4(Qo4 + AQ3)"™ —K7(0y7 - AQy + AQ, )" (4.30)
~ K1(Qp1 — AQ3)" 45y —10=0

F3 = K4(Qo4 +AQ3)™ + K5(Qys + AQ> )" — Kg(Qo6 — AQ> )™ ~45=0

These equations are in a sense incomplete until each Q,; is replaced by a value. When
this step is completed, then these three equations contain only three unknowns, AQjy,
AQ» and AQj3. In principle each reader could produce a different set of acceptable values
for the initial discharges, so long as they do indeed satisfy each and every junction
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continuity equation. One valid set of Q,;'s is Q,7 =1.0, Q,2=1.0, Qp3 =0.0, Qu4
=1.0, Qy5=1.0, Qy6=0.0, and Q,7 = 0.0. Finally, the pump head now becomes
hp1 = A(Qp1 +AQ; - AQ3)* + B(Qyy + AQ; —AQ3)+ C  when the pump curve is fitted

with a second-order polynomial. If desired, as an alternative either a linear or a higher-order
polynomial could be chosen to describe the operating characteristics of this pump.

Now let us revisit the network in Fig. 4.10 that contains a BPV as a second illustration
of forming the AQ-equations. In this analysis we can visualize the two sets of loops as
shown in Fig. 4.17. The AQ loops ignore the presence of the BPV in this network, but
the energy loops will be written for the modified network with the BPV converted into an
artificial reservoir. The resulting AQ-equations for this network appear as Eqgs. 4.31. In

Fi = Ki(Qp1 +AQ> )" = hyy = K2(Qp2 - AQy - AQ3)™? +20=0
Fy = Ki(Qp1 +AQy )" - hpy + K3(Qy3 - AQ3)™

Ky (Qos - A0 - AQ3)™ +15=0 4.31)
F3 = Ko(Qp9 + 203 )" + K(Qo6 — 01 )" - K7(Q07 + 801 )"

— Kg(Qog + A0 )™ + K} (Qpq ~ AQ) — AQ3)"™ +60 =0

I
—=—00m 1502000 AQ 47 250- IZO(N
@ Lo,
Diameters in mm 0.015 m’/s § % 10 5
Lengths in m Sl (D
3 AQ3 g
0.015 ms /~ HGL = 195 m ©/0.02 m3/s
A% 200-2000 — N
Il 5 ~ 1180 m
AR @ poyS00m S5 [ L =]
() BPV G} 0
A (Q) *ANO \0.03 m¥s
= 135m ) 2™ () [5] @) 6
—1250-1000 /[4] 150 - 1200 %0%02 m3/3150 1500 100 m
0.02 m%/s II1

Figure 4.17 The network of Fig. 4.10, modified for the AQ-equation system.

these equations h) = A(Qol + AQ2)2 + B(Qol + AQ2) + C. The initial flows that satisfy

the junction continuity equations are chosen as Q,; = 0.1, Q,2 =0.0, Q,3 = 0.085,
Qo4 =0.015, 0p5=0.0, Qp6=0.0, Q,7=0.02, Q,8 =0.05, and Q,9 = 0.02. The

substitution of these values into Egs. 4.31 yields the final set of AQ-equations.

If large differences in ground elevation occur in a network, PRV's are often installed in a
sequence of pipes to prevent excessively large pressures in the lower part of the network.
Such a series of PRV's may cause pressures in one subregion to be completely independent
of the remainder of the network. Such isolation creates what are commonly called separate
pressure zones. When separate pressure zones are created, it is normally better to form sub-
networks and analyze each one separately, starting with the subnetwork at the lower eleva-
tion. The solution from the isolated lower subnetwork can then be used to determine the
demands at the nodes of the next higher network, and so on.
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The 10-pipe, 6-node network in Fig. 4.18 contains three PRV's in pipes 4, 5, and
7, respectively; it typifies such a situation. In this network the three PRV's cause the
pressures at nodes 4 and 6 to be independent of pressures in the remainder of the
network. The best analysis, therefore, would begin by studying separately the subnetwork
that is composed of pipes 5, 4, 7, and 8 downstream from the PRV's. In this
subnetwork the PRV's are modeled as three constant-head reservoirs. The values of Qy,
Qs, and Q7 from the solution of the subnetwork are next added to the other demands to

determine the demands at nodes 3, 2, and 5, respectively, in organizing the remainder of
the network for analysis.

400' i’ 500'

o =
S 31
=10 3.5 ft3/s =
= L = 5
S [[1_ 6"-2000" 4001[2] 6"-1000" = 50]0.
400" _ 6)

) S %

% v

a S PRV); \"(HGL), = 150

© (HGL), = 150’

(4) All pipes
e =0.002"
- (4] 6" - 3300' ,
350' 200 N ' 50" )
LoV (HOL), = 150
. s 0.5 f3/s 0.5 ft3/s

Pump Characteristics
Pump 1 Pump 2
H o H
fd/s | fi. | ftd/s | ft

1.5 110 1.5 115.0

2.5 104 2.0 112.0

3.5 92 3.0 7.5

Figure 4.18 A network with two pressure zones.

While it is generally not difficult to determine by visual examination of a map of the
piping system whether PRV's isolate a portion of a network into a separate pressure zone,
in computer programs a simple test is needed to identify this situation. Such a test can be
based on the fact that no series of connected pipes exists between any of the artificial
reservoirs created by the PRV's and any of the other reservoirs and source pumps. That no
connection exists in the network example can be seen by resketching the network, as
shown in Fig. 4.19. As a consequence, if pseudo loops between artificial reservoirs or
source pumps cannot be found by a computer program that uses its own internal loop-
finding algorithm, then the PRV's isolate a subnetwork into a pressure zone that is
separate from the remainder of the network. One difficulty with this kind of test, which
relies on the inability to find paths which connect all supply sources, is that errors in the
network input data or an ill-defined network itself can also cause this test to be satisfied;
network computer programs are supposed to identify such input errors and terminate if any
such errors are found. Thus it is desirable to have an independent verification, i.e., a
separate test, that can indicate that separate pressure zones exist.

This alternative or verification test could take the form that is described next. The goal
in this "test" is to determine whether the sum NJ + NL, determined in the usual way, is
equal to, or exceeds, the number of pipes in the network.
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Figure 4.19 PRV's create two separate pressure zones.

To highlight the problem, let us examine closely the network in Fig. 4.19 which is
known to have two separate pressure zones. Overall there are six junctions, so NJ = 6.
There is one real loop, and the usual rule indicates there is Nye5 - 1 =5 - 1 =4 pseudo
loops, or NL = 5. Using these values, we obtain NJ + NL=6+ 5 = 11, which is larger
than the actual number of pipes, which is NP = 10. In this instance the inequality occurs
because only four independent loops exist, one real loop and three pseudo loops. These
numbers will be found to be correct when we view the overall network as two separate
networks. The higher network in Fig. 4.19 has NP = 6, one real loop and one pseudo
loop, Ny = Nyes-1 and NL =2. Since there are four junctions in the network with the
higher pressure zone, NJ=4,and NP = NJ + NL = 6. For the network with the lower
pressure zone NP =4, NJ =2, there are no real loops, and the expected number of pseudo
loops is Nyeg - 1 =2, giving NL =2. Again NP =NJ + NL.

The verification test to determine whether PRV's isolate a portion of a network into a
separate pressure zone might therefore be as follows:

1. Find the real loops which exist after pipes containing PRV's have been disconnected

from their upstream junctions.

2. Compute NLg from NLg = Nyes+ Npump - 1.

3. Add the number of loops that were found in steps 1 and 2 to determine NL, and
then determine NP from NP = NJ + NL.

4. If this computed NP exceeds the number of pipes in the network, then the PRV's
isolate a portion of the network. The amount of the difference between the newly
computed NP and the actual number of pipes in the network is the number of
additional pressure zones that exist in the network; the total number of zones is one
more than this number of additional zones.

4.4 SOLVING THE NETWORK EQUATIONS

4.4.1. NEWTON METHOD FOR LARGE SYSTEMS OF EQUATIONS

In Sections 4.2 and 4.3 we explored the writing of systems of algebraic equations to de-
scribe the relations between the discharges, pressures, and other variables and parameters in
a pipe network. Many of the equations in these systems of equations are nonlinear. A
good method for solving nonlinear equations is therefore needed. Numerous methods exist,
but the Newton Method is the method of choice here. Its application to the solution of the
Q-equations, the H-equations and the AQ-equations will be discussed in this section. To
treat the unknown discharges (when using the Q-equations), the unknown heads (when
using the H-equations), and the unknown corrective loop discharges (when using the AQ-
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equations) in a uniform way, the primary unknown variable in this section will be called
the vector {x}.
The Newton iterative formula for solving a system of equations can be written as

{x}(m+1) - {x}(m) _[D]—I{F}(m) (4.32a)

Here x is an entire column vector {x} of unknowns, {F} is an entire column vector of
equations, and [D]‘1 is the inverse of a matrix [D] which is the Jacobian. The Jacobian
occurs in several applications in mathematics, and it represents the following matrix of
derivatives:

[ 0F orF; o oF; T
ox;  0xp 0xy,
oF, oF, o oFy
[D]-| ™1 *2 “33)
oF, oF,  oF,
0x;  0xp 0xy,

Likewise {x} and {F} are actually

X F
x) Fy

{x}=1" {F}=1- (4.34)
Xn F,

Equation 4.32a indicates that the Newton method solves a system of nonlinear

equations by iteratively solving a system of linear equations because (DY F)} represents
the solution of the linear system of equations

[D]{z}={F} (4.32b)

That is, the vector that is subtracted from the current estimate of the unknown vector {x}
in Eq. 4.32a is the solution {z} to the linear system of equations that is Eq. 4.32b. In
practice we therefore see that the Newton method solves a system of equations by the
iterative formula

fx}mD _ e p(m) _gzg (4.320)

where {z} is the solution vector that is obtained by solving [D]{z} = {F}. If the system
should actually contain only linear equations, then the first iteration will produce the exact
solution.

The development of Eq. 4.32 follows. We begin by using a multi-dimensional Taylor
series expansion to evaluate the individual equations F; in the neighborhood of an initial

solution estimate that we call {x/} which is presumed to be near the actual solution:
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Fim+) - p(m) LS L L I +O(Ax2)= 0
0xq d0xy 0xy,

F F F
R (L By L N L e +O(Ax2)=0

axq 0xy daxy,
(4.35)
F F oF,
F - gy a2 w0 ax?) -0
n n 0x] axo ax,,
When we use matrix notation and make the substitution Ax; = xl( m+l) _ xl( m) , this sys-
tem of equations becomes
[0Fy  oF OF]
F1 (m) axl axz axn x{m+1) _x{m)~
F, ZFz ng o ng xhmel) _ fm)
w2 =0 (436)
F, OF, 0F, . 0F, ||<tmtl _ y(m)
dx];  dxp 0xy,

which can be written compactly as {F}") + [D Jm)(fxjm+1) _ x)(m)y =y} and solved
for {x}Mm+1) to produce Eq. 4.32a.

Now let us see in some detail how the Newton method works in practice. First we shall
examine the three-reservoir problem by forming and solving manually the appropriate
systems of Q-equations, H-equations and AQ-equations. Then we will look at computer
programs that could be used to find the solution to the (-equations; the first program is
simpler and more specialized, and the second program is longer but more versatile. Finally
we examine a third program that will solve any equation system that is supplied to it in a
subroutine.

100 m Diameters in m e =0.0005 m
Lengths in m v=131x10°m?%s

& %00

I _ 3 \\
J, =0.06 m/s R

@
11

60 m

Pipe | K n

1 1469 | 1.974
2 2432 | 1.927
3 5646 [ 1.971

Figure 4.20 The three-reservoir problem.
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Figure 4.20 shows three reservoirs that are connected by three pipes with an external de-
mand at the common junction of the pipes. The highest reservoir has a water surface
elevation of 100 m; the middle reservoir water surface elevation is 85 m, and the lowest
reservoir has a water surface elevation of 60 m. We will use the data in the figure and
table to form and solve the three systems of equations.

The Q-equations are

Fi=01+0-%-0/1=0 F1=01+0,-03-0.06=0
Fy = KiQ" = K202 —WS| + WSy =0 F5 =14690]77% —24320}9%7 _15-0 (4.37)

F3= KO + K305% - WS + WS3 =0 F3 =1469097* + 56460171 —40 -0

To satisfy the junction continuity equation, equation Fj, and also determine initial values
for the Newton method, we can select QI(O) = 0,7 =0.10 m3/s, QEO) = Q0,2 =0.05

m3/s, and ng) = 0,3 =0.09 m3/s. The superscript (0) denotes initial values for use

by the Newton method in solving the (-equations, and the subscripts denote initial

discharge values for the AQ-equations. The initial values for use with the (Q-equations are

not required to satisfy the junction continuity equations, although this set of values does.
The H-equation is

]/I’ll 1/1’12

Fi = [w] + [%} - [%} ~0.06=0
! 2 3 (4.38)
0.507 0.519 0.507
F - 100 - H; N 85-H; _ Hy; -60 —0.06=0
1469 2432 5646
The AQ-equations are
m ny
Fi = K1(Qo1 + AQ + A0y )" - K3 (Qy2 — AQy )™ - WSy + WSy =0 @30
Jva
Fy = K1(Qp1 + A0y + A0y )™ + K3(0p3 + AQy )™ — WS) + WS3 =0
With the initial discharges that we have chosen, these equations become
Fy = 1469(0.10 + AQy + AQy )"77* = 2432(0.05 - AQ) )***7 —15 - 0 w300)
Fy =1469(0.10 + AQ + A0, )27 +5646(0.09 + A0, )" ~40 = 0

We now begin the solution of the (Q-equations by the Newton method using the equa-
tions [D]{z) = (F}, {Q}m+]) = (Q)(m) _ (7} According to Eq. 4.33, the Jacobian is

1 1 “1
[D]= |mKi Q"™ —nyK002 7! 0 (4.40a)
-1 -1
n K Q)" 0 n3K305°

or
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1 1 -1
[D]= 2900077 46860992 0 (4.40b)
29000774 0 111280)%7!

For the first computational cycle we therefore solve the equation set

1.00 1.00 -1.00 1z 0.00
307.89 -291.57 0.00 |izpl=1-6.97 (4.41a)
307.89  0.00 1073.96 (| z3 24.64

and obtain the results

-0.0004 0.1004
{z} =1 0.0235 {0} =10.0265 (4.42a)
0.0231 0.0669

We now iterate to obtain the following equation set and updated solution:

1.00 1.00 -1.00 1(z 0.000
309.09 -161.86 0.00 |{zp!=1-1.506 (4.41b)
309.09 0.00  805.20]z3 3.051

~0.0017 0.1021
{z} =1 0.0061 {0} =10.0204 (4.42b)
0.0044 0.0625
One more iteration leads to
L00 100  -1007(z 0.000
314.19 -127.01  0.00 [Jzp!=1-0.095 (4A4lc)
31419 0.00  753.42||z3 0.151
~0.0001 0.1022
{z} =1 0.0004 {0} =10.0200! m3/s (4.42¢)
0.0003 0.0622

This solution is now sufficiently accurate!

The solution of the H-equations by the Newton method uses basically the same equa-
tions [D]{z} ={F} and {HjMm+1D = (H}(" _ [z} These relations lead to a single update
equation

dF
g _g(m) 2L (4.43)
1 1 dH,

The derivative is
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1/n -1 1/n, -1 1/ny-1

dFy 1 [100-H, 1 [85-H, 1 [Hy-60
dH, ~ mK| [ Ky } ) E[K—z} ) @[K—s}
(4.44a)
or
dFy 17100 Hy 170493 1 185— Hy 170481 I [H -60770493
dH; 2900[ 1469 } _@[ 2432 } ‘m[ 5646 ]
(4.44b)

If we initiate the solution procedure with the initial estimate of Hl( 0) _g4 , then the first

two iterative cycles produce

F| = - 0.00415, Z% =-0.0136, H{" =84 -0.00415/0.0136 =83.70  (4.45a)

1

and

F1 =- 0.000247, Z% =- 0.0125], Hl(z) =83.70 -0.000247/0.01251 = 83.68m
1

(4.45b)
which will be regarded as adequate.

Finally, we now solve the AQ-equations by the Newton method using again the equa-
tions [D]{z} ={F} and {AQUm+D} = {AQ(™} - {z}. 1In this case we solve repeatedly
the two-equation system for updated correction vectors {z} until it is declared to be
sufficiently small. Three cycles of computation yield these results:

1599 3077(z1] (-6.97 2] (-0.0234 A _ (0034
307 1382 {zz} - { 24.6 } {zz} '{ 0.0230 } {AQZ} - {-0. 0230} e
472 3097(z1)  (-1.523 4 (-0.0062 AQL)_[00296) o
1309 1115_{@} - { 3.13 } {zz} B { 0.0045 } {AQZ} - {—o. 0275} '
441 3147(z) (=0.0952 2] (=0.0004 ACH) _[0.0300 ]

= = = 0 C
314 1068_{12} { 0.1507 } {zz} { 0.0003 } {AQz} {-o. 0278}

Now the discharges can be computed as Q; = 0.1 + AQ; + AQ> = 0.1022 m3/s, 0o =

0.05- AQ; = 0.0200 m3/s, and Q3 =0.09 + AQ> = 0.0622 m3/s.

Computer programs of differing complexity and generality can also be developed for the
solution of these equation systems by application of the Newton method. We will now
look at two programs. The first program is relatively simple but must be recoded in part
for each application; it will be applied to the solution of the (-equations for the three-
reservoir problem. The second program is more versatile.

Program 4.2, the FORTRAN program listed in Fig. 4.21, is designed to solve three si-
multaneous equations with the Newton method. It calls a matrix solver that has the coef-
ficient matrix expanded by one column to contain the known vector, and it places the
inverse in additional columns beyond the location of the known vector. The first part of
the main program is currently written specifically to solve the (Q-equations for the three-
reservoir problem. However, the portion that numerically evaluates the derivatives in the
Jacobian matrix is written more generally, with N giving the size of the matrix problem
to be solved. Careful study of this listing will clarify considerably how the various tasks
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are performed. The subroutine INVERM employs a common method in linear algebra
problems by using an expanded matrix. The coefficient matrix is square, here 3 rows by
3 columns. The known vector is placed in the next column, in this case column 4. The
subroutine solves the system of equations and provides the inverse matrix. The solution is
returned in the same column that initially contained the known vector, here column 4.

khkkhhkkhhkhkdhhhhhdhhhhdhhdhhdhhdhhdhhdhhdhhdhhdhhdhdhhdhdhhdhhdhhdhdhhdhddhdhddrdhdd
*  PROGRAM NO. 4.2, NEWTON, FORTRAN
*  THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
*  THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
*  USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.
EE R R SRR LRSS E LSS E LSS EE S SRS S S S S S S S S S S S S SRS S S EEEEEEEEEEEEEEEE S
*  IMPLEMENTS THE NEWTON METHOD IN SOLVING THREE EQUATIONS
REAL X(3),F(3),D(3,7),RK(3),RN(3),K1,K2,K3,N1,N2,N3
DATA N,N1/3,4/,DX/.001/,MAX/15/,ERR/.0001/
WRITE(5,*)' GIVE: K1,K2,K3,N1,N2,N3,01,02,03'
READ(5,*) RK,RN,X
M=0
1 NT=0
5 F(1)=X(1)+X(2)-X(3)-0.06
F(2)=RK(1)*X(1)**RN(1)-RK(2)*X(2)**RN(2)-15.0
F(3)=RK(1)*X(1)**RN(1)+RK(3)*X(3)**RN(3)-40.0
IF(NT.NE.0) GO TO 15
DO 10 I=1,N
10 D(I,N1)=F(I)
X(1)=X(1)-DX
NT=1
GO TO 5
15 X(NT)=X(NT)+DX
DO 20 I=1,N
20 D(I,NT)=(D(I,N1)-F(I))/DX
NT=NT+1
IF(NT.GT.N) GO TO 30
X (NT)=X (NT)-DX
GO TO 5
30 CALL INVERM(D,N)
DIF=0.
DO 40 I=1,N
DIF=DIF+ABS(D(I,N1))
40 X(I)=X(I)-D(I,N1)
M=M+1
IF(DIF.GT. ERR .AND. M.LT.MAX) GO TO 1
WRITE(5,*)' THE SOLUTION IS ',X
END

Figure 4.21 Program 4.2 to use the Newton method to solve three equations.

The listing of the inverse starts in the next column. In solving three equations the array
D(3,7) therefore has 7 as its second subscript, and the last three columns contain the
inverse.

Currently the input data to this program includes the coefficients K and n for each
pipe and an initial estimate of the discharge in each pipe: 1469 2432 5646 1.974 1.927
1.971 0.10 0.05 0.09. The program produces the same solution as we obtained
manually.

The next program, listed in Fig. 4.22, is essentially the same as the previous program,
except that it calls the linear equation solver GAUSEL, described in Appendix A, rather
than INVERM. GAUSEL is a more versatile subroutine that interchanges rows to
minimize truncation error, applies one iterative correction to the solution vector, and
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returns an estimate of the relative error for each unknown in the artray ERRNOR, so the
user has parameters to determine the accuracy of the solution. However, the relative error
is not printed in this program. This subroutine also illustrates the Microsoft FORTRAN
ability to allocate the array sizes that are needed.

khkkhkhkhkhkkhkkhhhkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhkhkhhhhkhkhhhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkikhkkx
*  PROGRAM NO. 4.3, NEWTION, FORTRAN
*  THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
*  THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
*  USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.
dhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhkhhhhhhhhhhhhhhddhkhdhdhdddhdhdhdhddddhddddhdhdhddhdhdhdhdhdhdhdhdhhhhdx
*  IMPLEMENTS THE NEWTON METHOD IN SOLVING THREE EQUATIONS
REAL X(3),F(3),D(3,3),F1(3),ERRNOR(3),RK(3),RN(3),K1,K2,K3,N1,N2,N3
DATA N/3/,DX/.001/,MAX/15/,ERR/.0001/
WRITE(5,*)' GIVE: K1,K2,K3,N1,N2,N3,01,02,03"
READ(5,*) RK,RN,X
M=0
1 NT=0
5 F(1)=X(1)+X(2)-X(3)-0.06
F(2)=RK(1)*X(1)**RN(1)-RK(2)*X(2)**RN(2)-15.0
F(3)=RK(1)*X(1)**RN(1)+RK(3)*X(3)**RN(3)-40.0
IF(NT.NE.0) GO TO 15
DO 10 I=1,N
10 F1(I)=F(I)
X(1)=X(1)-DX
NT=1
GO TO 5
15 X(NT)=X(NT)+DX
DO 20 I=1,N
20 D(I,NT)=(F1(I)-F(I))/DX
NT=NT+1
IF(NT.GT.N) GO TO 30
X (NT)=X (NT)-DX
GO TO 5
30 CALL GAUSEL(3,3,D,Fl,DET,ERRNOR)
DIF=0.
DO 40 I=1,N
DIF=DIF+ABS(F1(I))
40 X(I)=X(I)-F1(I)
M=M+1
IF(DIF.GT. ERR .AND. M.LT.MAX) GO TO 1
WRITE(5,*)' THE SOLUTION IS ',X
END

Figure 4.22 Program 4.3, a more versatile implementation of the Newton method.

With this introduction to the Newton method, let us look further at the structure of a
computer program that would solve any system of equations. This program should consist
of two primary elements: First, a main or driver program that accomplishes the following
tasks: (a) it allows the user to assign values to known variables and initial estimates for
unknown variables; (b) it creates the Jacobian matrix and the known vector and supplies
values to these arrays; (c) it calls a linear algebra solver; (d) it implements the Newton
iteration; and (e) it prints the solution. Second, it must contain a subroutine (or
function subprogram) that defines the system of equations to be solved. The equations in
this subroutine will change, depending upon the nature of the problem that is being solved,
and therefore the statements in this subroutine would be changed as different types of
problems are to be solved. A listing of such a general purpose program EQUSOLI1.FOR
will be found in Fig. 4.23. The subroutine FUNCT provides the equations for this
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program. The main program calls on the linear algebra solver SOLVEQ that is described
in Appendix B.

khkkhkhkkhkhkkkhhkkhkhkkkhhkkhhhkkhhkhhhkkhhhkhhkhhhhhhhhkhhhhhhhhhhhhhhhhhhhhkdhhdhhkdhhdhkhhhdkkxkx
*  PROGRAM NO. 4.4, EQUSOL1, FORTRAN
*  THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
*  THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
*  USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.
dhkkhhkkhkhkhkdhhhhhdhhhhhdhhhhdhhdhhdhhdhdhhdhdhhdhdhhdhdhhdhdhhdhrddhdhddhdhddrdhdk
*  THIS EQUATION SOLVER IMPLEMENTS THE NEWTON METHOD

LOGICAL IV[ALLOCATABLE](:)

INTEGER*2 INDX[ALLOCATABLE](:)

CHARACTER*3 SYMB[ALLOCATABLE](:),CH

REAL X[ALLOCATABLE](:),F[ALLOCATABLE](:),F1[ALLOCATABLE](:),
&D[ALLOCATABLE] (:,:)

WRITE(*,*)' GIVE (1) NO. OF EQS., (2) NO. OF VARIABLES, ',
&' (3) INPUT UNIT, (4) OUTPUT UNIT'
READ(*,*) N,NV,IN,IOUT
ALLOCATE (X (NV) ,F(N),F1(N),D(N,N) ,SYMB(NV) , IV(NV) , INDX (N) )
IF(IN.EQ.0 .OR. IN.EQ.5) WRITE(IN,100) NV
100 FORMAT(' GIVE',I3,' LINES WITH:',/,3X,'(l) SYMBOL FOR VAR.(3 CH)',
&/,3%,'(2) K OR U FOR KNOWN OR UNKNOWN AND',/,3X,'(3) VALUE')
J=0
DO 10 I=1,NV
READ(IN,110) SYMB(I),CH,X(I)
110 FORMAT(A3,1X,Al,1X,F10.0)
IF(CH.EQ.'U' .OR. CH.EQ.'u') THEN
IV(I)=.TRUE.
J=J+1
ELSE IF(CH.EQ.'K' .OR. CH.EQ.'k') THEN
IV(I)=.FALSE.
ELSE
WRITE(*,*)' ERROR IN INPUT FOR VARIABLE', I
STOP
ENDIF
10 CONTINUE
IF(J.EQ.N) GO TO 12
WRITE(*,*)' YOU GAVE',N,' EQS. BUT',J,' UNKNOWNS'
STOP
12 NCT=0
15 CALL FUNCT(X,F)
J=0
DO 30 JJ=1,NV
IF(IV(JJ)) THEN
XX=X (JJ)
X(JJ)=1.005*X(JJ)
J=J+1
CALL FUNCT(X,F1)
DO 20 I=1,N
20 D(I,J)=(F1(I)-F(I))/(X(JJ)-XX)
X (JJ)=XX
ENDIF
30 CONTINUE
CALL SOLVEQ(N,1,N,D,F,1,DD,INDX)
NCT=NCT+1
SUM=0.

Figure 4.23 A listing of the program EQUSOLI1.FOR.
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J=0
DO 40 I=1,NV
IF(IV(I)) THEN
J=J+1
X(I)=X(I)-F(J)
SUM=SUM+ABS (F (J))
ENDIF
40 CONTINUE
WRITE(*,*)' NCT =',6NCT,' SUM =',6SUM
IF(NCT.LT.20 .AND. SUM.GT. 0.0001) GO TO 15
WRITE (IOUT,120)(I,SYMB(I),X(I),I=1,NV)
120 FORMAT(I5,1X,A3,' =',F10.3)
END

SUBROUTINE FUNCT(X,F)

REAL F(22),X(41)

DATA E,G2,P,AP/0.005,64.4,8.6714174E-6,5.4541539E-3/
F(1)=X(41)-X(1)-X(3)-X(35) !Unknowns

F(2)=X(1)-X(2)-X(36) 1=Q02  15=H4 29=L1
F(3)=X(3)-X(4)-X(37) 2=03 16=H5 30=L2
F(4)=X(2)+X(4)-X(5)-X(38) 3=04 17=f1 31=L3
F(5)=X(12)-X(40)+X(6) 4=Q5 18=f2  32=L4
F(6)=X(13)-X(12)+X(7) 5=Q6 19=f3  33=L5
F(7)=X(14)-X(12)+X(9) 6=hfl 20=f4  34=L6
F(8)=X(15)-X(13)+X(8) 7=hf2 21=£f5 35=QJ1
F(9)=X(16)-X(15)+X(11) 8=hf3 22=f6 36=QJ2
F(10)=X(7)+X(8)-X(10)-X(9) ! 9=hfd4 Knowns 37=QJ3
RF1=1./SQRT(X(17)) ! 10=hf5 23=D1 38=QJ4
RF2=1./SQRT(X(18)) ! 11=hf6 24=D2  39=QJ5
RF3=1./SQRT(X(19)) ! 12=H1 25=D3  40=Wsl
RF4=1./SQRT(X(20)) ! 13=H2 26=D4 41=0Q1
RF5=1./SQORT(X(21)) 14=H3  27=D5
RF6=1./SQORT(X(22)) ! 15=H4  28=D6
F(11)=X(6)-X(17)*X(29)*12./X(23)*(X(41)/(AP*X(23)**2))**2/G2
F(12)=X(7)-X(18)*X(30)*12./X(24)*(X(1)/(AP*X(24)**2))**2/G2
F(13)=X(8)-X(19)*X(31)*12./X(25)*(X(2)/(AP*X(25)**2))**2/G2
F(14)=X(9)-X(20)*X(32)*12./X(26)*(X(3)/(AP*X(26)**2))**2/G2
F(15)=X(10)-X(21)*X(33)*12./X(27)*(X(4)/ (AP*X(27)**2))**2/G2
F(16)=X(11)-X(22)*X(34)*12./X(28)*(X(5)/ (AP*X(28)**2))**2/G2
F(17)=RF1-1.14+2.*AL0OG10(E/X(23)+P*X(23)*RF1/X(41))
F(18)=RF2-1.14+2.*ALOG10(E/X(24)+P*X(24)*RF2/X(1))
F(19)=RF3-1.14+2.*ALOG10(E/X(25)+P*X(25)*RF3/X(2))
F(20)=RF4-1.14+2.*AL0OG10(E/X(26)+P*X(26)*RF4/X(3))
F(21)=RF5-1.14+2.*ALOG10(E/X(27)+P*X(27)*RF5/X(4))
F(22)=RF6-1.14+2.*ALOG10(E/X(28)+P*X(28)*RF6/X(5))

RETURN

END

Figure 4.23 (Concluded) A listing of the program EQUSOL1.FOR.

Let's examine how the main program does its tasks of providing values to the Jacobian
matrix [D] and equation vector {F} and then carrying out a Newton solution. The key
portion of the main program that implements the Newton method appears in bold
characters in Fig. 4.23. Three tasks are accomplished by these statements: (1) defining
the equation vector; (2) numerically evaluating the elements of the Jacobian matrix; and
(3) solving the resulting linear system of equations and subtracting this solution from the
current vector of unknowns, as described by Eq. 4.32a.

The FORTRAN integer NCT is the iteration counter; it is set to 0 before
beginning the Newton iteration. Statement 15 CALL FUNCT(X,F) has two arguments,
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an array X for the variables and an array F for the equations. The array X includes both
the known and unknown variables of the problem. Upon returning from CALL FUNCT,
the array F contains a set of equations that have been evaluated by using the initial
estimates of the unknowns. Since the initial estimates are incorrect, the individual
elements of {F} will not be zero, but subsequent Newton iterations will drive these
elements progressively closer to zero. Statement DO 30 JJ=1,NV, in which NV is the
total of all variables, evaluates individual columns of the Jacobian matrix D(I,J) by
using a first-order numerical evaluation of the derivatives. Since IV(JJ) is .FALSE. for
known variables and .TRUE. for unknown variables, we note that nothing happens in
loop 30 if 1Iv is .FALSE. Hence J, which identifies the column in which the
Jacobian derivatives are entered, is incremented only for unknown variables. When an
unknown is encountered, xj, whichis x(JJ), is incremented by multiplying its current

value by 1.005 before the equation is evaluated again by calling FUNCT. Upon returning
from FUNCT, the array F1 now contains equation values based on 1.005xj, and then the
statement D(I,J) = (F1(I) - F(I))/(X(JJ) - XX) numerically evaluates the
derivatives of the equations by using a first-order approximation. The statement DO 20
1=1,N fills all row entries for column J of the Jacobian matrix [D].

Upon completing the DO 30 loop, the equation vector {F} and the Jacobian matrix
[D] have been fully evaluated. The next statement CALL SOLVEQ calls a linear equation
solver, which upon return has replaced the elements of the array F with the solution
vector {z} found in Eq. 4.32b. The statement DO 40 I=1,NV implements Eq. 4.32c
with SUM accumulating the absolute sum of the corrections applied to the unknown vector
{x}. If this suM is larger than the allowable error and fewer than 20 iterations have been
completed, then GO TO 15 at the end of this code segment will begin another Newton
iteration.

In our example it would be relatively easy to derive the actual partial derivatives of each
equation with respect to each unknown, and the elements of the Jacobian could be evaluated
by using these derivatives. The length of the program would be longer if these derivative
expressions were used. The numerical approximation of the derivatives requires extra arith-
metic, particularly since many derivatives are zero, but the advantage of a shorter code
makes the numerical approximation of the derivatives attractive.

Example Problem 4.5

Use program EQUSOLI1 to solve the 6-pipe, 5-node network shown below. Obtain
this solution in four ways: (1) wuse the program as it now exists with subroutine
FUNCT; (2) use the Q-equations; (3) use the H-equations; (4) use the AQ-equations.

[2]

QJ, =0.35 ft’/s

WS, =500

QJ, =0.5 ft3/s QJ,=0.5 ft’/s

4"~ 1000 3]

@
8" - 1500’ EIENC) }
All elev. = 350" QJ5 =0.25 ft/s
All ¢ = 0.005"

QJ; =0.5ft%/s

1. The existing subroutine FUNCT explicitly defines the equations that we want to
solve; there are 22 equations, F(1) through F(22). There are 41 variables associated
with the solution; therefore 41 - 22 =19 of these variables are known. These equations
are as follows:
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Junction continuity equations:

O1-0-04-0J1=0 M
O -03-0J,=0 @
04-05-0J3=0 3
Q3+05-06-0J4 =0 “

(The junction continuity equation at node 5 is not included here, but this simple equation
Q6 - OJs5=0 establishes the discharge in pipe 6 as 0.25 ft3/s.)

Head loss equations giving the HGL at a downstream node relative to the upstream node:

Hy =W§ - hfl )
Hy = Hy - hy) ©)
Hz = H| - hf4 @)
Hy=Hy—-hg3 (or Hy=H3-hygs) ®)
Hs =Hy - hf6 ©)
Energy equation around a loop:
hfZ +hf3_hf5_hf4=0 (10

Darcy-Weisbach equations to define the frictional head losses (pipe numbers i =1, 6):

2
L O
hg = f; =L —L_ (11-16)
fl 1 Di 2gAl~2

Colebrook-White equations (pipe numbers i =1, 6):

ej  9.35vD; } 17-22)

1
—=114-2I ot T
Vi (’g“’{ai " (amonfi

In the program listing the integer within X( ) identifies the variable in the array, as is
seen by the comments following the exclamation points there. We note there are 22
equations: a continuity equation for NJ - 1 =4 junctions, a separate head difference
equation for each pipe, a Darcy-Weisbach equation for each pipe, a companion Colebrook-
White equation for each pipe, and finally an energy loop equation, for a total of 3NP + NJ
= 18 + 5 = 22 equations. Since the entire system demand must come from pipe 1, its
discharge must be Q7 = 2.1 ft3/s, and the unknowns are 5 unknown discharges Q> ..
06, 6 unknown head losses hyy .. hfs, 5 unknown heads Hj .. Hs, and 6 unknown
friction factors f7 .. fg, for a total of 22. The input and solution files for the program
now follow:
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Input File Output File

Q2 U 0.8 f6o U 0.020 1 Q2= 0.820 22 f6 = 0.024
Q3 U 05 D1 K 8.0 2 Q3 = 0470 23 D1 = 8.000
Q4 U 0.8 D2 K 6.0 3Q4 = 0.780 24 D2 = 6.000
Q5 U 0.3 D3 K 6.0 4 Q5 = 0.280 25 D3 = 6.000
Q6 U 03 D4 K 6.0 5Q6 = 0.250 26 D4 = 6.000
hfl U 24.0 D5 K 6.0 6 hfl = 23.952 27 D5 = 6.000
hf2 U 11.0 D6 K 4.0 7 hf2 = 11.279 28 D6 = 4.000
hf3 U 0.2 L1 K 1500.0 8 hf3= 5.872 29 L1 =1500.0
hf4 U 0.15 L2 K 1000.0 9 hf4 = 15.368 30 L2 =1000.0
hf5 U 2.0 L3 K 1500.0 10 hf5= 1.783 31 L3 =1500.0
hf6 U 6.0 L4 K 1500.0 11 hf6=9.117 32 L4 =1500.0
H1 U 476.0 L5 K 1200.0 12 H1 = 476.048 33 L5 =1200.0
H2 U 465.0 L6 K 1000.0 13 H2 = 464.769 34 L6 =1000.0
H3 U 460.0 QJ1 K 0.50 14 H3 = 460.680 35QJ1= 050
H4 U 458.0 QJ2 K 0.35 15 H4 = 458.897 36QJ)2= 035
H5 U 450.0 QJ3 K 0.50 16 H5 = 449.780 37QJ3=0.50
f1 U 0.020 QJ4 K 0.50 17 f1 = 0.019 38QJ4= 050
f2 U 0.020 QJ5K 0.25 18 2 = 0.021 39QJ5= 025
f3 U 0.020 WSI1 K 500.0 19 3 = 0.022 40 WSI1 = 500.0
f4 U 0.020 Ql K 2.1 20 f4 = 0.021 41 Q1 = 2.100
f5 U 0.020 21 f5 = 0.024

2. The Q-equations are
F1=01-0-04-0/1=0
Fr=0-03-0J,=0
F3=04-05-0J3=0
Fp=03+05-06-0J4 =0

Fs5 = K205 + K305° - K5035 - K404* =0

The K and n for each pipe must now be determined. Program 2.1, PIPK_N, or some
other means will provide these values:

Pipe K n

1 5.6845 1.9381
2 16.4967 1.9185
3 24.3685 1.8858
4 24.7450 1.9185
5 19.0411 1.8611
6 126.3843 1.8970

To compute the five unknown discharges Q; (i =2, 6) (with Q7 =2.1 ft3/s known), the
subroutine FUNCT must be modified as follows:

SUBROUTINE FUNCT(X,F)
REAL F(5),X(11)

REAL K2/16.4967/,K3/24.3685/,K4/24.745/,K5/19.0411/
REAL N2/1.9185/,N3/1.8858/,N4/1.9185/,N5/1.8611/

F(1)=X(6)-X(1)-X(3)-X(7) ! Unknowns Knowns
F(2)=X(1)-X(2)-X(8) !'1=02, 4=05,6= 01, 9 =033
F(3)=X(3)-X(4)-X(9) 1 2=03, 5=06, 7=0J1, 10 = QJ4
F(4)=X(2)+X(4)-X(5)-X(10) ! 3 =04, 8 = QJ2, 11 = QJ5
F(5)=K2#*X(1)**N2+K3*X(2)**N3-K5*X (4)**N5-K4*X(3)**N4

RETURN

END
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The input data (all in ft3/s) that were used to solve this problem (with 5 and 11 plus 2 and
3 for I/O units from the keyboard) and the solution are listed now:

Input Data Solution
Variable Type Initial Index Value
value
Q2 U 0.80 1 Q2 0.82
Q3 U 0.50 2Q3 0.47
Q4 U 0.80 3Q4 0.78
Q5 U 0.30 4 Q5 0.28
Q6 U 0.25 5 Q6 0.25
Q1 K 2.10 6 Q1 2.10
QJ1 K 0.50 7 QJ1 0.50
Q2 K 0.35 8 Q)2 0.35
QI3 K 0.50 9 QI3 0.50
QJ4 K 0.50 10 QJ4 0.50
QJ5 K 0.25 11 QJ5 0.25

Since X(11) = QJ5 is not used in the equations, the keyboard input could have been
changed to 5 10 2 3, and the last line of input could then be deleted.

3. The number of H-equations could be reduced below five, but we will use five head
equations to determine the head at the five nodes. These equations are

L1/ 1/ 1/
_ 500—H1 nl_ Hy-Hy n2_ Hy| - Hj n4_ _
= —K —K —K 0J1 =0
1 2 4
) J1/ny 1/ny
P - H|-Hy _Hz—H4 —0Js =0
2=|—7F= 0Jp =
K> K3
- 1/ 1/
g [H=H ) [Hy-H Y
37 ¢ Xs QJ3 =
4
- 11/n3 1/ns 1/ng
p _[Ha-H, Hy=Hy | _[Ha=Hs]™°_ )
t K3 Ks K¢ t
r -l/n6
Hy - H
Fs = % ~QJ5=0

These equations are arranged to allow us to find H; (i =1,5) with a demand at each of the

five nodes as additional variables, so there are 5 unknowns and 10 variables. The
appropriate modifications of subroutine FUNCT are as follows:

SUBROUTINE FUNCT(X,F)
REAL F(5),X(10)
REAL K1/5.6845/,K2/16.4967/,K3/24.3685/,K4/24.745/,K5/19.0411/
&,K6/126.3843/,R1/.515969/,R2/.52124/,R3/.53028/,R4/.52124/
&,R5/.53732/,R6/.52715/

C UNKNOWNS: 1 = H1, 2 = H2, 3 = H3, 4 = H4, 5 = H5;
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C KNOWNS: 6 = QJ1, 7 = QJ2, 8 = QJ3, 9 = QJ4, 10 = QJ5
F(1)=(ABS(500-X(1))/K1)**R1-(ABS(X(1)-X(2))/K2)**R2
&-(ABS(X(1)-X(3))/K4)**R4-X(6)
F(2)=(ABS(X(1)-X(2))/K2)**R2-(ABS(X(2)-X(4))/K3)**R3-X(7)
F(3)=(ABS(X(1)-X(3))/K4)**R4-(ABS(X(3)-X(4))/K5)**R5-X(8)
F(4)=(ABS(X(2)-X(4))/K3)**R3+(ABS(X(3)-X(4))/K5)**R5
&—(BBS(X(4)-X(5))/K6)**R6-X(9)
F(5)=(ABS(X(4)-X(5))/K6)**R6-X(10)
RETURN
END

The input data (all in ft or ft3/s) for this problem (with an additional 5 and 10 plus 2 and
3 for I/O units from the keyboard) and the solution follow:

Input Data Solution
Variable Type Initial Index Value
value
H1 U 476.0 1 H1 476.1
H2 U 465.0 2 H2 464.8
H3 U 460.0 3 H3 460.7
H4 U 458.0 4 H4 458.9
H5 U 450.0 5 H5 449.8
QIl K 0.50 6 QJ1 0.50
Q12 K 0.35 7 Q2 0.35
QI3 K 0.50 8 QI3 0.50
QJ4 K 0.50 9 QJ4 0.50
QJ5 K 0.25 10 QJ5 0.25

4. For this problem there is only one AQ-equation, which is

n n n n
Fi = K3(0p2 + AQy )" + K3(Qp3 + AQ) ) = K5(Qps - AQ1 )™ - K4(Qpa - AQy )™ =0
The input, since it is only two lines, can be given directly from the keyboard as

1156
DQI U 0.1

The estimate of 0.1 ft3/s is used because the main program uses 1.005 times the
current value. This might be changed with an IF statement that adds 0.001 to the

variable if its value is zero. The solution is DQ1 = 0.020 ft3/s. The subroutine FUNCT
can be modified, with the initial discharge in each pipe chosen to be Q2 = 0.8 ft3/s, 0,3

= 0.45 ft3/s, Quq4 =0.80 ft3/s, and Q,5 = 0.30 ft3/s to satisfy continuity, as shown:

SUBROUTINE FUNCT(X,F)
REAL F(1),X(1)
REAL K2/16.4967/,K3/24.3685/,K4/24.745/,K5/19.0411/,N2/1.9185/
&,N3/1.8858/,N4/1.9185/,N5/1.8611/
REAL Q02/0.80/,003/0.45/,004/0.80/,005/0.30/
C UNKNOWN: DQ1
F(1)=K2*(Q02+X (1) )**N2+K3* (QO3+X (1) )**N3-
&K5*% (Q05-X (1)) **N5-K4* (Q04-X (1) ) **N4
RETURN
END
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Writing every equation, as was done in the listing of EQUSOLI, makes it easy to fol-
low the computational sequence in subroutine FUNCT. However, since there are as many
Darcy-Weisbach equations as there are pipes and the Gauss-Seidel iteration could be used to
solve the Colebrook-White equations internally within the system of equations, FUNCT
can be simplified. A separate function can be written to evaluate the Colebrook-White
equation, and the Darcy-Weisbach equations are in a DO loop. Now the equations to be
solved are the four junction continuity equations and the six head loss equations that
indicate the difference in head along a pipe is equal to the frictional head loss between the
pipe ends. For variety, Q; is now unknown, and in its place Qg is assumed to be

known.
The listing of the modified subroutine FUNCT follows:

SUBROUTINE FUNCT(X,F)

INTEGER*2 ID(6)/7,8,10,9,10,11/ ! 1 =01, 10 = H4, 19 = D3
&,I1U(6)/16,7,8,7,9,10/ ! 2 =02, 11 = H5, 20 = D4
REAL F(10),X(28) ! 3 =03, 12 = QJ1, 21 = D5
DATA G2/64.4/,P4/0.7853982/ 1 4 =04, 13 = QJ2, 22 = D6
F(1)=X(1)-X(2)-X(4)-X(12) 15 =05, 14 = QJ3, 23 = L1
F(2)=X(2)-X(3)-X(13) ! 6 =06, 15 = QJ4, 24 = L2
F(3)=X(4)-X(5)-X(14) ! 7 = Hl, 16 = WS1, 25 = L3
F(4)=X(3)+X(5)-X(6)-X(15) ! 8 =H2, 17 = D1, 26 = L4
DO 10 I=1,6 ! 9 =H3, 18 = D2, 27 =15
J=I+16 ! 28 = L6
10 F(I+4)=X(ID(I))-X(IU(I))+FR(I,J,X)*X(I+22)
& /X(JT)*(X(I)/(P4*X(J)**2))**2/G2
RETURN
END
*
FUNCTION FR(I,J,X)
REAL X(28)
REAL FI(6)/6%.02/
DATA E/0.0004166667/,CCVISC/1.03543E-4/
F1=1./SQRT(FI(I))
10 F2=F1
F1=1.14-2.*ALOG10(E/X(J)+CCVISC*X(J)*F2/X (1))
IF (ABS(F1-F2).GT. 1.E-6) GO TO 10
FR=1./F1/F1
FI(I)=FR
RETURN
END
The input data file (all in ft or ft3/s) and the solution are given next:
Input Data Solution
Variable Type Initial Index Value
value

Q1 8] 2.10 1 Q1 2.000

Q2 8] 0.80 2 Q2 0.770

Q3 8] 0.50 3Q3 0.420

Q4 U 0.80 4 Q4 0.730

Q5 U 0.30 5 Q5 0.230

Q6 K 0.25 6 Q6 0.250

H1 8] 476.0 7 H1 478.2

H2 8] 465.0 8 H2 468.2

H3 U 460.0 9 H3 464.7
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Continued: Input Data Solution

Variable Type Initial Index Value
value
H4 U 458.0 10 H4 463.5
H5 U 450.0 11 HS 454.3
QJ1 K 0.50 12 QJ1 0.50
QJ2 K 0.35 13 QJ2 0.35
QJ3 K 0.50 14 QI3 0.50
QJ4 K 0.50 15 QJ4 0.50
WS1 K 500.0 16 500.0
WS1
D1 K 0.667 17 D1 0.667
D2 K 0.50 18 D2 0.50
D3 K 0.50 19 D3 0.50
D4 K 0.50 20 D4 0.50
D5 K 0.50 21 D5 0.50
D6 K 0.333 22 D6 0.333
L1 K 1500 23 L1 1500
L2 K 1000 24 1.2 1000
L3 K 1500 25 L3 1500
L4 K 1500 26 L4 1500
L5 K 1200 27 LS 1200
L6 K 1000 28 L6 1000
* * *

4.4.2. SOLVING THE THREE EQUATION SYSTEMS VIA NEWTON

The Newton method will now be applied in turn to the solution of the Q-equations, the
H-equations and the AQ-equations for network shown in Fig. 4.24. Considerable detail
will be presented in these solutions so the details of applying the Newton method can be

1.5 ft¥/s

(D )

<

1.0 ft3/s
0.8 ft3/s

—~=—90'
Pipe K n
1 7.59 11.936
2 9.63 |[1.901
3 48.6 1.882
4 39.7 1.768
5 16.5 1.935

Figure 4.24 A 5-pipe, 3-node network.
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examined. The reader is encouraged to check numerically some of these steps. In the Q-
equations the elements of the Jacobian will either be 0F; /9Q; = =1 or zero in row i for

a junction continuity equation row. The Jacobian terms for the energy loop equation rows
o n;-1 .
will either be dF; / aQJ- ==*n jK ij 7"~ or zero. The non-zero elements of the Jacobian

for the H-equations are 0F; /0H; = + (1/(nyy Ky ){(H; - Hy )/ Ky "™

the sign is determined by the sign in front of this term in the equation and the sign before
Hj within the parentheses. Non-zero terms in the Jacobian for the AQ-equations will be

of the form 0F; /0AQ; = + niKy(Qok :EAQm)”k_l.

The Q-equations are

in which

Fi=01 -0y -04-10 =0
Fry=0)+0Q3 -15 =0
F3=04-03+0s-0.8 -0 (4.47)

Fy = K1Q" + K4Q)* - K505° -10=0

Fs = Ky0)? - K305° - K40)* =0

The Newton method is described by [D]{z}={F} and {Q}"+D) = {Q}(m) _ (z} with

1 -1 0 -1 0
0 1 1 0 0
[D]= 0 0 -1 1 1 (4.48)
mK Q! 0 0 ngKaQt ™' —nsksQls!
0 mKr052 7 ka0 gkt 0

If we choose the initial estimate of the solution vector to be

2.0
0.9

l0}¥ -lo.6 (4.49)
0.1
1.3

with which we have been careful to satisfy the junction continuity equations, so these
discharges can be used in the AQ-equations, the first evaluation of the Jacobian matrix and
right-hand side leads to

1.0000 -1.0000  0.0000 -1.0000 0.0000 1(z1 0.0000
0.0000  1.0000 1.0000 0.0000 0.0000 ||z2 0.0000
0.0000 0.0000  -1.0000 1.0000 1.0000 [lz3 l=1: 0.0000 (4.50a)
28.1133  0.0000 0.0000 11.9749 -40.8039||z4 - 7.6935
0.0000 16.6487 -58.2888 -11.9749  0.0000 ||z5 -11.3783
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with the solution

0.0000

0.0000

0.0000
- 0.0682
- 0.7993

-0.1169 2.1169
-0.1470 1.0470
{z} =1 0.1470 {0}V = lo.4530
0.0301 0.0699
0.1169 1.1831
The Newton equations for the next cycle are
1.0000 -1.0000 0.0000 —1.0000  0.0000 7(z
0.0000  1.0000 1.0000 0.0000 0.0000 ||z2
0.0000  0.0000  -1.0000 1.0000 1.0000 |[dz3l=
29.6481 0.0000 0.0000 9.0910 -37.3636||z4
0.0000 19.0804 -—45.4902 -9.0910 0.0000 |[|z5
with the solution
-0.0022 2.1191
-0.0111 1.0581
{z} =1 0.0111 [0} =Jo.4419
0.0089 0.0610
0.0022 1.1809
One more cycle would yield the final solution
2.1191
1.0583
{0} = Jo.4417
0.0608
1.1809

(4.51a)

(4.50b)

(4.51b)

“5l1c)

Referring again to Fig. 4.24, since we have only three nodes, we must construct three

H-equations. They are

1/ I/ 1
5 _[100-H, "orH -H T [H-H3 ]
! K L9) Ky
1/ I/
Fy = H-Hy]"? [Hy-Hy "
K> K3
1/ I/ v/
P " [Hy-Hy "3+ 90-Hy ] "
K4 K3 Ks
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Using [D]{z} = {F} and {H}(m+D = (H}(") _ {z} to implement the Newton method
with an initial estimate of the nodal heads as

successive computational cycles produce

[-0.166  0.060
0.060 -0.100 0.040
| 0.035  0.040
-0.171  0.056
0.056 -0.078
| 0.075  0.023
[—0.158 0.052
0.052 -0.075
| 0.072 0.023
[-0.239  0.052
0.052 -0.075
| 0.153  0.022
[-0.210  0.052
0.052 -0.075
0.124  0.023

1z

z2

11%3

21 ]

2
23

'zl

22
z3

1z

22

11%3

21
z2
23

93
(H)(Y - 85 (4.53)
88
~1.258 15.953 77.047
~0.3650 {z}=J17.2010 {H}V = 167.759
-0.382 10.088 77.912
(4.54a)
~0.095 8.019 69.028
~0.084¢ {z}=Jo.614! [H}?) -]58145
~0.499 9.830 68.083
(4.54b)
~0.120 1.547 67.480
~0.003¢ {z}=]13530 {H}?)-]56.793
~0.049 0.770 67.312
(4.54¢)
0.019 ~0.032 67.513
0.000 L {z}=40.002 L {H}* -]56.791
~0.019 0.070 67.242
~ (4.54d)
[ 0.002 ~0.005 67.517
~0.0010 {z}=1- 0.001 | {H}® = 56793
0.002 0.006 67.236

(4.54¢)

Depending on the desired accuracy of this solution, the process might have been terminated
one or two cycles sooner. One of the best features of the Newton method is a quadratic
convergence rate as the solution is approached; here we can easily see the rapid reduction in
the size of the corrections {z} in successive cycles.

When this problem is solved by using the AQ-equations, we need only one energy
loop and one pseudo loop, as is indicated on Fig. 4.24. The AQ-equations are

F = K1(Qo1 +AQ) )" + K4(Qp4 -~ Ay + AQp )™ - K5(Qy5 — AQ )™ ~10=0

Fy = Kp(Qp2 +AQ2 )™ — K3(Qp3 = AQ2 )™ — K4(Qps —AQy +AQ )™ =0
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The equations for the Newton method are [D]{z}={F} and {AQ}(m+D) = (AQ} (M) - (7}
in which the Jacobian and vector of initial discharges are

2.0
OF _oF 0.9
_|9AQ) 9AQ, (0) _
[D]- o o) {0,}'" =106 (4.56a,b)
IAQ  IAQ, ‘1)31

Three successive solution cycles produce
180.892 -11.9757(z -7.694 -0.117 ) (0117
= = A = 4.57

-11.975 86.913 sz} {—ll. 378} {z} {—0.147} { Q} {0.147} (4.572)
[76.103 -9.0917(z; -0.068 { } -0.002 {AQ}(z) 0.119 4.57b)
-9.091 73.662]{z2}_{-o.799} ¢ '{-0.011} _{0.158} '
[75.163 -8.1887(z; 0.004 0.000 (3) [0.119

= = A = 4.57
|-8.188 71 954Hz2} {—0. 009} {z} {O. 000} { Q} {0.158} (457¢)

From these results we can compute the discharges themselves in ft3/s as

0| =0, +AQ =2.119
0> =0y +AQ) =1.058
03 =0,3 -0 =0.442 (4.58)
04 = 0Qp4 + AQ) - AQp = 0.061
05 = 0y5 - AQ = 1181

Readers will find it instructive to solve this same problem by modifying subroutine
FUNCT in program EQUSOLI. For still more experience the reader should consider the
use of an equation-solving software program such as MathCAD, TK-Solver, or MathLab.

4.4.3. COMPUTER SOLUTIONS TO NETWORKS

In this section we concentrate on the implementation of solutions to networks using
computers, and how pumps, local losses and/or PRV's are readily included. To begin this
process consider first the eight-pipe network in Fig. 4.25 that includes a source pump that
supplies some of the system demand and a booster pump in pipe 1. There are also local
loss devices in pipes 7, 8, and 3, the first two of which have a loss coefficient of 10,
and the third has a loss coefficient of 2. (The Roman numeral loop notation will be used
in Example Problem 4.6.) After developing and solving the equations for this network, we
will place a PRV in pipe 5.
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Globe valve
KL, =10 003 m¥s

0.25 - 300 0.2 - 500
> > {Py ——
) [1] M 72
@ PV
~4170 m I
L =] I o
“ S
cn
S o
IS5 S
200m
o
0.25 - 300 (4] 0.2 - 500 (3]
8
® Gl(l)/ll)e valve 3) Kl;d/letzerz 0.05 m3/s
KL2 =10 3
Pump Characteristics
(Q in m3/s and h, in meters)
Pump No. Point 1 Point 2 Point 3
0 hp 0 hy 0 hp
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Figure 4.25 An eight-pipe network with pumps and local losses.

For this network there are five junction continuity equations and three energy loop equa-
tions. The Q-equations are

F1=-01+04+07-0.03=0
Fr=01+0y-05-0.08=0

F3=-0+03-0-0.05=0
Fp=-03-04+03-0.00=0

Fe = ~0.08=0
5=05+0 (4.59)

Fg = K1Q" ~ hyy — Ko 052 — K305% —203 /(2gAT) + K40)* =0
F7 = K505 - KgQ4® + K205 =0
Fg = K7007 — hy +1003 /(2gA% ) - K40)* - Kg0g® ~1003 /(2gA3 ) +30 =0

In these equations the local loss coefficients 10, 10, and 2 have been inserted in the
equations, but the pump heads are written as h,; and hpz. These pump heads can be
expressed as a function of discharge by fitting a second-order polynomial through three
points on the pump characteristic curve over the range of expected operation.
Alternatively, if the power supplied by the pump to the fluid is assumed to be constant,
then these pump heads can be defined by h;, = Power/(yQ).
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Example Problem 4.6

Solve the 8-equation system, Eqs. 4.59, for the network shown in Fig. 4.25 by using hand
methods. Then verify this solution by using program EQUSOL1 and/or an equation-
solving software package such as MathCAD or TK-Solver.

This and the next few Example Problems will be solved by rewriting the subroutine
FUNCT for use with  EQUSOLI1 in each case. MathCAD and TK-Solver models of
these problems will be found on the CD that accompanies this book.

The first step is to estimate the pipe discharges; based on these values, we then
compute K and n for the 8 pipes. The listed discharges produce the K and n values in
the table:

Pipe No. 1 2 3 4 5 6 7 8

Q0 (m3/s) [0.100 0.015 0.100 0.080 0.030 0.050 0.070 0.170
K 1160 613 1160 690 1292 1115 322 239
n 1.827 1.788 1.827 1.824 1.801 1.812 1.772 1.832
f 0.0134 |0.0314 |10.0134 ]0.0212 | 0.0168 [0.0152 | 0.0223 | 0.0127

The next step is to fit the three pairs of points for the two pumps to obtain the coefficients
for the polynomials: Aj; =- 2220, B; =444, C; =12.28 and Ap =-55.6, By =
1.667, C» =4.10. These values can now be substituted into the equations, the equations

can be differentiated to produce the Jacobian matrix and equation vector, and all of the terms
can be evaluated by using the data in the table and figure. (The reader should evaluate some
terms to verify that the process is fully understood.) The results are

-L.O 00 00 1.0 00 00 LO 0.0]
LO LO 00 00 -LO 00 00 0.0
00 -0 10 00 00 -LO 0.0 0.0
(D] - 00 00 -LO -1.O0 00 00 00 1O
00 00 00 00 LO 1LO 00 00
325 -40.2 -337 158 0.0 0.0 0.0 0.0
0.0 402 00 00 140 -178 0.0 0.0

0.0 00 00 -158 0.0 0.0 370 -173]

and

{F}T = {0.020 0.005 - 0.015 -0.010 0.000 1.560 -2.226 4.903}

with the superscript 7T indicating the transpose of the right-side equation vector. The
solution to this linear system of equations produces

{z}T = {- 0.0029 0.0008 - 0.0071 0.0021 - 0.0071 0.0071 0.0150 - 0.0150}

so that the discharges after the first iteration are
{Q}T = {0.1029 0.0142 0.1071 0.0779 0.0371 0.0429 0.0550 0.1850}
After two additional iterations, the following solution, in m3/s, is obtained:

{017 = {0.1028 0.0142 0.1072 0.0780 0.0370 0.0430 0.0548 0.1852}
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The subroutine FUNCT is on the CD under EPRB4_6Q.FOR for use with
EQUSOLI, and the TK-Solver model is listed on the CD under EPRB4_6Q.TK. Upon
supplying the input file in column one below to EQUSOLI, the solution in the second
column is obtained:

From the keyboard: 8 8 2 3 Solution (m3/s)
Q1 U 0.100 1 QI = 0.103
Q2 U 0.015 2 Q2 = 0014
Q3 U 0.100 3 Q3 = 0.107
Q4 U 0.080 4 Q4 = 0.078
Q5 U 0.030 5 Q5 = 0.037
Q6 U 0.050 6 Q6 = 0.043
Q7 U 0.070 7 Q7 = 0.055
Q8 U 0.170 8 Q8 = 0.185
*k £ £

Next let us examine the formulation and the solution of the H-equations for the
network in Example Problem 4.6. The H-equations are presented as Eqs. 4.60. The
pump heads have been added to the upstream HGL-elevations by indicating these heads as
hp. In a similar way the local losses, denoted simply as hy, have been subtracted from
the HGL-elevations in pipes 3, 7, and 8. By using second-order polynomials for the
pump characteristics and noting that each Q in these equations can again be replaced by
similar

1 1 1/
F = H1+hp2—H2 /n]_ Hy - Hy /n4_ 170+hp1—hL1—H1 n7+003=0
K Ky K7
r _ 1/715 _ l/l’l2 H +h _ H l/l’ll
By - |f2zfs | _\Hs-Hy " (I TR g 0820
Ks K> K
- 1/n, 1/n 1/n
Fy = |H3 M5 L [HamHa | TP [Hazhia=H3]TT s
| Ko L9) K3
r 1/}13 1/}’!4 1/}18 (460)
Fy - Hy-hp3—-Hj + Hy - Hy B 200-hyy - Hy +0.00=0
K3 Ky Kg
H, - H Hy - H
F5=—[%} -[%} +0.08=0
5 6

head-difference terms, we find that we cannot create an equation that does not contain the
pump discharge in the pipes that contain the pumps. The same is true for pipes that
contain local losses because again the magnitude of the loss is a function of the discharge
through the pipe. If an iterative approach were used to approximate the discharge in terms
of the upstream and downstream nodal heads, the quadratic convergence rate of the Newton
method would be sacrificed. This dilemma highlights a deficiency in using the H-
equations when pumps, whose heads are strongly dependent upon the discharges passing
through them, are present. If many pumps exist in a network and the H-equations are to
be used, especially if equation-solving software such as MathCAD or TK-Solver is used, it
might be advantageous to write the continuity equations in terms of the discharges, then
add additional equations to describe these discharges in terms of nodal heads, and finally
solve simultaneously for the heads and discharges. This approach will be taken in
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Example Problem 4.7. A successful technique that solves the H-equations in a computer
program will be described in a subsequent section. This technique obtains the current value
of the discharge in every pipe from the heads that exist during an iteration by calculating

0=[(H;- Hj)/K]I/", and when a pump exists in a pipe, the Newton method can find the
discharge Q from the single equation for that pipe Q = [(H; + h) - HJ-)/K]]/” in which
the pump head is 7, =AQ? + BO + C.

Example Problem 4.7

Solve the H-equations for the 8-pipe network shown in Fig. 4.25 that was the subject
of study in Example Problem 4.6.

The form of the subroutine FUNCT that is needed in EQUSOLI1 to solve the H-
equations is on the CD in EPRB4_7H.FOR with input data in EPRB4_7H.DAT; the
corresponding TK-Solver model will be found there as EPRB4_7H.TK.

* * *

Finally, we now turn our attention to the AQ-equations, which are given in Eq. 4.61
for this same pipe network. In addition, we must select an appropriate set of initial
discharges.

Fi = K(Qo1 +AQ1 )" = hpo = K2 (0o - AQy + AQ» )2 - K3(Qp3 - AQ )™

~2(053 - MGt /(2242 )+ K4(Qus + A1 - 803 )™ =0
Fy = K5(Qp5 + A0 )" - Kg(Qo6 - 202 )" + K2(Qp2 - AQy + A0 )™ =0 (461)
F3 = K7(007 + A03)" +10(Qp7 + AQ3 /(2842 )~ K4 (o4 + AQ1 - A3 )™

~ it = Ks(Qog - 803)" ~10(Qus - AQ3 /(2843 ) +30 = 0

In these AQ-equations the pump heads will be replaced by second-order polynomial
equations in the forms

hpl =A1(0Q,7 + AQ3)2 +B1(Qy7 +AQ3) + (1

) (4.62)
hpy = A (Qp1 +AQ1 )" + By (Qp1 +AQp) + O

The local losses are replaced by hy, = K;Q?/(2gA2), in which each discharge is written as
the algebraic sum of Q,; and the corrective discharges in that pipe. The derivatives of
these terms that contribute to elements of the Jacobian are then easily evaluated.

Example Problem 4.8
Solve the AQ-equations for the 8-pipe network depicted in Fig. 4.25.

To solve the AQ-equations using EQUSOL1, download EPRB4_8D.FOR from the
CD; the appropriate input is found in EPRB4_8D.DAT. A TK-Solver model will be
found as EPRB4_8D.TK. A set of initial discharges might be selected as follows: Q,; =

0.100 m3/s, Q,2 = 0.015 m3/s, Qy3 = 0.110 m3/s, Qu4 = 0.060 m3/s, Q,5 = 0.035
m3/s, Qy6 = 0.045 m3/s, 0,7 = 0.070 m3/s, and Q,g = 0.170 m3/s.

*® k %
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4.4.4. INCLUDING PRESSURE REDUCING VALVES

To acquire experience in analyzing networks containing pressure reducing valves (and
similar appurtenances such as back pressure valves), let us assume that pipe 5 in our 8-
pipe network contains a PRV that is 200 m downstream from junction 2, and the pres-
sure setting of this valve is equivalent to a reservoir water surface elevation of 149 m.
The five junction continuity equations are unchanged for this network. The energy
equations now consist of one real loop and two pseudo loops, as the revised diagram of this
network shows in Fig. 4.26. The pump data in Fig. 4.25 are unchanged. In the

0.03 m3/s
@) [1] (1 [2] . 0.08 m3/s
i At '
@ : ; T fx (PRV),
=H170m m}n @ : |
| 42
At |
200 ! '
ol : X . 0.08 m%/s
1 t | !
| G | o e e - !
®  [dr T 3 B (© = T [5]

Figure 4.26 An eight-pipe network with pumps and local losses, now including a PRV.

Q-equations, Eqs. 4.72, equations Fg and Fg are unchanged, but equation F7 must
now be written around the new pseudo loop; it becomes

Fy = K505° - Ke0g® - K303° -203 /(2843

(4.63)
- K30y 1003 /(2gAZ ) +200 ~ HGL; = 0

in which Ké represents the portion of pipe 5 downstream from the PRV. FEight inde-

pendent equations therefore exist, which may be solved for the discharges Q;, i = 1,8. If
the PRV does not close completely, the solution is obtained with HGL; in F7 equal to

the head that is set at the valve, i.e., 149 m in this example. If the Newton solution
process that is based on this assumption should produce a negative value for Qj3, the

PRV will close completely. Then the discharge in the pipe containing the PRV is no
longer an unknown but is zero, i.e., Q5 =0, and the value of the HGL immediately
downstream from the PRV becomes the unknown. In other words, when this PRV closes,
the same system of equations still describes the network operation, but the set of
unknowns changes to {Qj, 02, 03, Q4, HGL], Q¢, O7, Og}. In a computer program
this change can be accommodated by dropping the pipe number containing the PRV from
the integer arrays that define the junction continuity equations and the energy loop
equations. Also, a flag is set in the program to indicate in the solution array that the
HGL of the PRV is stored in place of the discharge in that pipe.

Subroutine FUNCT for use with EQUSOL1 for this problem is on the CD under
the name EPRB4_VQ.FOR. The reader should study a listing of this file to understand
the logic that will model the PRV when it closes. The input from the keyboard for this
problemis 8 8 2 3 (Thus there are 8 unknowns and 8 variables, and the 2 and 3
are the input and output units.). The input file that was used in Example Problem 4.6 still
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applies. There are only two basic changes in the program that was used to solve this
network problem in the absence of the PRV: (1) element X(5) is now either Q5 or
HGL, depending upon whether it is negative, and (2) now F(7) has become a pseudo
loop from the artificial reservoir at the PRV to the reservoir at the end of pipe 5. The
computer provides the following solution (units are m3/s or m):

07 =0.102, 02=- 0.022, 03=0.108, Q4 = 0.077,
05 = 149.227, Qg =0.080, Q7=0.055, Qg =0.185.

From this solution we see that the flow has tried to reverse direction in pipe 5, indicating
that the PRV must then close. Thus Q5= 0, and the reported value of 149.227 is the

HGL on the downstream side of the PRV, which is slightly above its pressure setting. In-
stead of operating in its normal mode, the PRV has acted as a check valve, not permitting
the flow to reverse its direction.

Let's increase the demand at node 5 to 0.100 m3/s. To obtain a solution for this de-
mand, we must change the line that defines the continuity equation at node 5 in
subroutine FUNCT to F(5)=05+X(6)-0.100. Now the execution of the program

produces the following solution (units are m3/s):

07 =0.113, 02=0.002, Q3 =0.117, Q4 = 0.079
05 =0.034, Qg=0.066, 07 =0.063, Qg =0.197

With this slightly larger demand at node 5 the PRV operates normally, maintaining an
HGL = 149 m on its downstream side. From these discharges the pipe head losses, the
pump heads, and other quantities can be evaluated, and from these the head at each node can
be determined. Upon carrying out such computations, we find that the heads are H; =

173.6 m, Hy =155.7m, H3=1557m, Hy=180.3 m, and H5 = 147.2 m. The head
on the upstream side of the PRV is 154.8 m, so the PRV loss is 154.8 - 149 = 5.8 m.
If the demand at node 5 is QJs = 0.16 m3/s, the continuity statement in FUNCT

for node 5 is changed to F(5)=05+X(6)-0.16, then the solution (units are m3/s)
becomes
Q7 =0.145, 0> =0.050, Q3 =0.145, Q4 =0.088

05=0.115, Qg =0.045, 07=0.087, Qg =0.233

Without a more complete examination of these solutions, we might be inclined to accept
all of them as valid. However, upon computing some head losses and pump heads, the
following are found: hf7 =6.98 m, hp] =- 28.0m, hpg =4.04 m, and hf] =492 m,
so the HGL at node 2 is Hp = 134.2 m. Obviously the negative head for pump 1 is
unrealistic; it is caused by operating the pump with a discharge that is outside the range of
the three pairs of points that were used to define this pump characteristic curve. Also H)
= 134.2 m is much smaller than the HGL setting of the PRV, and since this device can
not act as a pump to increase the head across it, the most it can do is open completely. If
a PRV opens completely, it typically still acts as a local loss device in a way that is
similar to a globe valve with a loss coefficient of about 10. Thus the last solution is not
valid, and the problem must be solved again with another local loss device in place of the
PRV. Currently there exists no simple a priori test to learn that the PRV should open
fully and that it is unable to maintain its pressure setting; a solution must first be
obtained when we use the (-equations, because the nodal heads are determined as a
secondary step after the discharges are found. The same statements apply to the use of the
AQ-equations.

The three modes in which a PRV may operate are treated most conveniently with the
H-equations, since it is then possible to check directly, as the solution is obtained, whether
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the head at the upstream side of the PRV is less than H,, (the HGL upstream of the PRV)

and whether the head at the downstream pipe node is greater than the set HGL. If the head
H at the downstream node becomes larger than the HGL setting of the PRV, then it
should shut off the flow in the pipe, and if H, becomes smaller than HGL, then the PRV
should open fully.

When the AQ-equations are used to analyze networks that contain PRV's, we must
work with two different sets of loops, one around which the AQ's circulate, and one
around which the energy equations are written. For our 8-pipe example, Fig. 4.27, the
first and

Figure 4.27 The eight-pipe network with a PRV, with loop notation shown.

third equations match the corresponding equations, Eqs. 4.61, for this network without a
PRV in pipe 5. The second equation is replaced by

Fy = K5(Qp5+A02)"S — Ke(Qp6 — 802)"6 ~ K3(0y3 - AQ )™
~2(Q,3 - A0 )* /(2gAT) - Kg(Q,g - AQ3 )" (4.64)

~10(Q,8 - AQ3)? /(28A2 ) — HGL +200 = 0

It is notable that this equation does not contain AQ» in every term and that the system of

equations does not produce a symmetric Jacobian. To determine the correct operational
mode for a PRV when using the AQ-equations is much the same as with the Q-equations.
Should the flow in a pipe reverse direction, then the PRV should close, and if the HGL at
the upstream end of the PRV is less than its setting, then the PRV should open fully;
otherwise the PRV is operating in its normal mode. Logic can easily be included in the
computer program to check whether the flow is negative in pipes containing PRV's and
then change the nature of the problem being solved. The fully-open mode of operation can
not be determined until the nodal heads are computed, as with the Q-equations. Should a
PRV close, then the discharge in that pipe becomes zero, and the HGL becomes unknown
and larger than the setting. If a pipe containing a PRV has only one AQ flowing through
it, then that corrective discharge becomes known and is AQj = £ Qy;, in which the minus
sign applies if the assumed directions for Q,; and AQ; coincide, and the plus sign
applies if these directions are opposed. In place of AQj as the unknown, the HGL is

unknown, and the number of unknowns still equals the number of equations. Should a
PRYV close that is internal, with two or more corrective discharges circulating through it,
then one of these corrective discharges must be expressed in terms of the others, and the
HGL of the PRV replaces this AQ in the list of unknowns. In our example, if the PRV
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were in pipe 2 instead of pipe 5, as shown in Fig. 4.28, then AQ> = Q,2 + AQ;, and
it is replaced by this quantity wherever else AQ» appears, such as in the discharges for
pipes 6 and 7.

‘ (1) 0 i
[ = — = = = = = = = N
©) : —~ \w
2) t AN
4) | \
L2y @ (HGL) —=—
AQ] (HGL)I (7) i ”(2) , 7
H ? H . 1 ¥ (7)
| 1 oi '——-9)-___1.1_1)_1 /
©) 3 o - -
Corrective discharge loops Energy equation loops

Figure 4.28 The modeling of a PRV in pipe 2 of the 8-pipe network.

To study this problem further, the reader should obtain a listing of FUNCT under the
name EPRB4_9.FOR. It can be used to solve this problem. One additional integer
variable IDOO has been added to the list of arguments in FUNCT; itis given a value of
0 in the calling program when the equation vector is evaluated and 1 when the Jacobian
is evaluated. This variable is needed because we do not want to close the PRV when we
evaluate the derivatives. It is instructive to trace the logic that sets Q5 to zero when the
PRV is closed, fixes the value of AQ» = Q,5 and replaces AQ»> by the HGL as the
unknown represented by X(2). These changes are made when Q5 becomes negative.
Subsequent checks might determine whether the HGL becomes less than the PRV setting;
if this occurs, the PRV should be reopened. Another modification of this subroutine
allows the initial discharges Q,;, i = 1-8, to enter FUNCT through X(i), i = 4-11,
thus making it possible to change the demands without changing Q,; within the
subroutine.

Example Problem 4.9
Solve the eight-pipe network shown in Fig. 4.27 by using the AQ-equations. Obtain

this solution first for a demand at node 5 of QJs=0.100 m3/s and then for QJs =

0.080 m3/s.

The input data (EPRB4_9.DAT) to solve this problem with a demand of 0.100 m3/s
at node 5 is listed below with the solution:

Input Data Solution
DQ1 U 0.00 1 DQl= - 0.00749
DQ2 U 0.00 2 DQ2= - 0.00570
DQ3 U 0.00 3 DQ3= - 0.01668
Qol K 0.12 4 Qol = 0.12
Qo2 K 0.00 5 Qo2 = 0.00
Qo3 K 0.11 6 Qo3 = 0.11
Qo4 K 0.07 7 Qo4 = 0.07
Qo5 K 0.04 8 Qo5 = 0.04
Qo6 K 0.06 9 Qo6 = 0.06
Qo7 K 0.08 10 Qo7 = 0.08
Qo8 K 0.18 11 Qo8 = 0.18
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Applying these solution values for the AQ);, as appropriate, to the initial discharges gives

the final discharges, and then the pipe head losses can be computed, using the proper K
and n for each pipe, as listed in the table:

Pipe 1 2 3 4 5 6 7 8
Q, m%s [0.1125 |- 0.0018 [0.1175 [0.0792 [0.0343 [0.0657 [0.0633 [0.1967
hp, m 21.40 0.0075 23.20 6.77 2.97 8.03 243 12.14

From these discharges the pump heads and local losses are h,; = 6.18 m, hpz =3.58 m,
hr; =0.848 m, hyp =8.18 m, and hy3= 1.426 m. From these the nodal heads can be
found as H;=1753m, Hy =157.5m, H3=155.1m, Hy=179.7m, Hs5 = 147.0 m,
and H,j; =156.5 m. We see that the head upstream from the PRV is 156.5 m which is
less than H» = 157.5 m, so the PRV has not opened fully. The head at node 5 down-
stream, H5 = 147.0 m, is less than the HGL setting of the PRV (149 m) so the PRV has
not closed but operates normally.
When the demand at node 5 is QJ5 = 0.080 m3/s, then the input data and solution are

Input Data Solution

DQ1 U 0.00 1 DQl1= - 0.01827
DQ2 U 0.00 2 DQ2= 149.2
DQ3 U 0.00 3 DQ3= - 0.02508
Qol K 0.12 4 Qol = 0.12
Qo2 K 0.00 5 Qo2 = 0.00
Qo3 K 0.09 6 Qo3 = 0.09
Qo4 K 0.07 7 Qo4 = 0.07
Qo5 K 0.04 8 Qo5 = 0.04
Qo6 K 0.04 9 Qo6 = 0.04
Qo7 K 0.08 10 Qo7 = 0.08
Qo8 K 0.16 11 Qo8 = 0.16

In this input file the initial discharge estimates (Qoi have been altered from previous
values so that all continuity equations remain satisfied with QJs = 0.080 m3/s. The
solution values remind us that AQ> is actually the HGL at the downstream end of the
PRYV since it has closed, and FUNCT has set AQ» =- Q,5 and then used X(2) as the
position for HGL. The table lists the discharges and head losses for this situation:

Pipe 1 2 3 4 5 6 7 8
Q. m/s [0.1017 | 0.0217 | 0.1083 |0.0768 00 |0.0800 |0.0549 |0.1851
hy, m 17.83 | 0.652 |19.98 6.40 0.0 11.47 | 1.887 10.86

The pump heads and local losses are hp; = 8.02 m, hppy =3.69 m, hr; =0.638 m,
hy2=725m and hy3=1.211 m, with nodal heads of H; = 177.4 m, H = 163.2 m,
H3=160.7m, Hy=181.9 m, and H5 =149.2 m. Now the PRV has closed entirely so
the flow in pipe 5 is zero, and the HGL at its downstream end is above its set point.

* * *
4.4.5. SYSTEMATIC SOLUTION OF THE Q-EQUATIONS

In earlier sections we have developed the three systems of equations that can be used to
analyze pipe networks. We have written these equation systems for several small
networks, seen how the Newton method can be applied to any system of nonlinear
equations and how to solve a problem by using a general purpose program that implements
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the Newton method for all three equation systems, and finally we have carried out detailed
computations by hand to obtain some solutions by iteration. In this section we will see
how this knowledge can be used in developing computer programs that will analyze any
pipe network by using the (-equations, and the programs will require only enough
information from the user to describe adequately the network and its connectivity. In the
next two sections similar programs will be developed for the solution of the H-equations
and the AQ-equations.

Let us begin by assuming that there are no local losses. If they exist, they can be mod-
eled simply by assigning a larger equivalent sand roughness, or Hazen-Williams Cpgw, to

the pipes containing minor losses. Here we ignore the Manning equation.

In describing any network of pipes, we need two types of information: (1) Pipe infor-
mation consisting of the diameter, length, roughness coefficient, and end nodes for each
pipe. This information can be called pipe-oriented data, since we assemble it by going
though a list of the pipes in the network; (2) Junction information, including the demand
at the junction, its elevation, and possibly the pipes that join at the junction. This
information is called node-oriented data, since it is assembled by moving through the nodes
of the network. Actually the connectivity of the network can be defined either by giving
the nodes at the ends of each pipe, or by giving the pipe numbers that join at each node.
We shall use this duplicative information to check that the user has not erred in defining
the network.

Now we shall describe the input data that are required. Details on the form of this input
will be provided subsequently. Prior to study of this section the reader should obtain a
listing of the program SOLQEQS.FOR (or C if you prefer) from the text CD. The
information that is required from the user is the following:

1. A line that gives (a) the number of pipes, (b) the number of nodes, (c) the number of
reservoirs that supply the network, (d) the number of pumps, and (e) the options
which you wish to change from the default values. (The default options and how
these are changed will be described later.)

2. For each pipe, list its (a) number, (b) upstream node, (c) downstream node, (d)
length, (e) diameter, and (f) roughness coefficient.

3. For each node, list its (a) number, (b) demand, and (c) elevation, and (d) a list of
pipes that join this node.

4. For each reservoir, list (a) the pipe number that connects this reservoir to the net-
work, and (b) the water surface elevation of the reservoir.

5. For each pump, list (a) the number of the pipe that contains the pump, and (b) three
(Q, hp) pairs of discharge vs. pump head that will allow its operating characteristics
to be defined.

6. Finally, because the algorithms that could be used to determine the minimum set of
independent loops for the energy equations are relatively complex, we require a list
of pipe numbers around each loop (with a minus sign before a pipe number if the
movement around the loop opposes the assumed direction of flow in that pipe). We
require that pseudo loops be provided first, and then the real loops.

The information in item one is used to dimension the arrays that will store the
remaining information about the pipe network and to determine how many lines of each
information type will be read from the input data file. The information must be provided
in the sequence that is listed above.

The program must perform five major tasks:

1. Read the input data that defines the network.

2. Develop from this information the system of (Q-equations, i.e., the junction contin-

uity equations and the energy equations around pseudo and real loops of the network.
This task defines the equations and also forms each element of the Jacobian matrix.

3. Solve the system of equations. Here we will simply call a standard linear algebra

solver. However, a program for larger network problems should have a special
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linear algebra solver that takes advantage of the special properties of a sparse
Jacobian matrix.

4. Obtain the head H at each node after the pipe discharges have been found.

5. Write the solution results in tables that can be readily understood. We choose to

provide these results in two tables: a pipe data table and a node data table.

In reading the pipe numbers that connect at a node and the pipe numbers that define a
loop, a pointer is used to separate data for consecutive nodes, and a second pointer separates
data for consecutive loops. The pipes that join at nodes are placed consecutively in a one-
dimensional array JN, with NN pointing to the position in this array that separates data
for consecutive nodes. A similar one-dimensional array /K contains the pipe numbers
that form the loops, with LP pointing to the first pipe number in each loop. The use of
one-dimensional arrays with pointers is a more efficient use of storage than the use of two-
dimensional arrays, because the second subscript of a two-dimensional array must then be
at least as large as the maximum number of pipes that may exist in a loop.

When solving the Q-equations (or AQ-equations), we compute the nodal heads after
obtaining the solution for the discharges. These heads are found by starting at all
reservoirs and computing each H at the node at the other end of a pipe from (to) the
reservoir by subtracting (adding) the pipe head loss from (to) the reservoir water surface
elevation. After these heads have been determined, the nodes one pipe away from these can
be determined next, and so on. This process continues until the head at every node has
been determined.

In program SOLQEQS the computation of heads begins after the PIPE DATA table
is written by the DO 130 loop. This loop finds each head at the other end of a pipe that is
connected to a reservoir, and upon computing H the integer array INDX, with its
argument equal to this node number, is set to 1 to show that nodal head has been
computed. Now loop DO 160 passes through the nodes, but nothing is done if INDX(I)
fornode I is zero. Otherwise INDX(I) = 1, and then the pipes that join this node are
accessed through array JN; if H at the other end of a pipe is not known, it is computed.
Since not all nodal heads will be found from the first pass through the nodes, the integer 1J
also accumulates the number of nodes whose head has been found. One way to learn if
another pass is needed is to check whether 1J is less than NJ, the total number of nodes.
Actually we see whether 1J has increased from the previous pass. If so, we pass through
the nodes again. This method may result in passing through the nodes one extra time, but
it prevents the creation of an infinite loop if there is an error in the network description so
that fewer than NJ heads can be found. After finding every head, the NODE DATA
table is written. The program then allows the user to solve another problem whose data is
in a different file, or to change the peaking factor for the same network.

Detailed instructions on the preparation of input data to SOLQEQS follows:

Line 1: No. of Pipes (NP), No. of Nodes (NJ), No. of Reservoirs (NRES), No. of

Pumps (NPUMP), No. of Options (NOPT), Option Pairs.

The options consist of a letter in quotes followed by a value, as follows:

Letter Controls What Value Default
Uoru ES or SI units 0=ES, 1=SI 0
Qorq Discharge units 0 = ft3/s, 1 = gal/min,| 0 or 3
2=mgd, 3 = m3/s,
4=1s
Dord Pipe diameter and O=in, 1 =ft,2=m, |OifES
roughness units 3 =cm, 4 = mm 4if SI
Forf Peaking factor Multiplier of demands | 1.0
Vorv Kinematic viscosity | v = value ES, 1.217E-5
SI, 1.310E-6
Gorg Specific weight y = value ES, 62.4
SI, 9806.0
Corc Network check 1 =yes, 0 =no 1
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Here is an example of specifying options: 2 'U' 1 'F' 1.5. The 2 indicates two options are
being changed, to specify SI units and to specify a peaking factor of 1.5. In giving the
options, the units (ES or SI) option should appear first if it is to be elected, but otherwise
the options can be given in any order.

Next group: Pipe data consisting of NP lines, each giving pipe number, node 1, node
2, length, diameter, and roughness. Pipes must be numbered consecutively, starting with
1, but they need not be entered consecutively. The roughness may be either the equivalent
sand roughness e (in the same units as the diameter) for use in the Colebrook-White and
Darcy-Weisbach equations, or a Hazen-Williams Cpgw, and these may be mixed. The

program decides which equation to use, based on the roughness size.

Next group: Node data consisting of NJ lines, each giving node number, demand,
elevation, number of pipes at the node, and a list of these pipe numbers with a minus if the
flow is from the junction. This information is used to define the junction continuity
equations.

Next group: Reservoir data consisting of NRES lines, each giving the number of the
pipe connecting the reservoir to the network and the water surface elevation.

Next group: Pump data consisting of NPUMP lines, each with the number of the pipe
containing the pump, followed by three (Q, k) pairs to define the pump curve.

Next group: Loop data consisting of NL = NP - NJ lines, one loop on each line with
the number of pipes in the loop and a list of these pipes. A negative sign must precede the
pipe number if the direction around the loop opposes the assumed direction of flow in this
pipe. Pseudo loops connecting reservoirs must appear first in this list, and the real loops
follow.

Example Problem 4.10
Use program SOLQEQS to solve the network of Example Problem 4.5. Obtain two
solutions: (1) for the given demands and (2) with these demands multiplied by 2.0.

The input data takes the form

65101D'1 1050350. 31 -2 -4
1 01 1500 0.667 0.000417 2035350. 2 2 -3
212 1000 0.5 0.000417 30.50350. 2 4 -5
324 1500 0.5 0.000417 4050350. 335 -6
413 1500 0.5 0.000417 5025350. 1 6

534 1200 0.5 0.000417 1 500

6 4 5 1000 0.333 0.000417 423-5-4

or, if the diameters and e are given in inches (Inches is the default; either giving 0
options as the last 0 in the first line below, or giving 1 'D'0, tells SOLQEQS to use
inches), then the input would be

65100 1050 350. 31 -2 -4
101 1500 8.0 0.005 20.35 350. 2 2 -3
212 1000 6.0 0.005 30.50 350. 2 4 -5
324 1500 6.0 0.005 40.50 350. 3 35 -6
413 1500 6.0 0.005 5025 350. 1 6

5 3 4 1200 6.0 0.005 1 500

6 45 1000 4.0 0.005 423-5-4

When prompted after the first solution, we give the peaking factor 2.0. The solution
tables follow. In the last NODE DATA table we see that some heads are negative, so the
network is unable to supply demands that are double the initial values.
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PIPE DATA

PIPE NODES L DIA. e Q VEL. HEAD HLOSS/
NO. FROM TO x104 LOSS 1000
ft. ft ft ft3/s ft/s ft.

1 0 1 1500 0.667 4.17 2.10 6.02 23.50 15.67

2 1 2 1000 0.500 4.17 0.82 4.18 11.00 11.00

3 2 4 1500 0.500  4.17 0.47 2.39 5.67 3.78

4 1 3 1500 0.500 4.17 0.78 3.97 14.97 9.98

5 3 4 1200 0.500 4.17 0.28 1.43 1.70 1.42

6 4 5 1000 0.333 4.17 0.25 2.87 8.83 8.83

NODE DATA

NODE D EM A ND ELEV. HEAD PRESSURE HGL ELEV.

Estimate ft3/S ft. ft. lb/inz ft.
1 0.5 0.500 350.0 126.50 54.82 476.50
2 0.3 0.350 350.0 115.50 50.05 465.50
3 0.5 0.500 350.0 111.53 48.33 461.53
4 0.5 0.500 350.0 109.82 47.59 459.82
5 0.3 0.250 350.0 101.00 43.77 451.00
For peaking factor = 2.0: PIPE DATA
PIPE NODES L DIA. e Q VEL. HEAD HLOSS/
NO. FROM TO x104 LOSS 1000

ft. ft ft /s ft/s ft.

1 0 1 1500 0.667 4.17 420 12.03 91.53 61.01
2 1 2 1000  0.500 4.17 1.64 8.36 42.48 42.48
3 2 4 1500 0.500 4.17 094 479 21.53 14.35
4 1 3 1500 0.500 4.17 1.56 7.94 57.69 38.46
5 3 4 1200 0.500 4.17 0.56 2.85 6.32 5.27
6 4 5 1000 0.333 4.17 0.50 5.73 33.66 33.66
NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
Estimate ft3 /s ft. ft. I /in2 ft.

1 1.0 1.000 350.0 58.48 25.34 408.48

2 0.7 0.700 350.0 15.99 6.93 365.99

3 1.0 1.000 350.0 0.79 0.34 350.79

4 1.0 1.000 350.0 - 553 - 240 344.47

5 0.5 0.500 350.0 - 39.20 - 16.99 310.80

% % *

Example Problem 4.11
Use program SOLQEQS to analyze the 5-pipe, 3-node network in the figure. In pipe 1
is a pump, with the characteristics given in the table, which is connected to a reservoir.

Let v = 1.417x10-3 ft2/sec. The elevation of all nodes is zero.
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The pump curve is described by data in the following table:

0, ft’/s | H, ft
4.5 54
4.0 50
3.5 44

The input data this problem are listed first in two columns, followed by the solution
tables.

53211'V'1.417E-5 212023 -4
10 14000 12 0.002 3100324 -5
2 1 3 6000 8 0.002 1100
3124000 8 0.002 590
42 33000 6 0.002 1 45 54 4.0 50 3.5 44
53 02000 6 0.002 3125
115031 -2 -3 32-4-3
PIPE DATA
PIPE NODES L DIA e Q VEL. HEAD HLOSS/
NO. FROM TO x103 LOSS 1000
ft. in in /s fus ft.
1 0 1 4000 12.0 2.0 413 5.26 26.24 6.56
2 1 3 6000 8.0 2.0 121  3.45 29.13 4.85
3 1 2 4000 8.0 2.0 142 4.08 26.48 6.62
4 2 3 3000 6.0 2.0 022 1.14 2.64 0.88
5 3 0 2000 6.0 2.0 043 2.18 5.85 2.93
Pump 1 inpipe 1: Head = 52.21ft, Q= 4.13 ft¥/s
NODE DATA
NODE D EMAND ELEV. HEAD PRESSURE HGL ELEV.
Estimate ft3/s ft. ft. 1b/in2 ft.
1 1.5 1.500 0.0 124.98 54.16 124.98
2 1.2 1.200 0.0 98.50 42.68 98.50
3 1.0 1.000 0.0 95.85 41.54 95.85
ES ES ES

Example Problem 4.12
Solve the 7-pipe, 4-node network shown in Fig. 4.6, which contains a PRV in pipe 6,
by using program SOLQEQS.

The input data for this problem are listed after this paragraph. Then the two solution

tables follow. Several observations should be made here: In the lines of nodal data the
information after the nodal demand that lists the pipes that join at a node is used to define
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the junction continuity equations; therefore the list of pipes that join at node 1 must
include pipe 6 with the PRV in it. The input that lists the pipes that define the loops of
the network are used to define the energy loop equations; this group should therefore define
a loop that starts (or ends) at the artificial reservoir created by the PRV, so for this network
there will be two pseudo loops and one real loop. Also, since the downstream part of pipe
6 defines K', its length is 500 ft, and its upstream node is given as 0 (a reservoir).

74311'C'0 3050447-3-5
101 1000 6 0.02 4201256
2121000 6 0.02 190
3328006 0.02 4 100
4032006 0.02 6 55
5342000 6 0.02 1 1.0 60 1.5 55 2.0 48
604 500 6 0.02 317-4
71315001 0.02 36-5-4
105041-2-6-7 32-3-7
2150223
PIPE DATA
PIPE NODES L DIA. e Q VEL. HEAD HLOSS/
NO. FROM TO x103 LOSS 1000
ft. in in /s ft/s ft.
1 0 1 1000 6.0 20.0 .11 5.65 27.28 27.28
2 1 2 1000 6.0 20.0 1.07 543 25.26 25.26
3 3 2 800 6.0 200 - - 0.34 0.10 0.12
0.07
4 0 3 200 6.0 20.0 0.89 4.54 3.53 17.74
5 3 4 2000 6.0 20.0 096 491 41.47 20.74
6 0 4 500 6.0 20.0 0.04 0.18 0.04 0.04
7 1 3 1500 1.0 20.0 0.01 1.31 25.56 17.04

Pump 1 inpipe 1: Head = 59.09 ft, Q= 1.11 ft¥/s

NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
Estimate ft3 /s ft. ft. Ib, /inz ft.
1 0.0 0.000 50.0 71.81 31.1 121.81
2 1.0 1.000 50.0 46.55 20.2 96.55
3 0.0 0.000 50.0 46.45 20.1 96.45
4 1.0 1.000 20.0 34.98 15.2 54.98
% * k

4.4.6. SYSTEMATIC SOLUTION OF THE H-EQUATIONS

This section is similar to Section 4.4.5, but now the objective is to describe a program
that analyzes a network by solving the H-equations. This program will be restricted to the
solution of the H-equations for networks that do not contain a PRV or a BPV and in
which minor losses can be neglected. (Exercises to include these devices can be found in
the end-of-chapter problems.) With these restrictions the Jacobian matrix of the equation

system is symmetric. Symmetry occurs because the partial derivatives of terms which

describe the discharge in pipe k between nodes i and j, such as {(H; - H bi ) /K }l/nk ,

will be the same in the equations where this discharge occurs, so long as neither i nor j
are the node for which this junction continuity equation is written. With the sign
convention that flow to a junction is positive and flow from a junction is negative, this
term will be preceded by a plus sign when j is the junction for which the equation is
written. The derivative with respectto H; will be positive. The derivative with respect

to Hj will be negative. If the term describes a pipe whose flow leaves the junction, a
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negative sign will precede the term and i will be the junction for which the equation is
written, and the derivative for the other node j will be positive. Thus the off-diagonal
elements of the Jacobian matrix are positive, and the diagonal elements are negative, as we
have already seen in an example. We will utilize this symmetry property in developing an
algorithm to generate the Jacobian. However, we first examine alternative means for
evaluating the derivatives.

The direct way to differentiate {(H; - H j )/K }

k has been omitted, is to use the power rule of calculus to obtain

1/ " in which the pipe number subscript

«[{(H; - Hj)/K )= 1/(nK) (4.65)

in which the minus sign applies when differentiating with respect to Hj. When a pump is
present in the pipe, however, it is no longer a straightforward process to differentiate this
term, as it now is {(H; + hy, - Hj)/K}I/", in which hp = hp(Q) is normally expressed as
h,=AQ? +BQ + C.

Another way to obtain these derivatives is to start with

H;-H; 1/n
_ [ _} (4.66)
K
and compute the differential of this formula as
_ 1/n-1 I/n,_ Hl-n

d0={H;-H;} dH/(nK'")=Q ""“dH/(nK) (4.67)

The partial derivative with respect to H; is then
90 /0H; = Q' (nK) (4.68)

and the partial derivative with respect to Hj is identical, except for a minus sign. So
Jacobian matrix elements can be obtained quickly via Eq. 4.68. With this approach we can
compute the Jacobian terms for a pipe with a pump in it. Also write {(H; - H;)/K} Iy

|(H; - Hj)/KII/”'I (H;j - Hj)/K to allow a sign change for flows that oppose the assumed

direction, which may occur during an intermediate iteration even if the assumed direction is
correct for the final solution.
When a pump is present in a pipe, then we can write

H;-Hj+AQ* + BQ+C~KQ" =0 (4.69)
Following the procedure of computing the differential of this equation, we find
00/0H = =1/(nkQ""' —2A0-B) (4.70)

If the derivative is with respect to H;, choose the plus sign; otherwise choose the minus
sign for Hj. Thus, for a pipe containing a pump, Eq. 4.69 is first solved for Q, and this

Q is then used in Eq. 4.70 to evaluate the derivatives for the Jacobian matrix.
Now we can modify SOLQEQS to solve a system of H-equations. Now please obtain
a listing from the CD of SOLHEQS and refer to it as you read this section. Here a
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NAMELIST (actually an extension of standard Fortran 77, but implemented in many
Fortran compilers) will be used to handle options. The NAMELIST will also be used in
programs in later chapters. The options that may be in the &OPTIONS list are the
following: IU (to set ES or SI units), IQ (to set the discharge units), ID (to give the
units for diameters and roughnesses), IC ( = 0 to omit checking the dual network con-
nectivity description), VIS (kinematic viscosity), PF (peaking factor), GAMMA (specific
weight) and ERR (Newton error criterion). With the H-equations there are no loop
energy equations, so the input for loops is eliminated, as is the program segment that
generates the loop equations. The section that creates the system of equations will include
the junction continuity equations, but this section is modified to implement the new
method of obtaining the system Jacobian and the H-equations. In SOLHEQS the length
of array H, which stores the nodal heads, has been augmented to include the reservoir
heads, so that H; and Hj now provide the nodal heads at the ends of each pipe, including
those that supply the network from a reservoir. So we can easily detect a pump in a pipe,
its upstream node number is changed to a negative value. The function subprogram
COMPK_N now supplies 7n, but (I - I/n) is stored in array N for later use.

In this program we must have access to discharge values during any iteration for any
pipe containing a pump. We do this by computing the discharge from the heads that exist
during any iteration by letting ARG = [(K/(H; - Hj)] and DD = ARG( - 1/7);  then we
find that Q = ARG/DD. Statements following label 146 in the program listing carry out
this step. When a pump exists in the pipe, then the Newton method is used to solve Eq.
4.69 by statements found in the DO 145 loop.

Example Problem 4.13
Prepare suitable input data to analyze the network of Example Problem 4.11 by using pro-
gram SOLHEQS.

Only minor modifications to the input data in Example Problem 4.11 are needed. First,
because the options are entered viaa NAMELIST in program SOLHEQS, the first line
of the input data now should contain only four values: the numbers of pipes, nodes,
reservoirs, and pumps. The second line of input data begins with &OPTIONS, and the
next entries contain the namelist variables that differ from the default values, each followed
by an equals sign and the value of that variable. This list is ended with a /. Since no
loop data are needed, the two lines of loop data are deleted from the input data for the
solution to Example Problem 4.11. Since IQ =0 is the default value, it need not be
included in the list after &OPTIONS. With these changes, the input data are now as
follows:

5321 115031-2-3
&OPTIONS 1Q=0,VIS=1.417E-5/ 212023 -4
1014000 12 0.002 3100324 -5

213 6000 8 0.002 1 100

3124000 8 0.002 590

4 2 3 3000 6 0.002 1 45 54 40 50 3.5 44
53

0 2000 6 0.002

*k * k

Example Problem 4.14

The network below is supplied by the source pump in pipe 1, and a booster pump is
needed to get the water over the hill below nodes 2 and 3. A turbine is placed in pipe 6
to extract the extra head after the water is moved over the hill crest. Analyze this network
using program SOLHEQS. Diameters are in mm, and lengths in m. The kinematic

viscosity is v = 1.31x10" © m?/s.
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Source Pump

500 [1] 350 - 1500
2 2] 350
0.04 m%/s [3]
90 m

Diameters in mm 0.03 m%/s
Lengths in m
All e = 0.4 mm

0.025 m3/s
Q)
(4] 200 - 1500

Q 1
m3/s m
0.20 50
0.30 47
0.50 43

Booster Pump Turbine
Q hp Q ht
m3/s | m m3/s | m
0.20 15 0.15 |-30
0.25 14 0.25 |-25
0.30 12 0.35 |- 18

The turbine can be modeled as a pump; the heads are recorded as negative values in
preparing its operating characteristics. Since this network is described in SI units, the
options for units, discharges and diameters must all be specified. The input data file for
this problem, listed in two columns, is therefore

8623 21000.0422-3

&OPTIONS IU=1,1Q=3,ID=4/ 39000323-6

101 500400 0.4 4 100.05345-8

2121500 350 0.4 5200.02536-5-7

323 1500 350 0.4 6 5001 18

414 2500 150 0.4 180

554 1500 200 0.4 7 20

6 3 5 1000 300 0.4 1 0.2 50 0.3 47 0.5 43
750500 200 0.4 2 020 15 0.25 14 0.30 12

8 4 6 2000 150 0.4 6 0.15 -30 025 -25 035 -18

17500831-2-4

The solution tables from SOLHEQS are

PIPE DATA

PIPE NODES L DIA. e Q VEL. HEAD HLOSS/
NO. FROM TO x102 LOSS 1000

m mm mm m3/s m/s m

1 0 1 500 400 40.0 0.330  2.63 8.78 17.55
2 -1 2 1500 350 40.0 0.217 226  23.02 15.35
3 2 3 1500 350 40.0 0.177 1.84 15.39 10.26
4 1 4 2500 150 40.0 0.033  1.87 76.55 30.62
5 5 4 1500 200 40.0 0.027 0.86 6.93 4.62
6 -3 5 1000 300 40.0 0.147 2.08 15.87 15.87
7 5 8 500 200 40.0 0.095  3.03 27.83 55.66
8 4 6 2000 150 40.0 0.010 0.57 5.89 2.95
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Pump 1 inpipe 1: Head = 46.22m, Q= 0.330 m%/s
Pump 2 inpipe 2: Head = 14.77m, Q= 0.217 m%/s
Pump 3 inpipe 6: Head = - 30.11 m, Q= 0.147 m3/s

NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
Estimate m3/s m M kPa m
1 0.1 0.080 75.0 42.45 416.2 117.45
2 0.0 0.040 100.0 9.19 90.1 109.19
3 0.0 0.030 90.0 3.80 37.3 93.80
4 0.1 0.050 10.0 30.90 303.0 40.90
5 0.0 0.025 20.0 27.83 272.9 47.83
6 0.0 0.010 5.0 30.01 294.3 35.01
* * *

4.47. SYSTEMATIC SOLUTION OF THE AQ-EQUATIONS

In this section we describe the development of the computer program SOLDQEQS that
is based on the AQ-equations and analyzes pipe networks. This program requires the user
to specify the initial discharges, Q,;, so they satisfy all of the junction continuity
equations, because algorithms that do this automatically involve considerable logic. We
will also omit the input that provides the dual description of the network connectivity;
instead we will generate the pipe numbers that interconnect the network nodes from the data
on the nodes at the ends of the pipes. This generated data will be used to verify that the
input Q,; do satisfy the junction continuity equations. Finally, this program will not

allow a PRV or any similar device in the network. With this restriction the Jacobian
matrix will be symmetric and positive definite, thereby allowing a special linear algebra
solver that requires only the upper (or lower) triangular and diagonal elements of the
Jacobian to be available during the solution process. This approach provides us a solution
variant that could also be used in solving the H-equations by the Newton method.

To describe the computer program logic that forms the AQ-equations and the derivatives
that form the Jacobian elements, it will be convenient to be able to refer to the equations
and the nonzero derivatives with respect to AQ from an example. At this time obtain a
listing of SOLDQEQS from the CD so it can be studied while you read the rest of this
section. The network in Example Problem 4.14 will serve the purpose of illustrating the
logic of this program. Since this network contains several pumps, one of which produces
a negative head as a turbine, this example will help us incorporate pumps correctly into the
code. The two AQ-equations for this network are

Fi = K1(Qo1 +AQ )™ = hpt + K4(Qp4 + AQ) = AQy )™

- K5(Qy5 - AQy "'AQz)n5 +K7(0Q,7 +AQ1)n7 -80+20=0

@71

and
Fy = K2 (Qop + A2 )™ — s + K3(0p3 + A0» )™ + K (Qp + A0 )"0

—hp3 +K5(Qps5 = AQy + A2 )" = K4 (Qps + AQ - AQ )™ =0

(4.72)

In these equations the head hp; of pump j is described by hy; = A;(Qy; =¥ AQy )2
+Bj( Qpi = > AQy )+ C;, and the coefficients A, B, and C are chosen to fit three pairs

of points along the pump curve, as before. These energy equations are written around the
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same loops in which the corrective discharges AQ; and AQ) circulate. Therefore, every
term in Eq. 4.71 contains a AQ;, and every term in Eq. 4.72 contains a AQ».

The Jacobian [D] will have two rows, one for each of the two equations, and two
columns corresponding to the two unknowns AQ; and AQp, or

doF] oF]
_|9AQ 0AQ,

[D]— OF, oF> “4.73)
980, 980,

in which the individual elements are

OF _ _
L K4 (Qpg + AQy - AQy )™ ! 4 n5K5 (0,5 - AQy +AQ, )5
IAQ (4.74)

-1 -1
+n7K7(Qp7 + Ay )T + m K (Qp1 + AQ) )" T = 2A1(Qy1 + AQ)) - By

o 0F) ny -1 ns—1
A0, ano, -k +AQ; - AQ> )" T = n5Ks(Qys — AQy +AQy)"S T (475
IADy,  IAQ 14K4(Qp4 + A0 - ADy ) n5Ks(Qps —AQp + AQy )™~ (4.75)

-1 -1 -1
aAQ22 = myK3(Qp2 +A02)™ T +n3K3(0,3 + 802 ) T +n6Ke( Qo6 + A02)"™

+ n5K5(Q05 - AQI + AQ2 )ns -1 + n4K4(Q04 + AQI - AQ2 )n4 -1 (4.76)
~242(Qp2 + A0y ) = By =243(Qp6 + AD2 ) - B3

To allow for the possibility that one of more flows might change direction and
Qi + S AQy would become negative, the quantities K;(Q,; + 3 AQ; )" will be rewrit-

ten as  K;|(Q,; = EAQk)|ni_l(Qm- =Y AQ; ). Doing this will be convenient since all
factors but the last are also needed to evaluate terms in the derivatives.

For this program we must define the loops around which (1) the energy equations will
be written, and (2) each AQ circulates. Thus the user must supply the pipe numbers
which define each energy loop, with a negative pipe number whenever the direction around
the loop opposes the assumed direction of flow in that pipe. This information was also
required as input to SOLQEQS. These loop data determine the terms in each equation and
the sign of each term. As in SOLQEQS, this data resides in a one-dimensional integer
array IK, with a pointer LP to separate individual loops. The corrective loop discharge
data for each pipe is in a similar array /K/, with a pointer LPI to separate entries be-
tween individual pipes. Thus the positions in array /K that will contain information on
a corrective loop discharge through pipe I will start with subscript (argument of the array)
LPI(I)+ 1 and end with subscript LPI1(/+1). Thus LPI must have dimension NP + 1.
In a similar way LP must have dimension NL +1=NP - NJ + 1.

Let us now examine an algorithm to obtain the corrective loop discharges in each pipe
from the loop information. The pipes around the two loops in the example network are

Loopl: 1 4 -5 7
Loop2: 2365 -4
and this data will be stored in /K as follows:
IK(1)=1, IK2)=4, IK3)=-5, IK4) =17,
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IK(5)=2, IK(6)=3, IK(7)=6, IK(8)=5 IK(9)=-4,
with LP(1)=0, LP(2)=4, and LP(3)=09.
Since AQj circulates through loop 1 and AQ7 circulates through loop 2, we see that the
loop number (the argument of LP) gives the corrective loop discharge through a pipe when
the pipe number occurs in the list of IK's for that loop. For example, since pipe 4 is a
pipe number in loops 1 and 2, the corrective loop discharges AQ; and AQ» both

circulate through it, and also AQj is in the same direction as the assumed flow in pipe 4
since it is positive in loop 1, whereas AQ» opposes the assumed flow since it is nega-

tive in the list of pipes in loop 2. The number of corrective loop discharges through a
pipe is not known in advance, so it is simpler to use a two-dimensional array initially,
with the pipe number as the first subscript and the number of corrective loop discharges
through that pipe as the second subscript. Hence the second subscript of this array must
equal or exceed the maximum number of AQ's passing through any pipe, so most of this
array space will be unused; once these numbers are known, the information can be trans-
ferred into the one-dimensional array /K/. Then the two-dimensional array can be deallo-
cated and the memory used for other purposes. An alternative for this array is to
EQUIVALENCE it to another array that is not used until later, such as the array for the
Jacobian matrix. Figure 4.29 lists Fortran statements that could be used to generate these
arrays, with the array LPI zeroed before beginning this algorithm.

A very similar algorithm can be used to generate the pipe numbers that join at each
node. The essential difference is that the upstream and downstream nodes in the arrays L/
and L2 identify the node to which the pipes attach. In program SOLDQEQS this started
in the DO 24 loop. Since we want to verify that the user-supplied initial discharges Q,;

DO 50 I=1,NL
DO 50 J=LP(I)+1,LP(I+1)
II=IABS(IK(J))
NI=LP1(II)+1
IK2 (II,NI)=ISIGN(I,IK(J))
50 LP1(II)=NI
NI=0
NCT=NI
DO 54 I=1,NP
DO 53 J=1,LP1(I)
NI=NI+1
53 IK1(NI)=IK2(I,J)
LP1(I)=NCT
54 NCT=NI
LP1(NP+1)=NI

Figure 4.29 Listing of Fortran code to generate arrays /KI and LPI.

do satisfy all of the junction continuity equations, this check is performed immediately
after the pipes that join at each node are identified. This information makes it easy to
obtain the heads H at the nodes after the discharges and head losses in the pipes are
computed by using essentially the algorithm that is in SOLQEQS for this purpose.

Now let's see how to obtain the system of AQ-equations and the Jacobian that are
needed to implement the Newton method. The symmetry that occurs in the Jacobian, if
devices such as PRV's do not exist, will be advantageously used, and a one-dimensional
array will store the banded portion of the Jacobian. In SOLDQEQS these tasks are
accomplished within the outer DO 90 loop. The index I in this loop tracks the NL
loop equations, and the equation values are generated and stored in the array F. The
process begins with F(I)=F(I)+FI* ... The columns of the Jacobian matrix are each related
to a AQ, and these values are placed in the one-dimensional array IKI1. The pipe
numbers in each loop, which identify the terms that are needed to evaluate the equations
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and the Jacobian elements, are stored in the one-dimensional array IK. The array LP is a
pointer that separates consecutive equations, e.g. loops, in array IK.

In a banded matrix all elements which are displaced more than the band width from the
diagonal are zero. If i is the row number and j is the column number, then the band
width NBAND is the maximum difference between a nonzero element in any column and
its row number, plus one, or

NBAND = |j - i|;pax + 1 (4.77)

In some literature this definition is the half band width since, if the matrix is not symmet-
ric, as many elements must to be stored to the left of the diagonal as to its right. In any
symmetric matrix [A] each element A;; = Aj;. If a two-dimensional array is used in a

computer program to store the elements of a banded matrix, the first subscript (for rows)
must be at least as large as the number of equations to be solved, and the second subscript
must be as least as large as 2NBAND - 1. A special algorithm that properly accounts for
the matrix properties is needed to solve a banded matrix problem. If the banded matrix is
symmetric, it is not necessary to store all of the elements above and below the diagonal if
the solution algorithm accounts for this symmetry. Either the elements above and on the
diagonal, or those below and on the diagonal, are all that must be stored.

Program SOLDQEQS uses a one-dimensional array to store the banded elements of
the Jacobian and calls a linear algebra subroutine SYMMAT to return the solution to the
linear equation system in the array F. Before calling SYMMAT, the upper triangular
portion of a banded symmetric Jacobian matrix is stored in a one-dimensional array DJ. In
the declaration portion of SOLDQEQS we will find that DJ is a one-dimensional
allocatable array with DJ[ALLOCATABLE](:) and that the number of real positions to
store values in DJ is allocated with ALLOCATE(DJ(INL*NBAND-MM)), in which
NBAND is the band width and MM = NBAND - 1. Thus a preliminary task is to
determine the band width before allocating DJ and storing the nonzero derivative values in
it. The listing in Fig. 4.30 determines the required band width.

c FINDS BAND WIDTH
MM=0
DO 56 I=1,NL
DO 56 J=LP(I)+1,LP(I+1)
IJ=IABS(IK(J))
DO 56 JJ=LP1(IJ)+1,LP1(IJ+1)
IT=IABS(IK1(JJ))-I
IF(II.GT.MM) MM=II

56 CONTINUE

NBAND=MM+1

Figure 4.30 Band width algorithm.

The first position in array DI is the diagonal element in the first row. The diagonal
element of the second row is in position (2 - )NBAND + 1, the position of the diagonal
element in the third row is (3 - 1)NBAND + 1, and in general the diagonal element in the
ith row is in position id = (i - )NBAND + 1. An alternative formula for locating the
diagonal position is id =iNBAND - MM in which MM = NBAND - 1, the number of
elements beyond the diagonal. Thus we see that the storage that is needed by DJ is
NL*NBAND - MM (NL is the number of equations), as given in the ALLOCATE state-
ment. The position of off-diagonal elements in this one-dimensional array will be the
diagonal position id plus the difference between the column number and the row number
for the element. In any equation this position is iu =id + (j - i) =id - i + j. Thus in
SOLDQEQS the statement after DO 90 I=1,NL thatis used to define the NL equations
is ID=NBAND*I-MM, which locates the position of the diagonal element for each row,
and the statement NI = ID - I is an integer which locates the nonzero off-diagonal
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positions in DJ when the column position is added. Thus the statements that store the
values in the proper locations of DJ are

DJ (NI+JJ1)=DJ (NI+JJ1)+FI*FLOAT (IK1(JJ)/JJ1)*DD1
87 CONTINUE
90 DJ(ID)=DJ(ID)+DD1

The portion of the code, within the DO 90 loop in program SOLDQEQS, that
generates the system of equations and the values for the Jacobian and then obtains the
solution that is used as the Newton correction, consists of the lines listed in Fig. 4.31:

DO 90 I=1,NL
IB=NBAND*I-MM
NI=IB-I
II=LP(I)+1
IT1=LP(I+1)
DO 90 J=II,IIl
IJ=IABS(IK(J))
IF(I.GE.NRES.OR.J.GT.II) GO TO 83
IJ1=IABS(IK(II1))
DO 80 JJ=1,NRES
IF(IRES(JJ).EQ.IJ) F(I)=F(I)-ELE(JJ)
IF(IRES(JJ).EQ.IJ1) F(I)=F(I)+ELE(JJ)
80 CONTINUE
83 FI=IK(J)/1J
00=0Q(1J)
DO 85 JJ=LP1(IJ)+1,LP1(IJ+1)
JJ1=IABS(IK1(JJ))
85 QQ=QQ+FLOAT(IK1(JJ)/JJ1)*DQ(JJ1)
DD=K(IJ)*ABS(QQ)**N(IJ)
DD1=DD* (N(IJ)+1.)
IF(L1(IJ).LT.0) THEN
JJ=1
DO 86 WHILE (IPUMP(JJ).NE.IJ)
86 JJ=JJ+1
DD1=DD1-2.*AP(JJ)*QQ-BP(JJ)
F(I)=F(I)+FI*(DD*QQ-(AP(JJ)*QQ+BP(JJ))*QQ-CP(JJ))
ELSE
F(I)=F(I)+FI*DD*QQ
ENDIF
DO 87 JJ=LP1(IJ)+1,LP1(IJ+1)
JJ1=IABS(IK1(JJ))
IF(JJ1.LE.I) GO TO 87
DJ(NI+JJ1)=DJ(NI+JJ1)+FI*FLOAT(IK1(JJ)/JJ1)*DD1
87 CONTINUE
90 DJ(IB)=DJ(IB)+DD1l
c SOLVES LINEAR EQUATIONS
CALL SYMMAT(NL,NBAND,DJ,F)

Figure 4.31 The solution algorithm.

To enhance solution efficiency we might try to arrange the equations to reduce the
band width as much as possible. Not only will a smaller band width reduce the required
amount of computer memory for a solution, but it also reduces the computational effort in
solving the linear equation system. As the loop data are developed, the user can reduce the
band width of the Jacobian matrix by trying to arrange the AQ numbering to be as close
as possible to the equation numbering . The band width will equal the maximum
difference in any equation between the equation number and the AQ number, plus 1.
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However, placing this burden on the user is not desirable, especially since a banding
algorithm can readily be implemented in computer code that will probably achieve a tighter
banding than the user could arrange, even after some attention is given to the order in
which equations should be listed and loops formed. One approach to minimizing the band
width is described by Jeppson and Davis (1976). This approach is implemented in
SOLDQBAN.FOR, which is on the CD. Also on the CD is SOLDQEQI1 that does not
use the band width of the Jacobian but instead uses the standard linear algebra solver
SOLVEQ, as do SOLQEQS and SOLHEQS, as it solves the AQ-equations.

Example Problem 4.15

In the sketch is a network with 10 pipes and 6 nodes which contains three pumps
and one turbine. Prepare input data files for SOLQEQS, SOLHEQS and SOLDQEQS
so these programs can be used to analyze this network. Use the pairs of (Q, hp) data in
the table to define the pump curves. Then replace the pump curve for pump 1 with the
new pump data listed later in the solution, and resolve the problem with all three
programs.

0.05 m3/s <—_228 m (3) 220 m

0.10 m?/
o |21 0.25 - 2000 B g mefs
% -6 12 e
045 - 1000 3@9 @  v=131x100mYs o g %
45 - - 07 m¥/s
s oismpne Sl sy @ e DSO0T s
= 1 3 9 m =
1 200 m—=" 0.25 - 2000 (6. N
0.05m¥/s S momi - oy, .0
K (©6) Diameters in mm g 2 O QL 10)
- Lengths in m ® o 160 m
(o] — .
oo Sl All ¢ =0.0001 m e 0.08ms
R T ) 020-2000 170 m™~* 0.04 m%/s
Pump 1 Pump 2 Pump 3 Turbine
Q H Q H Q H Q H
m3/s m m3/s m m3/s m m3/s m
0.40 20.0 0.12 16.0 0.06 8.0 0.09 -8.0
0.42 18.0 0.15 15.0 0.08 7.5 0.10 -7.5
0.44 15.0 0.18 13.6 0.10 6.8 0.11 - 6.8

Since SI units are used, options must be changed from the default values. The input
data file for each of these three programs are listed next, using two columns for each set:

Input Data For SOLQEQS

107 242 'U'"1'D" 2 4 0.06 180 2 6 -7

101 1000 0.45 0.0001 50.04 170 2 7 -8

212 800 0.35 0.0001 6 0.07 160 4 4 5 8 -9

3 2 3 2000 0.25 0.0001 7 0.04 160 2 9 -10

416 2000 0.25 0.0001 1 245

536 800 0.20 0.0001 10 200

6 14 900 0.25 0.0001 1 0.40 20 0.42 18 0.44 15

7 45 2000 0.20 0.0001 2 0.12 16 0.15 15 0.18 13.6
8 56 900 0.20 0.0001 4 0.06 8 0.08 7.5 0.1 6.8
96 7 600 0.20 0.0001 50.09 -8 0.10 -7.5 0.11 -6.8
10 7 0 800 0.20 0.0001 414910

1 0.05 2004 1-2-4 -6 4 235 -4

2 0.05 228 2 2 -3 4 4 -8 -7 -6

3 0.10 220 2 3 -5
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10 7 2 4
&OPTIONS IU=1,IQ=3,ID=2/
1 1000
2 800
3 2000
6 2000
6 800
4 900
5 2000
6 900
7 600

1

2
3
4
5
6
7
8
9
1
1

0

0

o FEFWERFENRE

7 0 800

0.05 200

10 7 2 4

&OPTIONS IU=1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

1

2
3
4
5
6
7
8
9
1
1
2

0

AP WENRE

0
0.
0.

1

NoubseoowN

1000
0800
2000
2000
0800
0900
2000
0900
0600

7 0 800

05 200
05 228

Input Data For SOLHEQS

0.45
.35
.25
.25
.20
.25
.20
.20
.20
.20

[ N eNeNoNeNolNolNolNolNe)

1 -

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
2 -4 -6

.05 228
.10 220
.06 180
.04 170
.07 160

NEDNDNDDNDN
O JOWN

04 160

40 20 0.42

.12 16 0.15
.06 8 0.08
.09 -8 0.10

Input Data For SOLDQEQS

,10=3,ID=2/

45 0.
350
25 0
25 0
20 0
25 0.
20 0
20 0
20 0
20 0

0001 0.44

.0001 0.20
.0001 0.15
.0001 0.12
.0001 0.05

0001 0.07

.0001 0.01
.0001 -0.03
.0001 0.07
.0001 0.03

The solution tables from SOLQEQS

0.10
.06
.04
.07
.04
245
0 200

O O OO

4
3
-8

OB NRRERSO S W

& NP OO oo

220
180
170
160
160

9 10
5 -4
-7 -6

=3
=5
=7
-8

58 -9

-10

18 0.44 15

15 0.18 13.6
7.5 0.10 6.8
-7.5 0.11 -6.8

.4 20 0.42 18 0.44 15

.12 16 0.15 15 0.18 13.6

.06 8.0 0.08 7.5 0.10 6.8
.09 -8.0 0.10 -7.5 0.11 -6.8

and SOLDQEQS are identical, as shown
below. SOLHEQS failed to converge. The failure was caused by the relative inaccuracy
of the initial values of the heads that were provided to the Newton method by the
automated estimator in the code; the values were too crude in relation to the sensitivity of
the code to the way that the three pairs of points for pump 1
characteristics. If

define its operating

PIPE DATA
PIPE NODES L DIA. e VEL. HEAD HLOSS/
NO. FROM TO x104 LOSS 1000
m m m m3/s m/s m

1 0 1 1000 0.450 1.0 0.436 2.74 12.61 12.61
2 1 2 800 0.350 1.0 0.163 1.70 5.39 6.73
3 2 3 2000 0.250 1.0 0.113 231 36.76 18.38
4 1 6 2000 0.250 1.0 0.118 240 39.64 19.82
5 3 6 800 0.200 1.0 0.013 042 0.74 0.92
6 1 4 900 0.250 1.0 0.105 2.14 14.29 15.88
7 4 5 2000 0.200 1.0 0.045 1.43 19.20 9.60
8 5 6 900 0.200 1.0 0.005 0.16 0.14 0.15
9 6 7 600 0.200 1.0 0.066  2.10 11.92 19.87
10 7 0 800 0.200 1.0 0.026  0.82 2.56 3.20

Pump 1 inpipe 1: Head = 1571 m, Q= 0.436 m3/s

Pump 2 inpipe 2: Head = 14.44m, Q= 0.163 m3/s

Pump 3 inpipe 4: Head = 6.02m, Q= 0.118 m%/s

Pump 4 inpipe 5: Head = - 5.17m, Q= 0.013 m%/s
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NODE DATA

NODE D EMAND ELEV. HEAD PRESSURE HGL ELEV.

Estimate m3/s m m kPa M
1 0.1 0.050 200.0 48.10 471.7 248.10
2 0.1 0.050 228.0 29.15 285.8 257.15
3 0.1 0.100 220.0 0.39 3.8 220.39
4 0.1 0.060 180.0 53.81 527.7 233.81
5 0.0 0.040 170.0 44.61 437.5 214.61
6 0.1 0.070 160.0 48.46 475.2 208.46
7 0.0 0.040 160.0 42.56 417.3 202.56

this pump curve is plotted, we see immediately how the curve turns steeply downward
outside each end of the given data. Using pump curves of this nature should be avoided.
To obtain a solution from SOLHEQS, either the points that define the pump curve must
be adjusted, or the code must be modified so the user can supply the initial estimates of the
heads for the Newton method. If the pump curve for pump 1 is modified so the three
discharge-head data pairs are (0.40, 16.0), (0.43, 15.8), and (0.46, 15.5), then
SOLHEQS can solve the modified problem.

* * *

4.5 CONCLUDING REMARKS

This chapter concentrated on the analysis of pipeline networks. The first area of empha-
sis was on the development of the three kinds of systems of equations to describe mathe-
matically the flow in a pipe network, first for simpler networks and then for networks
which contain pumps or turbines and loss-producing devices such as a pressure reducing
valve or a back pressure valve. The Newton method for the solution of these equation
systems was introduced and later included in computer programs to solve the equation
systems. Later sections of the chapter developed solution routines and implemented them
for each of the three types of equation systems.

There are features that a production network program would usually include that these
programs do not have. For example, rather than requiring the user to provide a set of esti-
mated initial discharges Q,; that satisfy all of the junction continuity equations, the pro-
gram should develop these values. One way to create these values is to reduce the network
to a branched system by deleting some pipes with smaller diameters and then using the
methods in this chapter to obtain a solution for the branched network.

Another burden that would not be placed on the user of a production program is the need
to supply the pipe numbers that define the loops around which the energy equations are
written and the corrective loop discharges circulate. An algorithm for this task must satisfy
two criteria: (a) the pipes that define any loop should be minimum in number, and also
(b) these loops must lead to the creation of energy equations that are independent so that
none of the equations are a combination of any group of the other equations. The first
criterion can be achieved by using a "minimum path algorithm," and the second criterion
requires each new loop to contain at least one pipe that does not exist in any of the
previous loops.

Production programs will also take full advantage of the sparsity of the Jacobian matrix
in computing network solutions in an efficient manner.

Network solvers can also allow the user to obtain time-dependent solutions. Such solu-
tions, which do not account for the forces that are required to accelerate or decelerate the
fluid columns, have become known as "extended time simulations.” To develop an
extended time simulation, additional information of several kinds is needed, such as demand
functions which describe how one or several external nodal demands QJ vary with time,
rules based on pressures at nodes or on water surface elevations in tanks or reservoirs can
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determine how many pumps should operate in series or parallel, and storage-elevation-
capacity curves can be used to describe the behavior of tanks, and so on.

The use of programs for network analysis can also allow designers to obtain answers for
the many questions that naturally occur during the design process. For example, what head
and capacity should a pump produce to maintain a prescribed pressure and/or discharge at
the far end of the network? What is the discharge from a junction if the pressure is known
from a measurement there? How much head should a PRV dissipate so the pressure does
not exceed a set value? How much flow can be obtained from a fire hydrant if its discharge
characteristics are known? What are the flows from sprinkler heads if their sizes are
known? How does a contaminant spread through a pipe network if it is accidentally
introduced at a point?

Chapter 5 will explore the design of these pipe networks, and Chapter 6 will examine
further several topics, including extended-time simulations.
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4.6 PROBLEMS

4.1 For the two pipe networks shown below, write the system of (Q-equations. In writ-
ing these equations, use K and n with subscripts that correspond to the pipe number.

2 2 3
HGL = 300 m . (1) [2] 2 [3]
(1] 0.5-500 0.3 - 500
o o
32 @[ )8
. ~
S = S
6
0.5 m3/s © )
[6] 0.4 - 500 [5] 0.2 - 500 [4]
0.25 m%/s
Diameters in mm
Lengths in m
All ¢'s for both networks = 0.00002 m
o
S
2| 0.15 m3/s
S (1] (2 0.5-1500 [2]
(= 6 o
01ms” T ) (0) 2
" S5-I +|®
S| 0 S
S 4) @)
[3] 0.45 - 1600 [4] 0.6 - 900
0.18 m%/s 0.1 m3/s
Pump
0 h,
m3/s | m
0.2 30
0.4 27
0.7 21

4.2 Write the system of Q-equations for the network shown.

0.5 m3/s

0.25 m3/s

80 m
P

It is not necessary to

substitute the values of K and n from the table into the equations; instead use K; and

n; where i is the pipe number. If the discharge in pipe 1 is Q; = 3.1 ft3/s, then what
is the friction factor f for this pipe?

Pipe | K n
1 1.841 |1.928
2 11.47 |1.871
3 7.47 |1.839
4 1.615 | 1.914
5 11.08 | 1.828
6 7.69 |1.884
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1.3 ft3/s 1.0 ft3/s

(D )
10" - 1500 (1] 8" - 3000 [2]
2 2
©) |3 ©E
[4] 5 4
© 31 ,,( ) - il? 100
ey 8" - 3000 10" - 1300
. S
1.4 f3/s

4.3 A 5-pipe, 3-node network appears below. On this diagram the first number along
each line is the pipe diameter in inches, and the second number is the pipe length in feet.
All pipes have an equivalent sand roughness e = 0.001 ft = 0.012 inches. Do the follow-

ing: (a) compute the values of K and n in hy= KQ" for pipe 1, based on the Darcy-

Weisbach equation, and (b) write the system of Q-equations for this network. (Use sub-
scriptson K, n and Q corresponding to the pipe number.)

0.9 ft3/s

v=1.217 x 107 ft%/s
140'

D 2)

>

N

1.2 f3/s

6" - 2500’
Pipe | K n
1
2 3.53 1.961
3 444 11.929
4 48.6 1.934
5 6.40 1.817

4.4 In the sketch the network consists of 6 pipes and 3 nodes. A source pump and one
reservoir supply the network, and the lower reservoir receives water. Do the following
tasks: (a) write the system of Q-equations; (b) write the system of H-equations;

(c) write the system of AQ-equations; (d) if the discharge in pipe 5 is Q35 = 0.026
m3/s into the reservoir, what is the elevation of the HGL at node 3; (e) if the discharge
in pipe 6 is Qg=0.112 m3/s, what are the HGL and pressure at node 2?

© 2000 by CRC Press LLC



Pipe | Dia. | Length K n
m m

1 0.30 1000 543 | 1.886
2 0.20 | 2500 13700 | 1.946
3 0.20 1000 3270 | 1.839
4 0.30 1500 1077 | 1.965
5 0.15 1000 27400 | 1.974
6 0.35 800 260 | 1.968

©®

0.02 m3/s 280 m‘i’

Pt. 0 h,
m3/s | m
1 0.05 |35
0.10 |31
3 0.15 |24

4.5 For the network below: (a) write the Q-equations; (b) write the H-equations; and
(c) write the AQ-equations. (Use the symbols K and n with correct subscripts for the

pipes in the e

|+| 100'

quations.)
Pipe | K n
1 359 |1.922
2 797 |1.917
3 7.94 |1.821
4 28.80 | 1.809
]0/!
S~
1.5 £t3/s
/ g"-22000 )
4)
1.0 f63/s 2« W 6" - 2000’

AN
A i)

(2]

11K

70’

4.6 For the network shown, write (a) the Q-equations, (b) the H-equations, and (c)
the AQ-equations. The K and n values for the pipes in this network are given in the
follows.  (Your equations should contain only numerical values and

table which
unknowns.)
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Pipe | D L K n
in. ft.
1 8 1500 572 11.930
2 6 2000 |33.00 |1.931
3 6 1000 16.30 | 1.889
4 8 1700 6.53 11913
5 6 2500 [40.70 [1.890
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All e = 0.005"

90'

2] 6" - 2500’

(&)

4.7 Prepare the input data for, and obtain the solution from, NETWK for the network
described in Problem 4.6.

4.8 A pipe branches into a 6-in diameter, 1500-ft long pipe and a 8-in diameter, 1400-ft
long pipe and then rejoins, so the two pipes are in parallel. Pipe 1 contains an open

globe valve with a local loss coefficient K = 10. If the total discharge is Q = 3 ft3/s, de-
termine the discharges Q; and Q7 in the individual pipes. For simplicity, we shall as-

sume f7 =0.018 and f> =0.015.

Open globe valve
) 6" - 1500' K=10

f,=0.018
e= 0005 ;_Q _ 3 ft3/s
2 8" - 1400’

f,=0.015

X<

4.9 This sketch of a small water system shows two reservoirs, with a pipe connected to

the center node with an inflow of 1.0 ft3/s at the other end. Set up the three equation
systems that could be used to solve this problem, and then obtain a solution by using one
of them.

1.0 ft3/s

'—Z—I 100’ [2]

P W o e=0012"

2000,
(3) > 180
[1] 8" - 1800 i’
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4.10 In the diagram three pipes that form a triangle are supplied by a reservoir at one ver-
tex of the triangle, and demands of 1.0 and 3.0 ft3/s are found at the other two vertices.
A booster pump exists in pipe 3. What head should the pump in pipe 3 produce so the
pressure at node 2 causes an HGL of 60 ft there. The ground elevation is everywhere 0
ft. You may solve this problem by using any, or all, of the equation systems that are

available. Assume e =0.012in and v = 1.41x10" 3 ft%/s.

o

2 S~

& @ ~ 800¢>

= b 3.0 ft%/s

um]
3 2/
(1] 8"~ 6000 \P) 7= Head = 60'
1.0 f63/s

4.11 In the network of Problem 4.10 the diameters of pipes 2 and 3 have been
enlarged to 12 inches. In place of the pump a pressure reduction valve is now needed in
pipe 3 to create a pressure head at node 2 of 60 ft. Determine the required setting, i.e.
HGL, of the pressure reduction valve. You can use any of the equation systems.

4.12 A network is shown in the diagram. Write the system of AQ-equations for this
network and complete one Newton iteration toward a solution of the problem. Verify this
result by using an application software package such as MathCAD or TK-Solver.

1 1 0.5 ft3/s
20 s [1] __ 2]~
50' 4"-3000 160
. e =0.005' .
§ @ 2500 §
&0 NE Zla
% =
ol @ 31|40
0.5 ft3/s 8" - 3000 1.0 ft¥/s
Pump Characteristics Pipe K n
0 h, 1 375.0 |1.860
ft3/s ft 2 574 |1.902
0.3 40 3 190.0 |[1.898
0.5 35 4 11.5 1.880
0.8 28 5 572 ]1.930

4.13 Write the system of H-equations for the two networks in Problem 4.1.

4.14 Write the system of AQ-equations for the two networks in Problem 4.1.

4.15 The following network contains a pressure reducing valve (PRV) that is set so it
will produce a HGL of 145 m on its downstream side. This valve is 800 m downstream

from node 1. Do the following: (a) write the system of (-equations; (b) write the
system of H-equations; (c) write the system of AQ-equations; (d) using the Newton
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method, solve the system of AQ-equations; (e) and what is the HGL on the upstream
side of the PRV?

200 m X
v=131x 106 m%s 0-08m°/s

All e =0.15 mm
All elev. = 100 m

250 - 3500

Pipe || 1 2 3 4 5
K 196 3520 | 2380 | 4130 192
n 1.819 |1.955 [1.895 |1.892 | 1.834

4.16 The reservoir water surface elevation at the beginning of pipe 1 in Problem 4.15 is
lowered by 50 m so itis WSj = 150 m, and a pump with the characteristics given below
is installed in pipe 1. Write the three equation systems and solve one of them, also
finding the HGL elevation on the upstream side of the PRV.

[ h,
m3/s m
0.18 55
0.22 51
0.26 44

4.17 For the network shown below write (a) the Q-equations, (b) the H-equations,
and (c) the AQ-equations. Pipe 3 contains a pressure reduction value 200 ft down-
stream from node 1 that is set to maintain an HGL = 430 ft on its discharge side. Use the
notation K; and n; in these equations.

Pipe K n
1 193 |1.935
2 444 |1.940
3 350 |1.840
4 47.90 |1.866
5 767 |1.917
1.0 ft3/s 1.2 f3/s
) /i @ f e o
12" - 4000 350v\290' 10" - 3500 [21/320° 8"-20000 L= |
pry - HGL = 430

All e = 0.005'
v=1.27 x 1073 {t¥/s

4.18 For the network below: (a) write the (Q-equations; (b) write the H-equations;
(c) write the AQ-equations; and (d) solve the system of AQ-equations. The water
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surface elevation of the right reservoir is 300 ft, and the following three (Q, h)) pairs
define the pump characteristic curve: (1.0, 26), (1.5, 24), (2.2, 20).
(2)

(3]
Allelev. =0'
All e = 0.005'

10" - 1000"

4.19 Solution tables from NETWK follow, with four values omitted. Fill in the
missing values. What head drop occurs across the PRV? What horsepower does this loss
represent?

PIPE DATA
PIPE NODES L DIA. e Q VEL HEAD HLOS
NO. FROM TO x103 . LOSS S/100
0
ft. in in ft3/s ft/s ft.
1 0 1 4000 12.0 5.0 4.72 6.01 9.69
2 1 2 3500 10.0 5.0 3.26 5.97 41.87 11.96
3 1 3 3000 10.0 5.0 0.46 0.85 0.91 0.30
4 2 3 3000 6.0 5.0 0.44 2.22 10.21 3.40
5 2 0 2000 8.0 5.0 1.62 4.64 19.36 9.68
AVE. VEL. = 3.94 ft/s, AVE. HL/1000 = 7.01, MAX. VEL. = 6.01 ft/s, MIN. VEL. = 0.85 ft/s
NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
ft3/S gal/min ft. ft. lb/inz ft.
1 1.0 449 350 131.2 56.87 481.2
2 1.2 539 320 1194 51.72 439.4
3 0.9 404 280

AVE.HEAD = 1333 ft, AVE.HGL = 450.0 ft
MAX. HEAD = 149.2 ft, MIN. HEAD =119.4 ft

4.20 For the network shown: (a) write the (-equations; (b) write the H-equations;
(c) write the AQ-equations; and (d) solve the AQ-equation system.

0.005 m3/s
3136 m (4) 35m 33m
0.25 - 1000 (4> 0.045 m%s /(6]
0.025 m3/s
3 Diameters in m 4 ™) 6°Q
) Lengths in m = (6) N
All e = 0.0005 m ] Q‘}Q
0.02 m%/s <
(5) 35m
[2] 0.30 - 1000 [5] 0.025 m3/s
0.015 m?/s
0 hy
m3/s m
0.120 40
0.140 38
0.165 35
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4.21 For the two networks in Problem 4.1, solve the Q-equation system using the New-
ton method.

4.22 For the two networks in Problem 4.1, solve the H-equation system using the New-
ton method.

4.23 For the two networks in Problem 4.1, solve the AQ-equation system using the
Newton method.

4.24 Determine the pressures in 1b/in2 at the six nodes of Problem 4.1a.

4.25 For the network below, write the AQ-equation system and solve them, and verify
your solution by obtaining a computer solution by using NETWK.

0.5 ft¥/s 1.0 ft%/s 6" - 2800 L5 ft3/s
10" - 1000011 81500 B I [5]
1 - 1l o
M 2 1000 (3, ' HGL =80
@) = =
(] S
S|@ . gl©
2! ®) 26/ '
% 00 -
O
0.6 ft3/s 0.6 ft3/s
2] @) il ®) ©
8" - 2500' [4] 6" - 1800' [6]16" - 1000"
.5 ft3/s
All e = 0.005" All elev. = 20" 0.5 1t
0 h,
t3/s ft
1.0 50
2.0 48
3.0 45

4.26 Determine the discharge and head loss in each pipe of the networks shown on the
following pages by first determining a set of values for the coefficients K and n; then
setting up and solving the equations without using a computer, except perhaps to solve
each linear system of equations that is formed as a part of the Newton method.
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(a) Analyze this network with the Hazen-Williams equation and Cgw = 120 for all pipes.

500 gal/min
2000 gal/min

12" - 3000'

(2]

12" - 1500
1500 gal/min

(b) Analyze this network by using the Hazen-Williams equation; for pipes 1 through 5
use Cgw = 120, and for pipes 6 through 11 use Cgw = 100.

6.5 16 2.0 ft3/s
. S
(1] 12" - 3000' [2]
(1)
D e [oX
o 7>, = .
g N A S %
N Oy O
5 1 =@ 1.0 f63/s
my \%, N [5]/
12" - 3000 w1V
[41 ONZ,
“4) [3] 2. .
'8 ]0/, §
2.0 163 o = X N~
s VY =
7] 6" - 2000 (6]
(10)
1.0 f63/s 4.5 £63/s

(c) Use the Hazen-Williams equation to analyze this network; all pipes are cast iron.
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0.15 m3/s 0.1 m3/s 02 m3/s
1500 m-0.3m [Z]ﬂ 700 m - 0.4 m L [4]
(1] ) (6)
<
% , & E g W z
>, K S & €] s
NG SO D B
d‘,/} S 2 E [CINN %
n (8 1v
500 m-0.2m [6] 700m-0.2m [5] 3
[3]‘ @ o) 0.1 m”/s
0.05 m3/s 0.2 m3/ )00 r\zs
2 Mm-/s 0;\ > 0
0'9@ s (10)
I~
(1) S
[7]
0.1 m3/s

(d) Analyze this network with the Darcy-Weisbach equation, assuming e = 0.001 ft for
the 8-in and 10-in pipes and e = 0.0005 ft for all other pipes.

10 ft3/s 4 t3/s 4 ft3/s 2 f63/s
l [1] 15" - 3000’ [211 15" - 800' l 10" - 1500'
(D 6) |l6] —(8) [71
VY o
N>
",
@) o
\Q
= N
S © /10
&l ) Iy -
n WS
(1
(5] 15" - 3000' (41 / 15" - 800" o
@ (12) (8]
2, y 3
5 /s 2., vIY L 10 1ts
0, VL T13)
(14)
[9]
5 f3/s
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(e) Analyze the network of part (a) by using the Darcy-Weisbach equation with a rough-
ness of e =0.0005 ft for all pipes.

(f) Analyze the network of part (b) by using the Darcy-Weisbach equation; for pipes 1
through 5 use e =0.005 ft, and for pipes 6 through 11 use e = 0.006 ft.

(g) Use the Hazen-Williams equation to analyze this network; all pipes are made of cast
iron. The diameters are given in centimeters; lengths and elevations are in meters. Pump
performance data are listed in the table.

Pump 1 Pump 2

() h, o h,

m3/s m m3/s m

0.10 50 0.05 10

0.15 48 0.10 8

0.20 44 0.15 5
0.09 m3/s

EIOOm

20 - 1000
)

20" - 1500 o

(31740 m G) Y

0.06 m%/s

(h) Use the Hazen-Williams equation to analyze this network that is diagrammed atop the
next page; all pipes are made of cast iron. The diameters are given in centimeters; lengths
and elevations are in meters. Pump performance data are listed in the table.
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S 120 m Diameters in cm — 150
= =!50m

S Lengths in m .
S
i (10) 0.057 m3/s 1
K o
N
120 15 - 600 120 15 - 300 120

[1] (1) (21 /1200 (6)

1
i)
=
=

(3] y 6-800 1" (5) § [4]

(PRV)
0.0285 m3/s 2 3
0.01425 m°>/s 0.01425 m3/s
Pump 1 Pump 2
0 hy [ h,
m3/s m m3/s m

0.0425 36.6 |[0.0283 12.2
0.0708 30.5 |[0.0425 10.7
0.0991 22.9 10.0566 8.5

4.27 Only the Colebrook-White equation is used in subroutine COMPK_N that deter-
mines the values of K and n in the exponential formula for programs SOLQEQS,
SOLQEQS and SOLDQEQS. Modify this subroutine so it will allow laminar flow in
the pipe. Also modify the subroutine so the discharge can become zero; e.g., this might
commonly occur for initial discharges Q,; for use with the AQ-equations.

4.28 Assume that the flow in all pipes will always be turbulent; however, a user might
select initial values for Q,; that are zero when solving the AQ-equations. Then the sub-
routine COMPK_N would fail, as it is now written in SOLQEQS, SOLHEQS and
SOLDQEQS. Modify COMPK_N so it can accept a value of zero for the discharge.

4.29 Modify SOLQEQS so an option allows the user to supply starting values for Q
that will be used in the Newton method rather than generating these values internally.

4.30 Modify SOLHEQS so it has an option that allows the user to supply initial values
for H that will be used in the Newton method rather than generating these values internal-
ly. The additional input could be supplied from another read statement, or these heads
could be listed after the nodal elevations in the node data.

4.31 Modify SOLDQEQS so it will allow PRV's to exist in the network. This change
will require two sets of loop data to be read as input data (unless you wish to obtain these
loops internally), one around which the AQ's circulate, and one around which the energy
equations are written. Since the two sets of loops will not be identical, the Jacobian will
not be symmetric.

4.32 Modify SOLHEQS and/or SOLDQEQS so it calls a symmetric matrix solver
such as SYMMAT.
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4.33 SOLQEQS, SOLHEQS and SOLDQEQS can all analyze networks that contain
local losses if the user will provide the actual length of the pipe and the additional length
of pipe that would cause a frictional pipe loss that is equivalent to what the local loss
device would cause. Modify one, or all, of these programs so each equivalent pipe length
is computed internally within the program and then added to the actual length before the
problem is solved.

4.34 Rather than compute an equivalent length of pipe for a local loss, as in Problem
4.33, modify SOLQEQS so that local losses, where they occur, are treated by adding a

head loss term of the form Ay = KQ2/(2gA2) to the energy loop equation.

4.35 Repeat Problem 4.34, but modify SOLDQEQS.

4.36 Use SOLQEQS, SOLHEQS, and SOLDQEQS to analyze the network depicted
in Problem 4.20.

4.37 Use SOLQEQS to analyze the network in Problem 4.25. This network contains a
PRV in pipe 3 that is located 1000 ft downstream from the beginning of this pipe.

4.38 SOLQEQS, SOLHEQS and SOLDQEQS all represent pump performance by fit-
ting three (Q, hp) pairs of pump characteristic curve data with a second-order polynomial.

Modify one or all of these programs so they accept the normal capacity (discharge at best
efficiency) and head at this discharge as input, and then the relation between ), and Q is

obtained from the power equation P = yQh;, under the assumption that the power P re-
mains constant.

4.39 Modify the program that was developed in Problem 4.38 so the efficiency of the
pump is a linear function of the difference of the discharge from its normal capacity.

4.40 Place a PRV in pipe 2 of the network in Example Problem 4.5 with a pressure
setting of HGL = 445 ft. Obtain a solution for this network using SOLQEQS. Verify
this solution using NETWK.

4.41 SOLQEQS contains a code segment that cross checks the connectivity of the net-
work by looking at the two node numbers at the ends of a pipe and at the pipe numbers
that join at a junction. It also checks that upstream node numbers are negative and that
downstream node numbers are positive. But the algorithm currently can not determine
whether an extra pipe might be connected to a node. Modify the code so a check can iden-
tify any extra pipe(s) that might be specified in the data that lists the pipes that are con-
nected to nodes.

4.42 Modify SOLDQEQS so PRV's can exist in the network. Now two separate kinds
of loops will exist, those around which the corrective loop discharges circulate and those
around which the energy equations are written. Therefore two sets of loop data must be in-
cluded in the input data file.

4.43 Use the resulting computer program from Problem 4.42 to obtain a solution to the
network in Example Problem 4.5 with a PRV in pipe 2 having a pressure setting that
causes the downstream head to be HGL = 445 ft. Verify this solution by (1) using
NETWK and by (2) changing subroutine FUNCT in program EQUSOLI.

4.44 The network diagram below lists average demands on it. The storage tank that is
connected to the network by pipes 14 and 16 has a 20-m diameter; at 6 a.m. its water
surface elevation should be 200 m. The demands at all nodes change according to the

© 2000 by CRC Press LLC



peaking factors in the table. The pump characteristics represent two pumps in parallel at
each location. Obtain a series of solutions for the times at which the peaking factors are
given. For each solution of this series determine the new water level in the tank and the
electrical energy consumed by each pump during the latest time increment. Suggest when
one pump at each station should be shut off. What might be done to improve the design
and thereby the operation of the system?

Time |6 am. |9am. |12 Noon |4 pm. |7 pm. | 10 p.m. | 12 Mid. | 3 a.m.
PF 1.0 1.8 1.3 1.3 1.7 1.5 0.6 0.2
Pump 1 Pump 2

0 hy 0 hy

m3/s m m3/s m

0.15 50 0.20 30

0.25 47 0.25 28

0.35 42 0.30 25
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0.025 m3/s

0.03 m¥/s

M el 2 ©9) 0.025 m3/s (13) 0.03 m¥s
0.4 - 3500 [11{220 m 0.3 - 2000 [4]]200m 0.3 - 1800 [71{185 m 0.20 - 2200 175 m/][10]

o o S| (11 AR
h . [\
® e o 5 a4 |2
1 W 2 . < —
S 3 S (17)|wn
3| 0.06 m°/s S 0.03 m¥s é 0.03 m3/s N =

2] @ Ll Fegs 200m [11] =002 m¥s

lom 00m 03-2000 o /[30m (811180 m o 170m
o 0 o Diameters inmm & (12) > =)
.ﬁ 5) S'\2 > (8) Lengths in m b \/0 (18|18
= 510m o Alle=00002m 16O\ |-

= =
3| 0.05 m¥s 8| 0.04 m¥s S| 0.03 ms 8 0.03 m3/s
5] (6) (6] 10) [9] (15) [12] '
200 m 0.30 - 3000 135m  0.25 - 1800 175 m 0.20 - 2200 165m
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CHAPTER 5

DESIGN OF PIPE NETWORKS
5.1 INTRODUCTION

When dealing with problems associated with pipelines (or pipe networks) for which all
diameters, lengths, roughness coefficients, and demands are known, then the nodal HGL
elevation, or H's, and pipe discharges are the unknown quantities to be found. Problems
of this nature are classified as analysis problems since a known piping system is being
ana-lyzed for a given demand pattern. Chapter 4 dealt with the analysis of networks. In an
analysis problem for a network, the demands at all nodes of the network are specified, and
the elevation of the HGL is known at one or more positions (where reservoirs exist), and
the solution seeks to find the discharges (and head losses) in all pipes, and the HGL
elevation, head, and pressure at each node in the network.

The focus of this chapter is on the design of pipe networks, which most frequently
means that the pipe diameters are unknown and are to be determined. A brief introduction
to design problems was presented in Chapter 4, where the equations for mass and energy
conservation were used in determining any desired variables associated with the problem.
This chapter will greatly expand upon these principles, but we start with a single pipe.

5.1.1. SOLVING FOR PIPE DIAMETERS

A typical design problem consists of sizing, i.e., determining the size of, as many
pipes as the equations allow to meet specified pressures and discharges throughout the
network. For such design problems the pressures at all nodes, the heads at all nodes, or the
HGL elevations are typically specified. (Knowing any one of these allows the others to be
com-puted if the nodal elevations are known.) In addition to finding pipe diameters, one
might want to determine the heads that pumps must produce to satisfy the specified
pressures.

Consider a single pipe that conveys water from a reservoir with a known water surface
elevation Hj to another reservoir with a known water surface elevation H», as shown in

Fig. 5.1, as the simplest possible design problem. For this case there is one unknown
diameter D, a known length L, and a known roughness e. The problem is to determine
the smallest pipe diameter that will convey the known discharge @ between the two
reservoirs.

=1 D, L >
e = 2

Figure 5.1 A simple two-reservoir design problem.

5.1.2. SOLUTION BASED ON THE DARCY-WEISBACH EQUATION

The Darcy-Weisbach equation will be used here to describe the head loss in a pipe as a
function of the discharge in that pipe. The next section will base solution procedures on
the Hazen-Williams equation. We recall the Darcy-Weisbach equation
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o 5.1)

in which hy is the head loss due to friction in units of energy per unit weight, i.e., a
length, the friction factor f is in general a function of the Reynolds number and the
relative roughness e/D of the pipe, and the cross-sectional area of the pipe is A = wD2/4.
Since nearly all water flows are in the transitional zone of the Moody diagram, the
behavior of the friction factor can be defined by the implicit Colebrook-White equation in
the form

1 e 71.3434728 vD

Vi ool

in which Re = VD/v =4Q/(nvD) = 1.27324 Q/(vD) is the Reynolds number. Since Eq.
5.2 merges into the equation that describes the wholly rough zone on the Moody diagram
well, and it also merges into the equation that describes hydraulically smooth flow, it will
be used whenever the flow is turbulent. If the flow is laminar with Re below 2100, then
Eq. 5.2 must be replaced by

e
1.14-2Lo —+——| =114-2Lo 5.2
8103 Ref 810 (5.2)

9.35 }

f = 64/Re = 64v/(VD) = 81.487vD/Q (5.3)

The basic problem that seeks to determine a diameter now requires that Egs. 5.1 and 5.2
(or possibly Eq. 5.3) be solved simultaneously for the two unknowns D and f. Several
methods will be applied to obtain a simultaneous solution of these equations. These
methods will be implemented in the computer programs DIAPIP, DIAPIPA, DIAPIP2,
and DIAPIP3. The reader will benefit most by printing a copy of these programs now and
consulting the listings as the methods are described.

The first method uses the Newton method to solve simultaneously the Darcy-Weisbach
and Colebrook-White equations for D and f. This approach is similar to that used in
program DW_CW in Chapter 4, with the difference that D is chosen to be the second
unknown in place of some other variable of the problem. In solving Egs. 5.1 and 5.2
simultaneously by the Newton method, we first rewrite the original equations in the
generic form F(D, f) = 0. One way of rewriting these equations is as follows:

Fi(D,f) = —— — 114+ 2Logjo| & + 13834728VD ) _ (5.2a)
f D" of
Fy(D,f) = h fL Q2 0 (5.1a)
20D f) =hf - = ——75 = :
f D 2gA2
The Jacobian matrix for this system of equations is a 2X2 square matrix J:
o 9F
_ | oD of
J = oF, dF, (5.4)
oD of

Program DIAPIP implements the Newton method to determine simultaneously the
friction factor f and diameter D. Prompts in the program ask the user for the data that are
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required to define the problem. The acceleration of gravity is required so that problems in
either of the ES or SI unit systems can be solved. If the solution is to be written to a disk
file and also displayed on the monitor, then the Output unit number (the second input
item) should not be 6. Microsoft's Fortran version 5 and higher versions prompt the
user for the disk file if writing to a logic unit other than 6 and this unit is not already
open. The next input statement requests values for the desired discharge Q, the roughness
e, the pipe length L, and the frictional head loss Ay For our problem the difference in

the water surface elevations H; and H» is this frictional head loss. Since 1/ \?

occurs on both sides of Eq. 5.2a, let it be the unknown in place of f. In the program this
variable is SF.

The Jacobian is defined by the expanded 2x3 array DJ. The first two columns in this
array contain the Jacobian derivatives, and the third column contains the equation vector F.
The derivatives are determined with respect to SF, rather than f, because this is slightly
simpler. The two unknowns are SF and D, which are initialized to 8 and 0.5 ft,
respectively, for the Newton method. The two equations are denoted by F1 and F2; after
they are evaluated for the first time in each Newton iteration, they are stored in the third
column of matrix DJ. Then the two statements that define the equations are evaluated
twice more by the IF and GO TO statements. The last two times repeat the first
computations with incremented values of SF and D. The program variable NCT
counts the number of iterations. The number of Newton iterations should always be
limited to avoid the possibility of an infinite loop in these computations. With two
unknowns the solution by Gaussian elimination requires only one element D21 to be
eliminated. Thereafter, the solution vector z is obtained by back substitution. Thus the
approach is much like that in Chapter 4 to solve simultaneously for the discharge Q and
the friction factor f (or SF). The major difference is the change in unknowns to D and f
(or SF); when the unknowns are treated properly, the Newton method works in the same
way.

If we want to find the diameter that will convey 2.0 ft3/s  when the difference is
40 ft in a 3000 ft long pipe of roughness 0.002 inches, the computer program DIAPIP
will produce the solution f=0.01668, D =7.941 in, listed below as case 1. Although in
practice these results would be rounded, we present them in this way to aid the checking of
the computer output. To verify that the program works properly, the reader should use
DIAPIP to solve the four problems in Table 5.1; these steps will also augment the
reader's understanding of the program logic. We assume either v = 1.41 x 107 ft*s or
v =131 x 10 m%s.

Table 5.1 Test Problems

No. 1 2 3 4
L 3000 ft 1000 m 1000 m 10,000 ft
hy 40 ft &m 80 m 15 ft
e 0.002 in 0.0001 m 0.0001 m 0.0004 ft
f 0.0168 0.01598 0.01679 0.01559
D 7.941 in 0.3664 m 0.3335 m 23.052 in
(0.662 ft) (1.921 ft)

The attractive convergence behavior of the Colebrook-White equation, Eq. 5.2, using
Gauss-Seidel iteration is the basis for an alternative to the simultaneous solution of Egs.
5.1 and 5.2 by the Newton method. By starting with some reasonable value for f, Eq. 5.2
must only be solved a few times by always using the newly computed value of f to
recompute f. When Gauss-Seidel iteration is used to solve Eq. 5.2, then Eq. 5.1 can be
solved via the Newton method with f treated as if it were known in each Newton
iteration. In this process the Newton method is therefore used to solve only one equation
for the one unknown, D. Since D does affect the value of f, the Gauss-Seidel iteration
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must be repeated within each new Newton iteration, however. Therefore this alternative
solution process consists of applying the Newton method to solve Eq. 5.1 for D, and
within this iteration Gauss-Seidel iteration is used to resolve Eq. 5.2 for f. The Newton
iteration is achieved via the equation

plm#1) o p(m) . __F(D™) (5.5)
dF(D™)/dD

in which F(D), under the assumption that f is known, is Eq. 5.1 written as follows:
F(D) = hy - f(L/D)Q*/(2gA%) = 0 (5.6)

This method is implemented by program DIAPIPA.

The approach in DIAPIPA can be used in a slightly modified manner in solving for D
and f with an HP48 or equivalent handheld calculator. Retrieve both the Colebrook-
White and Darcy-Weisbach equations from memory. Using an estimate for D, solve the
Colebrook-White equation with the SOLVR function. Next solve the Darcy-Weisbach
equation using SOLVR, and repeat this process until small changes in D occur between
consecutive iterations.

A third alternative is to replace the Newton solution of the Darcy-Weisbach equation

with a direct solution of this equation. Since the area A = nD2/4, this equation can be

written as
2 0.2
Ji%e ] )

D =

) 0.2
0.8105695 fLQ l (5.15)

ghy

29(m/4)%hy

Because f depends upon D, Eq.5.1b must be solved iteratively, with the Colebrook-
White equation being solved either by the Gauss-Seidel method or the Newton method as
soon as anew D is available. The program DIAPIP2 implements this solution method,
applying the Gauss-Seidel method to the Colebrook-White equation. In previous programs
a conversion factor CONV allowed D and e to be given in inches when using ES
units, but program DIAPIP2 requires consistent units for all variables. One could use this
same approach with an HP48 calculator. However, now one does not use SOLVR in
obtaining the solution to the Darcy-Weisbach equation.

Yet another possible approach is to eliminate the friction factor by solving for it in the
Darcy-Weisbach equation and substituting the result into the Colebrook-White equation;
then the resulting equation for D is solved by using the Newton method. The Darcy-
Weisbach equation, with f on the left of the equal sign, is

f = hyD(2g)A*ALQ%) = hyD(2gULV?) = 1.233ThgD°ALQ*)  (5.1¢)

or

]1/2

. 172
1 OVL [ L) (4Q DY (5.7)

= = = 0.90031632Q|L/(gh¢)
Jf Ar2gh;D)"? nghf ) nD2'5) [ i
The equation to be solved for D is obtained by replacing 1/\37 in this last equation

with the expression on the right wherever it appears in the Colebrook-White equation. In
implementing the solution in a computer program it is better to use two lines of code, one

for the above expression for SF = 1/\}“7 and the other for the Colebrook-White equation.
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The program DIAPIP3 uses this method to determine the diameter, with the derivative of
the equation with respect to diameter being obtained numerically. After the diameter has
been found, Eq. 5.1c is used to determine f.

5.1.3. SOLUTION BASED ON THE HAZEN-WILLIAMS EQUATION
The empirical Hazen-Williams equation is widely used in practice to define the
discharge-head loss relation for water flows in full pipes. The Hazen-Williams equation is

0 = KCywAR350-34 (5.8)

in which K = 1.318 for ES units and K = 0.849 for SI units, Cgw is the Hazen-

Williams roughness coefficient which ranges from 150 for smooth-walled pipes to as low
as 80 for old, corroded cast iron pipes (see Table 2, Chapter 2), Ry is the hydraulic

radius, and S is the slope of the HGL or energy line so that S = hy/L. Another
convenient form of the Hazen-Williams equation is

KL 1.852

hf = —==5 5 Q (5.9)
1.852 ~4.87

Caw D

in which K; =4.727 with ES units, and K; = 10.7 with SI units. If the Hazen-
Williams equation is solved directly for the pipe diameter D, it then appears as

QKO'54 0.380228 0 0.38
D=|—lGe = K —— 07 (5.10)
CHWS : CHWS :

in which K = 1.376 for ES units and K> = 1.626 for SI units. As Eq. 5.10 indicates,

use of the Hazen-Williams equation allows the pipe diameter to be found directly if the
discharge Q, head loss &y, length L, and roughness coefficient Cpw are known. This
obvious computational advantage, simplicity, is the main reason for its popularity.
Program DIAPIPH obtains a solution for D from the Hazen-Williams equation.

When computers (and programmable pocket calculators) are used, the ease of
computation will be of minor importance in relation to the validity of the formula over a
large range of flow conditions. The Hazen-Williams equation agrees closely with results
produced by the Darcy-Weisbach equation for water flowing in relatively smooth-walled

pipes with Reynolds Numbers in the range of 105 to 10° (the typical range for pipe
design). However, it does not produce results that agree well with the Darcy-Weisbach
equation over a range of flow conditions in rough-walled pipes. In fact, the Manning
equation is a better empirical equation for the representation of flow in rough-walled pipes,
especially if the pipe does not flow full.

5.1.4. BRANCHED PIPE NETWORKS

In a branched pipe system it is easy to determine the discharge that must be carried by
each pipe if all external demands are specified. If the pressures, heads, or HGL elevations
are also known, then it is possible to use the methods described above to find the diameter
of every pipe in the system, simply by repeating the computation for a single pipe. This
can be done because the head loss and discharge for each pipe can be determined from
simple preliminary computations. Thus no additional computational methods are needed to
compute results for a branched system. Even though a more detailed look at the variables
in pipe systems is presented later, it may be instructive to look at an example now.
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Example Problem 5.1

As a consulting engineer you have been asked by an irrigation district to prepare a
preliminary study of a pipeline using PVC pipe (Assume e = 0.000084 in.) that will
bring irrigation water from a river that is 5 miles from the first farm. There are 20
farms. The turnout for each is to receive 0.5 ft3/s, and these turnouts are spaced at 1000
ft intervals along the pipeline. The water level in the river is 100 ft below the elevation
of the irrigated land, which is essentially flat. The water at the last turnout is to be

delivered at a pressure of 40 Ib/in2. The pipeline will be laid on a constant grade between
these two elevations, and a pump will be required at the river to provide sufficient head.

You decide to base computations on a 1-mile increment for the first 5 miles, and on a
1000 ft increment thereafter, with each turnout at a junction between pipe segments. A
sketch of this pipe system is shown below. To determine the pipe size that will result in
the least (or near least) cost, you decide to obtain a series of design solutions in which the
slope of the HGL will vary. The sum of the pipe cost and the energy cost for pumping
will be plotted as a function of the slope of the HGL, and the minimum cost on this
graph will identify the best design for the piping system.

Demand of 0.5 ft3/s at each node

© 0L, 2 t 04 @94 gy <100
7 81 247 251 [26]

Segment spacing = 1000

The following tables present the solution to this problem with the slope of the HGL

specified to be 1.2424x10-3. The discharges in column 9 are obtained first. Thereafter
the diameters are computed by using any of the methods described in this section. The last
column lists the incremental head losses (because this is commonly given), but since the
slope of the HGL has been specified here, they are directly related to the pipe lengths.
You should verify some of these results. If the Hazen-Williams equation is used in place
of the Darcy-Weisbach equation, then a solution such as that given below can easily be
completed by using a spread sheet. If the spread sheet has the ability to solve an implicit
equation, then the Darcy-Weisbach equation could also be used. The design solution is
followed by an analysis, in which the nearest standard pipe sizes have replaced the
computed values. The correctness of some of these head losses for the standard pipe sizes
should be verified. The cost analysis assumes the life expectancy of 45 years and energy
costs of $0.09/kWh. A knowledge of engineering economic analysis will allow the
pumping cost for this system to be verified. Pumping is assumed to occur 365 days per
year and has a combined motor-pump efficiency of 70 percent.
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DESIGN PIPE DIAMETERS

PIPE NODES DIA. AREA NOM. L e Q VEL. HEAD
NO. FROM TO DIA. x10°5 LOSS
in ft2 in ft in f3/s  ft/s ft.
1 1 2 2322 2.940 240 5280 84 10.0 3.40 6.56
2 2 3 2322 2.940 240 5280 84 100 3.40 6.56
3 3 4 2322 2.940 240 5280 84 10.0 3.40 6.56
4 4 5 2322 2940 24.0 5280 84 10.0 3.40 6.56
5 5 6 2322 2.940 240 5280 84 100 3.40 6.56
6 6 7 2322 2940 24.0 1000 84 10.0 3.40 1.24
7 7 8 2277 2.828 240 1000 8.4 9.5 3.36 1.24
8 8 9 2231 2.715 240 1000 8.4 9.0 3.31 1.24
9 9 10 21.84 2.601 200 1000 8.4 8.5 3.27 1.24
10 10 11 2134 2.484 200 1000 8.4 8.0 3.22 1.24
11 11 12 20.83 2.366 20.0 1000 8.4 75 3.17 1.24
12 12 13 2029 2.246 200 1000 8.4 7.0 3.12 1.24
13 13 14 1974 2.124 200 1000 8.4 6.5 3.06 1.24
14 14 15 19.15 2.000 20.0 1000 8.4 6.0 3.00 1.24
15 15 16 1853 1.873 18.0 1000 8.4 55 2.94 1.24
16 16 17 17.88 1.743 18.0 1000 8.4 50 2.87 1.24
17 17 18 17.18 1.610 18.0 1000 8.4 45 2.79 1.24
18 18 19 1644 1.474 150 1000 8.4 40 2.71 1.24
19 19 20 15.63 1.333 150 1000 8.4 35 2.63 1.24
20 20 21 1475 1.187 150 1000 8.4 3.0 2.53 1.24
21 21 22 13.78 1.035 150 1000 8.4 25 2.42 1.24
22 22 23 12,67 0.875 120 1000 8.4 20 2.28 1.24
23 23 24 1137 0.706  12.0 1000 8.4 1.5 2.13 1.24
24 24 25 9.77 0.521  10.0 1000 8.4 1.0 1.92 1.24
25 25 26 7.54 0.310 8.0 1000 8.4 0.5 1.61 1.24
NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
ft3/s ft. ft. 1b/in? ft.
1 -10.0 100. 150.00 65.00 250.00
2 0.0 100. 143.44 62.16 243.44
3 0.0 100. 136.88 59.31 236.88
4 0.0 100. 130.32 56.47 230.32
5 0.0 100. 123.76 53.63 223.76
6 0.0 100. 117.20 50.79 217.20
7 0.5 100. 115.96 50.25 215.96
8 0.5 100. 114.72 49.71 214.72
9 0.5 100. 113.47 49.17 213.47
10 0.5 100. 112.23 48.63 212.23
11 0.5 100. 110.99 48.09 210.99
12 0.5 100. 109.75 47.56 209.75
13 0.5 100. 108.50 47.02 208.50
14 0.5 100. 107.26 46.48 207.26
15 0.5 100. 106.02 45.94 206.02
16 0.5 100. 104.78 45.40 204.78
17 0.5 100. 103.53 44.36 203.53
18 0.5 100. 102.29 44.33 202.29
19 0.5 100. 101.05 43.79 201.05
20 0.5 100. 99.81 43.25 199.81
21 0.5 100. 98.56 4271 198.56
22 0.5 100. 97.32 42.17 197.32
23 0.5 100. 96.08 41.63 196.08
24 0.5 100. 94.84 41.10 194.84
25 0.5 100. 93.59 40.56 193.59
26 0.5 100. 92.35 40.02 192.35
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An analysis based on the nearest standard pipe diameter yields the following results:

STANDARD PIPE DIAMETER SOLUTION

PIPE NODES L DIA. e Q VEL. HEAD HLOS
NO. FROM TO x103 LOSS S
/1000
ft. in in ft3/s ft/s ft.
1 1 2 5280.  24.0 8.4 10.0  3.18 5.59 1.06
2 2 3 5280. 240 8.4 10.0  3.18 5.59 1.06
3 3 4 5280.  24.0 8.4 100  3.18 5.59 1.06
4 4 5 5280.  24.0 8.4 10.0  3.18 5.59 1.06
5 5 6 5280. 240 8.4 10.0  3.18 5.59 1.06
6 6 7 1000.  24.0 8.4 100 3.18 1.06 1.06
7 7 8 1000.  24.0 8.4 9.5 3.02 0.96 0.96
8 8 9 1000.  24.0 8.4 90 2.86 0.87 0.87
9 9 10 1000.  20.0 8.4 8.5 3.90 1.90 1.90
10 10 11 1000.  20.0 8.4 80  3.67 1.70 1.70
11 11 12 1000.  20.0 8.4 7.5 3.44 1.51 1.51
12 12 13 1000.  20.0 8.4 70  3.21 1.33 1.33
13 13 14 1000.  20.0 8.4 65 2.98 1.17 1.17
14 14 15 1000.  20.0 8.4 60 2.75 1.01 1.01
15 15 16 1000. 18.0 8.4 5.5 3.11 1.43 1.43
16 16 17 1000.  18.0 8.4 50 2.83 1.20 1.20
17 17 18 1000.  18.0 8.4 45  2.55 0.99 0.99
18 18 19 1000. 15.0 8.4 40  3.26 1.93 1.93
19 19 20 1000.  15.0 8.4 35  2.85 1.52 1.52
20 20 21 1000.  15.0 8.4 3.0 2.44 1.15 1.15
21 21 22 1000. 15.0 8.4 25 2.04 0.83 0.83
22 22 23 1000.  12.0 8.4 20 2.55 0.61 1.61
23 23 24 1000.  12.0 8.4 1.5 1.91 0.96 0.96
24 24 25 1000. 10.0 8.4 1.0 1.83 1.11 1.11
25 25 26 1000. 8.0 8.4 0.5 1.43 0.94 0.94

AVE. VEL. =2.87 ft/s, AVE. HL/1000 = 1.22, MAX. VEL. =3.90 ft/s, MIN. VEL. = 1.43 ft/s

In one more table we can summarize the information that describes this solution fully by
listing various data associated with each node.

© 2000 by CRC Press LLC



NODE DATA

NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.

ft3/s  gal/min ft. ft. 1b/in? ft.
1 - 10.00 - 4490.0 100.0  150.00 65.00 250.00
2 0.00 0.0 100.0  144.41 62.58 244.41
3 0.00 00 100.0 138.82 60.16 238.82
4 0.00 00 100.0 133.23 57.73 233.23
5 0.00 00 100.0 127.64 55.31 227.64
6 0.00 00 100.0 122.05 52.89 222.05
7 0.50 2244 100.0  120.99 52.43 220.99
8 0.50 2244 100.0  120.03 52.01 220.03
9 0.50 2244 100.0 119.15 51.63 219.15
10 0.50 2244  100.0 117.25 50.81 217.25
11 0.50 2244 100.0 115.55 50.07 215.55
12 0.50 2244 100.0 114.04 49.42 214.04
13 0.50 2244 100.0 112.71 48.84 212.71
14 0.50 2244  100.0  111.54 48.34 211.54
15 0.50 2244 100.0  110.54 47.90 210.54
16 0.50 2244 100.0  109.11 4728 209.11
17 0.50 2244  100.0  107.90 46.76 207.90
18 0.50 2244 100.0  106.91 46.33 206.91
19 0.50 2244  100.0  104.98 45.49 204.98
20 0.50 2244 100.0  103.46 44.83 203.46
21 0.50 2244 100.0  102.32 44.34 202.32
22 0.50 2244 100.0 101.49 43.98 201.49
23 0.50 2244 100.0 99.88 43.28 199.88
24 0.50 2244  100.0 98.92 42.86 198.92
25 0.50 2244 100.0 97.81 42.38 197.81
26 0.50 2244 100.0 96.87 41.98 196.87
AVE.HEAD = 1149ft, AVE . HGL = 21491 ft,
MAX. HEAD = 150.0 ft, MIN.HEAD = 96.87 ft.
COSTS ASSOCIATED WITH THIS NETWORK
ITEM TYPE PRESENT WORTH ANNUAL COST

1 ELEC.POWER $ 101,898,590 $ 10,277,391

2 PIPE 2,969,690 299,520

TOTAL $ 104,868,280 $ 10,576,910

The solution was obtained by applying the NETWK program with this input data file:

EXAMPLE PROBLEM 5.1, PIPE BRANCHED NETWORK
/*

$SPECIF IHGL=-2,NOMSOL=1,DESIGN=1,ICOST=1 SEND
250. -10 100 O .000084

16 .001242424 5280./

DEMAND

.5

6 26 .00124242 1000./

END

RUN

1 250.

END
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Example Problem 5.2

This branched network is to be designed (i.e., pipe sizes determined) for the stated
demands so the slope of the EL-HGL is 1/500 and a pressure of 50 kPa exists at node
[8], the downstream node. What will be the cost per 30-day period for pumping if
electricity costs $0.09/kWh and the combined efficiency of the motor and pump is 75

percent?
[5]
*) ©  0.02m%s
(2] (3) [4] o\ : \
[1] ) 12000 m [8110.015 m~/s
100 m—=— (P70 03 miss P 3 0025 ms T Elev. =110 m
e =0.0002 m (all pipes) “ 0.02 ms (6) 0.02 m%s

3
v=1.31x10°m?%s 0.02 m°/s

To determine the solution, first the discharge in each pipe is calculated by starting at the
downstream nodes and working upstream, applying continuity at each node, and then the
diameters are found by using any of the programs DIAPIP*. The results are given below
in the table. The head that the pump must supply can be determined by starting at node [8§]
and computing successively the elevations of the HGL at the nodes that are farther
upstream; finally the supply water surface elevation is subtracted to obtain the net rise that
is needed in the HGL, or hp =123.5-100 = 23.5 m. The cost per month is the cost

per kWh multiplied by the number of hours in 30 days and the power rate in kW; thus

Cost = 0.09(30x24)(0.095x9.81x23.5)/0.75 = $1892 per month.

Pipe Q h¢ D Node HGL
m3/s m m m
1 0.095 2.0 0.370 1 123.5
2 0.020 1.6 0.206 2 121.5
3 0.075 2.0 0.339 3 119.9
4 0.020 24 0.206 4 119.9
5 0.055 2.8 0.301 5 117.5
6 0.020 1.0 0.206 6 116.7
7 0.015 1.6 0.184 7 115.7
8 115.1
* * *

5.2 LARGE BRANCHED SYSTEMS OF PIPES

Section 5.1 has shown how to determine the diameters of pipes in branched systems.
First the discharges in all pipes are determined from the nodal external demands; second,
once the discharge in each pipe is known, one of the methods described in Section 5.1 is
applied repeatedly until all of the diameters have been computed. The discharges in all
pipes of a branched system are obtained by satisfying the junction continuity equations. If
we assume that the node which supplies the system is numbered (and that its demand is
negative), then in general for a branched system there will be one more node or junction
than there are pipes. Therefore the number of pipe flow equations will be NJ - 1, and a
junction continuity equation will not be written for one of the nodes. The node that is
omitted is seemingly arbitrary, but typically the omitted junction continuity equation is
associated with either the last or first node. Let's examine how this approach can be
implemented effectively in computer codes.
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Three somewhat disparate methods can be used to obtain the discharges in a systematic
manner that can be implemented in computer code. The three methods focus on either (1)
the network layout, (2) the coefficient matrix produced by the junction continuity
equations, or (3) the use of standard linear algebra. The reader can prepare best for the
next three sections by obtaining now a listing of programs SOLBRAN, SOLBRAN?2,
and SOLBRAN3 from the CD.

5.2.1. NETWORK LAYOUT

The implementation of this method is based on the layout or topological connectivity of
the network; it notes that pipes that have a dead end, i.e., that have at most one connection
or nodal demand at one of their ends, must convey a discharge that is equal to the demand at
that node. After the discharge in such a dead end pipe is determined, the demand at the other
end of this pipe is modified to be the sum of the original nodal demand there and the
discharge in the pipe, and then the dead end pipe is removed from the network of pipes.
This reduced network will contain other dead end pipes, and the process is continued until
the discharge is established for all pipes in the network. This process can be defined by the
following steps:

1. Examine the network to find all nodes that have only one pipe connected to them,
and assign the discharge in each such pipe to be the demand at this node.

2. Modify the demand at the node at the other end of each such pipe to reflect the origi-
nal demand and the discharge in the pipe, and remove the pipe from the definition of
the network.

3. Repeat steps 1 and 2 until the discharge is determined for all pipes in the
branched network.

The 10-pipe network shown in Fig. 5.2 will be used to illustrate this method. In step

1 we note that pipes 1, 5, 9, and 10 are dead end pipes, i.e., pipes connected to nodes
that have only one pipe connected to them, and the discharges in these pipes equal the

All e = 0.0002" QJ, =03

QJ;=0.3 )

“@ [5]

QJ, =37

[1]

Figure 5.2 A 10-pipe network.

demands at these nodes: Q7 = QJ; = 3.7 ft3/s, Q5= 0J7=0.5 ft3/s, Qj0=0J10=0.3

ft3/s and Q9=0J;1=0.2 ft3/s. Upon obtaining these discharges, step 2 is to reduce

the branched system of pipes, by removing these pipes, to that shown in Fig. 5.3, in
which the new demands account for the discharges in the pipes that have been removed:
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QJ; = 0(.3) All e = 0.0002"

Figure 5.3 The reduced network.

For step 3 the process is repeated. After two additional applications (as shown below)
there are only two pipes left, both of which are dead end pipes. The resulting discharges are
Q7 =3713/s, 02 =141/, 03 =18 ft3/s, Q4=1.113/s, 05=051t3/s, Q5=1.6

ft3/s, Q7 =13 ft3/s, Qg =0.9 ft3/s, Q9 =0.3 ft3/s, and Q;9=0.2

Ql,=14
e All e = 0.0002"
3)
— QI,=138 Q=02 =)0
(6)
J. =0.3
QJ, =32 e )

D QIg=03

Figure 5.4 The final arrangement of the pipes.

Let's examine how this process can be implemented effectively in computer code. The
details of the process will vary slightly, depending on the description of the network and
one's sign convention. The description we will use for this purpose consists of a table
with one line for each node. Each line contains the demand at the node, followed by a list
of the pipes that join at this node. An extraction or outflow will be a positive demand, so
if an external flow enters the network at a node it will be a negative demand. Pipes that
receive flow from a node will be given positive numbers, whereas a pipe having flow into
a node will be given a negative number. Using this nomenclature, the description of the
branched network example is given by the two lists in Table 5.2. These lists are prepared
in the order in which the nodes are numbered, and the entries under the second heading are
the numbers of the pipes that join at this node. Thus dead end pipes are identified
immediately by the single number on one row in this list.
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Table 5.2

Demand QJ; | Pipes at

ft'/s Node

- 3.7 1
0.5 -123
0.3 -2 4
0.2 -36
0.6 - 45
0.3 -6 7
0.5 -5
0.1 -789
0.7 - 810
0.3 - 10
0.2 -9

The process for determining the discharge in each pipe can consist of these steps:

1.

Rl

4.

5.

Scan the list "Pipes at Node." If only one pipe number appears in a row, assign the
demand at this node to the discharge in this pipe. To account properly for the
direction of flow, the discharge in this pipe k can be assigned as Qp = - QJj|k|/k.
The absolute value of the pipe number, divided by its number, will give the proper
sign to the discharge.

Mark this node for deletion, as it is not needed during the next pass through the list.
Scan the list of nodes and note all other appearances of this same pipe number.
Modify the demand at any node that has this pipe joining it by the discharge of this
pipe, i.e. modify demand QJ; by (QJj)uew = (QJj)oia + Qklk|/k, and remove this
pipe from the list "Pipes at Node."

Delete all nodes that have been marked for deletion.

Repeat steps 1 through 4 until all nodes have been deleted from the list.

The program SOLBRAN executes the procedure that has just been described. After the
discharges in the pipes are determined, then the diameters can be computed by the
procedures described earlier. In this program these diameters are determined by solving the
Darcy-Weisbach and Colebrook-White equations simultaneously; thus the previous
program is now a subroutine that finds the diameter D (program variable DIA) given the
discharge (program variable Q) and pipe roughness e. Then this subroutine finds D and
f simultaneously.

The input to this program consists of the following:

1.

2.

The first line, which comes from the keyboard, gives the number of pipes NP (and
in the C program the file names of the input and output units INPUT and IOUT);
The acceleration of gravity (32.2 for ES units or 9.81 for SI units) G, the
kinematic viscosity of the fluid VISC, and the slope S = hf/L of the HGL line;
A list of pipe lengths;
A list of pipe roughnesses e in inches when using ES units and in meters when
using SI units (by ending this list with / the missing e's will be equated to the last
one supplied);
The list of demands and pipes at node as described above. Each line of item 5 must
terminate with a / with the Fortran program. The program is dimensioned to allow
up to four pipes to join at any node, but this can be changed by assigning
PARAMETER N4 a different value.

The input file for this problem is presented in Fig. 5.5.
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Input to FORTRAN program
32.2 1.41E-5 0.001

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
0.0002/

3.7 1

0.5-123/

0.3 -2 4/

0.2 -3 6/

0.6 -4 5/

0.3 -6 7/

0.5 -5/

0.1-789/

0.7 -8 10/

0.3 -10/

0.2 -9/

Figure 5.5 Input file for program SOLBRAN.

Table 5.3 Solution for a 10-pipe, 11-node Branched System

Pipe Length e Dia. Area Discharge Velocity Head Loss
ft. in x10* in. ing ft3/s ft/s ft.
1 1000.0 2.0 16.7139 1.52 3.7 2.43 1.00
2 1100.0 2.0 11.6044 0.73 14 1.91 1.10
3 1200.0 2.0 12.7509 0.89 1.8 2.03 1.20
4 1300.0 2.0 10.6023 0.61 1.1 1.79 1.30
5 1400.0 2.0 7.8967 0.34 0.5 1.47 1.40
6 1500.0 2.0 12.2000 0.81 1.6 1.97 1.50
7 1600.0 2.0 11.2867 0.69 1.3 1.87 1.60
8 1700.0 2.0 10.2308 0.57 1.0 1.75 1.70
9 1800.0 2.0 5.6149 0.17 0.2 1.16 1.80
10 1900.0 2.0 6.5282 0.23 0.3 1.29 1.90

5.2.2. COEFFICIENT MATRIX

This method writes the junction continuity equations in matrix form as [C]{Q} = {QJ}.
The elements in the coefficient matrix [C] consist of three possible values, 0, 1,or - 1.
The vector of unknowns {Q} contains the discharges in the pipes, and the known vector
{QJ} lists the demands at the nodes. This method uses a very efficient method, rather than
standard methods such as Gaussian or Gauss-Jordan elimination, to solve the linear algebra
problem. The approach to the linear algebra problem can be very similar to the process
employed in our first method, but the focus is on the coefficient matrix rather than the
layout of the network. The steps can be identified as follows:

1.

2.

3.

Examine the coefficient matrix for rows that contain only one element that is not
zero, and solve this equation. (The solution of this equation will force the discharge
in the pipe identified by the column in this coefficient matrix to be the demand at
the downstream end of this pipe, i.e., equal to QJ in this row.) Then mark this
equation as solved; i.e., remove this row from the existing linear equation system.
Find all other rows in the coefficient matrix that are not zero in this column; for
each of these modify the known vector {QJ} in this row by multiplying the
coefficient ( 1 or - 1) by the discharge determined in step 1, and subtract this
amount from the existing value of QJ in this row. In effect this step removes this
column from the coefficient matrix so that it has been reduced in size by one row
and one column.

Repeat steps 1 and 2 until all rows and columns of the linear algebra problem
have been removed.

The implementation of this method should not form the coefficient matrix as a N-row
by N-column matrix, with N being the number of junctions NJ minus 1. Instead,
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identify which columns of the coefficient matrix contain the nonzero elements (the 1's or
- 1's) for each of its rows, to save the storage needed for a two-dimensional array. Listing
the pipe numbers that join at a node, as was done in implementing the first method,
provides this identification, i.e. the node number identifies the row of the matrix, and the
pipes joining at this node provide the column numbers that contain the non-zero elements.
In program SOLBRAN this pipe information was read into the two-dimensional integer
array JN(NJ,4) (the second subscript is the number of pipes that can join at any junction).
Thus step 1 will identify those rows, i.e. the first subscript of JN, that have only one
pipe and use only one position in the second subscript of JN. For these rows the Q's
will be determined, and the row will be marked and eliminated. For step 2 all of the rows
not yet marked as eliminated will be searched for the same pipe number, and whenever this
number is found it will be removed, and the number of elements used in the second
subscript will be reduced by one. Thus the actual solution process becomes very similar to
the first method. The program SOLBRAN2 shows one way to implement the second
method. The subroutine DIAPIP is unchanged from the listing in SOLBRAN.

5.2.3. STANDARD LINEAR ALGEBRA

In this method the junction continuity equations are written as a coefficient matrix that
multiplies the vector of unknown discharges (of length NP pipes) in the system. This
product equals the known vector which consists of the demands at NP = NJ - 1 nodes of
the network. This method requires the coefficient matrix to be a square matrix with NP
rows and columns. The coefficient matrix elements will have the values 0, 1, or - 1.
The row numbers correspond to the junction numbers for which the NP junction
continuity equations are written, and the column numbers correspond to the pipe numbers.
Upon properly defining the coefficient matrix and the known vector, a standard linear
algebra subroutine (function) is called to solve the linear system of equations. One
implementation of such a solution is given below in program SOLBRAN3. In this
program the junction continuity equation is not written at the last junction of the network.
Since the linear algebra solver SOLVEQ (see Appendix A) returns the solution in the
same array that originally contained the known vector, the demands are now placed in the
array Q at the outset, and the array QJ has been removed. In studying this listing you
should strive to understand how the coefficient matrix is stored as 0's, 1's, or - 1's in
the two-dimensional array C.

This method can be implemented easily by using spread sheets and general-purpose
mathematics application software such as MathCAD, MATLAB, or TK-Solver. While
the use of such software will result in computationally inefficient solutions, as is the case
with  SOLBRAN3, especially for large branched networks, the near-zero cost associated
with such computations and the large PC RAMS makes it a viable approach. The CD
contains a TK-Solver model and a brief description of it as files SOLBRAN3.TK2 and
SOLBRAN3.DOC. A variation of the C program SOLBRAN.C is also on the CD
under the name SOLBRAN4.C. This C program calls special pointer functions to
allocate arrays beginning with 1, rather than 0, as is standard in C. (See Appendix A
and the file SOLVEQC.DOC on the CD for more information.)

Example Problem 5.3

Water from a reservoir with a water surface elevation of 3020 ft passes through a pump
to a pipeline that supplies twelve center-pivot irrigation sprinklers, each receiving a
discharge of 1.5 ft3/s at elevation 3020 ft and having a 1-mile spacing, as shown in the
diagram. A pressure of 60 Ib/in? or more is needed at each pivot location. Design the
system to minimize costs. The capital cost of the pump is $100,000. Electrical energy
costs $0.0935/kWh (actually $0.11/kWh, accounting for the 85% pump efficiency).
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The cost per unit length for different pipe sizes is as follows (The NETWK program uses
these default values.):

Diameter, in 10 12 15 18 20 24 30 36
Cost, cents/ft 10.67 16.67 24.00 43.33 56.67 80.00 100.00 120.00

The life expectancy of all components is 50 years, and the interest rate for acquiring
capital for the project is 11 percent.

The cost of a system with pipes that are too small will be excessive, owing to the large
energy cost of pumping the water. On the other hand the capital recovery cost for the pipes
will be excessive if they are too large. The minimum total cost will be somewhere
between these two extremes and will be determined by solving this branched system for
several slopes of the HGL along the main line from node 1 though node 6 so that the

pressure at node 6 is 60 Ib/in2. Likewise the pressures at nodes 7 through 13 will be

specified as 60 Ib/in2. Thus a number of tentative designs will be required, and for each of
these the costs will be determined. Since standard pipe sizes will be used, the nearest
standard pipe size will be used in computing these costs.

The solution procedure will consist of the following steps:

1. Select a slope for the HGL along the main branch.

2. With a pressure of 60 1b/in? at node 6, or HGLg = 3020 + 60(144)/62.4 = 3158.46

ft, and the slope chosen in step 1, find the HGL slopes of pipes 6 through 12.

3. Compute all of the pipe diameters based on these HGL slopes.

4. Select standard pipe sizes that are nearest to the computed diameters.

5. Analyze the system that is composed of these standard pipe sizes, and compute the
head and power that the pump must supply; then compute the electrical energy
cost.

6. Determine the cost of the pipes, and convert this cost to an equivalent uniform
annual cost by applying the capital recovery factor.

7. Repeat steps 1 through 6 until the least total cost is found.

SOLBRAN can not be used to seek this solution in a single run because the slope of
the HGL is not the same for all pipes. The code would require modification to allow
different slopes for different pipes. In its present form it could use the following input data
to size pipes 1 through 6, but separate runs would be needed for the pipe pairs 6 and 9, 7
and 10, and 8 and 11 owing to the different HGL slopes. It is an instructive exercise to
use the following input with SOLBRAN to compute the diameters of the pipes; those
results can then be compared with those from NETWK.
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Input to SOLBRAN

32.2 1.41E-5 0.001

10560 5280 5280 5280 5280/
0.005/

-18. 1/

45 -12/

45 -23/

4.5 -34/

3.0 45/

1.5 -5/

The program NETWK will accomplish steps 1 through 6 with the input file below.
In this input file the option IHGL =- 2 allows the main branch to be described by 2
lines of input, and the regular input is added to describe the lateral pipes. This input file
has a HGL slope of 0.001 (and this slope results in the least cost). To obtain a solution
for a different slope, this value (0.001) is changed; additional required changes are the HGL
elevation at the beginning node (3190.14) and, on the line after the RUN command, a
beginning HGL elevation for the analysis that is requested with the option NOMSOL=1.
To pursue this solution process further, you should now obtain a solution from NETWK.
The input file is on the CD under the name EXP5_3.IN. In obtaining the solution you
should note that NETWK first computes a design solution in which the pipe diameters
are

Example Problem 5.3

IE

$SPECIF IHGL=-2,NOMSOL=1,DESIGN=1,ICOST=1 $END
3190.14 -18. 3020. 1.5 .005

1 6 0.001 10560. 5280./

END

PIPES 915

6 2 7 5280. 0. .005 10 1.5
738/ 11 1.5
8409/ 12 1.5

92 10/ 13 1.5
103 11/ RUN

11 4 12/ 1 3190.14
12513 PUMPS
NODES UNIT=0.11
7 1.5 3020. 3158.46 CAPI=100000
815 END

determined. Then the nearest standard pipe sizes are used to "analyze" the network. The
final cost is based on this analysis and should agree with the data in this table:

COSTS ASSOCIATED WITH THIS NETWORK

ITEM TYPE PRESENT WORTH ANNUAL COST
1 PIPE $ 2,749,243 $ 277,286
2 ELEC. ENERGY 2,575,937 259,857
TOTAL $ 5,325,180 $ 537,143

The least cost is $537,143 per year with the energy costing $259,857 per year and the
amortized cost of the pipes being $277,256 per year. Pipes 1 and 2 should be 30 inches
in diameter, pipe 3 should be 24 inches in diameter, pipe 12 should be 12 inches in
diameter, and the other pipes should be 10 inches in diameter.

* * *
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5.3 LOOPED NETWORK DESIGN SOLUTION CRITERIA

This section will discuss the means for establishing equations to determine diameters
and other desired quantities associated with looped pipe network problems. As background
it is appropriate to review some of the fundamental relations that apply to the analysis of
pipe networks, whether looped or branched. If the number of pipes that exist in a network
is denoted by NP, the number of nodes (or junctions) is denoted by NIJ, and the number
of independent loops is denoted by NL, then this basic relation must be satisfied:

NP =NJ + NL if the network has two or more supply sources
or
NP =(NJ-1)+NL if the network has fewer than two supply sources.

Actually a network can never be devoid of supply sources, but often problems are shown
without a supply source. Instead the supply source is simply a node that has a negative
demand or a flow into the system. If a network has only one supply source, it can always
be shown as a network with no reservoir, or source pump, by obtaining the sum of the
other demands and then indicating that this discharge amount enters at a particular point.
For this relation to apply we tacitly assume that supply sources are not numbered as nodes.

The two kinds of basic equations are (1) junction continuity equations (NJ or NJ - 1
in number) that simply give mathematical expression to the fact that the mass rate of flow
(or volumetric discharge for an incompressible fluid) from a junction must equal the mass
rate of flow (or discharge) to a junction, and (2) equations that describe the relation between
head loss and discharge in a pipe, e.g., the Darcy-Weisbach or Hazen-Williams equations.
Of course other equations could be written and may be needed, but these are not considered
to be basic equations. For example, in using the Darcy-Weisbach equation a friction factor
f is introduced for each pipe, but alternative equations such as the Colebrook-White
equation could express this relation. In a similar way pipe cross-sectional areas could be
introduced as variables, and for each such area an additional equation becomes available.
These secondary equations will not be included in the subsequent discussion.

One might wonder whether the equations around the loops constitute additional
independent equations? The answer is no; they are not independent if all of the pipe head
loss equations are written. The connectivity of the network, in conjunction with the pipe
head loss equations, can be used to obtain the loop equations around both pseudo and real
loops. To demonstrate this situation, consider the 16-pipe, 9-node network in Fig. 5.6.

WS, QJ,

—
v) @ I) ) 111 (14)

©) [4 Ql, [7]/QJ7

J
= p et =
of ] 051 8] J(16)
Vi) 2 s ) (10) ™) Qs
WS
= *(3) [3] (8) (6] (13) [9]

QJ, Qlg QJy
Figure 5.6 A 16-pipe, 9-node network.
The number of independent loop equations that can be writtenis NP-NJ = 16 -9 = 7.
These 7 loops are clear; four of them are real loops and three are pseudo loops connecting

the four supply sources in some manner. However, the total number of basic equations
consists of NJ =9 junction continuity equations, and NP = 16 pipe head loss equations,
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for a total of 25. Thus 25 variables might be regarded as unknown, and if the other
variables of the problem were all known, a solution for them could be sought.

To verify that the loop equations do not constitute additional independent equations,
consider the four pipes (6, 9, 7, and 4) in loop I, using the exponential formula to express
the head loss in each pipe:

Hy - Hy = KcQg® (5.11)
Hy — Hs = K9Qq° (5.12)
H, — Hs = K7077 (5.13)
Hy — Hy = K40, (5.14)
Adding Eqgs. 5.11 and 5.14 gives
Hy — Hy = K404* + K6 Qg® (5.15)

Subtracting Eq. 5.12 from 5.13 gives
Hy — Hy = K707 — K9Qy° (5.16)

Now the subtraction of Eq. 5.16 from Eq. 5.15 produces
K40)* + KeQg® + K9Qy® — K7077 =0 (5.17)

which is the loop equation for loop I. In a similar way writing the pipe head loss
equations for pipes 1,4, and 2 leads to

WS) — Hy = K10 (5.18)
Hy — Hy = K40, (5.19)
WSy +h, — Hy = K»05? (5.20)

Subtracting Eq. 5.19 from 5.18 results in
WS — Hy = K10 - K40 (5.21)

Finally subtract Eq. 5.20 from 5.21 to eliminate H» and obtain
WS) = WSy — hyy + K205 + K404* — K10" =0 (5.22)

which is the loop equation for pseudo loop V.

If a pipe head loss equation were written for every pipe in the network and the H's
were then eliminated from these equations, an independent set of loop equations would be
obtain-ed. Thus we see that loop equations are not independent of the pipe head loss
equations and cannot also be used if the head loss equations are used. It is the way in
which pipes are connected in a network that allows the loop equations to replace the pipe
head loss equa-tions. This realization was the basis for the development of the (-
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equations in Chapter 4 to analyze a network. If one desires, it is always possible to omit
pipe head loss equations and use loop equations in their place. Doing this, however,
generally results in more arithmetic in obtaining the solution.

For the present we regard a design problem as one in which pipe diameters are to be
determined. The definition of a design problem could be given a broader meaning, but at
this time we are not concerned with the sizing of other components of a pipe system.
Design problems can be further divided into two categories: (1) those in which we seek to
determine as many diameters as there are nodes in the network (branched networks are a
special case here); and (2) those in which we seek only certain individual pipe diameters
to meet specified pressures. The latter category of problems will be treated in a later
section. In the first category it is not possible to solve for more pipe diameters than there
are nodes because the number of unknowns would then exceed the number of available
equations. If the maximum possible number of pipe diameters is to be found (category 1),
then it is assumed that the HGL elevations, or the heads H (pressure heads, or
pressures), are specified at all nodes of the network. The number of basic equations is then
NP + NJ (or NP + NJ - 1 if no supply sources are specified), but some of these must be
used to determine other variables, usually the individual pipe discharges. Thus a basic
difference between the first type of design problem and an analysis problem is that the H's
at the nodes are known (specified) rather than unknown, and pipe diameters are to be found
in place of the H's. The discharges are unknown variables in both the first type of design
problem and the analysis problem. Thus diameters replace H's in the list of unknowns.
The number of diameters in the list of unknowns must equal the number of H's which are
specified. Looking again at the most recent network as an example, if the H's atall 9
nodes are given, one can in principle determine 9 pipe diameters. In this case the 25
independent equations would be used to determine 16 discharges plus 9 diameters.

To gain further insight into how this interchange of unknowns for knowns occurs, and
what works and what won't work, consider the three-pipe looped system in Fig. 5.7, for

QJ,
[3]

[2] )

e Qs

3

1
[1] QJ,
Figure 5.7 The three-pipe looped system.

which there exist two independent junction continuity equations and three head loss equa-
tions. If this were an analysis problem, all pipe diameters (and their lengths and rough-
nesses) would be given, and the five unknowns to be found wouldbe Q;, QO»>, 03, Ho,

and H3 (assuming H; is known). For the design problem H) and H3 are given,
along with Hj;, and two diameters can then be found. The unknowns in the design
problem would be Q;, Qp, @3, and two diameters. There are three possible
combinations of two diameters: D; and Dy, D;j and D3, and D), and D3. In the
first combination D3 must be given, in the second D), and in the third D;. Specifying

a diameter plus the head at both ends of a pipe establishes from the head loss equation the
discharge in that pipe. These three combinations of diameters create the three problem
cases shown in Fig. 5.8.
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Figure 5.8 The three cases.

One approach to the solution of these three cases is to write the 5 basic equations (plus
the secondary equations), specify the knowns and solve for the unknowns. In other words
the independent equations are simultaneously solved for as many unknowns as there are
equations. This approach is illustrated by the "Rule Sheet" from TK-Solver, shown below
with the three variable sheets for these three cases. The diameter that is regarded as known
is listed in the "Input" column, and the diameters that are to be found are listed in the
"Output" column.

However, from these cases one may be able to see a computationally more efficient
means of solving the problem. First, the discharges in the pipes with given diameters can
be computed by solving a head loss equation. Next, by removing these pipes and

RULE SHEET
S Rule
Q2+Q3=QJ3
Q1-Q2=QI2
H1-H2=f1*(L1/D1)*Q1"2/(G2*(pi()/4.¥*D1/2)"2)
H2-H3=2*(L2/D2)*Q2"2/(G2*(pi()/4.*D22)"2)
H1-H3=f3*(L3/D3)*Q3"2/(G2*(pi()/4.*D3"2)"2)
1/sqrt(f1)=1.14-2*log(e/D1+7.34347283*v*D1/(Q1*sqrt(f1)))
1/sqrt(f2)=1.14-2*log(e/D2+7.34347283*v*D2/(Q2*sqrt(f2)))
1/sqri(f3)=1.14-2*log(e/D3+7.34347283*v*D3/(Q3*sqrt(f3)))

Case 1 Case 2 Case 3
VARIABLE SHEET VARIABLE SHEET VARIABLE SHEET
St Input---- Name--- Output--- St Input---- Name--- Output--- St Input---- Name--- Output---

D1 .1209918 D1 1211631 .12 D1
D2 .1244984 125 D2 D2  .1215503

125 D3 D3 .1247196 D3 .1265911
Q1 .0459944 Q1 .0461667 Q1 .0450043
Q2 .0159944 Q2 .0161667 Q2  .0150043
Q3 .0290056 Q3 .0288333 Q3 .0299957

150 L1 150 L1 150 L1

400 L2 400 L2 400 L2

550 L3 550 L3 550 L3

.045 QJ3 .045 QJ3 .045 QJ3

.03 QJ2 .03 QJ2 .03 QJ2

100 H1 100 H1 100 H1

85 H2 85 H2 85 H2

80 H3 80 H3 80 H3

.0000 e .0000 e .0000 e

1 1 1

1.3E-6 1.3E-6 1.3E-6

19.62 G2 19.62 G2 19.62 G2
2 .0176878 f2 .0176642 f2 .0178295
f1 .0148337 f1 .0148277 f1 .0148689
3 .0159636 f3 .0159747 3 .0159017

Figure 5.9 The TK-Solver variable and rule sheets for the three cases.
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modifying the demands on the reduced network, the discharges in the remaining pipes can
be determined so they satisfy the junction continuity equations. Finally, for the remaining
two pipes whose discharges are now known, the head loss equations can be solved for the
diameters. Thus for all three cases the problem can be reduced to the solution of three
separate equations, in proper order, each with only one unknown. (If the Darcy-Weisbach
equation is selected for use, then actually pairs of equations must be solved, because the
Colebrook-White equation for f must also be employed.)

For Case 1 this procedure would consist of the following steps if the heads are
specified as H; =100 m, H> =85 m and H3=80m, each ¢ =0.00001 m, L; =150
m, L) =400 m, and L3 = 550 m:

(a) Find Q3 from Hj - H3 = f3(L3/D3)03?/(2gA3?) and the Colebrook-White

equation using D3=0.15m, L3 =550 m, e3 =0.00001 m, QJ, =0.03 m3/s,
and QJ3 = 0.045 m3/s; the solution is Q3 = 0.029 m3/s, f3 = 0.016.
(b) From continuity (i.e. inspection) Q7 = 0.0460 m3/s, Q> = 0.0160 m3/s.

(c) Seek D; from Hj - Hy = f1(L1/D1)Q1%/(2gA;?) and the Colebrook-White
equation; the resultis D; =0.1210 m.

(d) Finally, find D, from H - H3 = fo(L2/D2)02?/(2gA2?) and the Colebrook-
White equation; the resultis Dy = 0.1245 m.

When our discussion indicated that the number of pipe diameters that can be sought is
equal to the number of junction continuity equations, one might infer that a simultaneous
solution of continuity equations would provide all of the unknown diameters. This is not
the case. In fact a simultaneous solution of the junction continuity equations provides the
discharges in the pipes with unknown diameters (since this case uses only one continuity
equation at a time), and the head loss equations (e.g., the Darcy-Weisbach equation) are used
to find the unknown diameters and also to determine the discharges in pipes whose
diameters are specified. In other words, all of the equations were used.

Before moving on to additional and more complex networks, we must note that it is
quite possible to create combinations of specifications that lead to impossible situations.
In this three-pipe network, for example, if the diameter of pipe 3 in case 1 were specified
to be too large so that the discharge it conveys in response to the head loss H; - H3

exceeds the demand QJ3, an impossible problem is defined in which the flow in pipe 2
must be from node 3 to node 2, but this is not possible because H» is greater than H3.
A specified diameter which is too small can also create impossible conditions: if in case 3
Dj; = 0.1 m, then the discharge in pipe 1 mustbe (with H; = 100 m and H» = 85 m)
07 =0.028 m3/s, which is less than the demand QJ», and so the flow in pipe 2 must
be from node 3 to node 2, but this is not possible because H = 85 m is larger than
H3 =80 m. The prescribed diameters and the heads at the pipe ends must be within certain

limits so the flow pattern is consistent with what is required by continuity at both ends of
these pipes and with the head distribution in nearby pipes.

Consider next the design of a simple network consisting of only two pipes with
reservoirs at both ends, as shown in Fig. 5.10. If this network is viewed as a design

-+

WS J
1 " /Q 1 @) WS, —=-

Dl,Ll,e [1] D2,L2,e

Figure 5.10 A simple two-pipe, two-reservoir network.

problem in which the head is specified at the one node, then only one pipe diameter can be
found. There are three basic equations available, one junction continuity equation and two
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head loss equations, since NJ + NP =1+ 2 = 3. Below are results from TK-Solver for a
set of known values for two cases; in the first case Dj; is unknown, and in the second

case Dy is unknown. This simple network with a pseudo loop (because there are two

supply sources) shows that the same principles govern how many diameters can be found
for a looped network with two or more supply sources and for a looped network with one
supply source. Clearly the number of diameters that can be regarded as unknown equals the
number of junction continuity equations. This same principle applies to branched
networks.

RULE SHEET
S Rule
Q1-Q2=QJ1
WS1-H1=f1*(L1/D1)*Q1"2/(G2*(pi()/4.*D1/2)"2)
H1-WS2=2*%(L2/D2)*Q2"2/(G2*(pi()/4.¥*D2/2)2)
1/sqrt(f1)=1.14-2*log(e/D1+7.34347283*v*D1/(Q1*sqrt(f1)))
1/sqrt(f2)=1.14-2*log(e/D2+7.34347283*v*D2/(Q2*sqrt(f2)))

Case 1 Case 2
VARIABLE SHEET VARIABLE SHEET
St Input----- Name---- Output------ St Input----- Name---- Output------

DI .67179122 8 D1
5 D2 D2 .76556319
Q1  2.0806609 Q1  3.299349
Q2  .58066088 Q2 1.799349
1200 L1 1200 L1
1000 L2 1000 L2
1.5 QJl 1.5 QJl
85 H1 85 H1
.0001 e .0001 e
1.217E-5 1.217B-5
64.4 G2 64.4 G2
f1 .01569440 fl  .01494752
2 .01840944 2 .01613281
100 wS1 100 WS1
80 WS2 80 WS2

Figure 5.11 The rule and variable sheets for the network of Fig. 5.10.

Another view of this two-pipe network problem might be as in Fig. 5.12; now a
desired pressure at the downstream end is sought. This specified pressure could equally well
be interpreted as a reservoir with a specified water surface elevation, as in the previous
example. If so, then the demand at node 2, QJy, is unknown since it is the discharge into
the downstream reservoir. If the diameters of both pipes are specified, then this is an
analysis problem.

—F—{H=150 () 1) @ 2]

| 8" - 3000
e, = 0.005"

v=12x105f2s QI =051ts

p, =40 Ib/in’

6" - 3500' x’r
e, = 0.005" H, =923 ft
Ql,=?

Figure 5.12 An alternative view of the network in Fig. 5.10.

© 2000 by CRC Press LLC



The unknowns are Qj, @2, and QJ>, and the three equations that are to be solved to
determine these unknown values are

Node 1 continuity O -0-0J1=0 (5.23)
Node 2 continuity O -0J, =0 5.24)
Pseudo loop equation hpy+hgy =150-92.3=57.7 (5.25)

For this problem the pressure specification in place of the demand at node 2 allows this
unknown demand to be computed. The solution requires the first continuity equation and
the loop equation to be solved simultaneously (if the Darcy-Weisbach equation is used,
then one Colebrook-White equation must be added for each f; so we actually require the
simultaneous solution of four equations for the four unknowns Q;, Qp2, f;, and f7),

followed by noting from the second continuity equation that Q5 = QJ,. The results are

05 =0J,=0815 fid/s, Q7 =1.315 f3/s, f; = 0.01935, and f> = 0.02056. We

encourage you to verify this solution.
An alternative would be to pose the question: What pipe diameter D> would be needed

if the demand QJ, were to be 0.6 ft3/s and the pressure at node 2 were to be py =40

Ib/in2 (HGL = 92.3 ft)? This is now a design problem; in our three equations QJ is
known, and the unknowns are Qj;, Qp, and D). A logical sequence in solving this

problem would first note that 0> =0.6 ft3/s (the specified demand); next find Q; = 1.1
ft3/s from the first continuity equation, and with Q; known compute hf; = 13.77 ft,

leading to hp = f2(L2/D2)( 02/A2)%/(2g) = 31.7f>/D2’ = 43.9 ft from the loop equation,
which when solved with the Colebrook-White equation would produce f> = 0.02157 and
D) =5.194 in. If the pressure is also specified at node 2, then both pipe diameters can be

found. Then the problem is converted into a branched system with demands known at all
three nodes, and the heads are also known at these nodes.

This example illustrates a principle that can be applied to our second looped-network
category: each alternate specification allows us to regard another variable as a member of
the set of unknowns. In this case if pressures are specified, then diameters can be left
unspecified, and the resulting equations can be used to determine these diameters.
However, if the pipe roughness coefficients are unknown, then we must specify the
diameters. In brief, any variable in a pipe network may be left unspecified while another is
specified in its place, so long as the number of independent equations equals the number of
unspecified variables, or unknowns, for which a solution is sought.

Flow through a single pipe illustrates this principle. For the Darcy-Weisbach approach
six variables appear in the problem: L, D, e, Q, f, and hz. Two independent equations are

available, the Darcy-Weisbach equation &y = f(l/D)Qz/( 2gA2 ) and the Colebrook-White
equation 1/\/? = 1.14 - 2 Log{e/D + 9.35/(Re\/?)}, that allow two unknowns to be

found. Any pair of variables may be selected as unknown, so long as the other four
variables are given values. Other equations may appear in this process, such as A =
nD2/4, Re =VD/v, and V = (Q/A; these equations define secondary quantities. More
fundamentally, however, these additional variables may be added to the list of variables, and
the equations may be added to the list of equations. Then V may be counted as an
unknown, for example. For each additional pipe in a network one can add variables to the
list of unknowns, and at the same time equations are added to that list. Thus for two pipes
the list of six variables becomes 12, and the number of unknowns that can be found
increases to four, etc. Almost any combination of variables may be chosen as unknowns.
In summary: (1) We use two basic fluid mechanics principles in the design of pipe
systems, the continuity principle (conservation of mass) and the energy principle. (2) The
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continuity principle assures that the discharge into each junction (or node) in the network
equals the discharge from that junction. Mathematically, 2Q; - QJ; = 0, in which the
subscript on Q denotes the pipe numbers that join at that junction, and QJ is the demand
at this junction. (QJ is positive from, and negative to, the junction. The reverse
convention applies for pipe discharges; Q; is positive if to the junction, and negative if
from the junction.) (3) The energy principle accounts for the head loss that occurs in a
pipe, H;- Hj = hf, in which subscript k denotes the pipe number and subscripts / and

j denote the upstream and downstream node numbers. If every pipe head loss equation is
used, then the network connectivity guarantees that the head losses around loops sum to
zero and through pseudo loops equals the difference in water surface supply elevations. (4)
These two principles provide all of the basic equations that are available. (5) The number
of unknowns and independent equations must match for a unique solution to exist. (6)
Any variable may be selected as an unknown. Once the unknowns have been chosen, then
the remaining variables must be specified. (7) It is possible, however, to assign values to
known variables in such a way that physically impossible situations are created.

No one set procedure exists for the design of looped networks. Professional judgment is
required to balance the concern for redundancy (i.e., the ability to satisfy large emergency
demands, or to allow components to be pulled out of service) with the desire to minimize
costs. Since the equations will allow only NIJ pipe diameters to be determined, one
workable procedure would first select NL = NP - NJ pipes, for which we specify the
diameters. The selection of these pipes should be such that, if they were to be removed,
the remaining network would be a branched network. Normally there are several pipe
combinations that could be selected to reduce a network to a branched system, and this
branched system should be considered to be the main transmission lines. The specification
of diameters for the pipes (NL in number) that have been selected is also based on
judgment; if these pipes are secondary, they might be given diameters that are the
minimum size that is allowed for this network. Second, with the heads known at the ends
of these pipes, compute their discharges, and then modify the demands at the two pipe ends
to include these discharges in defining the branched system. Third, solve the branched
network. The diameters that are found for this branched system are normally then replaced
by the nearest standard pipe sizes, but they may be rounded up to the next larger standard
pipe size. Fourth, conduct analyses that cover a variety of conditions that the proposed
network is expected to encounter, and study these results. If deficiencies are noted, adjust
the pipe diameters (or other network components) so these deficiencies no longer exist.

To illustrate this procedure, assume that the 16-pipe network in Fig. 5.6 is the subject
of a design study. The supply sources denoted by WS{ and WS3 are imported from

another water supplier with a head of 50 m, but this water is costly and will be used only
when demands are large. The other source, WS», is from a groundwater well with an

aquifer water surface elevation that is 40 m below the ground surface. Lastly, WS4 is a

storage tank with a 45-m diameter, a bottom elevation at 118 m and a maximum depth
of 3 m. The average demands are given in the accompanying table, and the demands (in

m3/s) for the hour of greatest demand, on which the design is to be based, are twice these
values.
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WS, 0.05 m3/s 0.04 m3/s 0.04 m3/
145 m " 1600 m 14] 1600m s
Ground elev. =90 m ' g 95 m (©) 90 m (11) 883 m|l7] WS
= 0.04 m?¥/ = - 121
WS .04 m>/s m
<2 00m 1000 m | 100 m 1600 m A 28] ‘i_J full
= & A2 ) 95 [51 90 m 0.10 m3/s
Ground elev. 0.05 m3/s m
=100 m ’ =5 | 0.04 m3/s
WS, S 2[as
= {145m S|95m 1600m 90 m
Ground elev. = 90 m 0.04 m~/s 0.03 m3/s [9]\
0.04 m3/s
All e = 0.0001 m
v=1.217 x 10 m?%/s
Node 1 2 3 4 5 6 7 8 9
Demand [[0.0250.025]0.020]0.020[ 0.020{ 0.015] 0.020 ] 0.020] 0.020
3
m°/s

Figure 5.13 Another view of the network of Fig. 5.6.

First NP - NJ =16 - 9 =7 pipes must be given diameters, say 150 mm, the smallest
size allowed in this system. Pipes 1, 3, 9, 10, 12, 13, and 16 are selected, based on
judgment. Pipes 1 and 3 are chosen because they supply the expensive water and will
be shut off during this design process. Using the maximum capacity of the pumping
station, which is 0.22 m3/s with all pumps on, the demands are summed, and it is
determined that the storage tank must supply 0.14 m3/s. Therefore, the demand at node 8

is changed from 0.04 m3/s to an inflow of 0.10 m3/s, and pipe 16 is removed.
Elimination of these pipes results in the branched system in the figure. Of course,
depending upon the choice for the main transmission system, there are several alternatives
that could be explored. For this reduced system, node 9 is the farthest downstream, and
its pressure should be set to the minimum allowable pressure, say 275 kPa, which
corresponds to Hg= 113 m for the elevation of the HGL. The pipe discharges in this

branched network can now be determined directly, as given below in the first table. Based
on energy-line slopes, which are also in this table, and on economic considerations, the
heads at the nodes can be computed; they are listed in the second table. By solving the
Darcy-Weisbach and Colebrook-White equations simultaneously for the 9 single pipes,
the diameters can then be computed. These computed diameters, also listed in the first of
Tables 5.4, should be replaced by sizes chosen from a set of standard sizes (such as the
following: 150, 205, 255, 305, 355, and 405 mm). As a final step, analyses of the full
network should be completed for several different demand levels, storage tank levels, fire
flows, etc.

Table 5.4

Pipe Q S h¢ Dia. Node H

m3/s m mm m
2 0.23 1 0.005 5.0 |428.6 1 125.0
4 0.07 10.006 4.8 1263.1 2 129.8
5 0.07 10.005 4.0 |272.7 3 125.8
6 0.02 10.010 16.0 | 148.1 4 109.0
7 0.04 ]0.002 4.0 1253.0 5 125.8
8 0.03 ] 0.005 8.0 |197.9 6 117.8
11 0.02 ]0.0025 4.0 |1194.8 7 113.0
14 0.06 ]0.005 4.0 |257.5 8 117.0
15 0.04 ]0.005 4.0 1220.6 9 113.0
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The newly-found diameters in Table 5.4 ignore any influence of the pipes that were
removed. This approach assumes that the discharges in the other (ignored) pipes assist the
network in performing adequately under the variety of conditions that will occur, but the
branched system can by design supply the required demands without the other pipes. In a
sense it also assumes that the discharges carried by the pipes that are ignored is small in
comparison to the discharges in the pipes that are retained throughout the computations.

Next let us explore the design process further by attempting another design without
ignoring the flows in pipes 1, 3, 9, 10, 12, and 13 that were removed to form the
branched network. Assume these all have a diameter of 150 mm and that pipes 1 and 3
(that bring water from the more costly water supply) are open. With the additional flow
from these two pipes let us also assume that no flow enters or leaves the storage tank
through pipe 16, and that the head losses in the pipes are as specified in the third part of
Tables 5.5. Under these assumptions the flow in pipes 11 and 14 now reverse direction
from what they were previously. Consequently the heads at the nodes are as given in the
second part of Tables 5.5, and with these heads the discharges in the other pipes can be
computed, as listed in the first of Tables 5.5:

Tables 5.5

Pipe h¢ L Dia. Q Node H Pipe h¢ Q Dia.
m m mm m3/s m m m3/s Mm

1 16.0 800 150 0.030 1 129.0 2 5.0 0.311 480.8

3 15.8 800 150 0.029 2 133.8 4 4.8 0.131 334.1

9 4.8 800 150 0.016 3 129.8 5 4.0 0.034 207.5

10 8.0 800 150 0.021 4 125.0 6 4.0 0.111 372.4
12 12.8 1600 150 0.018 5 129.8 7 4.0 0.095 351.1
13 8.8 1600 150 0.015 6 121.8 8 8.0 0.025 161.2
7 121.0 11 4.0 0.087 339.5

8 117.0 14 4.0 0.047 234.5

9 113.0 15 4.0 0.025 184.7

If the assumption was, as before, that the storage tank was supplying 0.14 m3/s along
with the supply through pipes 1 and 3, and the HGL-elevations at the nodes was as
before, then the results in Tables 5.6 would be obtained:

Tables 5.6
Pipe h¢ L Dia. Q Node H Pipe h¢ Q Dia.
m m mm m3/s m m m3/s Mm
1 20.0 800 150 0.033 1 125.0 2 5.0 0.114 480.8
3 19.2 800 150 0.033 2 129.8 4 4.8 -0.011 =*
9 8.8 800 150 0.022 3 125.8 5 4.0 0.027 190.2
10 8.0 800 150 0.021 4 109.0 6 8.0 -0.028 *
12 8.8 1600 150 0.015 5 125.8 7 4.0 0.098 355.2
13 40 1600 150 0.011 6 117.8 8 8.0 0.020 169.8
16 40 1200 384 0.140 7 123.0 11 4.0 0.046 266.8
8 117.0 14 4.0 0.086 294.9
9 113.0 15 4.0 0.029 195.4

* The heads do not allow a negative Q.

The newer set of assumptions has led to an impossible situation in which the junction
con-tinuity equations require flows in pipes 4 and 6 in the opposite direction from what
the heads at their ends require. The specified flow from the storage tank was too large to be
compatible with the heads and pipe diameters that were specified. In the earlier case the
absence of flow from the storage tank avoided the impossible situation that was created in
the last set of specifications. However, we see clearly that various combinations of
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specified variables can lead to situations in which the direction of flow is inconsistent with
the heads at some nodes.

One even simpler example of an inappropriately specified diameter consists of two
pipes which meet at junction [2]; the HGL at this junction is smaller than the HGL at
the other ends of these pipes, as shown in Fig. 5.14. The discharge for each pipe must be
toward the common junction. If the diameter of either pipe is specified so that the
resulting discharge in that pipe exceeds the demand QJ», then an impossible situation has
been created, since the direction of the discharge in the other pipe must oppose the direction
of flow implied by the HGL for that line.

\ HGL, > HGL, €)) HGL, ) HGL,>HGL, /
(1] l (2] (3]
QJ,

Figure 5.14 A problem with an inappropriate diameter.

For example, let HGL{ = 100 ft., HGL, = 88 ft., HGL3 =90 ft., L; = 2000 ft., L)
=2500 ft. and QJp = 1.0 ft3/s. If D; =8.0 in, then Q; = 1.15 ft3/s, and we must
have Oy =- 0.15 ft3/s to satisfy continuity at the junction, which is inconsistent with

the set of specified heads. If Q;=1.0 ft3/s, then D; =7.60 in; hence D; must be less

than 7.6 in for a solution to be possible.

These analyses illustrate the important fact that the outcome of a design depends directly
upon the assumptions that go into that design. While cost has not yet been considered in
these designs, the usual objective is to minimize the total cost of meeting a set of specified
demands. We will include cost considerations later in the chapter.

Now let's examine a larger network of 30 pipes and 16 nodes, as shown in Fig.
5.15. For this network with 3 supply sources there are 16 junction continuity
equations, and it is therefore possible to determine 16 pipe diameters if the heads are
given at all 16 nodes. The input data to obtain a "design" solution by using NETWK is
in the file FIG5_15.IN on the CD. The reader can list this file and use it as input to
NETWK to obtain a solution. This input lists the pipe lengths and the nodal demands. If
the option DESIGN=1 is given in the $SPECIF list, then (1) NETWK interprets a 0
for a diameter as one that is to be determined, and (2) the elevation of the HGL at each
node must be listed after the elevation of the node under the NODES command. Thus for
this network with DESIGN=1 we must assign 16 pipes a zero diameter in the input
data. The example input data set has assigned diameters of 18 in and 15 in, respectively,
to the two pipes from the source pumps, and pipes 10, 11, 12, 17, 18, 19, 24, 25, 26, 27,
28, and 29 have been given diameters of 6 inches. This problem is quite large for a
hand solution, but the approach to a solution, if done by hand, could follow precisely the
approach that was applied to the networks that have just been examined. First, the
discharges in the pipes with specified diameters would be computed so that each pipe head
loss matches the difference in head between its end nodes. These pipes would then be
removed from the network, and the demands at their ends would be adjusted for their
discharges. Next, from the junction continuity equations the discharges in the remaining
pipes would be determined, and finally, with these discharges known, the diameters of the
remaining pipes would be found.
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Figure 5.15 A 30-pipe, 16-node network.

In the solution from NETWK we find after the design solution has computed the pipe
diameters that NETWK then selects the closest standard diameter from its default list of
standard diameters and performs an analysis of this system since the option NOMSOL=1
is included in the $SPECIF list. From the analysis the column giving HGL elevations
will change from the initially specified values because the standard pipe sizes will not
produce the same frictional head losses.

The program NETWEQST in the NETWK program package is intended specifically
for design problems. It allows the user to specify the unknown variables and allows any of
the variables in the network to be regarded as an unknown. The mechanics of this solution
will be explained later in this chapter. By selecting all of the pipe discharges and a number
of pipe diameters that is equal to the number of nodes in the network, this type of design
problem can be solved. The input data file for NETWEQST for this problem follows.

Large Design Example

16 8 12 1600 12 .004 5

26 152 12 147 18 139 500

/* 17 10 9 800 6 .004 1 NODES
$SPECIF ITUNENT=4 $SEND 18 10 11 800 6 .004 .2 1 1.2 500 630
PIPES 19 11 12 800 6 .004 .2 2 1.2 490 645
102500 18 .004 15 20 9 13 1600 12 .004 4 3 .8 485 640
20350015 .004 11 21 10 14 1600 8 .004 1 4 1.6 480 632
32180012 .004 5 22 11 15 1600 8 .004 2 5 1.4 495 618
4238006 .004 1 2312 16 1600 8 .004 1 6 1.2 494 620
53480012 .004 6 24 14 13 800 6 .004 1 7 1. 490 616
615 1800 6 .004 5 25 14 15 800 6 .004 1 8 .8 483 613
726 1800 12 .004 6 26 1516 800 6 .004 1 9 2. 493 605
8 37 1800 12 .004 6 27252500 6 .004 1 10 2 492 608

9481800 12 .004 3
10 6 5800 6 .004 .5

28 27 2500 6 .004 1
29 3 8 2500 6 .004 1

11 3.6 488 605
12 2.8 484 603

11678006 .004 .5 30 0 14 1000 10 .004 2.5 13 4. 480 595
127 8 800 6 .004 .5 RESER 14 2 478 600
1359 1600 12 .004 5 30 605 15 1.8 475 594
14 6 10 1600 12 .004 5 PUMPS 16 2 470 586
157 11 1600 12 .004 5 18 157 15 152 22 144 500 RUN

Figure 5.16 Input for NETWEQST.
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The option IUNENT=4 tells NETWEQST that the HGL-elevations at the nodes are
listed as the last item after the NODES command, and the last item on each line following
the PIPES command is an initial estimate of the discharge in that pipe, to be used to start
the Newton solution method. The manual for NETWEQST is on the CD as file
NETWEQST.DOC. To solve this problem with NETWEQST, the responses listed in
Fig. 5.17 should be provided in response to the bold prompts from NETWEQST.

Pipes = 30, Nodes = 16, Sources = 3

46 unknowns must be given. Give no. of each:
1. HGLs at nodes 0

2. Nodal demands 0

3. Pipe discharges 30

4. Pipe diameters 16

Give 16 pipe diameter numbers 3-9 13-17 20-23 30

Figure 5.17 Prompts and responses for the 30-pipe example.

In obtaining solutions to these design problems, one must have considerable
understand-ing of either the system performance or the sizes of the specified diameters;
otherwise the corresponding set of specified heads can lead to an impossible situation. We
have already seen how such a situation can occur for the 16-pipe network. So we cannot
select arbitrari-ly all of the pipes that will be assigned a prescribed diameter. Since the
pipes having specified diameters carry a fixed discharge, the network problem becomes in
essence one with these pipes removed. The reduced network must still be able to satisfy
all specified demands at the nodes. There are different combinations of circumstances that
may make this impossible to do. First, if in creating the reduced network the original
network has become divided into two or more separate networks, then each separate
network must have at least one supply source. Second, in the reduced network the
specified heads must allow the flow to move in the direction that is dictated by the
demands. Furthermore, we know it will not be possible to prescribe a diameter for every
supply pipe in the network, because the resulting set of computed discharges (that are fixed
by the prescription of diameters and of heads at the end nodes) will generally not sum to
the total demand in the network.

In the 30-pipe problem the diameters of the pipes connected to the source pumps were
both given, but the reservoir pipe diameter was not given. If D3p is given, then either
Dj or Dy must not be given. The heads may remain unchanged if D3¢ is given and
Dj is not given (but still with D» = 18 in). However, if D> is not given when D3g
is given as 6 in, then D; must be given a diameter that is larger than 18 in, because
with Dj =18 in the solution of the continuity equations produces a negative flow in pipe

4, but this is not possible for the heads that are given at the ends of that pipe.

Assigning diameters to pipes that connect to the source pumps fixes the discharge that
these pumps can supply; therefore the discharge through the pipe from the reservoir must
equal the difference between the sum of the demands on the network and the amount of the
discharge from the two source pumps. With these restrictions it is difficult to create even
one loop in the reduced network. Therefore, we must verify that a branched network is ob-
tained when the pipes having specified diameters are removed from the network, and if the
removal of these pipes separates the original network into two or more smaller networks,
then each of these new networks must have a supply source. Nor can we specify the
diameter of a dead end pipe because, with a specified diameter and a pair of given heads at
the ends of the line, the computed discharge usually will not match the specified demand at
the end of the line.

Less obvious impossible situations can develop. For example, if the diameter of one or
more pipes that contain source pumps is specified to be too large so that the inflow to the
network from this/these source/s exceeds the sum of the network demands, and if
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furthermore the reservoir water surface elevation were specified to be above Hj4, then no

way exists for the surplus inflow from the source pumps to leave the system. Since the
specification of the pipe diameter and the head at the ends of this pipe fixes its discharge,
this discharge value may not match the external demand at the end of the pipe. For
example, if in the 30-pipe network the diameter of pipe 1 were set at 24 in rather than 18
in, such an impossible situation would be the result. On the other hand, if D3¢ is given
and D) isnot,then Dj; = 18 in would cause an impossible situation but Dj; = 24 in
would not. When more than two pipes meet at a junction, the possibilities of creating
impossible situations are more numerous and more complex. NETWK does detect the
existence of impossible situations and then prints a brief message related to the problem.
When this occurs (and it will occur frequently if one is not sufficiently careful and/or
experienced in the specification of diameters and heads), it is important first to examine
carefully the possible causes of this situation; then the values of the specified diameters
and/or heads can be adjusted, or an alternate set of pipes can be selected for the specification
of diameters. In making these adjustments, it may be helpful to sketch the reduced
network after the pipes with specified diameters have been removed, and then to keep in
mind the process that will be followed in obtaining this design.

Example Problem 5.4

Designs are to be obtained for the looped water distribution system below, given the
heads at the nodes listed in the table. Since three independent loops (two real loops and
one pseudo loop) exist here, the sizes of three pipes must be specified, and the diameters of
the remaining six pipes are to be found. All specified pipe diameters are to be 6 inches.
Determine whether the assignment of 6-inch diameters to the following combinations of
pipes will allow a solution of the remainder of the branched system; if an impossible
situation has been created, determine why this is the case. Otherwise solve the branched
network.

Node | Elev. H Case | Spec.
Pipe
ft. ft.
1 100 197 1 2,4,9
2 98 194 2 4,6,9
3 100 194. 3 4,8,9
5
4 95 190 4 3,8,9
5 95 191 5 2,8,9
6 90 188 6 2,6,9
8
0.5 ft¥/s &) 0.5 ft¥/s

=+

10" - 500" 0.5 ft3/s
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The first steps are to determine the discharges in the pipes with specified diameters and then
reduce the network to the branched system. Sketches for these reduced branched systems
will be presented.

Case 1:
This case is not valid since H3> Hp, so the flow cannot pass through pipe 3 to meet

downstream demands.

®

)
&) [1]

Case 2:
This case is not valid for the same reason as Case 1.

®

(6] [5]\

()

Case 3:
This case is not valid since H3z > Hp; thus the flow cannot satisfy the demand at nodes 3

and 4.

Case 4:
This configuration is valid. We first compute the discharges in the 6-inch pipes.
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Pipe Q f Changed QJ's
ft3/s ft3/s
3 0.145 ]10.024 | QJ3=0.545, QJ,= 0.355
8 0.435 10.020 | QJ5=10.935, QJz= 0.065
9 0.214 [0.023 | QJs=1.149, QJ,= 0.286

The solution for the reduced branched system provides the following discharges and pipe
diameters:

Case 5:
This case is valid. A solution can be obtained with NETWEQST. (Alternatives are to
use NETWK or apply HYDEQS to obtain individual discharges and/or diameters.) The
table of input data, the list of prompts and responses, and two tables of results follow:

Pipe Dia.
ft3/s in.
1 1.869 | 9.000
2 1.504 |9.556
4 0.831 [9.592
5 0.286 |4.902
6 1.149 | 8.965
7 0.065 |2.446

@

Input Data

Example Problem 5.4
/*1 .3 100 197
SSPECIF IUNENT=4 S$END
PIPES

101500 10 .001 2.4
212 1000 6 .001 1

3 3 2 1200 6 .001 .2
4 03500 6 .0011

5 3 4 1200 6 .001 .5
6 2 51200 6 .001 .5
716 1200 1 .001 1

8 56 1000 6 .001 .2
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9 54 1200 6 .001 .2
NODES

2 .
3.
4 .
5.
6 .

5 98 194
4 100 194.5
5 95 190
5 95 191
5 90 188

RESER
1 200
4 195
RUN



Pipes= 9, Nodes=6

15 Unknowns must be given. Give no. of each:
1. HGLs at nodes 0

2. Nodal demands 0

3. Pipe discharges 9

4. Pipe diameters 6

Give 6 pipe diameter numbers 1 3-7

PIPE DATA

PIPE NODES L DIA. e Q HEAD

NO. FROM TO x103 LOSS
ft. in in  ft3/s ft.

500 6.539 1.0 0.800 3.00

1 0 1
2 1 2 1000  6.000 1.0  0.435 3.00
3 3 2 1200 13.247 1.0 1.214 0.50
4 0 3 500 13.079 1.0 1.900 0.50
5 3 4 1200  4.902 1.0 0.286 4.50
6 2 5 1200  8.965 1.0 1.149 3.00
7 1 6 1200 2.445 1.0  0.065 9.27
8 5 6 1000  6.000 1.0 0.435 3.00
9 5 4 1200  6.000 1.0 0.214 1.00
NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
ft/s ft. ft. 1b/in? ft.
1 0.300 100 97.0 42.0 197.0
2 0.500 98 96.0 41.6 194.0
3 0.400 100 94.5 41.0 194.5
4 0.500 95 95.0 412 190.0
5 0.500 95 96.0 41.6 191.0
6 0.500 90 98.0 425 188.0

Case 6:
The case is valid. Using the same input as in case 5, the solution can be found with the
following responses to the prompts from NETWEQST (Solution not given):

Pipes = 9, Nodes = 6

15 unknowns must be given. Give no. of each:
1. HGLs at nodes 0

2. Nodal demands 0

3. Pipe discharges 9

4. Pipe diameters 6

Give 6 pipe diameter numbers 1 2-5 7 8

®)

(6] (5] \

)
@ (1]
[4]
2]
® ©
@
& k k
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5.4 DESIGNING SPECIAL COMPONENTS

Section 5.3 defined two types of design problems: (1) problems in which as many pipe
diameters are sought as there are nodes in the network; and (2) problems in which an
individual pipe diameter is sought so that some specified condition (e.g., a pressure) occurs
at a prescribed node. That section examined the first problem category. This section
considers the second problem type. Previously the solution of such problems involved a
trading of known and unknown variables. For example, if a nodal pressure was specified,
then a nodal demand (or pipe diameter or length, etc.) was placed in the list of unknowns.
Now, however, it will not be necessary to swap a variable from the known to the unknown
list. Instead a new unknown will be introduced into the network problem, and a new
equation will be added to the list of equations, thus satisfying the requirement that the
number of independent equations and the number of unknowns must match.

How is it possible to obtain another independent equation, one might ask. As was
stated before, the basic network relations are

NP =NJ + NL if the network has two or more supply sources
or
NP =(NJ- 1)+ NL if the network has fewer than two supply sources.

These relations apply to both branched and looped networks and cannot be changed. In a
branched network NP = NJ - 1 and therefore NL = 0. The key in introducing an
additional unknown is also to create another independent equation. This additional equation
will enforce another condition, usually a nodal HGL (or pressure) that is required. This
unknown will be called a differential head device, and in mathematical equations it will be
given the symbol AH; it will represent a variety of devices such as a booster pump, a
pressure-reducing station, a valve, a pipe with an unknown diameter, or a wall roughness.
A differential head device will be something that creates a (positive or negative) head
difference, other than the frictional head loss of the original pipe, between the ends of a
pipe. If the pipe diameter or roughness is to be unknown, then the new pipe will produce
a head loss that is the sum of the frictional head loss of the original pipe and the computed
differential head. The equation for this additional unknown, AH, that will be added to the
equation system will be an energy equation that is written between the node where the
pressure (or pressure head, or HGL elevation) is specified and another point of known head
in the network. This other point of known head will usually be a supply source such as a
reservoir or source pump. However, if two or more differential head devices are introduced,
then the added equation might be an energy equation between two nodes with specified
pressures. The additional equation is a special pseudo loop that will generally be
independent of the other loops because it imposes an additional condition on the network
that requires a pipe to have a different head loss than that which is caused by fluid friction
alone. The phase "generally independent” is used because, as described later, inappropriate
specifications can cause the added equation not to be independent. This loop is called
special because it consists of a continuous path along pipes from an internal pipe, one end
of which has a specified HGL, to a supply source, whereas the usual pseudo loop follows
a sequence of pipes between two supply sources. Thus this special loop is similar to a
pseudo loop connecting the downstream end of a pressure-reducing valve (PRV) or the
upstream end of a back-pressure valve (BPV) to a supply source or to another PRV or BPV
where the HGL is specified.

To illustrate the concept and implementation of a differential head device, the small
network consisting of 7 pipes and 5 nodes in Fig. 5.18 will be examined. In this network
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Figure 5.18 Small network with a differential head device.

the amount (magnitude and sign) of the differential head AH that is needed in pipe 1 is

to be determined so that the pressure at node 5 is 40 1b/in2. In addition to AH , the
solution is to determine the discharges in all 7 pipes and the elevations of the HGL (and
pressures) at the 4 internal nodes. (The pressure is specified at node 5, so this pressure
can not be part of the solution.) In this problem AH in pipe 1 could be a booster pump
if it is positive, or it could be a valve if it is negative. If it is negative, the differential
head device may instead be a pressure-reducing valve; once AH is known, it is a simple
computation to determine the pressure setting fora PRV which would produce this same
additional head loss. Or if AH is positive but smaller in magnitude than the frictional
head loss in the pipe containing it, then one could compute an "equivalent" pipe diameter
that would produce the same head loss as the present frictional head loss and AH. Thus,
depending upon what the solution produces for AH and what you want the differential
head device to represent, it can be any of a variety of appurtenances.
If the AQ-system of equations is to model this network, the system may be written as

K7(Qp7 +A01)" = Kp(0p2 — AQy — AQ> )™

(5.26)
—K1(Qp1 —AQ )" + AH+20=0
K3(Qp3 +AQ2 )" +K4(Qos +40, )™ (5.27)
~K5(Qus5 —202)" ~Kp(Qp2 ~AQy ~ A0 )" =0
K0y + Ks(Qps — A0, )™ (5.28)

+K7(Qy7 +A0;)" +(40(144)/62.4+180) — 280 = 0

in which the vector of initial flows that satisfy all junction continuity equations might be

(0] [2.5500)
0,, ~1.3533
0,3 3.0033
{QU } =10,, ! = 418033 (5.29)
0,5 0.0967
06 0.8000
10,7] [ 25500 |
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The three unknowns are AQj;, AQp», and AH. The solution of these three equations
(using Newton's method with the above vector for {Qg}) yields

AQy ~4.33
A0y L = 1-0.59 (5.30)
AH 112.62

To verify that the solution is correct, one must use the correct values for K and n for
each pipe, which are listed in the following table:

Pipe No. 1 2 3 4 5 6 7
K 1.70 2.55 7.34 3.70 7.46 31.8 5.51
n 1.957 1931 1.932 1.873 1.865 1.905 1.918

Any verification should also employ AQ;, AQ»>, and AH to compute the HGL eleva-

tions and the pressure at each node.

It is much easier to let the computer do the arithmetic. Below is the input data file for
NETWK to solve this problem, followed by the output. The line of input data after
DHEAD consists of the following items: (1) the pipe containing AH; (2) an estimate
of this AH; (3) the pressure that is being specified (the minus indicates that the

pressure is in 1b/in2, rather than being specified as a HGL); (4) the designation (pipe
since NODESP = 0) for a supply source, to use in forming the energy equation loop; and

(5) the pressure in Ib/in2 at node 5. This solution file contains an extra table for
differential head devices; it reports an INCREMENTAL HEAD of 112.62 ft and also
states NO EQUIVALENT DIA. POSSIBLE. Had the value for HEAD LOSS minus the
INCREMENTAL HEAD been negative, then an EQUIVALENT DIAMETER would
have been reported in the last column of this extra table, as well as e and the head loss in
the equivalent pipe.

Problem for Differential Head Device
/%

$SPECIF NPRINT=-3,COEFRO=.004 $END
PIPE-

1 10. 1500. 1 .9 215.

2 10. 3000. 1 3 1.1 205.

3 8.2000. 1 2 1.2 200.

4 10. 3000. 2 4 1.1 190.

5 8.2000. 3 4

6. 2000. 4 5 .8 180.

7 8. 1500. 3

RESER

1 300

7 280

DHEAD

140 -5 7 40.

RUN

Figure 5.19 Input data for NETWK for the differential head device problem of Fig. 5.18.
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Problem for Differential Head Device
ALL DEMAND FLOWS ARE MULTIPLIED BY 1.0000
FLOW FROM PUMPS AND RESERVOIRS EQUALS  5.100

PIPE ORIG. Q INCR. HEA TOTAL e EQUIV.

NO. DIA. HEAD D HEAD DIA.
LOSS

in ft3/s ft. ft. ft. in

1 10.0 6.88 112.62 742  NO EQUIV. DIA. POSSIBLE
PIPE DATA

PIPE NODES L DIA. e Q VEL. HEAD HLOSS

NO. FROM TO x103 LOSS /1000

ft. in ft3/s ft/s ft.

1 0 1 1500 10 40 6.88 12.62 74.2 49.5
2 1 3 3000 10 40 3.58 6.56 41.6 13.9
3 1 2 2000 8 4.0 2.41 6.89 40.1 20.0
4 2 4 3000 10 4.0 1.21 221 5.25 1.8
5 3 4 2000 8 40 0.69 1.99 3.77 1.9
6 4 5 2000 6 40 0.80 4.07 20.8 10.4
7 3 0 1500 8 4.0 1.78 5.11 16.9 11.3
NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL. ELEV
ft3/s gal/min ft. ft. 1b/in? ft.

1 0.9 404 215 123.4 53.5 3384

2 1.2 539 200 98.4 42.6 298.4

3 1.1 494 205 91.8 39.8 296.9

4 1.1 494 190 103.1 447 293.1

5 0.8 359 180 923 40.0 272.3

Figure 5.20. Solution using the input data listed in Fig. 5.19.

This problem might also be altered, for example, to specify a pressure of 40 Ib/in2  at
node 2. This could be done by placing a special differential head device in pipe 3. We
encourage you to modify the input file in Fig. 5.19, compare it with file FIG19.IN,
obtain a solution and then compare it with file FIG19.0UT on the CD.

The foregoing example might cause a person to believe that it is possible to specify a
pressure anywhere within a network and place a differential head device in any pipe.
However, this is not the case; a problem can be specified for which there is no solution.
An example is the specification of pressures at nodes 4 and 5 in this network without a
differential head device in pipe 6. The discharge in pipe 6 must be 0.8 ft3/s to satisfy
the specified downstream demand, and this discharge dictates the head loss in pipe 6.
Therefore the specification of pressures at both ends of pipe 6 without placing a
differential head device in this pipe will result in an insoluble problem. Similar situations
can be created.

In using the DHEAD command with  NETWK, one must be relatively familiar with
the performance and nature of the network if the specification of impossible situations is to
be avoided. Should an impossible situation be specified, then NETWK will be unable to
complete a solution. In some instances the iterative solution process will simply fail to
converge; this condition becomes apparent when the number of iterations exceed the
allowable maximum and the residual, reported as SUM or SUM OF DIFFERENCE, is
not becoming smaller. Or NETWK will indicate that a singular matrix exists; then an
examination of the system of equations should allow one to discover why the singular
matrix exists. However, often it is easier simply to examine the network and the system
specifications until it becomes apparent how to change the input data to allow a solution.
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Aside from dead-end pipes with pressures specified at both ends, let us look further at
some other conditions that can lead to an improperly posed problem. If we specify a larger
HGL downstream from a node with a smaller HGL, then we must place a differential
head device in one of the pipes between these two nodes. Or in a network with all of its
supply sources in one subregion or at one end of the system, the specification of the HGL
elevations must allow it to decrease continually in the downstream direction through the
network, unless differential head devices have been placed in some of the intermediate
pipes. And differential head devices that produce negative incremental heads will be needed
in some pipes if HGL elevations are specified to decrease more rapidly in the downstream
flow direction than can be caused by pipe friction alone. Experience shows it is difficult to
avoid the creation of an impossible situation if the differential head devices are all located
near the supply sources. In general, if HGL elevations are to be specified at several
nodes, then the pipes containing differential head devices should also be near these nodes.

A network, diagrammed in Fig. 5.21, will illustrate some less easily recognized speci-
fications that will cause an impossible situation. To receive maximum benefit from this
description, the reader is encouraged to prepare input data for this network and actually
obtain solutions etc. as the next few pages are read. This network is a skeletonized system
for a small city. The supply for the network comes from a single source outside of town.
A storage tank has been installed near the old main part of town to supply some of the
demand during periods of above-average usage, and to receive water from the pump when
demand is low. The town has grown, expanding into some areas with slightly higher
elevations, especially to the west of the storage tank.

The present pump is not adequate; to begin the study we decide to seek a solution that
will tell us the pump head that will meet the demand shown in Fig. 5.21 when the storage
tank neither receives nor supplies any water. To set up the problem for NETWK, the
DHEAD command can be used to indicate that pipe 1 contains the differential head
device and that the elevation of the HGL at node 3 should be 580 ft., which is
exactlythe elevation of the water surface in the storage tank.

150 gal/min

100 gal/min

Diameters in inches
Lengths in feet

Figure 5.21 A skeletonized network for a small city.
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We might remove the source pump, add up the demands and specify this sum as a
negative demand at the node which replaces the source, i.e., 10. This problem might
seem reasonable because the demands would be exactly satisfied by the flow from this new
node, and the elevation of the HGL will be established throughout the system by
retention of the connection between the reservoir and the network. However, we have
created a problem for which there is no solution. The network has only one supply source.
With a specified differential head device we must have a reservoir whose discharge is
unknown in order to define the additional equation that is needed for a solution. We have
created problem specifications that cause the flow from the reservoir to be known and equal
to zero. The unknowns for this problem are the three corrective discharges AQ;, AQ»,
and AQ3, around the three loops of the system, plus the incremental head in pipe 1.
Therefore four independent equations are required. Three of these are the energy equations
for the three loops of the system. The fourth equation forces the head loss in pipe 7 to
equal the dif-ference between the water surface elevation in the reservoir and the specified
HGL at node 3; this equation is invalid because the flow in pipe 7 is not unknown.
(We might run NETWK to attempt to solve this improperly-posed problem, using
NPRINT=1 or larger, so the output could be studied.) From this problem we see that at
least two supply sources must exist if a differential head device is to be used in a network.

The specification of the impossible might be avoided by treating the pump as a second
supply source. It may be changed to a reservoir with a suitably chosen water surface eleva-
tion or the original pump could be retained. If the reservoir option is selected, the
differential head reported by NETWK is the head that the pump should supply; if the
existing pump is kept, the reported head will be the additional head needed by the new
pump over that which is supplied by the existing pump. Figure 5.22 presents a suitable
input data file for this problem. (The CD contains this file as FIG22.IN.)

SIZING A PUMP - RESERVOIR FLOW

SHOULD BE ZERO FOR DESIGN

/%

$SPECIF NPRINT=10,NFLOW=1,NPGPM=1 $END

PIPES NODES

101 15000 10 .005 1 50 500

21210000 8/ 2 150 495

3145000 6/ 3100 480

41310000 8/ 4250 480

5354000 6/ 5200 490

63 64000 8/ 6 150 520

7 032000 8/ 7150 515

8 3 8 6000 8/ 8 200 490

9 6 79000 6/ 9100 510

10 2 8 7000 6/ RESER

11 97 11000 6/ 7 580

12 2 9 3000 6/ 1400

13 8 72500 6/ DHEAD
125037580
RUN

Figure 5.22 NETWK input data file for the skeletonized network.

In this input data two reservoirs are given, the original storage tank with a water surface
elevation of 580 ft. and the reservoir where the source pump really exists with a water
surface elevation of 400 ft. The input line after the DHEAD command consists of (1)
pipe 1 that contains the pump, (2) an estimate that this pump must supply about 250 ft
of head, (3) the HGL is to be specified at node 3, (4) the source at the end of pipe 7 is
to be a part of the additional equation containing the differential head, and (5) the specified
HGL elevation.
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To gain modeling experience with a differential head device, the following exercises are
recommended:

(a) Extract from the CD the data listed in Fig. 5.22 and obtain a solution.

(b) Modify this data to designate supply sources as nodes.

(c) Modify the data from either (a) or (b) so that the original pump is now used in the
problem specification. The original pump has the following pump characteristics:

Discharge, gal/min. [[ 700 1200 1500
Head, ft. || 370 350 280

(d) Add a second differential head device in pipe 9 that is to produce a HGL elevation
of 605 ft. at node 9. In this analysis retain the requirement, as in (a), that the pump meet
all of the demand.

Some study of the results from these four solutions will show the following: (a) The
pump must develop a head of 391 ft to supply all of the flow. (b) An additional head of
70.2 ft above that produced by the present pump is needed, but if the diameter of pipe 1
is 11.64 in instead of the present 10 in, then the present pump would meet the
requirements. (c) A booster pump that produces a head of 78.5 ft and a discharge of

3.01 ft3/s is needed in pipe 9 to increase the HGL elevation at node 9 by 20 ft to
905 ft. (d) While the booster pump in pipe 9 does increase the pressure at several nodes
where the pressure was low, it also decreased the pressure at node 6 to just under 16

Ib/in2. From these results the engineer must decide which improvements to propose for
this water distribution system; proposals can then be examined further with appropriate
analyses.

We turn now to a discussion of the twin questions of (1) how to select the pipes in
which the pipe diameters will be specified, and (2) how to assign numerical values to
these specified diameters. We begin by looking at the nine-pipe looped network in Fig.
5.23. Since this network has six nodes, diameters must be chosen for three pipes if all of
the nodal demands and HGL elevations are given. The design demands are shown in the
figure, and the target HGL elevations are listed in the table.

Node HGL Elev. Pipe | L
No. ft. No. ft.
1 482 1 2000
2 463 2 2000
3 481 3 1200
4 466 4 1800
5 470 5 1200
6 463 6 2000

7 1300
8 2000
9 1300
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Figure 5.23 A nine-node pipe network.

In examining this network we note that the pipes to be deleted must prevent the
existence of loops I, II, and III. The reduced network will be branched after three pipe
diameters are specified. If pipes 5 and 9 are assigned diameters, then clearly loops I
and II will not exist in the reduced network. But the effect of specifying the diameter of
pipe 3 in order to eliminate the pseudo loop is not obvious; actually the network would
be divided into two branched systems, but this step is permissible since each has a supply
source. Thus pipes 3, 5, and 9 could be assigned diameters if the values for these
diameters are suitably chosen. Many other combinations are also acceptable. If the
diameter of pipe 3 is specified, then loops I and II can be broken by also specifying
diameters for any of the following pairs of pipes: 6 and9, Sand 8, Sand 7, or 5 and 6.
And pipe 3 is not the only pipe whose removal would break pseudo loop III. FEither pipe
1 or pipe 4 could replace the role of pipe 3. For these last two alternatives the reduced
network would no longer be divided into two branched systems. Then the specification of
an inflow into node 1 or node 3, respectively, would be required, because the assignment
of a diameter to a pipe that connects a supply source to the network fixes the discharge
from that source. Further thought will show for each of pipes 1, 3, and 4, that there
exist five pairs of pipe numbers that could be chosen in order to arrive at a properly posed
problem. For each triple of pipe numbers we can also choose reasonable pipe diameters.
Table 5.7 lists the 15 combinations and reasonable sizes for these pipes. The reader will
find it instructive to prepare input data and obtain, and study, the solutions from NETWK
for several, if not all, of these combinations. File FIG5_23.IN contains the input for
NETWK for the second combination which assigns diameters to pipes 3, 6, and 9.

Table 5.7 Possible pipe combinations whose diameters could be specified

Pipe Sizes Pipe Sizes Pipe Sizes
Nos. in Nos. in Nos. in
3,5,9 |8, 6, 8 1,5,9 |10, 6, 8 |[4,5 9 |10, 6, 8
3,6,9 |8,10, 8 1,6,9 |10,10, 8 |4,6,9 | 10,10, 8
3,5,8 |8, 6, 7 1,58 |10, 6, 7 ||4,5 8 |10, 6, 7
3,5,7 |8, 6, 8 1,5,7 |10, 6, 8 ||4,5 7 |10, 6, 8
3,5,6 |8, 6,10 1,5,6 |10, 6,10 ||4,5 6 |10, 6,10

To investigate the appropriateness of values for diameters, suppose that pipe 6 had
been assigned a diameter of 8 in instead of 10 in in the second combination. Since the

head loss in pipe 6 is prescribed as 15 ft., the discharge must be Qg = 1.503 ft3/s
instead of a discharge of 2.784 ft3/s that is obtained for the 10-in diameter. Since the
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diameter of pipe 5 is also specified, its flow is Q5 = 0.412 ft3/s from node 4. Since
the energy line slopes from node 4 to node 6, the flow in pipe 9 must also be from
node 4. The sum of the discharge in pipe 5 and the demand at node 4 is 1.912 ft3/s;

thus the flow into this node through pipe 6 must exceed 1.912 ft3/s. However, since
this is not the case, the specification Dg= 8 in makes it impossible to find a consistent
solution. To obtain a consistent solution the minimum diameter for pipe 6 can be
computed by setting the discharge at 1.912 ft3/s with a head loss of 15 ft in this pipe.
This diameter is 8.765 in. If in this case the diameter of pipe 5 was a different prescribed
value, it would cause us to compute a different minimum diameter for pipe 6. The
specification of a diameter for a pipe must allow the junction continuity equations at both
ends of it to be satisfied. In larger networks the satisfaction of this criterion at the ends of
all pipes whose diameters are specified is often not an easy task.

5.5 DEVELOPING A SOLUTION FOR ANY VARIABLES

This section examines methods to determine any variable associated with a pipe
network. The unknowns may be selected from the (1) hydraulic grade lines at nodes, (2)
demands at nodes, (3) discharges in pipes, (4) pipe diameters, (5) pipe roughnesses, and
(6) elevations of water supply surfaces. There are two restrictions: (1) the number of
unknowns must equal the number of independent equations, i.e., NJ + NP, and (2) the
knowns are such that an impossible flow situation is not created. Clearly the second
restriction means that the specified variables must be appropriately configured and assigned
values so that a solution for the unknowns will exist.

In Chapter 4 the computer program EQUSOL1 was introduced and discussed. The
subroutine FUNCT must be rewritten for each individual network when this program is
used. (The use of MathCAD and TK-Solver is similar; the user supplies the equations
to be solved and then identifies the unknown variables.) We now consider a computer
program that does not require us to rewrite a subroutine for each different problem. This
program will be restricted in its use to the solution of network problems, but the variables
that are to be found will be specified in the input data. The program will accept differing
numbers of each of the six types of unknown and known variables, so long as the total
number of unknowns matches the number of independent equations. For example, an
"analysis" problem could be specified, in which the discharges in all pipes and the HGL
elevations at all nodes are determined and all pipe diameters, lengths, roughnesses, and
nodal demands are prescribed. For analysis problems this program will not be as efficient
as the programs in Chapter 4 that solved the Q-equations, the H-equations, or the AQ-
equations because more equations are solved. The program will first read a description of
the network so it will know how the pipes are connected; then it will define NJ junction
continuity equations and NP pipe head loss equations; and finally it will solve these
equations simultaneously for whichever variables that are identified as unknown. The
input to this program must describe the network adequately in a manner that is common
for pipe systems, i.e., giving data for each pipe and node in the network. Before reading
further, print one of the versions of NETWEQS1 from the CD so you can study the
listing as you read.

5.5.1. LOGIC AND USE OF NETWEQS1

Program NETWEQS1 will solve pipe-system problems for any of six types of
unknowns, or any reasonable combination of them, so long as the number of unknowns
equals the number of independent equations. The number of equations consists of the sum
of the number of pipes NP and number of nodes or junctions NJ in the pipe system, or
NEQS = NP + NIJ. If no supply source is identified, then there exist only NJ - 1
independent equations from application of the continuity principle at the junctions.

The subroutine FUN defines these equations. The continuity equations are first
evaluated in the DO 10 loop, and then the head loss equations
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H;—H;={f(L/D)Q%/(2gA% ) } (5.31)

follow in the remainder of this subroutine. The friction factor f is found by using Gauss-
Seidel iteration if the flow is turbulent (Re >2100) and by using f = 64/Re if the flow
is laminar, but if Re < 160, then f=0.4 to prevent f from becoming unbounded
whenever Q — 0. (Note RE in the program is actually Re/7.34347283.)

The user must provide estimates for the unknowns, as well as values for the knowns, in
the input file for NETWEQS1. When NETWEQSI is executed, the user is asked to
provide three input/output unit numbers, the acceleration of gravity g, and the kinematic
viscosity VISC of the fluid. The default values for these parameters are IN2 =2, INS5 =

5, INd=4, g=322 ft/s2 and VISC = 0.00001417 ft2/s. To accept all these defaults,
simply give / in the Fortran program after the last value that has been entered. The
meaning of the three input/output units is as follows: IN2 is the input unit for the
majority of the data that describes the pipe system. If IN2 =0 or IN2 =15, then this data
must be entered from the keyboard in the proper order without any prompts. When IN2
isnot 0O or 5, then a prompt will request the name of the file that contains the input
data. If the user is using MS-Fortran, an alternative is to give the input file name on the
"command line" (or after typing NETWEQSI1 to execute the program, leave a space and
list the file name). If IN4 =0 or 6, then the output will be written to the monitor;
otherwise it will go to a file.

The input data for NETWEQS1 consists of two types. The first type describes the
network, and this data is read by using logical unit IN2. The second type defines the
unknowns, and it is read by using logical unit INS5. If this data is placed in a file (IN5
not equal to O or 5), then this file provides the data that defines the unknowns. The
default INS =5 indicates that these data are to come from the keyboard. If IN5 is 5 or
0, then NETWEQS1 will prompt for the input that is needed to define the unknowns.
These data consist of the following 6 values (on separate lines):

The number of HGL elevations that are unknown at nodes.
The number of nodal demands that are unknown.
The number of unknown pipe discharges.
The number of pipe diameters that are unknown.
The number of pipe roughnesses that are unknown.

6. The number of unknown water surface elevations.
After these six lines that give the number of each type of unknown, the next lines give
lists of node or pipe numbers that identify the individual unknowns. The number of these
lines will match the number of categories (a maximum of six) that are given nonzero
numbers. These lists of numbers can consist of individual values or a range of values
separated by a minus sign (-). The subroutine RLINE will allow ranges of integers to be
intermixed with single integers. The argument NUM returns the number of integers in
the list in the Fortran program. For example, if a pipe system consists of 6 pipes and 5
nodes, and the unknowns are to be the discharges in all pipes and the HGL elevations at
all nodes, then the input specifications should consist of the following numbers:

Nk wi =

5,0, 6; 0,0, 0, 12345, 123456
In these files the semicolon (;) indicates that a new line should be used. If the keyboard is
used to supply the input data, then a prompt appears in place of each semicolon and
automatically separates the data. Alternatively this input could be the following:

5; 0; 6; 0; 0; 0; 1-5; 1-6

In place of the HGL elevation at node 5, if it were desirable to determine the demand at
node 5, then the input file could be the following:
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4; 1; 6; 0; 0; 0, 1234; 5, 123456
An alternative listing of this input might be this set:
4; 1; 6; 0; 0; 0; 1-4; 5; 1-6

To reiterate, if INS =5 or 0, then NETWEQS1 will prompt the user for the next
expected piece of information. If IN2 and IN5 are given the same value so both types of
data are in the same file, then the data read under IN5 (the data that defines the unknowns)
is given after the data read by IN2 which defines the configuration of the pipe system.

The unit defined by IN4 is the Fortran unit number that will write the problem
solution as output data. This output will go to the terminal/monitor if IN4 =0, 5, or 6.
Otherwise it will be written to a file. A prompt will request the file name, unless it is
included on the command line. The program calls subroutine SOLVEQ (see Appendix A)
to solve the linear system of equations that is obtained by implementation of the Newton
method. In this solution the elements of the Jacobian matrix of derivatives are evaluated
numerically, as described in Chapter 4.

5.5.2. DATA TO DESCRIBE THE PIPE SYSTEM

Most of the data that describe the system is normally placed in a file that will be read
on Fortran logical unit IN2. These data consist of the following:

Line 1: Four integers; number of pipes NP, number of nodes NJ, number of
reservoirs NRES, number of pumps NPUMP.

Line 2: Pairs of values; each pair consists of the pipe number that connects a reservoir
to the network and the water surface elevation of this reservoir. Each pair can be on a
separate line.

Line 3: If pumps exist (NPUMP>0), then seven values are required for each pump: the
number of the pipe containing the pump, followed by three pairs of discharge and pump
head which define the pump characteristic curve. The data for each pump is a separate line.

Next NP lines: These lines contain the pipe data, six items per pipe. The pipes must
be numbered consecutively from 1 through NP. There is one line per pipe, sequenced by
pipe number, since the pipe number itself is omitted. Each line contains the following:
The upstream node.

The downstream node.

The pipe length.

The pipe diameter.

The pipe roughness.

. The discharge in the pipe.

The pipe diameters and wall roughnesses must have the same units, e.g., feet for ES units
or meters for SI units. These values are only estimates if the variable is an unknown, for
they then become initial values for the Newton method in the solution process.

Next NJ lines: These lines contain the node data, three items per node. There is one
line per node, sequenced as the nodes are numbered because the node number is not
included. Each line consists of the following:

1. The demand at the node.
2. The HGL elevation at the node.
3. The ground elevation of the node.

All values must be listed in consistent units, e.g., ft3/s and ft for ES units or m3/s
and m for SI units.

To see how this input scheme works, consider the small network in Fig. 5.24. The
input data set would take the form shown in Fig. 5.25.

oA LN~
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Figure 5.24 A small network to study with NETWEQSI.

6510

1 500.

0 1 1500. .667 .000417 2.1
12 1000. .5 .000417 .82
2 4 1500. .5 .000417 .47
1 3 1500. .5 .000417 .78
3 41200. .5 .000417 .28
4 5 1000. .333 .000416667 .25
.5 476.05 350.

.35 464.8 350.

.5 460.7 350.

.5 458.9 350.

.25 452.8 350.

Figure 5.25 The input data set for the small network in Fig. 5.24.

Assume the data in Fig. 5.25 have been placed in a file FIG1.DAT, which is the file name
for it on the CD. Upon execution of NETWEQSI1, the following three values could be
given from the keyboard in response to the first prompt: 2 5 4/  Next a file name is
requested. The name FIG1.DAT would be given in reply. Since the second input logical
unit has been given as 5, the user is then asked to define the number and types of the
unknown variables. Upon supplying 5 0 6 0 0 0, the user is requested to give the
numbers associated with items 1 and 3. The two responses could be 1-5 and 1-6.
Next the output file name is requested. The solution in this output file consists of the
following two tables:

PIPE DATA

PIPE NODES L DIA. e Q HEAD

NO. FROM TO x104 LOSS
ft. in in ft3/s ft.

1500 0.667 4.17 2.100 23.95
1000 0.500 4.17 0.824 11.39
1500 0.500 4.17 0.474 5.98
1500 0.500 4.17 0.776 15.21
1200 0.500 4.17 0.276 2.17
1000 0.333 4.17 0.249 10.94

(O, I SN UV I SN O I

NN AW =
R =N o

Figure 5.26 The output from NETWEQSI.
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NODE DATA

NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.

/s ft. ft. 1b/in? ft.
1 0.500 350 126.0 54.6 476.0
2 0.350 350 114.7 49.7 464.7
3 0.500 350 110.8 438.0 460.8
4 0.500 350 108.7 47.1 458.7
5 0.250 350 97.7 424 4477

Figure 5.26, concluded. The output from NETWEQSI.

5.5.3. COMBINATIONS THAT CAN NOT BE UNKNOWNS

We have noted that NP + NJ independent equations exist, and therefore we might
regard this many variables as unknowns that we may seek to find. However, there are
combinations of these variables that cannot be selected as unknowns because mathematical
problems then arise, for which there is no solution. The difficulty is that the equations are
mathematically inconsistent. If an impossible problem is specified, then either conver-
gence to a solution will not occur or the Jacobian matrix that is used in implementing the
Newton method will be singular. Let us look further at the elements that create a problem
for which it is impossible to find a solution. It has become obvious to us for a single
pipe that it is not possible to specify its diameter and roughness, the discharge in it and the
heads at both ends. By specifying D, e, Q, H;, and H;, the relation between discharge
and head loss is fully defined, and the need for a frictional head loss equation has been
eliminated. When these variables are all prescribed, a problem is defined which has no
solution, and the equations are inconsistent. Therefore, if any pipe in a network problem
has D, e, and Q given and the heads at both ends are selected as known values, the
problem has no solution. One of these variables must be unknown.

There are many less obvious combinations of known and unknown variables that can
cause a problem to be impossible to solve. To illustrate some of the possibilities,
consider the three-pipe looped network in Fig. 5.27. For this network there are five basic
equations, two junction continuity equations and three pipe head loss equations. Assume
all demands are known, and we decide to specify Q; in pipe 1. Now it is no longer
possible to specify the heads at both ends of either pipe 2 or 3 along with their diame-
ters and roughnesses, because the specification of Q; has also fixed O, and Q3, since

0>=07-QJy and Q03=QJ3-02=0QJ3 +QJy - Q7. We would therefore be deceiving
ourselves if we placed either Q> or Q3 in the list of unknowns. Regardless of which

Node | Demand | HGL Elev.
ft3/s ft.
1 - 22 200
2 1.2 198
3 1.0 195

All e =0.0012"
All elev. =0'
QJ,
/QJ3

(1] L,=3500 3]

Figure 5.27 A three-pipe looped network.
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discharge is specified, the other two have also been fixed if any two of the three demands
are specified.

Table 5.8 lists 20 combinations of known and unknown variables and the solution
for each combination that leads to a set of consistent simultaneous equations. The lengths
of pipes are L; = 2000 ft., Ly = 1500 ft. and L3 = 3500 ft. To limit the entries in the
table it is assumed that all roughnesses are the same, e; = e» = e3 = 0.0012 in, and that
the elevation of the hydraulic grade line at node 1 is H; =200 ft. For cases 10, 13, and

14 no solution is possible, i.e., an impossible problem has been specified. These three
Table 5.8
Combinations of Variables as Unknowns,
With the Remaining Variables Specified.

Case Unknown Variables Specified Variables

1 H; Hj 0; 0 03 D; D, D3 Ql Qs
196.55 196.43 1.257 0.057 0.943 10 6 10 1.2 1.0

2 QJ, H; 0 0, 03 D; D, D3 H; Ql
1.636 19530 1.537 - 0.096 1.097 10 6 10 195 1.0

3 H, Qi3 g 0, 03 Dy, D, D3y Ql Hj;
19591 1.315 1.380 0.180 1.135 10 6 10 1.2 195

4 H; Q3 0y 0} 03 D; D, D3y Qh H
192.15 1.797 1.539 0.339 1.792 10 6 10 1.2 195

5 Q, Q3 O 0] 03 D; D, D; H, H;
0.584 1.484 0.933 0.0491 1.135 10 6 10 198 195

6 QJ Ql; Dy 0, 03 0 D, D; H H;
0.651 1.135 0.855 0.349 1.135 1.0 6 10 198 195

7 Qh Q3 O D; 03 Dy O Dy Hy Hj;
0.433 1.635 0.933 6.863 1.135 10 0.5 10 198 195

8 Qh Q3 O )] D3 Dy D, O3 H, H;
1.349 0.584 0.933 0.349 0.795 10 6 1.0 198 195

9 Qh Q3 D D, 03 0 O Ds H, H;
1.635 0.5 1026 6.86 1.135 1.0 05 10 198 195

10 QL Qi3 D 0> D; 0 03 D3 Hy H;
Inconsistent (no solution) 1.0 1.0 10 198 195

11 Qh, Qi3 1 0, D3 0 03 D H, Hj
0.651 1349 10.26 0.349 9.54 1.0 1.0 6 198 195

12 Qh, QJ; D, D, D; g O 0O H H;
1.5 0.5 10.26 6.86 9.54 1.0 0.5 1.0 198 195

13 Qh, Q3 D; Ds 03 0 0 D, H H;
Inconsistent (no solution) 1.0 0.5 10 198 195

14 Qh, Q3 D, D; 03 0 O D H H;
Inconsistent (no solution) 1.0 0.5 10 198 195
15 H, H; Dy O 0 0, D, D3 QI QI;
198.45 19735 1228 0.2 0.8 1.4 6 10 1.2 1.0

16 H, H; 0 Dy 03 D; 0 D3 Q) Qh
198.27 197.35 1.4 623 0.8 12 0.2 10 1.2 1.0
17 H, H; 0 O D Dy Dy 03 Q Q&3
198.27 197.17 1.4 0.2 9.87 12 6 0.8 1.2 1.0
18 H, H; D, D, 0j 0, O Dy Q) Qs
Inconsistent (no solution) 1.2 02 10 1.2 1.0
19 H, H; 0 D, Dj 0, 03 D Qhh Qs
Inconsistent (no solution) 02 1.0 12 1.2 1.0
20 H, H; D; 0, Dj 0 03 Dy Qhh Q)
Inconsistent (no solution) 1.2 1.0 10 1.2 1.0

A note on units: All heads are in ft; all discharges are in ft3/s; all diameters are in in.
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inconsistent combinations are all created by specifying the head at both ends of one of the
pipes while trying also to specify its diameter and discharge. In case 13 this over-
specification is obvious. For pipe 2 Q, D and its head loss hp = Hp - H3 are all

known. In case 10 this overspecification is not so obvious until it is realized that, since
Hj =200 ft. is given, then 03, D3 and hy3=Hj - H3 are in effect given. And for case

14 the same type of overspecification for pipe 1 occurs; the discharge Q;, diameter
Dj, and head loss hf; = Hj - Hp are all specified. NETWEQST detects such inconsist-

encies by finding that the Jacobian matrix in the Newton iteration is singular; it reports
this and then stops.

Let us examine cases 15, 16, and 17. For this particular network the specification of
any one discharge and the demands QJ, and QJ3 1is equivalent to a specification of the
other two discharges. This situation occurs because the continuity equation at node 2
requires, if Q; is given, that Q> = Q7 - QJ (orif Q> is given, then Q; =02 + Ql»).
Atnode 2 Qr+ Q3 =0QJ3, so with Q> found from the continuity equation at node 2,
we find that the continuity equation at node 3 then requires Q3 = Q2 + QJ3. However,
the fact that the specification of any one discharge also fixes the other two discharges (with
QJo and QJ3 known) does not in itself result in an inconsistent problem because the
junction continuity equations are part of the system of equations. It does mean that we are
making the problem more computationally intensive than is necessary. In case 15 a
mental computation with the continuity equations would give Q0 = 0.2 ft3/s and Q3 =
0.8 ft3/s. Next the head losses in pipes 2 and 3 could be computed, from these H> and
H3 could be determined, and finally D; could be found. Similar steps requiring the
solution of only one equation at a time (and the Colebrook-White equation) can be used for
cases 16 and 17. For all other cases in the table two simplifications in the solution
process also exist. Treating each consistent case as a system of NP + NJ simultaneous
equations will always be successful, even if it leads to more arithmetic than is necessary.

Another selection of known variables that produces inconsistent equations is the specifi-
cation of all of the pipe discharges that join at a node while simultaneously giving the
demand at this node. By doing so, that junction continuity equation no longer defines a
relation between the pipe discharges and the demand there. The inconsistency will occur
whether or not the junction continuity equation is satisfied by the given discharges. Cases
18, 19, and 20 are problems for which no solutions exist because a junction continuity
equation can not be used. In case 18 the overspecification is obvious because Qj, >,
and QJp are all knowns, and yet these three variables are the only variables in the
continuity equation at node 2: Qj - Q> = QJp. (We have actually reduced the network to
a one-pipe network.) That case 19 gives all variables in the junction continuity equation
atnode 3 is now obvious. However, case 20 is not quite so obvious. Since the inflow
atnode 1 (the magnitude of the negative demand there) must equal QJ, + QJ3, we note
that giving Q; and Q3 along with QJp and QJ3 results in a specification of all
variables in the junction continuity equation at node 1.

The foregoing situations will always result in a failure to find a solution. There are
other specifications that will cause NETWEQS1 (or NETWEQST) to seek a solution
but fail. Here are two more examples: (a) a situation requires a reservoir to supply a flow
to the network, but the water surface elevation of the reservoir is given a value that is
lower than the head at the other end of the connecting pipe; (b) consider a junction where
two pipes join to meet a positive demand, but at the same time specify the heads at the
opposite ends of the pipes so the flow must leave the junction. So we see that an
unthinking specification of known values can, and often will, create a problem for which
there is no solution, and the likelihood of this occurring increases with the size of the
network because it then becomes increasingly difficult to identify situations for which there
is no solution. An inconsistent problem will often become evident with  NETWEQSI
when a message from the linear algebra solver SOLVEQ says that the Jacobian matrix is
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singular, which usually means that the linear system of equations, consisting of the
Jacobian matrix and the equation vector as the known vector, is not an independent system
of equations.

Example Problem 5.5

The pipe lengths and other data for a 14-pipe network supplied by two reservoirs are
given in the file EXP5_5.IN on the CD. Obtain a solution from NETWK using this
input, and then prepare input data for NETWEQS1 and obtain solutions therefrom for the
following cases:

1. The heads at all nine nodes, as well as the discharges in all 14 pipes, will be

regarded as unknown. (This is the problem solved by NETWK.)

2. Atnode 5 the demand QJ5 will be considered unknown, and the head H5 will be

specified as Hs =2504.3 ft.

3. All of the demands are considered unknown, and the heads are as given in the input

data to NETWEQS]1.

4. The heads at all nine nodes and the discharges in all 14 pipes are considered

unknown.

5. The heads at all nine nodes are unknown, and the diameters of pipes 2, 7, and 10

are unknown with the discharges in these three pipes specified.

Repeat the five cases with the reservoir attached to pipe 14 having a water surface
elevation of 2450 ft. and with a pump in this pipe that has the following operating
characteristic data pairs: Q7 =1 ft3/s, H; =55 ft.; Qp =2 ft3/s, Hy =50 ft.; Q3 =3
ft3/s, Hz =43 ft.

(2] [3] (4]

, 3 3
|_|£:| 2600 @ o)) (©)
@

1 %) 051 ®) (6]
©) (11 a3

(10) (12) (14) = 2500'
7] i8] 0] =1

The input data, to be read on logical unit INS, are shown below for the five cases.
For case 4 NETWEQSI reports a "singular matrix," which indicates that at least one
redundant equation was included in the system of equations. It should be clear that a
solution to case 4 was not possible because we can not specify the heads at both ends of
all pipes while simultaneously specifying all of the demands. These same cases are solved
by using NETWEQS1 with a pump in line 14 and the water surface of this reservoir
lowered to 2450 ft. These solutions follow those from NETWEQS.

Data file for NETWEQSI1 using input IN2 =5

14920 8 9 1200 .66666667 .000166667 1.4
1 2600 14 2500 9 6 1200 .66666667 .000166667 1.2
0 1 1500 1. .000166667 9.7 0 9 1500 .66666667 .000166667 1.3
1 2 1000 .66666667 .000166667 2.9 1.3 2548.6 2410

2 3 2000 .66666667 .000166667 1.7 1.2 2522.8 2405

5 3 1000 .66666667 .000166667 0.2 1.0 2504.1 2400

3 4 2000 .5 .000166667 0.9 1.4 2481.1 2340

6 4 1000 .5 .000166667 0.5 0.9 2504.3 2405

1 5 2000 .66666667 .000166667 2.7 1.5 2485.4 2350

5 6 2000 .5 .000166667 0.8 1.2 2518.1 2405

1 7 1200 .66666667 .000166667 2.9 1.0 2491.6 2400

7 8 2000 .66666667 .000166667 1.7 1.5 2491.6 2370

5 8 2000 .66666667 .000166667 0.8
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Case 1 input. IN3 =35 Case 2 input. IN3 =35 Case 3 input. IN3 =35

9 8 0
0 1 9
14 14 14
0 0 0
0 0 0
0 0 0
1-9 12346789 1-9
1-14 5 1-14
1-14
Case 4 input, IN3 =5 Case 5 input, IN3 =5
9 9
0 0
0 11
143
0 0
0 0
1-9 1-9
1-14 1345689111213 14
2710

To repeat the five cases with a pump inserted in line 14 and a specified reservoir water
surface elevation, the input data file for NETWEQS1 above is modified by replacing the
first two input lines with the following three input lines:

14921
1 2600 14 2450
14155250343

The remainder of the input file is unchanged.

The solutions in file EXP5_5.0UT on the CD were obtained for the 14-pipe
network by using NETWEQSI1 for the five cases. The reader should be able to obtain
identical solutions. The solutions to the five cases which include a pump are in file
EXP5_5.0U1 on the CD, which can be used to verify that your solutions are correct. In
these solutions the pump is called device 1 when it is in pipe 14. The program output
lists the change in head caused by each such device. In case 1 we find the following
message:

Devices caused the following changes in heads:
Device 1 inpipe 14  Change in head = 53.45 ft.

* * *

Example Problem 5.6

For the small network below do the following:

(a) Write the equations that describe the system.

(b) For the specified physical system, find the discharge in each pipe and the head at all
nodes (duplicate this solution by preparing input data for NETWK).

(c) Determine the diameter of pipe 1 so the discharge through pipe 5 into the
reservoir is Q5 = 0.5 ft3/s.

(d) Find the head that the pump must produce so that the discharge through pipe 5 into

the downstream reservoir is Q5=1.0 £t3/s.

Q, ft3/s]|4.5 4.0 |3.5
h,, ft. || 54 | 50 | 44

p°
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1.5 f63/s @

—_— ' " T
<— 100 o 8" - 6000 1.0 ft¥/s
(P) ] All e =0.002" (5) 0F—=—
12" - 4000' 3) NN - -
8§ o (3] 6" - 2000
Y00y, 2] &~
1.2 ft3/s

(a) The equations are the following:

Fy = 100+ hy, — Hy ~ fi(Li/Dy (Q1/A)*/(2g) = 0

Fy = Hy - H3 = f2(Ly/ Dy (Q2/A9)%/(2g) = 0
F3 = Hy - Hy — f3(L3/D3)(Q3/A3)> /(2g) = 0
Fy = Hy - Hy - f4(Ls/Dy )(Qa/As)*/(2) = 0
Fs = Hy-90- fs5(Ls/Ds)(Qs/As)>/(2g) = 0

Fe=01-0-03-0J;1 =0

F7 =0 +04-05-0J3 =0

ey
I

3-04-0Jp =0

with h

~ 407 +420; - 54

(b) The 8 unknowns are Qj, Q2, 03, O4, Q5, H;, Hp, and H3. Using

NETWEQSI1 to solve this problem would require the following input data:

From keyboard:
253/

In a file from logical unit 2:
5321 Since the second logical unit was given as 5,
1 100 the keyboard data for the unknowns is
590
1455445035 44
0 1 4000 1.0 .000167 4.2
1 3 6000 .667 .000167 1.3
1 2 4000 .667 .000167 1.5
2 3 3000 .500 .000167 0.3 and then
0 3 2000 .500 .000167 0.5 1-
1.5 126 0. 1
12980
1.0950

The solution from NETWEQS1 follows.

OO WLnNnOoO W

[V, o)
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PIPE DATA

PIPE NODES L DIA. e Q HEAD
NO. FROM TO x104 LOSS
ft. ft. ft. ft3/s ft.
1 -1 1 4000 1.000  1.67 4102  26.44
2 1 3 6000 0.667  1.67 1.191  29.17
3 1 2 4000 0.667  1.67 1.411 26.67
4 2 3 3000 0.500  1.67 0.211 2.49
5 -2 3 2000 0.500 1.67 - 0.400 - 5.37

Devices caused the following changes in heads:
Device 1 inpipe 1  Change in head = 50.98 ft.

NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
/s ft. ft. 1b/in? ft.
1 1.500 0 124.5 54.0 124.5
2 1.200 0 97.9 424 97.9
3 1.000 0 95.4 413 95.4

This can be regarded as the solution to an analysis problem since all of the physical
features of the network are known, and the solution describes the performance of this
existing network in response to the specified demands. We could verify that this
solution is the solution from NETWK by supplying this input file to NETWK:

Example Problem NODES

/* 1150

$SPECIF OUTPU1=2 $END 212

PIPES 31

1014000 12 .002 RESER

21360008 590

31240008 PUMPS

42 33000 6 145544503544 100
53 02000 RUN

(¢) The equation set is unchanged from part (a). However, here the unknowns are
different. The input data file in part (b) is again supplied to NETWEQS1. When we
are asked to identify the unknowns, the following keyboard input will be supplied:

SO~ hOWw

followed by:

<

—_ N =
1
W

(In parts (b) and (c) we supply a discharge of 0.5 ft3/s for pipe 5 in the input data
file. This was merely an estimate in part (b), but now this value is the specified
discharge.)

The solution from NETWEQSI1 is the following:
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PIPE DATA

PIPE NODES L DIA. e Q HEAD
NO. FROM TO x104 LOSS
ft. ft. ft. ft3/s ft.

1 -1 1 4000 1.041  1.67 4200  22.09

2 1 3 6000 0.667  1.67 1.246  31.72

3 1 2 4000 0.667 1.67 1454 2823
4 2 3 3000 0.500  1.67 0.254 3.50
5 -2 3 2000 0.500 1.67 - 0.500 - 8.03

Devices caused the following changes in heads:

Device 1 in pipe

1 Change in head = 51.84 ft.

NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
ft3/s ft. ft. 1b/in? ft.
1 1.500 0 129.8 56.2 129.8
2 1.200 0 101.5 44.0 101.5
3 1.000 0 98.0 425 98.0

(d) One way to determine the required pump head so that Qs = 1.0 ft3/s is to replace

the pump and its upstream reservoir with a node having a demand of - 4.7 ft3/s; this

change will force the flow into the downstream reservoir to be 1.0 ft3/s. The input to
NETWEQSTI is as follows:

4

9

1 4000 1 .000167 4.7

3 6000 .667 .000167 1.3
2 4000 .667 .000167 1.5
3 .000167 0.3

and the solution from NETWEQSI

200.3 - 100 = 100.3 ft.

0 3 2000 .5
1.5 126 0.
12980
1 950
-4.71300

.000167 1.0

will show that the pump must supply a head of

PIPE DATA
PIPE NODES L DIA. e Q HEAD
NO. FROM TO x104 LOSS
ft. ft. ft. ft3/s ft.
1 4 1 4000 1.000 1.67 4.700 34.21
2 1 3 6000 0.667  1.67 1.536 46.90
3 1 2 4000 0.667  1.67 1.664 36.38
4 2 3 3000 0.500  1.67 0.464 10.52
5 -1 3 2000 0.500 1.67 - 0.995 - 29.22
NODE DATA
NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
ft3/s ft. ft. 1b/in2 ft.
1 1.500 0 166.1 72.0 166.1
2 1.200 0 129.7 56.2 129.7
3 1.000 0 119.2 51.7 119.2
4 - 4700 0 200.3 86.8 200.3
*k ES ES
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Example Problem 5.7

Obtain solutions to Example Problems 5.5 and 5.6 using program NETWEQST.
This program is one of the auxiliary programs in the NETWK package. It was developed
to allow the user to specify the variables which are unknown, and it accepts the same input
data as NETWK to define the physical features of the network. In other words it will
solve the same problems as NETWEQS1 does, but it uses the same input files as
NETWK. However, not all commands and options in NETWK are acceptable to
NETWEQST. On the other hand it has additional options that provide the user some
freedom in the way information is provided about the unknowns. If NETWEQST is to
be used, then the following input files could be used, for example, to solve case 2 in
Example Problem 5.5 and Example Problem 5.6, part (c), taking the default of being
prompted for information that defines the unknowns. The prompts from NETWEQST
are in bold type, and the responses are not.

For Example Problem 5.5, case 2, the portion of the input which defines the network
is identical to that for NETWK in Example Problem 5.5 itself. Here the bold prompts
from NETWKST are followed by the responses that define case 2:

Pipes = 14, Nodes = 9, Sources = 2

23 unknowns must be given. Give no. of each:
1. HGLs at nodes 8

2. Nodal demands 1

3. Pipe discharges 14

Give 8 HGLs at node numbers 1-4 6-9

Give 1 nodal demand numbers 5

Give number of nodal HGL-elevations provided 1
As pairs give 1 node number and the HGL

5 2504.3

Give number of pipe discharges provided 0

The data for Example Problem 5.6(c) is similar:

Example 5.6(c) using NETWEQST
/*

$SPECIF $END

PIPES

1014000 12 .002
2136000 8

312 4000

4233000 6

53 02000

NODES

1150

213

31

RESER

590

PUMPS
14.5544503544 100
RUN

Pipes = 5, Nodes = 3, Sources = 2

8 unknowns must be given. Give no. of each:
1. HGLs at nodes 3

2. Nodal demands 0

3. Pipe discharges 4

4. Pipe diameters 1

Give 4 pipe discharge numbers 1-4

Give 1 pipe diameter numbers 1
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Give number of nodal HGL-elevations provided 0

Give number of pipe discharges provided 1

As pairs give 1 pipe number and the discharge therein
5-05

5.6 HIGHER ORDER REPRESENTATIONS OF PUMP CURVES

The head produced by a pump has heretofore been defined as a function of the discharge
by fitting a single second-order polynomial through three pairs of points. If the pump
operation occurs within a relatively narrow discharge range, and these are near the normal
capacity of the pump, then such a simple representation is adequate. When this is not the
case, then more advanced procedures are needed to define well the pump's operating
characteristics. Various interpolation procedures can be used for the mathematical represen-
tation of a pump curve. This section discusses how pump curves can be duplicated mathe-
matically when equations are needed to define their operating characteristics.

5.6.1. WITHIN RANGE POLYNOMIAL INTERPOLATION

Any number of values might be used to define a pump characteristic curve, and a
polynomial of any order might be used to interpolate the head corresponding to any given
discharge if the range of the discharge values brackets the given discharge. A first-order
polynomial is simply a straight line. To represent the pump head well with a first-order
polynomial interpolation, we should first ensure that the smaller discharge Q; is less than

or equal to the given discharge Q, and that the larger discharge Q;y; 1is greater than Q.
The interpolating function for a first-order polynomial is

hy = hpi + (hpi+1 = hy; )(Q -0:)/(0141- Q) (5.32)

in which the quantities with subscripts i and i+/ are known, h, is the interpolated head
of the pump and Q; =Q0=0Q;,;. When Q becomes larger than Q;,;, then the first
point is dropped and the next point is added. The use of a higher-order polynomial requires
more data. An nth-order polynomial requires at least n+/ pairs of data points since an
nth-order polynomial passes through n+/ points, e.g., a second-order polynomial passes
through three points, a third-order polynomial through four points etc. The Lagrange
formula is a convenient interpolation formula to use for this purpose because the increment
between consecutive values of the independent variable, the discharge Q in this case, need
not be constant. Other formulas do require a constant increment of the independent
variable. The Lagrange interpolation formula is

n
h, = 3 F;H; (5.33)

in which each H; is the pump head at point i, and each F; is the quotient of two

products:
n

(e-0/) /T1(2i-9) (5.34)

J=i Jj=i

=

F; =

in which the two products IT include »n - 1 terms, with the term j =i omitted. To
implement the Lagrange interpolation successfully in a computer program, two
requirements must be met: (1) the discharge for which the head is wanted must lie within
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the range of the discharge data points (otherwise the process is extrapolation), and (2) Egs.
5.33 and 5.34 must be properly written. The program LAGRANGE on the CD is
designed toread n pairs of points for a pump curve and then provide the pump head for
any specified discharge. The program can also be converted into a function subprogram
which will pass (hp, Q) pairs to the function from the main program, and an argument

will specify the Q for which the head is to be determined.

Example Problem 5.8

A pump curve is shown below. Enter 10 pairs of points from this curve into a file,
and then use Lagrange's formula with a third-order polynomial interpolation to obtain
values of the pump head corresponding to specified discharges, i.e., find &), for discharges
of 850 gal/min, 5800 gal/min, 4200 gal/min, etc.

200

180

T

160

140

120 \
100 \

80

Pump head, ft

0 1000 2000 3000 4000 5000 6000

Discharge, gal/min

We start the solution by selecting 10 discharge values along the abscissa and reading
the corresponding values of pump head to obtain the following:

Q

gal/min

800 | 1600 | 2400 |3200 |4000 [4500 |4800 |5200 [5600 | 6000

ft.

h, ||18l.5 170.0 1 160.0 | 148.5 | 138.6 | 128.0 | 120.4 | 109.0 | 95.0 80.0

These data pairs now must be entered into a file that can be read by program LAGRANGE.
The input from the keyboard will be 10 2 3, followed by the filename. Then provide the
discharges 850, 5800, 4200, etc. in response to the prompt Give discharge (minus
to terminate). The heads returned by the program are the following: Q =850 gave
hp =181.51, O =5800 gave hj,=287.53, Q =4200 gave hp, = 135.16.

% * k
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5.6.2. SPLINE FUNCTION INTERPOLATION

One disadvantage of using Lagrange interpolation is seen when the interpolation
interval shifts to continue to bracket the discharge; then the first derivative, which is
needed in the Newton method, is not continuous. An alternative is to use spline
interpolation. ~ An essential difference between spline and piecewise polynomial
interpolation is that, although a given spline function interpolates only between two
consecutive points, both the spline function and one or more of its derivatives are
continuous across these points. We will only discuss cubic splines here, since they require
roughly the same computational effort as quadratic splines and have both continuous
second and first derivatives across the data points.

Cubic splines develop a third-order polynomial between each pair of consecutive points
as the interpolating function, or

Y = ax 4 bix? + cix + d; (5.35)

in which superscript i refers to the segment of the curve before point i, the dependent
variable y plays the role of the pump head hp, and x replaces Q. (For notational

simplicity let H represent h, in the remainder of this section.) For example, if we use
four (Hj, Qj) pairs, there will be three interpolating equations of the form of Eq. 5.35. In

this case the total number of unknown (a, b, c, d) coefficients is 4(n - 1), or for our
example 4x3 = 12 unknowns. Thus 4(n - 1) equations are needed. By substituting the
known (H, Q) pairs at points j and j+ 1 at the ends of segment i, we obtain 2(n - 1)
of these equations. Another (n - 2) equations are developed by equating the first
derivatives of the two interpolating equations that apply at each data point, and an
additional (n -2) equations result from equating second derivatives at these same points.
The last two required equations come from boundary or end conditions. There are two
commonly used kinds of boundary conditions. One sets the second derivatives at the

beginning and/or end of the global interval to zero; thatis, ( d? v/ dx? = HIH =0 and/or
(d 2 v/ dx? o = H,;I = (. These are called natural cubic splines. The other sets yly and/or

'

y, to values calculated by assigning values to the first derivatives.

In detail, the equations for the 4-point example are the following:

Hi = 10 + 0107 +¢10; +4d (5.36)
Hy = aj05 + 0105 +c10p + 4 (5.37)
Hy = 303 + 003 + 209 +dy (5.38)
H3 = 0y03 + 003 + 203 +dy (5.39)
H3 = a30; +b305 +¢303 +d3 (5.40)
Hy = a30] +b307 + 304 +d3 (5.41)

(1) (2)
O 30105 +2b105 +¢ = 34205 +2by 0 +¢y (542)
A
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/dy(z)\ =/dy(3)\
ax ), 7 T ),

= 34,07 +2b,05 + ¢y =3a305 +2b305 +¢3  (5.43)

(VY (a2

64105 +2b) = 6ay05 +2b (5.44)
3 3 = 6410y +2b) =6a20) +2b)
L dx” ], dx )2
2.(2) 2.(3)
(d - \_(d - ) = 6ay03 +2by = 6a303 +2b3 (5.45)
dx 3 dx 3
The boundary conditions are either
2.(1) "
(d y2 Vo H =0 (5.462)
L dx Jl
2.(3) )
(d - ) = Hy, =0 (5.46b)
dx 4
or
(1)
(d);, ) = specified = 3a1Q12 +2b10) + ¢ (5.47a)
X
1
(3)
( dz ) = specified = 3a303 +2b304 +c3 (5.47b)
X
4

In these equations y has been used as the continuous dependent variable. For use in
interpolating a point from a pump curve, the dependent variable will be called the pump
head H, and in subsequent equations it will be used in place of y.

One obvious continuation is simply to solve the above equations for a;, b;, c¢; and
di, i =1,2,3 and then use the appropriate equation to compute H for a given Q.

However, an alternative that requires less arithmetric is the following interpolation
equation:

H(l) = Cll'Hj + biHj+1 +CiHj +diHj+1

(5.48)
The coefficients a, b, ¢, and d are now obviously different than before. The coefficients
a and b are weighting functions that are applied to the dependent variable H at points j
and j+ 1, and ¢ and d are weighting functions applied to the second derivatives at these
same points. In the finite element method @ and b are the shape, basis or interpolation
functions that are associated with a linear one-dimensional element. It can easily be shown
that a; = (Qj+1 - Q)(Qj+1 - Q)) and b; =(Q - Q)/(Qj+1 - Q) with a;+bj=1. We see
that a; and b; are linear functions of Q. For simplicity the subscripts and superscripts
will be deleted in many of the following equations; just keep in mind that the interpola-
ting function provides values of @ within the interval [Qj, Qjt+1]. Since ¢ and d are
functions of a and b, the number of additional unknowns that are introduced with each
new segment is two rather than four. Thus the total number of equations for n intervals
will be 2(n - 1) rather than 4(n - 1). Since b =1 - a, only one new unknown appears
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for each new data point, so the number of required equations is only n - 1. The relations
between ¢ and d and a and b are

¢ = (a®-a)Qjs1 - Q;)* /6 (5.49a)
and
d = (b>=b)(Qj.1-0;)° /6 (5.49b)

Thus the dependence of the interpolating equation on Q is entirely through the linear Q-
dependence of a and b. Since the derivatives are also weighted by ¢ and d (depending
ona and b), acubic interpolating polynomial exists over the closed interval [Qj, Qj+1].

To verify these statements, we note first that ¢ and d contain terms involving Q3 and

Q? since the definitions of ¢ and d contain a3 and b3. Thus the interpolating
equation is a third-order polynomial. And we see also that da/dQ = - 1/(Qj+1 - Qj) and

db/dQ = 1/(Qj+1 - Qj) = - da/dQ. Now we compute the derivative of H itself to obtain

o dH Hjq-Hj 34%-1 v 3b% -1
- -0y - 0y )+

SdQ Qj-Q; 6

"

(Qj41-0j)H7, (550

and the second derivative is
H"=aH]. +ij+1 5.51)

Since a=1 at Qj and a=0 at Qj;j,andalso b=0 at Qj and b=1 at Qjij, we
have verified that the relations between ¢ and a and between d and b are valid.

To apply Eq. 5.48 in practice, we must first determine numerical values for the second-
derivative terms that appear in that equation. The required equations, ones that allow us to
evaluate those terms, can be obtained by evaluating the first derivative at points 2, 3, ... ,
n - 2 and equating pairs from adjacent segments. We do not need the original equations or
the equations that are obtained by equating second derivatives, since these are already
satisfied by the interpolating polynomial. Equating first derivatives at the data points

yields
Hi-H;_ Qi Qi .
j j-1 + Qj Qj ]H._1 + QJ Q] lH.
Q;-0j-1 6 J 3 J (5.52)
Hi-H; 0;,1-0; o+ 0j,1-0; '
- - H - H,,,
0/11-0 3 6 Ut

This equation comes directly from Eq. 5.50 with a=0, b =1 at Q; for the derivative
on the left side, and a=1, b=0 at Q; on the right side of point j. This equation (i.e.,
these equations, since j is incremented) can be rewritten to display better the linear
relation between the second derivatives of H, with known values on the right side, as

'

(05 -0t )ty + 201 -0 )H] - (Qjs1-0j)H]

GJHin = Hj Hj-Hjo (5.53)
Qj+1-Q;  Qj-0Qj1

Written in matrix notation, Eq. 5.53 consists of a coefficient matrix [A] multiplied by
the vector of unknown second derivatives {H"}, which equals the known vector {B}, or
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[A{H"} = {B} (5.54)

To make the system complete, boundary conditions must supply the first and last values.
If the natural condition is used, then H1 and Hn are given zero values, which in effect

starts the system at point 2 and ends the system at point n - 1. If first derivatives are
specified, then these values provide the first and last equations in the system of equations.
We note that only three consecutive values of the second derivatives are linked together in
this system of equations, regardless of the choice of boundary conditions. This tridiagonal
system of equations is very common, and it can be solved readily by decomposition or
elimination methods. Since only one element exists in front of the diagonal, a single
forward elimination pass through the rows of the matrix can convert the matrix into an
upper triangular matrix with only two nonzero elements. Then a back substitution can
obtain the solution for the second derivatives.

We have just seen that this alternative to the use of cubic spline interpolation requires
first the solution of a tridiagonal equation system to determine numerical values for the
second derivative of H at each of the points where (Hj, Q;) pairs are given. By then

applying the other interpolation relations, the head H can be found directly for any Q in
the overall range of the interpolation.

The program SPLINECU implements this process. A listing of it can be obtained
from the CD for study. This program is designed to read N pairs of values for (Hj, Q)

and then determine H at M uniformly spaced values of Q, starting with Q; and
ending with Q,, instead of finding H for a specified Q. That is, it produces a full table

of values for H. The third column in this table provides values of dH/dQ; when we
compute elements of the Jacobian matrix in applying the Newton method to the solution
of a network problem, this table of values is useful. The program could be modified to
function in the same way as the Lagrange interpolation program, or to allow the user to
provide a list of Q values for which heads are desired, and this list could be provided
from a file or given individually from the keyboard. Or it could be converted into a
function subprogram to supply the head for any specified discharge in solving a network
problem involving a pump. Such a subprogram is on the CD under the name SPLINESU.
Actually the program first reads Q and then H for each data pair, then forms and solves
the tridiagonal equation system, and finally develops the new table with M entries.

Example Problem 5.9

Use program SPLINECU to obtain values of the pump head H and the derivative
dH/dQ with an increment AQ = 100 gal/min. between 800 gal/min. and 6000 gal/min.
As input data use the 10 points that are listed in the output table of Example Problem
5.8.

Solution: The following values should first be entered from the keyboard: 2 3 10 53 0.
The first three and last three lines of output should be the following:

800.0 181.50 - 0.01508
900.0 179.99 - 0.01505
1000.0 178.49 - 0.01495
5800.0 87153 - 0.03755
5900.0 83.77 - 0.03766
6000.0 80.00 - 0.03770
® * *
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Example Problem 5.10
A pump having the characteristic curve of head vs. discharge given in Example Problem
5.9 is operated over six hours, as described by the following (assumed smooth) data:

Time 0 1 1.5 2.0 2.8 3.8 4.9 5.2 6.0
hr.
0 800 2500 3500 4700 5500 4900 3500 2900 2500
gal/min

The pump efficiencies corresponding to the discharges in Example Problem 5.9 are

o 800 1600 2400 3200 4000 4500 4800 5200 5600 6000
gal/min
e 0.40 0.50 0.65 0.75 0.825 0.847 0.845 0.81 0.79  0.74

H 181.5 170.0 160.0 148.5 138.6 128.0 120.4 109.0 950 80.0
ft.

Use cubic splines to define from the data pairs the relations that are needed, and determine
the energy used by the pump during the six-hour period.

There are three relations that must be established by spline functions:
1. the discharge Q as a function of time ¢,
2. the pump head H as a function of the discharge Q, and
3. the efficiency e as a function of the discharge Q.
When these relationships have been determined, the amount of energy that is consumed can
be found by numerically integrating the equation

Energy =y f (QH/e )dt

To complete this solution, it is convenient to convert the program SPLINECU into a
subroutine to find the second derivatives for these relations; then a numerical integration
subroutine will be used to obtain the energy. A program ELECECG to accomplish these
tasks can be listed from the CD for further study as the rest of this example is read. It
calls on SIMPR to complete the integration after the newly created subroutine
SPLINESU has been called three times to determine the second derivatives. The argu-
ments of SPLINESU are as follows: N = the number of data pairs, X = an array of N
values for the independent variable, Y = an array of N values for the dependent variable,
D2Y = an array of second derivatives returned by SPLINESU, D = a work array having N
values, ITY =0 for natural boundary conditions or ITY =1 for prescribed first deriva-
tives at the ends of the domain.

The program has three parts: (1) the main program that calls SPLINESU three times
to obtain three sets of second derivatives and then calls the numerical integration routine
SIMPR; (2) ablock data subprogram to enter the data pairs rather than reading them from
a file; and (3) the function subprogram EQUAT that defines the equation to be inte-
grated. The second derivatives and sets of three data pairs are passed to EQUAT by means
of the block common statements. EQUAT contains the logic that will determine, from
the time, which two instants in time are to be used so that cubic spline interpolations can
provide the values of the discharge as QQ, pump head as HH and efficiency as EE, and
then the argument of the numerical integration QH/e is returned as EQUAT. The main

program supplies the constant for y and converts gal/min. to ft3/s and energy in ft-Ib
to energy in kilowatt-hours.

The answer is Energy = 1.915x109 ft-1b or 2,600,000 kWh.

& k k

© 2000 by CRC Press LLC


http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806

5.7 SENSITIVITY ANALYSES

We now turn to a third major type of network design. So far we have explored two
design categories: the first sought to determine the size of as many pipes as possible (NJ
of them since the equations would permit no more), and the second sought to determine the
size of individually chosen components by considering each of them as a device that created
a differential head at its location in the network. The first design category is encountered
when a new network is being designed. The second type is more relevant to an existing
system, for example, one in which we must determine the capacity and head of a pump to
achieve a desired pressure at some point in response to some specified demands. The third
design category seeks to identify the components of the network to upgrade, improve, or
replace in order to increase the level of network performance most efficiently. The actual
determination of unit sizes might be accomplished later, according to procedures used in the
second type of design. In a sense this section describes methods that can be used to decide
which system elements are most important to the improvement of system performance.
For example, as a city's water use increases, the pressures may become too low during
peak demand periods. Which of several pumps should be replaced by a larger one? An
excellent quantitative means for making such a decision is to perform an appropriate
sensitivity analysis and replace the pump with the largest pressure sensitivity. This
section describes the determination of the magnitude of the sensitivity of one variable with
respect to another variable in the network.

The quantification of sensitivity, which is how much one variable changes in response
to a change in another variable or several variables, provides the designer a deeper under-
standing of network performance. Here we usually apply sensitivity analysis to identify
the best component to change or replace to overcome a deficiency in the present
performance of a network. A natural question is how these deficiencies can "best" or "most
economically" be remedied. The answer may require a change in one or several pipe
diameters, an increase in the head produced by existing pumps, an increase in the elevation
of storage tanks (reservoirs), or the addition of pumps or pressure-reducing valves, etc.
Normally there are a host of possible ways to correct inadequate performance. Some
possibilities will be discussed in this section, but these should be regarded only as
examples to stimulate thinking about alternatives. The sensitivity of one variable to
another variable can be expressed by the partial derivative of the first variable with respect
to the second variable. The variable(s) whose sensitivity is sought is (are) the dependent
variable(s), and the variable that is the candidate for change to improve the network
performance is the independent variable. There are usually several independent variables
which are candidates for change. There may also be more than one dependent variable, but
often one variable will be selected.

Generally it is not possible to define algebraically the partial derivative of any particular
dependent variable with respect to another chosen independent variable when dealing with
piping systems (there are exceptions), but these derivatives can be defined approximately
by numerical methods. The mathematical definition of a partial derivative is

Y iy L3322 = (0.7, 2) (5.55)
ox h—0 h

or, in more practical terms with & = Ax, 9f /dx =~ Af /Ax when the other variables are

unchanging. Thus, as x is changed by some small amount Ax, the corresponding
change in the dependent variable (equation, system, or process) Af is determined, and this
latter difference, when it is divided by the change in the independent variable, produces an
approximation of the derivative. Under conditions near those for which f 1is evaluated
(assuming all other parameters remain constant), the sensitivity of the dependent variable is
quantified as this derivative.
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As this derivative becomes larger, the dependent variable f is more strongly affected by
a change in the independent variable x, or the more sensitive f is to x. A negative
derivative indicates that one variable decreases as the other increases. In a pipeline system
there are many derivatives, or sensitivities, that can be determined and whose magnitudes
provide useful information about the most effective way to change system performance. A
few of many examples follow: (1) Low pressure can be corrected best by enlarging the
pipe diameter that creates the largest dp/dD; (2) Low pressure can be corrected best by
increasing the head of the pump with the largest dp/dhp; (3) Too small a flow into a
storage tank can be best corrected by increasing the power at the pumping station with the
largest dQ;.¢/0P; (4) A fire demand at a node can best be augmented by the pump that

has the largest d0J/00p; (5) Too large a pressure can best be reduced by a PRV in the

pipe whose downstream head H produces the largest negative magnitude of dp/JdH; etc.

The magnitudes of these sensitivities are generally not constant but change with
problem specifications, such a peaking factors, and the largest may come from a different
component (independent variable) as the total demand or demand pattern changes, or
conditions under which the network is to perform change. The selection of sensitivities to
compute will depend on the particular focus of each network performance study. Often
several different sensitivities will provide nearly the same information.

Consider now the network shown in Fig. 5.28 to become acquainted with some of the
possibilities. All of the water that is consumed in a typical daily operation must come
from the two pumping stations. The tank (reservoir) at the end of pipe 11 is large and
should receive water during periods of low demand so it can supply water when the
demands are larger. To simplify the analyses assume the water level in the storage tank is
constant at 200 m. The demands in the diagram are those that typically occur during the
high de-mand period of a day. These demands are larger than those which existed when the
system was designed, and now the tank does not fill sufficiently during low demand
periods; the power to one of the pump stations must be increased. Which station should
be upgraded (power input increased)?

3
o] 0.07 m’/s 205-5500 [6] 255.1800 —=—{200m
145m @ b -
§ N S 0.05 m3/s
2@ > v
bey (8) =
G {610
0.07 m3/s o
305-2000 [1] (5) 14 e
(1) 150 m 205-2500 0.06 m%/s S
255-1500 [(3) 205-1500((7) 3 3
®) 145m (6 (5 000 m s g 155 0.04 m7/s
(3] 255-2500 145 m 205-3000 (7]
= ]180m 0.06 m%s (12)2 255-1500
. . 180 m _
Diameters in mm All e =0.15 mm
Lengths in m v=131x10°m?%s

Figure 5.28 A network for sensitivity analysis.

To obtain more information on network performance, a series of solutions was obtained
for peaking factors from 0.5 to 1.2. If NETWK is used to obtain these solutions, a
convenient way to do this is to use the CHANGE command. The input data file to
obtain such a series of solutions is presented in Fig. 5.29. (The option NETPLT =3 in
the $SPECIF list tells NETWK to write a file that can be used by program SENSITV.)
The discharges in the two pipes from the pumping stations and the pipe that connects the
storage tank to the network have been plotted as a function of the peaking factor and are
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Illustration of sensitivities

/*

$SPECIF NFLOW=3,NPGPM=3,NUNIT=4,PEAKF=.5,
NPRINT=-3,NETPLT=3 S$END

PIPES RESER END
101 2000 305 .15 11 200 CHANGE
2 1 2 2000 255 PUMPS DFRAC
3 1 3 1500 1 .15 50 .25 43 .35 35 180 1.1
4 2 6 5500 205 12 .1 48 .15 43.25 .25 33.0 180 END
51 4 2500 RUN CHANGE
6 5 3 2500 255 CHANGE DFRAC
7 5 4 1500 205 DFRAC 1.1
8 4 6 3900 1.1 END
9 5 7 3000 END CHANGE
10 7 6 3500 CHANGE DFRAC
11 0 6 1800 255 DFRAC 1.1
12 0 5 1500 255 1.1 END
NODES END CHANGE
1 .07 150 CHANGE DFRAC
2 .07 145 DFRAC 1.1
3 .06 145 1.1 END
4 .06 140 END CHANGE
5 .05 145 CHANGE DFRAC
6 .05 150 DFRAC 1.1
7 .04 152 1.1 END

Figure 5.29 The input data file for the analysis of flow in the network in Fig. 5.28.

shown in Fig. 5.30. In this plot a negative flow in pipe 11 indicates a flow into the
tank. This tank is seen to supply water whenever the peaking factor exceeds 0.58; the

0.25
0.2

Pipe 1 |
0.15

E /
% 0.1

2
0.05
_— Pipe 11
0 da
-0.05
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Peaking factor

Figure 5.30 Discharge as a function of peaking factor for three pipes.
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reason for the problem is clear. To choose which pumping station to upgrade, it would be
useful to determine the sensitivity of the discharge from (into) the reservoir as a function of
the power consumed at each of the two pumping stations, i.e., dQ;;/dP; and
dQ11/0P. (The cost associated with pumping is linearly related to the power
consumption, so a properly chosen multiplier of each sensitivity will provide the increase
in reservoir discharge per unit cost.) The pumping station with the larger sensitivity is the
one to upgrade and is the lower cost alternative. Maximization of the sensitivity of
discharge to power is the same as minimization of the cost of obtaining a desired discharge
or volume of water relative to the cost of energy to pump this water.

The first two solutions from the input in Fig. 5.29 to NETWK (which can be obtained
from NETWK, or another program in Chapter 4, or from NETWEQSI, to verify the
values) provide the data in columns 2, 3, and 4 in Table 5.9. The first solution is for a
peaking factor of 0.5 (since PEAKF =0.5), and the second is for PF = 0.5(1.1) = 0.55
(since DFRAC under CHANGE is 1.1). Column 5 is the difference in discharge in
pipe 11 (into the tank) for these two solutions. The difference in power P = yQh)
from pump station 1 is given in column 6, and the difference from station 2 is in
column 7. The sensitivities of the tank discharge to the power at the pumping stations are
in columns 8 and 9. When the demands are 0.5 times those that are listed on the
network diagram, it is best to augment the pumping at station 2 because dQj;/dPy =
0.0062 is larger than dQj;/dP; = 0.0042.

Table 5.9

PF 011 Power; |Power; AQ;; | AP, | AP, | AQ;/AP; | AQ;,/AP,
m3/s kW kW

€)) 2 3) @ &) © | ) 8) €]
0.50| -0.0154 | 64.74 42.35

0.0102 | 2.4 [1.64 0.0042 0.0062

0.55] - 0.0053 | 66.65 43.99

The same sensitivities were computed from the other paired consecutive solutions
requested by the CHANGE command, with the results shown in Table 5.10. Over the
entire range of peaking factors the sensitivity AQj;/AP> > AQ /AP, and therefore the
clear choice is to increase the input power to pump station 2.

The solutions that were used to obtain the sensitivities of the reservoir discharge Qj;
to pump power did not directly require any of these variables to be changed from solution
to solution. Instead the peaking factor was changed, which in turn caused these variables
to change from solution to solution. An alternative was to obtain one series of solutions

Table 5.10
PF 0.50- ] 0.550- | 0.605- | 0.666- | 0.732- | 0.805- | 0.886- | 0.974- | 1.072-
0.55 10.605 ]0.666 ]0.732 [0.805 [0.886 |0.974 [1.072 [1.179
AQq/AP
X103 4.2 5.7 53 4.8 4.1 3.6 33 3.1 3.0
AQ /AP,
X103 6.2 8.6 7.9 6.9 5.8 53 4.9 4.5 4.4

in which P; was changed, and another in which P, was changed, but this would have

required more effort. The fact that specifying a change in one variable (or parameter) causes
changes in all other variables associated with network performance allows us to obtain
many sensitivities from one series of solutions. The program SENSITV in the NETWK
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package is designed to allow the user to generate tables of sensitivities. Table 5.11 is the
first portion of the output from SENSITV, in which the demand QJ; atnode 1 (which
is linearly related to the PF) was selected as the independent variable, and the discharge in
pipe 11, or reservoir discharge (Q,, was selected as the dependent variable. In obtaining
this table, the option to place the independent variables in the output table was selected.
Table 5.13 then presents the final results from 10 solutions in a simpler format.

Table 5.11
Sensitivity of Discharge in Reservoir 1 to Changes in Demand at Node 1
Res. Independent Variable at 1, Comparison between Solutions 2 and 1
Q Q Diff. Qr Qr Diff.  Ratio
1 0.0350 0.0385 0.0035 -0.0154 -0.0053 0.0102 291
Independent Variable at 1, Comparison between Solutions 3 and 2
QJ Q Diff. Q, Q. Diff. Ratio

0.0385 0.0424 0.0039 -0.0053 0.0075 0.0128 3.32

Using SENSITV to obtain the sensitivities AQjj/AP; and AQj;/AP», we obtain

the results that are listed in output Table 5.12. This time we chose to have only the ratios
written to the output table. In this output from SENSITV the first independent variable
is Pj, and the second independent variable is P).

Table 5.12

Sensitivity Comparison of Flow from Reservoir at Reservoir 1

Solution: | 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
1

Reservoir | 1 1 1 1 1 1 1 1
1 0.004 [0.006 |0.005 |0.005 ]0.004 |0.004 |]0.003 |[0.003 |0.003
2 0.006 [0.009 |0.008 |0.007 ]0.006 |0.005 ]0.005 |0.005 |0.004
Table 5.13
Sol. Indep. Variable Dep. Variable Ratio
QJ; AQJ; |[2-~=011 A, A0,/AQ)
1
1 0.03500 - 0.0154
0.00350 0.0101 2.89
2 0.03850 - 0.0053
0.00385 0.0128 3.32
3 0.04235 0.0075
0.00424 0.0135 3.18
4 0.04659 0.0210
0.00465 0.0139 2.99
5 0.05124 0.0349
0.00513 0.0139 2.71
6 0.05637 0.0488
0.00563 0.0141 2.50
7 0.06200 0.0629
0.00621 0.0144 2.32
8 0.06821 0.0773
0.00682 0.0145 2.13
9 0.07503 0.0918
0.00750 0.0150 2.00
10 0.08253 0.1068
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Example Problem 5.11
In the network shown below the pressures at some of the nodes near node 7 are less
than desirable. Which of the three pumps should be enlarged? Use additional sensitivities

to understand more completely the performance of this network.

[10]
280
All e = 0.003" 1.8 ft3/s
2, & 1.3 f63/s
K 307"
[3]
2
&) = =
L4/ (8) 5 282 |2
05 125000  [5]]301' 8-70(1’ L 2
=385 Q) _® Pl 3 OIS\,
Py S 10)|2 (I5\G,
(C] RS = 3
- = 2.0 ft3/s
‘ 1.3 ft/s
(11399 1.5 3/ (9) 290 (14) 280’
3) 12-5500 [4] 8-10000 (7]
i P
10-2000 (G5 . Diameters in in
=375 Lengths in ft
Pump 1 Pump 2 Pump 3
Q. /s | hyy, ft Q5. 55 | hy, ft Q3. f5/s | b3, ft
3.0 80 3.0 80 3.0 83
5.0 75 5.0 75 5.0 78
8.0 65 8.0 65 8.0 68

We want to determine which pump will most increase the pressure at node 7 for a given
increase in the head of that pump. Since all three pumps are far from the node with the
deficient pressure, it is difficult to guess which pump will most influence the pressure at that
node. The table below provides a partial summary of several solutions that were obtained by
using the CHANGE capability in NETWK. The input data for these solu-tions is on the
CD as file EXP5_11.IN. We will find in the input file that the original solution is
obtained with the pump curves that accompany the network diagram; the sec-ond solution is
obtained by increasing the head of pump 1 by 10 ft; the third solution has the head of
pump 2 increased by 10 ft with the head of pump 1 reset to the original value; the
fourth solution has the head of pump 3 increased by 10 ft; and the fifth solu-tion is
obtained by increasing the head of the reservoir by three feet. The last solution, in which
the water surface elevation in the reservoir was changed by three feet, is
in a different category than others in which the pumps heads were changed, since water must

Sol. 1 Solution 2 Solution 3 Solution 4 Solution 5
Node Pump 1, Ah,=10" | Pump 2, Ah,=10" | Pump 3, Ah,=10' | Res.1, AH=3'

Head Head AH/Ah Head AH/Ah Head AH/Ah Head | AH/Ah

fit fit "l "1 "1

7 360.2 | 361.4 0.112 [361.2 0.096 |361.6 0.138 | 362.1 0.633
10 371.2 |372.2 0.104 |372.0 0.084 |372.3 0.115 373.2 0.680
4 390.5 [392.2 0.168 | 392.0 0.148 |392.7 0.224 1391.8 0.447
5 390.2 [391.9 0.168 |391.7 0.147 |392.4 0.212 [391.6 0.460
6 390.2 | 391.9 0.167 |391.7 0.145 392.3 0.206 | 391.6 0.467
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be supplied by the pumps to fill the reservoir. Increasing the head of pump 3 (solution
4) is the most effective way to increase the heads at all of the nodes in the table because the
derivatives  (AH/Ahp)3 are larger than these derivatives for the other two pumps.

However, since all values of AH/Ahp are not vastly different, it would be more effective

to increase the head of all three pumps, particularly if the heads are deficient by more than a
small amount.

Other network components have an influence on the sensitivity of dependent variables to
a change in the independent variables. The table below summarizes a set of sensitivity
analyses that mimic the prior table, with the one exception that pipe 3 was changed in
diameter from 10in to 8 in before obtaining the series of solutions. Now pump 3,
which previously produced the largest head increments, gives the smallest head increments.

Sol. 1 Solution 2 Solution 3 Solution 4 Solution 5
Node Pump 1, AH=10" | Pump 2, AH=10" | Pump 3, AH=10' Res. 1, AH=13'
Head | Head | AH/An, | Head | AH/An, | Head | AH/An, | Head | AH/AR
ft ft ft ft ft

352.1 |353.5 0.137 |353.3 0.119 |[353.1 0.099 |[354.0 0.633
364.0 |365.3 0.128 [ 365.1 0.110 | 364.9 0.089 |[366.0 0.657
378.8 |380.6 0.182 | 380.4 0.159 | 380.1 0.133 | 380.3 0.513
378.8 | 380.6 0.181 |380.4 0.159 | 380.1 0.132 | 380.4 0.633
379.1 [380.8 0.175 |380.6 0.152 | 380.3 0.125 [ 380.7 0.657

—_
AN o

The reasons for this change in effectiveness are relatively clear. The 8-in pipe that
contains pump 3 is just too small for this pump to cause the greatest increases in head at
the downstream nodes; to increase the head, the pump must supply a larger portion of the
total flow, and the head loss in the 8-in pipe increases too much as the discharge in-
creases. We see that the interactions of network components can be complex and inter-
woven, and the only effective means of determining the sensitivity of selected variables
with respect to others is to develop an appropriate series of solutions so these sensitivities
can be estimated. These solutions must consider demands etc. that are near those for which
the sensitivities are to be determined.

Consider the use of sensitivities from another perspective. We might ask which pump
can be enlarged at the least cost in order to increase the head at certain nodes by a specified
amount. The answer to this question is already embedded in the previous solutions. But
now the independent variable is not the incremental head added by a pump but rather the
power (which can be substituted for cost when only the magnitudes of the sensitivities are
compared, since the cost will be in dollars per kilowatt-hour) that a pump delivers to the
network. Tables containing the power consumption of each pump as three independent
variables are given below. In these tables the sensitivities are in units of head per kilowatt
instead of head/head, as it was in the previous tables. Each of the previous two tables is
now replaced by two tables for clarity. The first of each pair of tables lists the power
requirement and the incremental difference in power between a subsequent solution and the
first solution. The second table of each pair divides the change in head at the listed node by
the incremental power to obtain AH/AP; with subscript i being the pump number and
P being power in kilowatts. The negative values for these sensitivities occur because the
incremental power between solutions is negative, i.e., the power produced by that pump
(when the head of another pump increases) is less than that of the original solution. If the
negative derivatives are ignored, then the conclusion is unchanged; pump 3 will produce
a larger incremental head at these nodes for a given cost than either pump 1 or pump 2
can supply if the line serving pump 3 has a 10-in diameter. This situation occurs
because the positive values of AH/AP3 are larger than either AH/AP; or AH/AP).
However, if the supply line for pump 3 has an 8-in diameter, then the most cost-
effective pump for increasing the head at the listed nodes is pump 1, since the second pair
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of tables shows that the positive values of AH/AP; are larger than the values of either
AH/AP> or AH/AP3.

Sensitivity of Nodal Head to Pump Power (Pipe 3 is 10-in dia.)

Sol. 1 Solution 2 Solution 3 Solution 4
Pump P P AP P AP P AP
1 26.84 28.34 1.50 2649 | 0.35 26.39 |- 045
2 25.19 24.83 |- 0.36 26.59 1.40 2475 |- 0.44
3 32.44 32.00 |- 0.44 32.03 | 0.41 34.08 1.64
Sum 0.70 0.64 0.75
Solution 1 Solution 2
Node Head, ft AH | AH/AP; | AH/AP, | AH/AP;
7 360.23 1.12 0.75 - 311 - 2.55
10 371.15 1.03 0.69 - 2.86 - 234
4 390.48 1.68 1.12 - 4.64 - 3.85
5 390.24 1.68 1.12 - 4.67 - 382
6 390.22 1.67 1.11 - 4.64 - 3.80
Solution 3
7 0.96 - 274 0.69 - 234
10 0.84 - 240 0.60 - 2.05
4 1.48 - 4.23 1.06 - 3.61
5 1.47 - 423 1.05 - 3.59
6 1.45 - 4.14 1.04 - 3.54
Solution 4
7 1.38 - 3.07 - 3.14 0.84
10 1.15 - 2.56 - 2.56 0.70
4 2.24 - 498 - 5.09 1.37
5 2.12 - 471 - 482 1.29
6 2.06 - 4.58 - 4.68 1.26

While the negative sensitivities were ignored above, they do present valuable informa-
tion related to the network's performance, particularly if total power (or cost) is considered.
In fact, to neglect negative values is to ignore potential savings. For example, when pipe
3 hasa 10-in diameter, we find in the first table from the second solution that the incre-
mental sensitivities for pumps 2 and 3 are - 0.36 and - 0.44 kW, respectively; these
values indicate that the power requirements for these two pumps decrease as the power
requirement for pump 1 increases by 1.50 kW. The net increase in required power is
only 1.50 - 0.36 - 0.44 = 0.70 kW. Similarly, if the head across Pump 2 (see solution
3) is increased by 10 ft, then the net increase in power is slightly less, or 0.64 kW.
Sometimes it is better to examine sums of differences (or just differences) rather than one
difference divided by another difference, which is how we first defined "sensitivity." In this
example it probably makes most sense to use a difference divided by a difference, but the
difference in the denominator (or the independent variable) should be the sum of power
differences. This sensitivity represents the change in head that is caused by the change in
the overall or total power consumption P; (or cost). If these are the important sensitiv-
ities, then the values in the following table should be used to decide which alternative will
be the most cost-effective and/or best.
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Sensitivity of Nodal Head to Pump Power (Pipe 3 is 8-in dia.)

Sol. 1 Solution 2 Solution 3 Solution 4
Pump P P AP P AP P AP
1 29.23 30.55 1.32 2890 | - 0.33 2896 | - 0.27
2 27.46 27.12 | - 0.34 28.70 1.24 2722 | - 0.24
3 22.59 2228 | - 0.31 2231 |- 0.28 23.78 1.94
Sum 0.67 0.63 1.43
Solution 1 Solution 2
Node Head, ft AH | AH/AP; | AH/AP, | AH/AP;
7 352.14 1.37 1.04 - 4.03 - 442
10 364.00 1.28 0.97 - 397 - 4.13
4 378.80 1.82 1.38 - 5.35 - 5.87
5 378.81 1.81 1.37 - 532 - 3.61
6 379.08 1.75 1.33 - 5.15 - 5.65
Solution 3
7 1.19 - 361 0.96 - 4.25
10 1.10 - 3.33 0.89 - 393
4 1.59 - 482 1.28 - 5.68
5 1.59 - 4.82 1.28 - 5.68
6 1.52 - 4.68 1.17 - 5.18
Solution 4
7 0.99 - 3.67 - 4.13 0.83
10 0.89 - 3.23 - 3.74 0.75
4 1.33 - 493 - 559 1.11
5 1.32 - 4.89 - 5.50 1.11
6 1.25 - 4.63 - 5.21 1.05

We see there are many possibilities, and which is best depends upon the objective,
coupled with the judgment of the engineer who is responsible for making the decision.
And we must keep in mind that the magnitude of each sensitivity (and difference, or sum of
differences) is not a constant but can take on quite different values as demands and other
conditions change.

Pipe 3, Dia. = 10 in Pipe 3, Dia. = 8 in

Node |Sol. 2 |Sol. 3 Sol. 4 Sol. 2 | Sol. 3 |Sol. 4
AH/AP, | AH/AP; | AH/AP; AH/AP; | AH/AP,; | AH/AP;

7 1.60 1.50 1.84 2.04 1.89 0.69
10 1.47 1.31 1.53 1.91 1.75 0.69
4 1.43 2.31 2.99 2.72 2.52 0.93
5 2.40 2.30 2.83 2.70 2.52 0.92
6 2.39 2.26 2.75 2.61 2.30 0.87

Another goal might be the maintenance of as large a volume of water in the storage tank
(reservoir) as possible. If so, the sensitivities that should be examined are the difference in
discharge in pipe 19 (which connects the reservoir to the network) divided by the sum of
the pump power consumptions; rather than seek the largest value as we did before, the
smallest sensitivity (the one with the largest negative magnitude) is the one we want. The
reason is that our desire is to maximize |AQ gl (the numerator) while minimizing the

increase in overall pump power consumption AP; (the denominator). These tables of
sensitivities follow:
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Item Pipe 19, Pipe 19,
Dia. = 10 in [ Dia. = 8 in
Flow Q;9 from Sol. 1, original conditions 2.30 ft3/s 3.13 ft3/s
Flow Qj9 from Sol. 2, Ah,= 10 ft at pump 1 2.17 fe¥/s 3.00 ft*/s
AQ ;o 0.13 ft3/s 0.13 ft3/s
AQ ;o/AP, 0.19 ft3/s/kW 0.19 ft3/s/kW
Flow Qo from Sol.3, Ak, =10 ftatpump2 | 2.19 ft¥/s 3.01 ft¥/s
AQ ;o 0.11 ft3/s 0.12 ft3/s
AQ 1o/AP, 0.17 f63/s/kW 0.19 ft3/s/kW
Flow Qo from Sol.4, Ah,=10ftatpump3 | 2.15ft/s 3.04 ft’/s
AQ ;o 0.15 ft3/s 0.09 ft3/s
AQ ;o/AP, 0.20 ft3/s/kW 0.06 ft3/s/kW
* 3k k

To compute sensitivities, we must have two solutions available in which the
independent variable x has changed and the change in the dependent variable f can be
obtained. Thus a numerical approximation to Jf/dx is obtained by dividing the change in
the dependent variable Af by the change in the independent variable Ax, or dJf/dx =
Af/Ax. These paired solutions were previously obtained from NETWK by using the
CHANGE command. An alternative, and for some networks a more effective, way to
obtain such a series of solutions is to obtain an "Extended Time Simulation." This is a
time-varying or quasi-steady solution that ignores most fluid transient effects. Extended
Time Simulations, as Chapter 6 will describe further, consist of a series of steady-state
solutions with different prescribed demands, water surface elevations at reservoirs, and head-
discharge relations at pumps that depend upon a demand function or flow rule, storage
functions, and pump rules, etc. The NETWK code allows the results from such solutions
to be written in tables with time in the first column and discharges or head losses for
selected pipes, and/or pressure at selected nodes, to be listed in subsequent columns.
Alternative tables giving reservoir water surface elevations as a function of time can also be
obtained. These tables can be used to obtain most sensitivities that may be wanted,
especially if the specifications for the Extended Time Simulation dictate that some other
variable is linearly related to time. The time can be used as the independent variable for the
sensitivities.

Example Problem 5.12

Use the Extended Time Simulation capability of NETWK to obtain a series of steady
state solutions and from these obtain the sensitivities for the 12 pipe, 7 node network dia-
gramed in Fig. 5.28. Express the peaking factor as a linear function of time. After verify-
ing some of the sensitivities that have already been presented, allow the elevation of the
water surface in the tank to vary so its level is 198 m at time ¢t =0 (when PF =0.5).
The tank is circular with a diameter of 30 m, and its bottom elevation is 195 m, i.e., at
this level there is no more water in the tank. Plot as a function of peaking factor the
discharge from the two pumping stations and the discharge into and out of the reservoir.

The input file to NETWK to obtain this solution is listed on the next page. In it the
linear relationship between PF and time is dictated by the DEMAND FUNCTION
which applies to all nodes. The output tables are not given here but can be developed by
the reader. After they are obtained, we could either use SENSITV or import the tables
into a spreadsheet and then generate the sensitivities.
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Illustration of sensitivities using Ext. Time Simulation

/%

$SPECIF NFLOW=3 ,NPGPM=3,NUNIT=4,PEAKF=.5,
NPRINT=-3,NODESP=0,ISIML=1,NETPLT=3,COEFRO=.15 $SEND

PIPE-

1 305. 2000. 1 .07 150. RUN

2 255.2000. 1 2 .07 145. $TDATA PRINTT=-3,HTIME=24,INCHRP=1
3 255. 1500. 1 3 .06 145. LINEAR=1,ISUNIT=0 $END

4 205 5500. 2 6 .05 150. PIPE TABLE

5 205. 2500. 1 4 .06 140. ALL

6 255. 2500. 5 .05 145. 3 NODE TABLE

7 205. 1500. 5 4 ALL

8 205. 3900. 4 6 RESER. TABLE

9 205. 3000. 5 7 .04 152. 11/

10 205. 3500. 7 6 END TABLES

11 255. 1800. 6 DEMAND FUNCTION

12 255. 1500. 5 10 1. 12 1.6789738 24 2.35794769/
RESER 1-7/

11 200 STORAGE FUNCTION

PUMPS 1 195 0 198 2120.6 205 7069/

1.15 50 .25 43 .35 35 180 11/

12 .1 48 .15 43.25 .25 33.0 180 END SIML

To use an Extended Time Simulation to produce solutions that portray the flow at the
reservoir, the size of the storage tank at the end of pipe 11, and its water surface elevation,
are included in the input file by prescribing a STORAGE FUNCTION. Since the tank is
circular with a diameter of 30 m, the areais A = aD2/4 =707 m2; with its base at 195
m the tank will have a starting water surface elevation of 198 m when PF =0.5. We
must first change elevation 200 to 198 under the RESER command, and then we add
ISUNIT=0 to the $TDATA list and finally add STORAGE FUNCTION and two lines of
data before END SIML. The following (partial) tables will then be obtained:

A negative flow in pipe 11 indicates that the storage tank is filling. From the middle
table of the set it can be seen between hours 2 and 3 (when the peaking factor PF is
between 0.5X[1 + 1.358x(2/24)] = 0.557 and 0.585) that the tank changes from filling
to supplying the network. Shortly after hour 22, when the peaking factor PF is
slightly larger than 0.5x[1 + 1.358x(22/24)] = 1.122, the tank has emptied. (The tank
base is at 195 m, at which its volume becomes 0 m3 in the storage function.)
Thereafter, all of the demand must be met by the pumps, even as the PF increases, and
this is shown in the negative pressure in the last two lines of the pressure table.
Obviously these pressures are

PRESSURES (kPa) AT DESIGNATED NODES AS A FUNCTION OF TIME

TIME NODE NUMBERS
hrs. 1 2 3 4 5 6 7
0.0 620.79 599.96 658.84 661.46 662.26 497.17 487.94
1.0 609.88 587.35 647.43 649.93 651.75 493.83 481.35
2.0 599.55 575.78 636.57 639.30 641.86 491.76 475.94
3.0 590.05 565.61 626.55 629.88 632.93 491.03 472.67
4.0 580.08 554.89 616.02 619.76 623.56 488.25 468.68
21.0 311.87 247.25 323.15 328.72 353.57 235.90 178.93
22.0 287.71 217.97 297.98 302.10 330.01 217.86 151.05
23.0 - 5682 - 28795 - 4795 - 17537 - 20.87 - 44291 - 45393
24.0 - 9843 - 343.07 - 9134 - 22728 - 6287 - 50291 - 513.54

© 2000 by CRC Press LLC



DISCHARGES IN DESIGNATED PIPES AS A FUNCTION OF TIME

PIPE NUMBER

1 2 3 4 5 6 7 8 9 10 11 12

00 (.127 .049 .021 .014 .022 .009 .027 .019 .028 .008 -.015 .088
1.0 | .130 .050 .022 .013 .022 .010 .027 .018 .027 .006 -.010 .090
20(.134 .050 .023 .011 .022 .011 .027 .016 .027 .004 -.004 .093
30 .136 .050 .023 .009 .022 .012 .027 .015 .026 .002 .003 .094
4.01].139 .051 .024 .008 .022 .013 .028 .013 .025 .000 .010 .098

21.0].202 .063 .038 -.013 .025 .028 .033 -.008 .028 -.016 .092 .143
22.01.207 .065 .039 -.014 .026 .029 .034 -.008 .028 -.017 .095 .147
23.01.268 .101 .043 .020 .044 .026 .056 .031 .053 .007 .000 .192
24.01.275 .103 .044 .021 .045 .027 .057 .032 .054 .007 .000 .197

WATER SURFACE ELEVATION IN RESERVOIR 11

TIME ELEVATION

hrs. ft.
0.0 200.00
1.0 200.08
2.0 200.13
3.0 200.15
21.0 195.60
22.0 195.13
23.0 195.00
24.0 195.00

not real; this network cannot meet the demands with an empty tank. To prepare a plot of
the discharge from the pump stations, the discharge table can be imported into a
spreadsheet. The first column, which lists the time, can be changed to represent the PF
by noting that time 0.0 corresponds to PF = 0.5 and time 24.0 corresponds to PF =
1.179. The plot shows the discharges in pipes 1, 12, and 11 as a function of peaking
factor. We see the reservoir filling with PF < 0.58; when PF = 1.13 the reservoir has
emptied. Since it can now supply no flow, the discharge from each pump station must
sharply increase to satisfy the demand.

To obtain the sensitivities AQj;/AP; and AQjj/AP), columns in the table can be

created for the power at each of the two pump stations with P; = 9.8060Q;(hp1) =
9.80607(58.6 - 500; - 500;2) and P, = 9.8060;2(56.8 - 82.5Q72 - 500Q72%). The
difference of P; and P, between separate entries (rows) is the divisor of the differences
in the discharge Q;; to obtain the sensitivity of the reservoir flow to the pump power.

These sensitivities are presented in the next plot. The curves are not smooth largely
because of the limited accuracy in computing the discharge in pipe 11, since the
sensitivities are dependent entirely upon these values. However, the conclusion is the
same as when the level of the reservoir was constant at 200 m; it is better to increase the
power at pump station 2.
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5.8 PROBLEMS

5.1 The table below contains several pipes. Using the Darcy-Weisbach and the Hazen-
Williams equations, compute the diameters of the pipes that are needed to convey the given
discharge with the given head loss.

Pipe [ L hy ex103 Cyw | Darcy-Weisbach | Hazen-Williams
No. | ft3/s ft ft in f D, in D, in

1 1.0 2500 | 30 0.05 | 150

2 2.0 400 20 |20.0 95

3 3.0 | 10000 | 105 5.0 138

5.2 The table below contains several pipes. Using the Darcy-Weisbach and the Hazen-
Williams equations, compute the diameters of the pipes that are needed to convey the given
discharge with the given head loss.

Pipe | O L h; |ex10° | Cyw | Darcy-Weisbach | Hazen-Williams
No. |[m3/s m m cm f D, m D, m

1 0.25 1500 | 20 0.08 | 150

2 0.50 600 [ 20 |80.0 95

3 1.50 4000 | 55 9.0 140

5.3 Modify program DIAPIP so algebraic derivatives are used to evaluate the elements
of the Jacobian in place of the numerical evaluation in the original listings.

5.4 Modify program DIAPIP so the two unknown variables are f and D rather than
SF=1/f and D.

5.5 The program SOLBRAN was used to determine the pipe diameters in a 10-pipe
branched system; then the nodes and pipes were numbered by starting at the upstream end.
This same branched system is shown below, but now the numbering proceeds from the
downstream end. Prepare the input data for program SOLBRAN (or your own program)
using this numbering, and obtain the solution. The slope of the energy line for all pipes
is §=hyL =0.002.

[1]

QJ, =03
QI =-37
(10) [10]

[11]
QJ,, =05

5.6 Retain the node numbers as in Problem 5.5, but begin the pipe numbering with 1 at
the upstream end, prepare the input data for SOLBRAN and obtain the solution.

5.7 Use NETWK to solve Problem 5.5.
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5.8 Develop a computer program that can determine the diameter of a pipe if the dis-
charge, head loss, pipe length, and wall roughness are known. This program should be
able to use either the Darcy-Weisbach equation (including the Colebrook-White equation)
or the Hazen-Williams equation.

5.9 Modify program SOLBRAN to solve a branched system in which laminar flow
exists in all pipes. Write this program so it reads from the input file for all pipes either
the head losses or the diameters, and it determines either the pipe diameters or the head
losses (i.e., it finds the variable that is not given) and the pipe discharges that will satisfy
the specified demands.

5.10 Using the program from Problem 5.9 (or a slight modification of it), find the
diameters of the tubing for the drip irrigation system shown below if each emitter (solid
circle) is to supply 2 gal/min. The slope of the HGL is 0.008.

Pipe | 1 2 3 4 5 6 7 8 9 10 {11 |12 |13 [14 |15
L, ft |25 |25 [25 |42 |10 [15 [25 |42 [15 |25 |42 |25 |15 |42 |25
Pipe | 16 |17 [18 |19 |20 |21 |22 |23 [24 |25 |26 |27 |28 |29 |30
L,ft |40 |10 [10 |40 |10 |10 [40 |10 10 [40 |10 |10 |20 |20 |20
Pipe | 31 |32 [33 |34 |35 [36 [37 |38 [39 |40 |41 |42 [43 |44 |45
L,ft |20 |45 [20 |20 |20 [45 [10 |10 [20 |45 |25 |10 [45 |25 |25

14

— 16 18 19 21 22 24 25 27
17 20 23 26
28 32
- 33 36
37 45
40
30 34 38 H
43 44
31 35 39 42

5.11 Determine the pipe diameter that will carry a discharge Q = 1.8 ft3/s over a length
of 4000 ft if the difference in head between the beginning and end of the line is to be 65
feet. The wall roughness for this pipe is e = 0.005 in.

5.12 Find the pipe diameter in Problem 5.11 by using the Hazen-Williams equation with
Cyw = 145.

© 2000 by CRC Press LLC



5.13 A 3000 ft long pipeline carries a discharge of 2.0 ft3/s over 2000 ft of its
length, at which point an unknown amount of water is withdrawn. The drop in head from
the beginning to the end of the pipe is 30 ft. The pipe is 8-inch-diameter PVC pipe, and

the kinematic viscosity of the water is v = 1.2X10_5 ft2/s. Determine the amount of the
demand at the intermediate point in the pipeline.

5.14 Determine all pipe diameters in the branched piping system in the sketch below so
that the slope of the HGL is 0.008. All pipes have a roughness e = 0.006 inches. Also
determine the pressure, pressure head, and elevation of the HGL at each node of this net-

work, so that the pressure at node 8 is 60 1b/in2. Then select the closest standard pipe
diameter for each pipe from the list below and again obtain a solution for the pressure,
pressure head, and elevation of the HGL at all nodes. What head should a pump in pipe 1
produce if its supply water surface elevation is 100 ft? If the combined motor-pump
efficiency is 73 percent, what is the cost per day to pump continuously if electricity costs
$0.10/kWh? Also determine the cost of the pipe. The standard pipe sizes and costs per
unit length follow:

Dia. 4 6 g 10 2 5
in.
Cost 367 | 533 | 767 | 1067 | 1667 | 24.00
$/ft
Dia. 18 20 2% 30 )
in.
Cost || 4333 | 35667 | 80.00 |100.00 | 145.00
$/ft
+ (1) (2) [31 (3 [4] ) [5] All 0.006
1000 T000 800" 1300 ¢ =0.006"
(1] 12] } 1 All elev. = 100"
300 gal/min 300 300 300
o
®|= 60 1b/in?
300 300 P2 77 P 200 200
bt o Ve b o T}
. ©)
300 gal/min == &35 [71 1000 [8] 10000 [9] 10000 [10]

5.15 Develop a spreadsheet solution for the branched piping system in Problem 5.14.
Use the closest standard pipe diameters that you determined in that problem and give the
pressure and head at every node. In developing the spread sheet solution use the Hazen-
Williams equation with Cgyw = 150.

5.16 Modify program SOLBRAN so different HGL slopes can be specified for
individual pipes or groups of pipes, and use it to solve Example Problem 5.3.

5.17 In the pipeline system shown atop the next page the pressure at the downstream
node has been measured as pp = 40 1b/in2. Compute the demand at this node twice by
using the Darcy-Weisbach equation and the Hazen-Williams equation. Assume Cpgyw =
145 for the Hazen-Williams roughness coefficient.
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< e
= H=165" (1 [1] 2) [2] p, =40 1b/in?
\ or
8" - 3000 6"-3500'  Elev’=0' H, =923 ft
e, = 0.005" e, =0.005" J\ ,
— 2 =
v=1.2x 107 ft%/s QJy = 0.5 ft/s e

5.18 In the piping system of Problem 5.17, determine the diameter of pipe 2 so the
discharge to node 2 is 0.6 ft3/s.

5.19 Solve Problem 5.18 using the Hazen-Williams equation with Cgw = 145.

5.20 Analyze the 16-pipe, 9-node network shown in Fig. 5.6 and modified in Fig. 5.13.
In the paragraph which follows Fig. 5.13, a design solution determines a diameter for all
pipes except pipes 1,3, and 16; adjust those diameters to the nearest standard pipe sizes,
and assign a diameter of 150 mm to pipes 1, 3, and 16. To obtain the solution, you
must first select appropriate pump characteristic curves and the number of pumps that
should be in parallel and/or series. The first analysis should be based on the demands that
were used in determining the pipe sizes, namely twice the average demand. Also obtain an
analysis based on the average demands, and then obtain a third solution for which the
demands are half of the average demands. Under this last demand condition, what discharge
will be entering the storage tank when it is half full, i.e., when the water surface elevation
in the tank is 119.5 m? (For these analyses assume the high-cost water from pipes 1 and

3 is shut off. Assume a fire flow of 0.08 m>/s is needed at node 4 during the time of
the largest hourly demand and both pipes 1 and 3 are open. What pressure will exist at
node 4 to fight the fire, and how much flow will come from the four supply sources
using the pump chosen earlier?

5.21 The 16-pipe, 9-node network was converted into a branched network by omitting the
7 pipes numbered 1, 3, 9, 10, 12, 13, and 16, as shown in Fig. 5.13. If pipe 16 were
included and pipe 8 were omitted, would a branched system be formed? Since pipe 16 is
the pipe to the storage tank, it generally would be considered to be part of the main
transmission system. In fact, if pipes 2, 7, 12, and 16 are retained, the most direct path
between the pump and storage tank exists to fill the tank during periods of low demand.
Delete other pipes so this path exists, and determine the size of each pipe.

5.22 In Fig. 5.15 pipe 1 was given a diameter of 18 in, and pipe 2 was given a
diameter of 15 in. For the pump characteristics given with this network, and for
elevations of the HGL at nodes 2 and 3 of Hy =645 ft and H3z = 640 ft, respectively,

compute the discharges that the two pumps will supply. What discharge must the reservoir
therefore supply? Verify your results by comparing them with the NETWK solution.

5.23 If the diameter of pipe 1 in the 30-pipe, 16-node network is changed from 18 in
to 24 in, compute as in Problem 5.22 the discharge supplied by the two pumps. Why
does this change create an impossible situation? What specification(s) could be changed to
allow a solution?

5.24 In the 30-pipe, 16-node network assign to pipe 6 a diameter Dg = 6 in but find
the diameter Djy of pipe 10. To obtain this solution, use NETWK by appropriately
modifying the input given in file FIG5_15.IN.
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5.25 In the 30-pipe, 16-node network give pipes 6 and 9 the diameters Dg= 6 in and
Dg =6 in but compute the diameters Djg and Dj, of pipes 10 and 12. To obtain
this solution, use NETWK by modifying the input given in file FIG5_15.IN.

5.26 In the 30-pipe, 16-node network assign a diameter D39 = 6 in to pipe 30 that
connects the reservoir to the network but determine the diameter D; of pipe 1 through
which source pump 1 supplies the network.

5.27 In the 30-pipe, 16-node network specify a diameter D39 = 6 in for pipe 30 that
connects the reservoir to the network but compute the diameter D, of pipe 2 through

which source pump 2 supplies the network. Initially retain 18 in for the diameter of
pipe 1. Why is a solution not possible? Increase the diameter of pipe 1 to 24 in and
obtain a solution.

5.28 The pressure can not become negative anywhere in a network, even though the
mathematics of solving a network problem can produce negative pressures. Often 40

1b/ft2 is the lowest pressure that is permitted. Determine the water surface elevation of the
reservoir that supplies the 30-pipe, 16-node network via pipe 30 so the pressure at node

16 is 40 Ib/ft? if the pipe diameters are determined by solving Problem 5.27 with Dj
=24 in. First obtain this solution with D3p = 6 in, and then increase the diameter to
D30 =12 in. What feature is not realistic in the use of 6 in for D3p?. (Hint: use a
differential head device in pipe 30.)

5.29 In the 9-pipe, 6-node network of Example Problem 5.4, indicate whether a solution
is possible, or why a solution is not possible, for the following combinations of three
pipes with their diameters specified as 6 in. If a solution is possible, solve the problem
for the remaining six pipe diameters. Use the heads given in Example Problem 5.4, but in
the last case modify the head at node 1 to H; =97 ft.

Case Pipe Numbers with
Specified Diameters
1 1,2, 5
2 1, 5,7
3 3,809
4 1, 6,7

s Yy

5.30 In this small network you are to determine the head and discharge of the pump in
pipe 1 so no flow will enter or leave the reservoir that is connected to the network by
pipe 4 in response to the nodal demands shown on the diagram.

0.3 ft3/s

1.5 ft3/s

8" - 1500 = 100
O —

0.4 f3/s
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5.31 Retaining the head that was determined for the pump in Problem 5.30, but not the
same discharge, determine the discharge that must be supplied by the reservoir if the
demands are all increased to 1.5 times the values shown on the figure. In solving this
problem, replace the pump by a DHEAD device of type 1, i.e., one that produces the
specified differential head.

5.32 Rework Problem 5.31 with demands that are 0.8 times those in the diagram; in
this case determine the discharge into the reservoir. Are the equations for this problem
different from those of Problem 5.31? If so, what changes?

5.33 The 8-pipe network shown below was built to supply demands of 1.0 ft3/s at each
of eight nodes. Over the years the demands have doubled, and the network is now unable to
supply 2.0 ft3/s at these nodes. The 10-in pipes, numbers 1 and 6, are to be replaced
by 12-in pipes, and the network is to be looped by adding the 4 pipes listed in the table:

Pipe | Node 1 | Node 2
9 5 3
10 5 8
11 6 4
12 6 9

First analyze the original network for the original demands. Next analyze the same net-
work again, but with the eight nodal demands each increased to 2.0 ft3/s. At how many
nodes is the present network unable to supply a pressure of at least 40 1b/in2? Obtain a
design solution for this network to determine the sizes of the four additional pipes; since
eight diameters must be found in such a solution, also determine the sizes of pipes 2, 4,
5, and 7. The nodal HGL elevations that might be specified are listed in this table:

Node 1 2 3 4 5 6 7 8 9
H, ft. | 300 | 291 | 276 | 264 [290 | 280 |291 |276 |264

1.0 ft3/s 1.0 ft3/s
21 ) [3]_~ 3) [4]_, 1.0 f6s
8" - 1000' 1 6" - 1000' ]
= | |
= I |
= ' ' All e = 0.005"
) | | e="u. ,
= | | Allelev. =100
- 1 1
I 1.0 £/ I 1.0f53/s
\ 8 - 1000 [5Ii_»" "8 10000 161>
0 ([1] ) | ) |
AV - 1 1
S 3 I I
<l ) | |
K 1 1
c | |
2 1.0 o :/1(.0 ft3/s ® ' 1.0 f63/s
(7] 3" - 1000' 8] 6" - 1000' 9]

5.34 In the network shown in Fig. 5.23 a total of 15 combinations of three pipes exist
and are candidates to have their diameters specified. Obtain a solution for each of these
groupings using NETWK. In obtaining these solutions, also obtain an analysis solution
for each case by using the nearest standard pipe sizes. Try specifying an 8-in diameter for
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pipe 6 while prescribing the diameters of pipes 3,5, and 6, and note the message that
the program returns to inform the user that inappropriate specifications have been made.
Rather than increasing the diameter of pipe 6, adjust the nodal HGL-elevation specifica-
tions to specify a problem for which a solution is possible.

5.35 In Problem 5.33 each of eight nodal demands was 2 ft3/s. Solve the same problem

under the assumption that the new nodal demands are each 2.5 ft3/s. Before you seek a
design solution to this network, select appropriate diameters for pipes 1 and 2 (and all
other pipes having specified diameters).

5.36 Design the looped network shown below. The target HGL-elevations at the nodes
should be near those given in the head table for the demands shown on the sketch. Assume

e =8.0x100 in for pipes 1,2,and 3 and e = 6.0x1070 in for the other pipes.

Node 1 2 3 4 5 6 0 Head
No. ft3/s ft.
HGL, ft [|832 [ 805 | 798 815 | 795 [ 785 6 65
9 61
12 55
2700 1 ft/s 1.3 f6¥/s 12 f%/s
‘i'—@ 2000 [11 2500' 2400’ /51
1) 630 ) 6107 2] %) 600
= P X0, SR v=1.41x 105 /s
3© 4) g &
(@l
%| L5 ft3/s 1.8 ft3/s
14165 <610 2500 - 2400' (61
[4] 5) _| B ® 590
S
=)

To complete this design, do the following: (1) Assign diameters to pipes 1, 3, and 6
as 13in, 6in, and 8.5 in, respectively, and determine the six diameters D), D4, D3,

Dy, Dg, and Dg to produce the specified HGLs. Obtain this design solution using

NETWK. (2) Verify the results from NETWK with hand calculations by first finding
the discharges in the three pipes using the specified diameters. Then find Q3 and Qg

from the Darcy-Weisbach and Colebrook-White equations. Next fit the given data to
determine the polynomial for the pump curve and solve for the three unknowns Qj, fy,

and hp. With Qy, 03, and Qg known, reduce the network and determine the other

discharges and head losses. (3) Identify other pipes that are candidates to have their
diameters specified, and identify specifications that would make a solution impossible.

5.37 Water is pumped from a reservoir with a water surface elevation of 500 ft over a
hill crest of elevation 600 ft by means of the piping system shown in the next figure.
The primary questions that need to be answered are: (a) what demand QJ, can be sup-

plied at the top of the hill with a pressure of 40 Ib/in2, and (b) how much power can be
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extracted by the turbine in pipe 5 if 1.0 ft3/s at 20 Ib/in2 is to be delivered at node 4?
Write and then solve the system of equations that will provide these answers.

Pump
[ hy
ft3/s ft
2.0 290
2.5 285
3.0 272

p =40 Ib/in?
[21

QJ;=0.51t%/s

QJ,=1.0ft%s

4] =
500 P= 20 Ib/in

G 8

: " 4000,
- 2000 0

10" - 3000

5.38 Two pumps, pump a and pump b, have the operating characteristics given by the
three (Q, hp) pairs listed in the two tables below. At what rotational speed ratios Ny =

(N2/Nj), and Npp = (N2/Nj)p should each of these pumps be operated if the required

combined discharge is Qy,; = 3.5 ft3/s? Since the required discharge is well beyond the

values in the tables for either pump, the two pumps must be placed in parallel. Assume
that the middle point in each table represents the normal operating condition for each
pump, and at their new rotational speeds the pumps should be operating at their maximum
efficiencies.

Pump a (N,; = 800 rev/min) Pump b (V,,; = 1000 rev/min)
Qa hpa Qb hpb
ft3/s ft. f3/s ft.
0.75 43.00 1.5 44.00
1.10 38.75 2.0 38.25
1.50 32.20 2.5 30.00

5.39 Modify program SPLINECU so that natural boundary condition is always used; it
is desired not to give the user the option of specifying either natural boundary conditions
(second derivatives set to zero at the ends of the domain) or the end slopes.

5.40 Program SPLINECU fits pairs of head vs. discharge data with a cubic spline and
provides M interpolated values with equal increments. Convert this main program into a
subroutine (function) that (1) receives one pair of values as arguments from the main
program, and (2) provides to the main program the values of the second derivatives so
that the main program can carry out cubic spline interpolations.

5.41 Modify program SPLINECU so it acts in the same way as program
LAGRANGE, i.e., it provides the interpolated value for the pump head for any value of
discharge that is supplied to it.

5.42 Modify program ELECENG so it computes energy consumption over any period
of time. The program should perform the following tasks: (1) read the number of pairs of
Q vs. time data, and then read these pairs; (2) read the number of pairs of Q vs. head H
and Q vs. efficiency 7; and then read these two sets of data pairs; and (4) compute the
energy consumed by integrating the pump power over time.
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5.43 The operation of a pump with a 7 7/8 in diameter impeller is described by the
pump characteristic curves given below. Take 7 pairs of points from this curve, starting
with 0 gal/min and ending with 600 gal/min in increments of 100 gal/min, and use a
second-order polynomial between three consecutive pairs of points to interpolate values.
Using this interpolation, obtain values of pump head for the following discharges, and
compare the interpolated values with the corresponding values that are read from the pump
curve itself: 50 gal/min, 120 gal/min, 190 gal/min, 250 gal/min, 330 gal/min, 410
gal/min, 460 gal/min, 550 gal/min.

30T T e

i H Pump: 4" 6710 20B 20Y 50
5 [ P Impeller B 801 £
8 712" Aol - Rated at 1160 rpm
g s e SHES Const. Suct. Lift 15 ft H
= 20} 718 s
2 i 3 2 R BN

ooTT
s /8 RIS
2 FEFE TP S N 0 H
%) 7/8" 2 ERSIEARE
a0 HwnHY
T : =
e i X
o e 2.0 B.H.P
3 1.0 B.H Pl BHLE
0
0 100 200 300 400 500 600

Discharge in U.S. gal/min

5.44 Repeat Problem 5.43 but use a cubic spline in place of the second-order polynomial
for the interpolation.

5.45 For the pump whose characteristic curve is given in Problem 5.43, obtain the
energy consumed by the motor when the discharge varies over a 24-hour period as the table
describes:

Time (0] Time (0]
hr. ft3/s hr. ft3/s
0.0 0.20 140 |1.50
2.0 0.40 165 |1.30
4.5 0.70 18.0 |1.10
6.0 1.10 20.1 |0.80
8.2 1.40 21.0 |0.60
10.3 1.50 225 |0.40
12.3 1.60 240 |o0.15

5.46 A pump is attached to a pipeline that has a length of 2000 m and a diameter of
600 mm (with e =0.02 mm). The downstream reservoir has a water surface elevation
that is 50 m above the supply reservoir water surface elevation. The pump characteristic

curves show that the efficiency variation is essentially linear between Q = 0.0 m>/s and
Q=12ms. At Q = 0.0 m>/s the efficiency is zero, and at Q = 1.2 m>/s the

efficiency is 85%. And as the discharge increases from 1.2 ms to 2.1 m3/s, the
efficiency varies linearly with discharge from 85% to 30%. Plot the power supplied by
the pump to the fluid, and the power required by the pump from its motor, for discharges

from 0.2 m3/s to 2.1 m3/s.

© 2000 by CRC Press LLC



50 m

‘i’ﬁl@ 600 mm - 2000 m
e =0.02 mm |

5.47 In the network shown below two booster pumps supply all of the water for the
system, and this water must come from the reservoir on the left, which is extremely large.
The reservoir on the right is a storage tank that receives water during periods of low
demand and supplies some water during periods of higher demand. The pipe sizes, their
lengths, etc., are defined in the input data file for NETWK. It has been decided to increase
the head of one of the pumps so that pressures are larger at the downstream end of the
network and larger flows enter the reservoir during periods of low demand. For the
demands in the diagram, determine the increases in pressure and the discharge into the tank
if the head of pump 1, or the head of pump 2, were increased by 5 ft. Which solution
is more cost effective? Why is this the case? List some other options in improving the
cost effectiveness of the system.

“4)

1.2 ft3/s

0.8 ft3/s

=&
0.5 ft3/s © & L1 fts

(®)

0.8 ft¥/s (11)

(5]

3
0.6 ft3/s 6] ) 1.4 ft3/s

0.9 ft3/s

Chapter 5, Problem 5.47. NODES

/* 1.5293
$SPECIF OUTPU1=2,NPSERI=0 $END 2 .8 285

PIPES 3.8 290

101 1000 14 .0008 4 1.2 340
213700 12 5.9 345

312 6 .6 340
43415008 7 1.3 338
5251500 12 8 1.1 335

654 1600 9 1.2 335
7491400 8 RESER

858 1000 1 400
95612006 13 425

1057 1000 8 BOOSTER

1178 4 1.5 55 3.50 4.5 42/
12 8 9 1200 5363560755/
130 9 500 RUN
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5.48 The network shown below has a pump in pipe 15 that obtains its water supply
from ground water with a constant water surface elevation of 160 ft, and it pumps into a
circular tank with a diameter of 185 ft. The bottom of the tank is at elevation 225 ft,
and its top is at elevation 245 ft. The demands on the sketch are average values. The
reservoir that is connected to the network by pipe 14 is water that is bought from an out-
side water agency for $ 0.35 per thousand cubic feet, and it is received from a conduit
under a constant pressure that produces a HGL of 200 ft. The costs of the pump, well,
tank and the connection to the outside water agency have been fully paid, so they should no
longer be considered in economic analyses. Do the following:

1. Obtain a series of solutions in which the peaking factor (demand function) varies for
all nodes from 1.5 to 0.5. In this series of solutions assume that the water surface
elevation of the tank is at 235 ft when PF = 1.5; start with this PF and assume
it decreases linearly over a 24 hr time period to 0.5.

2. Plot the discharge variation in pipes 1, 14, and 15 with the demand function.

3. Compute the cost of pumping the water from the well. For these costs assume that
the combined pump-motor efficiency can be defined by a second-order polynomial
function of the discharge, with the efficiencies related to the discharges in the pump
characteristic table as follows: 0.70, 0.75, and 0.58. The cost of electrical energy
is $ 0.08/kWh. Show how the pumping cost varies as the peaking factor changes,
and how the average cost of pumping compares with the price of water purchased
from the agency.

4. Show that the cost of water is a constant times the reciprocal of the sensitivity of
the discharge to the pump power, i.e. the cost is equivalent to a constant times the
sensitivity of power to discharge, which is AP/AQ.

5. Compute and plot the sensitivities of the pressure at nodes 4, 5, and 6 to the
discharge in pipes 1 and 14.

Q h,
ft3/s ft
8.5 105.0
9.5 95.6
10.5 85.0

1.1 ft3/ 3
[1] S @ a3 9 71 101
g[100™ 12-2500 o5 10-2500  o]90!
Gl 2 2((12
& @ 1.5 f3/s n ™ 3 —=| 1.0 ft3/s
= : B S LOft’/s (10) oo a4 | <
2]100° 12-2500  [5]]96' 10-2500 [8]|94 12-1500 =
(=)

§ 3) § () \ 2 (13)
Ak 12665 ) 2[5! ft /S(M |25 1.4 s

[3] 12-2500 [6] 10-2500 9]

Dia. in in v=1.217 x 107 ft%/s

Lengths in ft

© 2000 by CRC Press LLC

1200’



CHAPTER 6

EXTENDED TIME SIMULATIONS AND
ECONOMICAL DESIGN

6.1 INTRODUCTION

This chapter looks primarily at two topics that are important to the design of looped
networks, which includes networks for water distribution to numbers of "on demand" users,
as occur in large cities. These systems do not operate under steady-state conditions. First
we introduce and describe "extended time simulations" to simulate the performance of these
systems as they respond to demands which vary with time, and which may have pumps
turned on or off, depending upon those demands. The chapter will also describe some
useful elements of engineering economic analysis. Both of these topics will then be
applied to the design of large looped networks. Thereafter, subsequent chapters explore
methods to analyze unsteady flows, including inertial and/or elastic effects. For networks
of pipes the analysis of unsteady flow requires the simultaneous solution of combined
systems of ordinary differential equations and algebraic equations. The reader will be intro-
duced in Chapter 7 to such analyses. In Chapters 8-11 progressively more comprehensive
systems will be studied. In Chapter 12 true transients in looped networks will be
examined.

Extended time simulations consist of a series of steady-state solutions based on chang-
ing demands and reservoir water levels, the number of operating pumps etc. This type of
time-dependent solution is obtained by solving a system of simultaneous nonlinear
algebraic equations, as was done in Chapters 4 and 5. Another term for this type of
unsteady flow problem is "quasi-steady," since inertia is ignored and the equation of motion
is a steady-state form, even though individual terms in the equation do change with time.
Section 7.2 will offer additional perspective on this class of flows.

Time-dependent analyses that account for inertia require the simultaneous solution of a
combined system of ordinary differential and algebraic equations. Transient analyses that
also account for elastic effects must use partial differential equations in place of ordinary
differential equations since the pressure and velocity now vary not only with time in each
pipe but also with the position along the pipe. Not only does this mean that the
computational effort increases dramatically for a solution, but also that the amount of in-
formation (numbers) that is required to describe the network behavior increases correspond-
ingly, since it is necessary to provide pressures and velocities at a number of positions
along each pipe in the network to describe the hydraulic transient after each successive time
increment. For example, if the flow in a network is described by the HGL and pressure
(two unknowns) at each node and the discharge and velocity (two unknowns) in each pipe
in a 100-pipe, 80-node network, then the description consists of 360 numbers at an in-
stant in time. A typical extended time simulation would use a one hour time increment,
and therefore the analyst must examine these 360 values for each of 24 time steps if the
simulation were for a 24-hour period. If inertia were included, then the time increment
must be on the order of seconds (or less if the pipes are relatively short, as in a fire-fighting
sprinkler system in a building). One would prefer not to have to conduct such an
investigation over a full day. But if a solution that accounted for inertia were to be
performed for only 100 time increments, then the solution consists of 36,000 values.
For a transient analysis with elastic effects, instead of just two values (discharge and
velocity) for each pipe, there will be two values for each pipe increment (these space
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increments must be compatible with the time increment), so if 20 increments are used for
each pipe, the number of values in the network description jumps to 416,000. As the
comprehensiveness of the network description increases, the amount of data that is needed
to describe the solution adequately expands rapidly, and it becomes clear that compromises
are needed.

When will an extended time simulation that ignores elastic effects be adequate? The
answer is obviously subjective. For the operation of most municipal water systems the
changes in demands are normally slow enough to cause the effects of inertia to be relatively
minor, and certainly the elastic effects can be ignored. Furthermore, in a large network the
effect of a very rapid change in flow in a single pipe, which may have a valve at one end
closed rapidly, will soon be dissipated in the network of pipes. Thus it is sufficient to rec-
ognize that a high-pressure transient wave may propagate though this pipe and possibly
affect a few pipes near it. There may be a few times in the operation of many water
distribution systems, and other liquid distribution systems, when the neglect of inertia will
cause a simulation to produce results that are notably different than those that actually
occur. Such conditions may occur when major flows are changed in seconds, or perhaps
minutes. For shorter pipes these changes may be more rapid without creating a significant
change in pressures and discharges that is attributable to inertial effects.

6.2 EXTENDED TIME SIMULATIONS

This section describes a type of time-dependent solution that has become known as an
"extended time simulation." These solutions are for pipe networks rather than single pipes.
Since this type of solution ignores both elastic and inertial effects, the solutions are
actually a series of steady-state solutions in which a past solution is updated over a time
increment in response to changes in time-dependent parameters to the new solution for the
new instant in time. Thus these time-dependent solutions are quasi-steady solutions. The
following six items commonly change in extended time simulations:

1. Demands at nodes. The nodal demands will change in almost all extended time sim-
ulations, and a typical means of specifying these changes is to provide peaking
factors as functions of time for selected groups of nodes. Such changes in demand
patterns over time might be thought of as demand schedules.

2. Storage versus elevation relations for reservoirs. Some reservoirs may have constant
water surface elevations, but most are storage tanks with a water surface elevation
that varies with time as water is withdrawn from, or added to, the tank. Typically a
storage versus water surface elevation function is constructed to describe changing
reservoir water surface elevations. When this function is described by data pairs for
water surface elevation and volume in storage, then the bottom water surface
elevation will be the lowest operating level of the tank, and the largest water surface
elevation will be the top of the tank.

3. Pump schedules. A pump schedule states how many pumps must operate in parallel
or in series at a given station at any time. In other words, a schedule specifies the
number of pumps that are turned on for each time step. An alternative is to specify
the rotational speed of a pump as a function of time.

4. Pump rules. A pump rule relates the number of operating pumps to either the mag-
nitude of the pressure (or HGL) at a selected node, or the water level in a reservoir.
Rules are distinguished from schedules by a condition that dictates the number of
pumps in operation rather than having pumps start or stop at a specified time.
Instead of specifying the number of operating pumps, the rule might give the
rotational speed of a pump.

5. Flow rules. The difference between flow rules and demand functions (schedules) is
the same as between pump rules and pump schedules. That is, the demand at
selected nodes is determined by the pressure at some node or by the water surface
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elevation in a reservoir. Flow rules would typically be given for negative demands,
which are external flows coming into the network.

6. Discharge rules. Specify the discharge that must exist in selected internal pipes in
the network. Internal pipes are distinguished from dead end pipes and pipes that
connect supply sources to the network.

There are many additional items that might be a part of the specifications that describe

the time-dependent solution, such as the following:

7. Schedules for valves. These schedules may specify the valve setting (percent open)
as a function of time, which may in turn employ a relation between valve position
and head loss to determine how the valve restricts the flow, or specify the valve loss
coefficient as a function of time.

8. Rules for valves. The rules can either prescribe the valve setting (percent open) or
give its loss coefficient as a function of the pressure at a node. In place of pressure,
the rule may be based on the water surface elevation in a reservoir.

9. Differential head devices. These devices may specify the amount of differential head
(positive or negative) in selected pipes as a function of time, i.e., a schedule of head
losses in pipes, or the amount of the differential head may be computed so that a
specified HGL (or pressure) is achieved at a selected node, and the HGL may vary
with time.

10. Tank level or pressure control algorithms. Such algorithms simulate controllers
that may activate valves etc. to maintain the water levels in reservoirs at or between
specified limits, or to maintain a pressure at a designated value, or between specified
limits, by changing the flow into the network or adjusting a valve setting.

It is common to implement these items, which prescribe changes in network behavior
over the next time step, and which are rules based on pressure or water surface elevation, in
terms of values that are taken from the solution for the current time instant. In other
words, the implementation of the rule lags the solution itself by one time step. To do
otherwise would require an iterative approach.

We will not describe any implementation details for these rules. However, as they act
to change the network behavior over each time step, it is generally not necessary to
redefine the equations that govern the mathematical problem as if a new network problem
were being solved. Instead the existing equations are simply modified to reflect the
conditions that apply to the new time step. For example, to change nodal demands we
simply change the values of those demands. But when a pump is turned off or a pressure
reduction valve opens fully, the type and/or number of equations that describes the system
must be altered.

Example Problem 6.1

Obtain an extended time simulation for the 30-pipe, 16-node network described in
Chapter 5 and shown in Fig. 5.15, using the diameters (for all pipes e = 0.004 in) found
there by using DESIGN=1 that are listed in the pipe data table. The following specifica-
tions control this simulation: (1) The storage tank attached to the network by pipe 30 is
circular with a diameter of 115 ft, and its bottom is at elevation 590 ft; at the beginning
of the simulation its water surface elevation is 605 ft. (2) Two different demand
functions are described on the graph which follows; the first applies to the north portion
of the network at nodes 1, 2, 5, 6, 9, 10, 13, and 14, and the second applies to nodes 3, 4,
7,8, 11, 12, 15, and 16. (3) Initially three pumps are in parallel at each pump station,
and the tables give pump characteristics that apply to all three operating pumps. The
number of operating pumps is given by the pump schedule.

PUMP SCHEDULE
Pump Station 1 [f Pump Station 2
Time, hr. 0 8 10 15 17 || 0 5 8 15 20
Number operating 3 2 1 2 3 3 2 1 2 3
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NODE DATA

No. | Demand | Elevation No. | Demand | Elevation
ft3/s ft ft3/s ft
1 1.2 500 9 2.0 493
2 1.2 490 10 2.0 492
3 0.8 485 11 3.6 488
4 1.6 480 12 2.8 484
5 1.4 495 13 4.0 480
6 1.2 494 14 2.0 478
7 1.0 490 15 1.8 475
8 0.8 483 16 2.0 470
PIPE DATA
No. | Length | Diameter No. | Length | Diameter No. | Length | Diameter
ft in ft in ft in
1 500 18 11 800 6 21 1600 8
2 500 15 12 800 6 22 | 1600 10
3 800 12 13 | 1600 12 23 | 1600 6
4 800 6 14 | 1600 12 24 800 6
5 800 12 15 | 1600 12 25 800 6
6 1800 12 16 | 1600 12 26 800 6
7 1800 12 17 800 6 27 | 2500 6
8 1800 12 18 800 6 28 | 2500 6
9 1800 10 19 800 6 29 | 2500 6
10 800 6 20 | 1600 12 30 | 1000 10
1.4
N / ] \
1.0
%D 0.8 N
=
NI
h \\/ ) /
0.2 \
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We begin the solution of this problem by reading key demand function data from the
two plots of peaking factor at points where the curves break; this step allows us to digitize
the demand functions (each function can have a separate set of times), as listed in this table:

Hour: || 0 2 3.5 6.5 10 [11.5] 14 17 19 20 22 24
DF(1)|| 1.0 [ 0.95 1 0.875 ]0.625 |0.30/0.25]0.50|1.10 | 1.23 |1.25]1.10 (1.0
DF(2)||1.0]1.05 | 1.06 1.00 0.80]10.68 10.50]0.20 {0.30 1 0.50 ] 0.85 1.0

A solution from NETWK can be obtained by first adding the option ISIML=1 to the
$SPECIF list of options and supplying input that would describe the network appropriate-
ly, and then adding the additional lines that describe the extended time simulation that is
desired. The input file follows:

Extended time simulation for example 30 pipe network.

/*

$SPECIF ISIML=1,NODESP=0 $END 27252500 6

PIPES 28 27 2500 6

102 500 18 .004 29 3 8 2500 6

20350015 30 0 14 1000 10

32180012 RESER

4238006 30 605

534800 12 PUMPS

6151800 12 1 2.67 157 5 152 7.33 144 500

7261800 12 221524 147 6 139 500

837 1800 12 PARALLEL

9481800 10 13

106 5800 6 23

11 6 7 800 6 NODES

127 8 800 6 1 1.2 500

13591600 12 2 1.2 490

14 6 10 1600 12 3 0.8 485

157 11 1600 12 4 1.6 480

16 8 12 1600 12 5 1.4 495

17 10 9 800 6 6 1.2 494

18 10 11 800 6 7 1.0 490

19 11 12 800 6 8 0.8 483

20 9 13 1600 12 9 2.0 493

21 10 14 1600 8 10 2.0 492

22 11 15 1600 10 11 3.6 488

23 12 16 1600 6 12 2.8 484

24 14 13 800 6 13 4.0 480

2514 15 800 6 14 2.0 478

26 15 16 800 6 15 1.8 475
16 2.0 470
RUN

$TDATA ALTV=0,HTIME=24,INCHR=1,ISUNIT=0,LINEAR=1,NPUNOD=2,PRINTT=3 $END
PIPE TABLE

ALL

NODE TABLE

ALL

RESER. TABLE

ALL

END TABLES

STORAGE FUNCTION

1 590 0 600 103870 605 155805/
30/
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DEMAND FUNCTION

1012.9535.8756.5.62510.311.5.2514 .5171.1191.23201.25221.1241./
125691013 14/
2012105351.0665110.811.5.6814.517.219.320.522.85241/
3478111215 16/

PUMP SCHEDULES

120382101152173/

22035281152203/

END SIMULATION

END

The input after the RUN command provides specifications for the time-dependent solu-
tion. A brief explanation of this part of the file (see the NETWK manual for more detail)
follows:

1. The $TDATA line sets options associated with the extended time simulation: (a)
ALTV=0 tells NETWK to extrapolate the volume-elevation data that is provided
for the storage tank beyond the given limiting values; if ALTV=1, then the tank
will no long supply water when the elevation falls to the smallest elevation in the
data, nor will it fill further if the water surface elevation reaches the largest elevation
in the data; (b) HTIME=24 indicates the simulation is to cover 24 hours, the
default; (c) INCHR=1 indicates one-hour increments and is also the default; (d)
ISUNIT=0 indicates that storage volumes will be given in ft3; (¢) LINEAR=I
specifies a linear interpolation (or extrapolation if necessary) of given data; (f)
NPUNOD=2 indicates that source pumps and reservoirs will be referenced by pipe
number; (g) NPRINTT=3 tells NETWK to write special tables, with time in the
first column, for pressure at designated nodes and discharges in designated pipes.

2. The ALL after PIPE TABLE and NODE TABLE indicates all pipes and nodes
are to be in these special tables; similarly, all reservoirs are to have their water
surface elevations reported in the tables.

3. The individual demand functions are described next under the command DEMAND
FUNCTION. Each separate demand function consists of two lines; the first value
on the first line is a number the user chooses to assign to this demand function as
an identifier, which is followed by time and peaking factor data pairs. The second
line indicates the nodes at which this demand function applies.

4. After the PUMP SCHEDULES command the second value on each line, a 2 after
the number of the pump station has been given, indicates parallel pump operation,
and the times and numbers of operating pumps are given thereafter as pairs.

The special tables follow; the varying discharges in pipes 1, 2, 4, 18,25, and 30 are
plotted in a figure, and the pressures at nodes 1, 2, and 16, plus the water surface
elevation in the storage tank, are plotted in the other figure. From this simulation we note
that the storage tank initially has a water surface elevation of 605 ft and ends the 24-hour
period with a water surface elevation of 603 ft. In other words the tank will not be full at
the beginning of the next day; hence the capacity of either one pump or both pumps
should be increased, or the lengths of time intervals when pumps are in operation should be
increased. The discharge reverses direction in several pipes over the 24-hour period,
including pipe 30 connecting the storage tank to the network. For the first 7 hours the
storage tank supplies water to the network; then it fills until 18 hours, and thereafter it
again supplies water. If the middle point used to define the pump curves is the normal

capacity, then the discharge at maximum efficiency for station 1 is 15 ft3/s at the start

of pump operation, and for station 2 the discharge is 12 ft3/s. When the number of
operating pumps is reduced from 3 to 2 and then to 1 during the period of lower
demand, the pumps are then producing flows that are considerably above their normal
capacities, as seen in the plot of discharges in pipes 1 and 2 in relation to the normal
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Pressure (lb/inz) at Nodes as a Function of Time

Hours Node Number

1 2 3 4 5 6 7 8 9
1 57.67 |67.26 |66.95 |65.71 |[52.12 |53.53 |54.89 |[55.53 |46.51
2 57.79 [67.29 |[66.81 |65.47 |52.31 |53.53 |54.62 |[55.09 |46.79
3 57.91 |67.33 |66.67 |65.23 |52.49 |53.55 [54.34 |54.63 |47.06
4 58.36 | 67.54 |66.74 |65.29 |[53.21 [54.08 |[54.54 |54.75 |48.00
5 58.98 |[67.85 [66.93 |65.56 |54.17 |[54.90 |55.05 |[55.25 |49.22
6 59.40 | 67.97 |65.09 |63.99 |[54.85 |55.39 |[54.41 |54.56 [50.11
7 60.16 | 68.37 |65.47 |64.50 |56.02 [56.47 [55.20 |55.40 |51.60
8 61.04 |68.84 |66.03 |65.27 |57.40 |57.82 |56.34 |56.66 |53.41
9 59.10 | 66.38 |59.94 |59.75 [56.19 |56.41 |[52.59 |52.92 |52.95
10 60.49 |67.32 |61.46 |61.53 |58.21 [58.34 [54.67 |55.25 |55.40
11 55.80 [61.76 |60.70 | 60.94 |55.04 |55.27 |53.84 |54.97 |53.46
12 57.17 |62.97 |62.36 |62.88 [56.65 |56.90 |56.05 |57.46 |55.23
13 57.32 | 63.16 | 63.24 |63.95 [56.79 |[57.16 |[57.17 |58.85 |55.32
14 56.44 |[62.49 |63.48 |64.35 |55.71 [56.20 |[57.40 |[59.47 |53.96
15 55.70 | 61.99 |63.64 |64.65 |54.75 [55.68 [57.46 |59.97 |52.66
16 60.64 | 68.04 |69.64 |70.75 [58.12 |60.18 [62.97 |65.93 |54.38
17 59.26 [67.45 [69.76 |71.06 |55.91 |58.91 |63.47 |[66.61 |51.55
18 59.30 |68.68 |70.70 |72.23 |54.48 [58.75 [64.99 |68.40 |48.84
19 58.46 |68.27 |70.23 |71.62 |[53.12 [57.74 [63.98 |67.31 |47.06
20 57.54 [67.82 [69.72 |70.94 |51.61 |[56.61 |62.86 [66.13 |45.05
21 56.84 | 67.40 |69.36 [69.90 [50.48 [55.22 [60.18 |63.20 |43.64
22 57.06 |67.29 |68.45 |68.38 [51.03 |54.66 [57.83 |60.34 |44.59
23 57.19 [67.17 |67.60 |66.92 |51.29 [53.86 |[56.03 |[57.71 |45.12
24 57.37 |67.18 |67.24 |66.28 |51.61 |53.59 |[55.35 |56.55 |45.65

Pressure (lb/in2) at Nodes as a Function of Time (cont'd)
Hours Node Number Reservoir Water

10 11 12 13 14 15 16 Surface Elev., ft
1 49.07 |48.63 |50.56 |48.83 |52.34 |50.69 |46.73 605.00
2 49.06 |48.14 [50.00 [49.17 [52.19 |50.12 |45.80 604.18
3 49.07 |47.62 |49.43 |49.49 |52.05 |49.52 |44.84 603.40
4 49.70 |47.79 |49.57 |50.53 |52.30 |49.67 |44.88 602.65
5 50.66 |48.42 |50.17 |51.77 |52.77 |50.31 |45.61 602.00
6 51.33 |48.19 |49.89 |[52.62 |[53.15 |[50.36 |45.84 601.53
7 52.56 |[49.18 |50.88 |54.16 [53.39 |51.30 [47.09 601.24
8 54.09 |50.67 |52.39 |56.16 |53.61 [52.68 |49.06 601.19
9 53.38 |48.18 |49.51 |56.30 |[53.64 |51.17 |47.83 601.41
10 55.65 |50.70 |52.12 |59.01 |[54.45 |53.60 [51.07 601.59
11 53.69 |50.47 |52.06 |57.75 |54.44 |53.75 [51.83 602.05
12 55.43 |53.13 | 54.84 |59.57 |55.41 |[56.26 |55.32 602.45
13 55.71 |54.58 |56.39 |59.58 [56.01 [57.40 |57.34 603.04
14 54.63 |55.08 |57.16 |57.92 [55.85 |57.90 |58.55 603.71
15 53.99 |55.45 |57.85 |56.34 |55.65 |58.49 [59.69 604.28
16 57.65 |60.61 |63.90 |56.84 |[56.49 |63.40 |65.37 604.75
17 56.11 |61.46 |64.93 |53.95 [55.48 |64.67 |66.83 605.36
18 55.41 |63.44 |67.04 |50.65 [55.30 |67.04 |69.39 605.61
19 54.25 |62.07 |65.76 |48.71 [55.09 |[65.51 |67.74 605.60
20 52.93 | 60.56 | 64.36 |46.47 |54.59 |63.81 |[65.98 605.39
21 51.22 |56.41 |60.45 |44.98 [53.65 |[58.86 |60.54 605.02
22 50.49 |53.10 |56.71 |46.24 |53.07 |55.19 |[55.58 604.44
23 49.25 |50.74 |53.37 |47.03 |52.11 |52.93 |51.14 603.80
24 48.93 |149.62 |51.88 |47.72 |51.79 |51.70 | 48.88 603.03
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Discharges (ft3/s) in Pipes as a Function of Time

Hours Pipe Number
1 2 3 4 5 6 7 8 9 10
1 15.71 | 11.33 6.05 0.66 4.83 4.85 6.10 5.52 3.23 0.40
2 15.66 | 11.46 6.00 0.68 491 4.83 6.11 5.56 3.27 0.36
3 15.62 | 11.59 5.95 0.70 4.99 4.81 6.11 5.60 3.31 0.31
4 15.33 | 11.53 5.80 0.72 4.99 4.72 6.03 5.56 3.30 0.26
5 14.90 | 11.35 5.61 0.74 4.93 4.61 5.89 5.47 3.25 0.21
6 14.73 110.52 5.42 0.95 4.73 4.52 5.79 5.11 3.09 0.12
7 14.15 | 10.26 5.17 0.96 4.64 4.37 5.60 4.98 3.02 0.04
8 13.43 9.86 4.88 0.95 4.47 4.19 5.34 4.79 2.92 0.04
9 12.91 8.07 4.49 1.26 3.99 3.90 5.02 3.95 2.53 0.18
10 11.98 7.58 4.12 1.22 3.76 3.65 4.70 3.72 2.39 0.21
11 9.33 7.83 3.29 0.75 3.59 2.93 3.77 3.74 2.31 0.17
12 8.82 7.27 3.12 0.70 3.31 2.80 3.60 3.51 2.16 0.16
13 8.74 6.96 3.16 0.60 3.10 2.80 3.57 3.40 2.07 0.09
14 9.03 6.86 3.39 0.44 2.93 291 3.69 3.41 2.01 0.09
15 9.24 6.81 3.63 0.29 2.75 3.03 3.70 3.45 1.95 0.28
16 11.21 6.82 4.58 0.30 2.63 3.74 4.31 3.67 1.99 0.52
17 11.84 6.70 5.16 0.14 2.36 4.08 4.55 3.50 1.88 0.67
18 13.68 5.65 5.93 0.14 2.00 4.61 5.01 3.23 1.68 0.83
19 14.29 6.20 6.18 0.17 2.23 4.79 5.20 3.49 1.83 0.86
20 14.94 6.75 6.45 0.20 2.47 4.98 5.40 3.74 1.99 0.91
21 15.52 8.77 6.61 0.17 3.29 5.11 5.68 4.62 2.49 0.88
22 15.67 9.82 6.42 0.41 3.88 5.01 5.80 5.09 2.80 0.75
23 15.82 1 10.70 6.29 0.54 4.40 4.97 5.99 5.38 3.04 0.61
24 15.81 | 11.05 6.18 0.60 4.63 4.92 6.06 5.47 3.15 0.51
Discharges (ft3/s) in Pipes as a Function of Time (cont'd)
Hours Pipe Number
11 12 13 14 15 16 17 18 19 20
1 0.24 0.64 4.72 4.26 4.95 3.91 0.61 0.61 |- 0.17 3.32
2 0.32 0.67 4.68 4.26 5.03 3.97 0.56 0.68 |- 0.13 3.29
3 0.39 0.69 4.65 4.26 5.11 4.02 0.52 0.75 | - 0.10 3.26
4 0.46 0.70 4.56 4.23 5.12 4.01 0.46 0.80 | - 0.07 3.22
5 0.52 0.70 4.46 4.16 5.08 3.97 0.41 0.84 | - 0.04 3.20
6 0.69 0.71 4.37 4.09 4.94 3.78 0.35 0.94 0.06 3.22
7 0.73 0.70 4.24 4.03 4.86 3.71 0.29 0.96 0.06 3.19
8 0.75 0.69 4.06 3.94 4.73 3.59 0.19 0.96 0.05 3.09
9 1.00 0.69 3.72 3.61 4.24 3.14 0.01 1.13 0.25 2.73
10 0.99 0.65 3.51 3.45 4.05 2.98 0.16 1.10 0.21 2.56
11 0.75 0.57 2.83 2.84 3.78 2.85 0.17 0.95 0.14 2.06
12 0.67 0.52 2.74 2.77 3.56 2.67 0.18 0.85 0.05 2.02
13 0.54 0.48 2.77 2.76 3.40 2.57 0.08 0.71 |- 0.10 2.09
14 0.29 0.40 2.94 2.83 3.26 2.46 0.18 0.46 |-0.23 2.32
15 - 0.08 0.29 3.13 2.90 3.08 2.33 0.38 0.20 |- 0.33 2.51
16 - 042 0.10 3.95 3.36 3.28 2.26 0.70 |- 045 | - 0.51 3.25
17 -0.70 |- 0.12 4.22 3.50 3.08 1.98 0.86 |- 0.80 | - 0.54 3.28
18 -090 |-0.24 4.72 3.76 2.81 1.69 1.06 | - 1.07 | - 0.56 3.58
19 -0.90 |-0.21 4.88 3.83 3.03 1.87 1.11 | - 1.05 | - 0.58 3.66
20 -090 |-0.18 5.06 3.92 3.25 2.06 1.17 | - 1.03 | - 0.60 3.77
21 - 0.76 0.04 5.16 4.06 3.96 2.76 1.14 | - 0.78 | - 0.63 3.80
22 - 0.49 0.29 5.02 4.13 4.37 3.26 0.99 |-0.38 |-0.57 3.66
23 - 0.26 0.48 4.92 4.32 4.59 3.62 0.81 0.19 |- 0.38 3.53
24 - 0.05 0.56 4.84 4.34 4.76 3.78 0.71 0.42 |- 0.29 3.45
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Discharges (ft3/s) in Pipes as a Function of Time (cont'd)
Hours Pipe Number
21 22 23 24 25 26 27 28 29 30
1 1.04 2.14 0.94 0.68 0.72 1.06 0.86 0.84 0.84 2.36
2 1.07 2.16 0.96 0.61 0.77 1.09 0.86 0.85 0.85 2.26
3 1.10 2.18 0.98 0.54 0.83 1.12 0.85 0.86 0.86 2.16
4 1.16 2.19 0.99 0.38 0.84 1.13 0.83 0.86 0.86 1.86
5 1.25 2.19 0.98 0.13 0.82 1.12 0.81 0.86 0.85 1.37
6 1.30 2.10 0.96 | - 0.22 0.85 1.10 0.79 0.88 0.80 0.83
7 1.45 2.12 0.94 | - 0.53 0.77 1.08 0.76 0.87 0.79 0.13
8 1.63 2.15 0.92 |- 0.78 0.62 1.02 0.72 0.84 0.76 | - 0.63
9 1.53 1.82 0.83 |- 0.79 0.82 1.00 0.67 0.89 0.66 | - 0.53
10 1.72 1.85 0.79 | - 0.99 0.61 0.92 0.62 0.85 0.63 |- 1.32
11 1.46 1.71 0.75 | - 0.86 0.58 0.85 0.50 0.66 0.60 |- 1.14
12 1.57 1.77 0.70 | - 0.95 0.26 0.74 0.47 0.62 0.56 |- 1.72
13 1.52 1.89 0.67 |-0.89 |- 0.11 0.62 0.47 0.57 0.53 | -1.92
14 1.39 1.88 0.64 |-0.72 | - 0.35 0.51 0.50 0.53 0.51 | - 1.66
15 1.32 1.81 0.60 |- 0.51 | -0.51 0.40 0.53 0.49 0.49 |- 1.34
16 1.71 1.90 0.63 [-045 |- 1.01 0.17 0.66 0.52 0.50 | - 1.77
17 1.65 1.74 0.60 032 |- 120 0.00 0.73 0.46 0.46 |- 0.72
18 1.58 1.59 0.56 0.82 |-139]-0.16 0.83 0.44 0.41 0.05
19 1.45 1.65 0.59 1.00 |- 1.30 | - 0.09 0.86 0.48 0.45 0.59
20 1.32 1.73 0.62 1.15 |- 1.21 | - 0.02 0.90 0.52 0.49 1.08
21 1.20 2.01 0.72 1.20 |- 0.83 0.28 0.92 0.63 0.62 1.67
22 1.17 2.13 0.80 1.04 |-036 | 0.55 0.90 0.73 0.71 1.86
23 1.12 2.10 0.86 0.87 0.27 0.84 0.89 0.80 0.78 2.22
24 1.12 2.13 0.90 0.75 0.48 0.95 0.88 0.82 0.81 2.21
16 ————_|Normal capacity, Sta. 1 ~ Normal capacity, Sta. 1] ——
________ —— — — QR S
14 , , i
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capacity lines on the figure, with accompanying reductions in efficiency. In fact, it would
appear that the pump schedule should never reduce the number of pumps in operation at
either station to one; then the tank would be full at the end of the 24-hour period.

The simulation can be run again with the following changes to the input data:

PUMP SCHEDULES
120382173/
220352203/

The solution then shows that the tank ends the simulation period with a water surface at
elevation 604.03 ft, and the discharges in pipes 1 and 2 are more nearly at their normal
capacities, as the graphs below show. Can the reader develop an operating scenario that
would cause the tank to end the period with a water surface elevation of 605 ft?
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