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CHAPTER 1
_________________________________________________________________________

INTRODUCTION

Pipeline systems range from the very simple ones to very large and quite complex ones.
They may be as uncomplicated as a single pipe conveying water from one reservoir to
another or they may be as elaborate as an interconnected set of water distribution networks
for a major metropolitan area.  Individual pipelines may contain any of several kinds of
pumps at one end or at an interior point;  they may deliver water to or from storage tanks.
A system may consist of a number of sub-networks separated by differing energy lines or
pressure levels that serve neighborhoods at different elevations, and some of these may have
pressurized tanks so that pumps need not operate continuously.  So these conveyance
systems will adequately fulfill their intended functions, they may require the inclusion of
pressure reducing or pressure sustaining valves.  To protect the physical integrity of a
pipeline system, there may be a need to install surge control devices, such as surge relief
valves, surge tanks, or air-vacuum valves, at various points in the system.

How do these systems work?  What principles are involved, and how are the systems
successfully analyzed and understood?  How can the behavior of a preliminary design be
evaluated, and how can the design be modified to correct deficiencies?  These are some, of
many, questions that immediately confront any engineer who is involved in creating the
physical infrastructure to satisfy a basic need of mankind:  the delivery of water when and
where it is wanted at a price that is affordable.  It is the primary objective of these engineers
to develop and apply their knowledge to make the system work.  Success at this task first
requires an adequate knowledge of some fundamental principles of fluid mechanics.  Some
experience with the solution of hydraulic flow problems is certainly desirable, and it will
come with time and effort.  These days an understanding of some particular numerical
methods and the ability to implement them on a computer, sometimes for the solution of
very large problems, is also a vitally needed skill.  Computations associated with
engineering practice have changed dramatically in the past quarter century from the
estimation of a few key values by using a slide rule to the generation of pages of computer
output that are the result of detailed simulations of system performance in response to
various alternative designs, so that the consequences of various ideas can be ascertained
quantitatively.  The volume of computer output can overwhelm one's ability to glean the
most pertinent information from the numbers.  The purpose of this book is to empower the
reader with the knowledge, experience, and tools to accomplish this objective.

This book will present to the reader a comprehensive and yet relatively practical study of
pipeline hydraulics, with a substantial component being the use of computers for detailed
computations that are not practical to perform by hand.  The intent of the authors was to
create a book, and an accompanying  CD,  that will serve well any of the following roles:
(1)  as a text for senior-level courses for BS students electing to specialize in fluid
mechanics, hydraulics, water supply and distribution, and/or water resources;  (2)  as a text
for graduate engineering courses in the same subject areas;  (3)  to provide instructional
material for professional practicing engineers who wish to update their knowledge of
specialties associated with the distribution, conveyance, and  control of fluids in pipelines;
(4)  to provide resource material for engineers in governmental agencies at all levels who
have responsibilities to design and/or approve plans for pipeline systems;  and (5)  to
provide reference material for consultants who are asked to solve problems, review plans, or
suggest project alternatives in the subject areas of this book.
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The study of the hydraulics of pipeline systems builds on a small number of
fundamental principles that are found in a first course on fluid mechanics;  such a course is
normally taken in the third full year of college study by all students in civil and
environmental engineering, mechanical engineering, agricultural and irrigation engineering,
and in some related engineering fields.  Ideally this course is a judicious mix of the
development of basic theory and its application, but it is not uncommon for such a course
to emphasize theory over practice or vice versa.  The authors will assume that readers have
already acquired some knowledge of fundamental fluid mechanics principles;  it is hoped
that they also have in their individual libraries an elementary text on fluid mechanics that
can be a resource for (1)  refreshing their understanding of the basic concepts and (2)
finding an occasional supplementary equation when it is needed to enhance the
understanding and application of the developments in this book.  Such a reference will also
be useful as a source of data on fluid properties.

To establish a base on which to build in subsequent chapters, the authors begin in
Chapter 2 with a review of elements of basic fluid mechanics that are pertinent to pipe
system hydraulics.  Because pumps are such a common part of (especially the larger)
pipeline systems, Chapter 2 includes a short primer on pump behavior and the summary of
such behavior by pump characteristic curves. Chapter 2 concludes with several basic flow
examples that are much like those that are usually found in a first course.  The remainder of
the book then addresses three general categories of pipeline system analysis.  The first
category, examined in Chapter 3, considers pipe manifolds, relatively the least complex
type of pipe system.  Although any pipe manifold is basically a relatively large pipe which
delivers fluid to many outflow points or ports, it is an example of a spatially varied flow;
such flows are often not studied in undergraduate books on fluid mechanics, so some care is
needed to avoid conceptual errors.  A single manifold pipe is examined at several levels of
completeness, and the chapter ends with a design example and some comments about
developing a manifold design with the aid of a computer program.

The second category is steady-state pipe network analysis.  The largest single segment
of the book is devoted to this topic.  Relative to the coverage of this topic in other books,
the exploration of the topic here is both broad and thorough (or, as some say, 'in-depth').
(Even so, much that is known about optimal design technniques could not be included here,
owing to limitations on the size and cost of this book!)  The study of networks progresses
from the simple to the complex.  The simple networks are used to emphasize the
principles, and the larger networks allow one to experience a taste of the real world and to
learn to cope with additional complexity.  Enough details of the numerical and
programming techniques are presented so the reader can see how the entire analysis works.
Chapter 4 concentrates on analysis techniques and completely describes the three primary
alternative approaches to the formulation of a mathematical model for a pipeline system;
then a method for solving each of them is presented.  The primary elements of each
solution method, in this and subsequent chapters, are implemented in Fortran and C
programs that are contained in the  CD  that accompanies this book.  The logic that is
required to integrate the relatively complicated pressure reducing and back pressure valves
into a system is carefully described.  Chapter 5 goes on to describe effective approaches to
the design of pipe networks;  the first objective of most pipeline system designs is to
determine the smallest acceptable, and commercially available, pipe diameters to fulfill
specified delivery requirements, and in this chapter one finds out how to formulate a
problem with some of the pipe diameters as unknown variables.  This approach is in
distinct contrast to the usual design approach of initially estimating (guessing?) all of the
pipe sizes, conducting an analysis of the resulting network, and then iteratively adjusting
the sizes until a satisfactory design is found.  Methods will be described that allow one to
decide rationally which component(s) of a large network should be altered to eliminate most
effectively a deficiency in the network's performance;  this decision process is based on the
quantification of the sensitivities of dependent variables to independent variables.  For
example, the pumping station (with power as the independent variable) that produces the
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largest sensitivity to pressure at the node with the lowest pressure (the dependent variable)
should be enlarged to eliminate a problem involving excessively low pressures.  Finally,
in Chapter 6 the reader is introduced to extended time simulations and additional economic
considerations in network design.

The last of the major topics in this book is the analysis of several types of transient
flow in pipelines and in networks.  These chapters begin with a relatively brief section in
Chapter 7 on slowly-varying flows that can be called quasi-steady.  Chapter 7 then goes on
to introduce two types of true transients, those in which only inertial effects are important
and those for which the additional consideration of the elasticity of both pipe and fluid is
essential to capture the true behavior of these flows.  In Chapters 8 through 13 various
transient flows in systems that range from single pipelines to entire pipeline networks are
examined, as well as procedures and devices for controlling these transients.

Even if it is not already clear to the reader at the outset, it will become clear during the
reading and study of this book that the solution of pipeline hydraulics problems, especially
as the systems become larger, can require substantial computational effort. The routine
computation of solutions to larger problems in either networks or transients can involve
the heavy use of a modern desktop computer or a workstation.  This type of computation,
which normally requires the solution of either a moderate to large set of initially nonlinear
algebraic equations or one to many differential equations, depends heavily on the use of
reliable and reasonably efficient methods from numerical analysis, a branch of applied
mathematics that also has some input from computer science.

In the steady-state analysis and design of networks, large systems of nonlinear algebraic
equations must be solved;  this book will emphasize the relatively reliable Newton method
for the solution of these equation sets.  The inclusion of inertia in unsteady flows will
require us to solve a system, which can become very large for networks, of differential and
algebraic equations, also called DAE's.  Although research papers on the solution of DAE's
began to appear in the 1980s, relatively little of this subject appears to have been
previously applied to pipeline hydraulics problems, so far as the authors can tell, even
though there are many applications in engineering practice in which such combined
systems of equations govern.  The presentation of a technique for the solution of these
systems of equations is one of the contributions of this book.  As the future requires more
sophisticated simulations of engineering problems, similar solution techniques will become
commonplace.

An exposition on the hydraulics of pipeline systems can approach this topic in any of
several ways, ranging from one extreme where only hydraulic theory and the accompanying
descriptive mathematical equation sets are presented, to the other extreme where an array of
problem descriptions, computer files and fill-in-the-data sets of instructions for the use of
computer programs is presented.  In the authors' opinions neither extreme is deserving of
commendation.  But it is also understood by the authors that individual readers will have
goals that do not agree entirely with those of either the authors or other readers of this
book.  After some deliberation the authors have chosen an intermediate approach to the
subject.  The first step in each major topic is to present the governing principles and their
expression in mathematical equations.  The examples of the application of the principles
will usually progress from the smaller and simpler to the larger, more realistic and more
difficult, both in the text and in the problem sections at the end of most chapters.  Most of
the numerical and procedural detail of problem solving will be examined when the smaller
problems are discussed.  Some readers may desire to know more in the way of details in the
numerical analysis and/or the computer coding than is presented in the body of the text.  To
some extent this outcome is an unavoidable consequence of the authors' choice to take the
intermediate approach, but those who desire more details on the numerical techniques and
the actual computer programming can learn more!  Appendix A presents a primer on some
numerical analysis techniques.  We also encourage readers to extract the source code of
computer programs from the  CD  to list them, to study them, and to use them to solve a
variety of problems.   The  CD  contains approximately  250  separate files (not including
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the executable elements); seven files are document files to explain the use the major
executable programs such as  USU-NETWK  which are on the  CD.   With few  exceptions
the source programs are provided in both Fortran and  C.  The  CD  contains slightly under
one hundred Fortran source programs, ranging in size from less than a page (when listed) up
to several pages.  Among these are subroutines (also written as  C  functions) to perform
numerical solutions of single, or systems of, ordinary differential equations or tasks such as
cubic spline interpolations.  In solving many of the problems at the ends of the chapters
the reader will find it advantageous to use the vast additional resources on the  CD.  An
INSTALL  program on the  CD  permits the user to extract and decompress the files on the
CD  by  type, or to make individual or group selections.

While this book has been written primarily to describe the hydraulics of pipeline
systems,  an important secondary objective is to describe with care, and to present examples
of the application of, some reliable numerical methods for the solution of the larger, more
complex problems that the practicing engineer encounters.  Although the examples herein
are all pipeline problems, the numerical methods themselves have potentially a far wider
range of applications to any topic that can be modeled with similar sets of equations.
Engineering colleges everywhere have for many years been debating the relative merits of
teaching to their students a procedural programming language such as Fortran, C, or Pascal,
vs. the teaching of the use of spreadsheets and interpretative languages as implemented in
MathCAD, TK-Solver, or Mathematica.  The authors' opinion, formed by observing many
students during their university years and after graduation, is that computer programming is
a very important, if not a vital, skill today when computers have become an integral part of
our professional and personal lives.  Individuals who can effectively use a procedural
programming language seem to assimilate the use of application software packages more
readily than those whose university experience was only with application packages.
Consequently the authors conclude that there is much merit is learning how to program
effectively not only to complete a task but also because programming requires a concise and
correct application of fundamental principles, and the experience enhances an understanding
of these principles even more than the solution of small problems that can be done by
hand.  But if a programming language is to be employed in this book, which language is
the language?  With the years, more and more languages appear, in some respects like the
seasons.  For example, depending on one's year of birth, the readers and the authors have
seen one to several generations of Basic and Fortran, and then Pascal, and more recently C
and C++, Java and still other languages appear, each with its own special attributes.  How
do the authors create a text that addresses the issues without forcing literacy in a particular
programming language on the reader?  (The answer probably is, with some difficulty, but
the authors have tried.)  The 'solution' follows in the next paragraph.

The authors have started from the premise that nearly all readers of this book will have
some knowledge of computing methods.  The authors have also assumed that many readers
will be familiar with either Fortran or C as a programming language;  however, it is also
assumed that not all readers will have this background.  Hence, included on the CD are
executable program elements which can be used directly, without compilation, for the
solution of some but not all of the problems in this book.  In addition, the CD contains a
few  TK-Solver models;  they are included because they present equations and the selection
of dependent variables in a clear way.  It was tempting to include not only more  TK-Solver
models but also  MathCAD models in the text, until it was realized that page limitations
would not permit more.  It would be a valuable experience for readers to develop their own
TK-Solver, MathCAD, Mathematica, spread-sheet, or other software models with
interpretative capabilities to solve some of the example problems and problems at the ends
of the chapters.  The source programs have already been mentioned;  of course, each of
them may serve as a base from which the reader may create new, specialized programs for
their own individual purposes.  Any modification of a program will, of course, require its
recompilation which, in turn, requires access to the appropriate
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Pcompiler.  As a reminder to the reader that these programs, which the authors believe are
correct, are nevertheless provided as a service to the readers without a guarantee, some of the
text programs explicitly contain the following caution:
*
*   THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
*   THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
*   USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.
*
The authors intend that the reader understand that this caution applies to all of the codes in
this book and on the CD, although the caution is not repeated on every file.

The authors are confident that the reader will find the many applications of the basic
principles of hydraulics to a wide range of practical problems to be challenging, yet
manageable, and useful in either advanced education or professional practice.  The authors
further hope that the considerable number and range of applicability of the computer
programs will provide the user with the tools to analyze a wide range of pipeline systems.
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CHAPTER 2
_________________________________________________________________________

REVIEW OF FUNDAMENTALS

This chapter will review the fundamental concepts and principles upon which the
hydraulics of pipeline systems is based.  The review is intended to be sufficiently complete
that readers who have taken a good first course in elementary fluid mechanics, but not
necessarily recently, will be reminded of, and updated in, the essential conceptual building
blocks that are the foundation of the material in this book.  We will begin with an
introduction to the fundamental equations that are the foundation of most of the subsequent
developments in the book.  Because the concept of the energy grade line (EGL or simply
EL) and the hydraulic grade line (HGL) is so useful, we shall look at this idea separately.
Next we look at some length at various head loss formulas.  How turbomachines with
rotating impellers, particularly pumps, function is vitally important to the understanding
of many parts of this book, so their theory of operation and basic characteristics will be
examined.  The chapter will conclude with several steady-flow examples and a range of
problems that will allow readers to test their readiness for the coming chapters.  If a
thorough review is desired, one might consult Miller (1984).

2.1 THE FUNDAMENTAL PRINCIPLES

2.1.1. THE BASIC EQUATIONS
Conservation of mass is the most basic principle.  In general, the fluid density  ρ  may

vary in response to changes in the fluid temperature and/or pressure.  For a fixed control

volume  V   enclosed by a surface  S,  a general statement of mass conservation is

∂
∂t

ρ dV

V∫ + ρ
r
v ⋅

r
n

S∫ dS = 0 (2.1)

in which    
r
v   is a velocity at a point and   

r
n   is an outer normal unit vector to the surface

S , and t  is time. The first term represents the accumulation of mass over time in the
control volume;  for steady flows it is zero.  At a surface point the dot product  

r
v ⋅

r
n   gives

the component of the velocity which crosses the surface, so the second term computes the
net outflow of fluid across the entire control surface.  For steady incompressible flow of a
liquid in a pipe, the conservation of mass is generally referred to as the continuity principle,
or simply continuity, and it is written

Q = v dA

A∫ = V1A1 = V2 A2 (2.2)

in which  Q  is the volumetric discharge through a pipe cross section, which can also be
written as the product of the mean velocity  V  and cross-sectional area  A  of the pipe.

The second, equally important, principle is the work-energy principle, sometimes
called simply the energy principle.  Some also call it the Bernoulli equation, but in general
it is distinctly more than that.  For the steady one-dimensional flow of a liquid in a pipe,
per unit weight of fluid, the principle can be written between two sections or stations as



V1
2

2g
+

p1
γ

+ z1 =
V2

2

2g
+

p2
γ

+ z2 + hL1−2∑ − hm (2.3)

In this equation  V2/2g  is the velocity head or kinetic energy,  p/γ  is the pressure head or
flow work, and  z  elevation head or potential energy, all per unit weight.  If the last two
terms on the right were absent, the equation would be the classical Bernoulli equation.  The
last two terms, however, are extremely important in the study of the hydraulics of pipe
lines.  The head loss term, or the accumulated energy loss per unit weight,  ΣhL,  is the
sum, between sections  1  and  2,  of the individual head losses in the reach caused by
frictional effects.  The last term,  hm,  is the mechanical energy per unit weight added to the
flow by hydraulic machinery.  A pump adds energy to the flow so  hm  is then positive and
called  hp;  a turbine extracts energy from the flow so  hm  would then be negative and
called  ht.

Fluid power, sometimes denoted by  P,  is the product of the energy gain or loss per unit
weight  hm  and the weight rate of flow  Qγ,  or  P = Qγ hm.  A unit conversion factor can
be applied to this result to express the power in, say,  horsepower or kilowatts.  Depending
on the purpose of the computation, an efficiency factor  η  may be used as a multiplier or
divisor of the power.

The last of the major principles considers linear momentum, which is governed by
the impulse-momentum equation

∂
∂t

ρ
r
v dV

V∫ +
r
v(ρ

r
v ⋅

r
n)

S∫ dS =
r
Fnet =

r
Fs +

r
Fb (2.4)

in which the net force on the contents of the control volume, fluid and solid, which can be
divided into surface forces and body forces, is equal to the rate of accumulation of
momentum within the control volume plus the net flux of momentum through the surface
of the control volume.  In a steady flow the first term is again zero.  For steady,
incompressible, one-dimensional flow through a pipe, the component momentum equation
along the direction of flow is

r
Fnet = ρQ

r
V2 −

r
V1( ) (2.5)

in which we assume flow into the pipe at the left section, section 1,  and flow from the pipe
at the right section, section  2.  If the pipe cross-sectional area is constant between the end
sections and the pipe is straight, then the velocities are equal, and the equation simplifies
further to  

r
Fnet = 0.  Since Eq. 2.5 is a vector equation, it can always be written in

component form;  for two-dimensional flow in the  x-y  plane, the components of this
equation are

Fx∑ = ρQVx( )2
− ρQVx( )1 = ρAVx

2( )
2

− ρAVx
2( )

1

Fy∑ = ρQVy( )
2

− ρQVy( )
1

= ρAVy
2( )

2
− ρAVy

2( )
1

(2.5a,b)

2.1.2. ENERGY AND HYDRAULIC GRADE LINES
The Energy Grade Line, also called the Energy Line or simply  EL,  is a plot of the sum

of the three terms in the work-energy equation, which is also the Bernoulli sum:

EL =
V 2

2g
+

p

γ
+ z (2.6)



Since each term has units of length, we can conveniently superimpose a diagram of the
behavior of each energy term, and the sum, on a drawing of the physical flow problem.
For example, a Pitot tube, inserted into a flow to cause locally at its tip a point of zero
velocity so the velocity head is converted into additional pressure head there, will cause the
liquid to rise to the elevation of the  EL  for that point in the flow.

The Hydraulic Grade Line, or  HGL,  is the sum of only the pressure and elevation
heads.  The sum of these two terms is also called the piezometric head, which can be
conveniently measured by a piezometer tube inserted flush into the side of a pipe.  It is
also important to recognize that any HGL can quickly be located on a diagram if the  EL
has already been located;  we simply measure downward by the amount of the local
velocity head from the  EL  to locate the  HGL.

Figure 2.1 portrays the relation of the individual head terms to the  EL  and  HGL and
the head that is lost between sections  1  and  2.

Datum

EL

HGL

hL
1-2

V1
2

2g

V2
2

2gp1
γ

p2
γ

z2z1 1

 2

V

Figure 2.1  The  EL  and  HGL  in relation to individual heads and the head loss.

2.2 HEAD LOSS FORMULAS

The head loss term in Eq. 2.3 is responsible for representing accurately two kinds of
real-fluid phenomena, head loss due to fluid shear at the pipe wall, called pipe friction, and
additional head loss caused by local disruptions of the fluid stream.  The head loss due to
pipe friction is always present throughout the length of the pipe.  The local disruptions,
called local losses, are caused by valves, pipe bends, and other such fittings.  Local losses
may also be called minor losses if their effect, individually and/or collectively, will not
contribute significantly in the determination of the flow;  indeed, sometimes minor losses
are expected to be inconsequential and are neglected.  Or a preliminary survey of design
alternatives may ignore the local or minor losses, considering them only in a later design
stage.  Each type of head loss will now be considered further.

2.2.1. PIPE FRICTION
If we were to select a small cylindrical control volume within a section of circular pipe,

with coordinates  s  in the flow direction and  r  radially, in steady flow and subject this
volume to analysis by the momentum equation, Eq. 2.4, we would find that the mean fluid
shear stress  τ,  as a function of the radius  r  from the pipe centerline, is

τ = −
r

2
γ

∂
∂s

p

γ
+ z









 (2.7)



from which we learn two important facts:
1.  The fluid shear stress  τ  varies linearly in a pipe cross-section, from zero at the

centerline to a maximum, called  τw,  at the pipe wall where  r = D/2.
2.  In the absence of a streamwise gradient of the piezometric head  (p/γ + z),  the fluid

shear stress will be zero, and consequently no flow will exist at that section.
If we now expand the control volume to fill the pipe cross-section and integrate Eq. 2.7

over a length  L  of pipe of constant diameter, we learn with a bit of further work that the
frictional head loss  hL  over that length is directly related to the wall shear stress  τw  via

τw = γ hL
D

4L
(2.8)

But this equation does not relate head loss to the mean velocity  V  or the discharge  Q.

2.2.2. DARCY-WEISBACH EQUATION
The completely general functional relation  τw = F(V,  D,  ρ,  µ,  e)  between the wall

shear stress  τw  and the mean velocity  V ,  pipe diameter  D,  fluid density  ρ,  and
viscosity  µ,  and the equivalent sand-grain roughness  e  can be reduced by dimensional
analysis to

τw

ρV 2 = F
VDρ

µ
,

e

D









 =

f

8
(2.9)

The combination of Eqs. 2.8 and 2.9 to eliminate the wall shear stress produces the
fundamentally most sound and versatile equation for frictional head loss in a pipe, the
Darcy-Weisbach  equation:

h f = f
L

D

V 2

2g
= f

L

D

Q2

2gA2 (2.10)

In Eq. 2.9 the friction factor  f  (and the factor  8  to coincide with the historical
development of the subject) is introduced as a shorthand notation for the function  F.  It is
a function of the pipe Reynolds number  Re = VDρ/µ = VD/ν  and the equivalent sand-
grain roughness factor  e/D.  For each pipe material either a single value or range of  e/D
values has been established;  Table 2.1 presents common values for several materials. 

Table 2.1  PIPE ROUGHNESSES

           Material   e,  mm    e, in

Riveted Steel 0.9 - 9.0 0.035 - 0.35

Concrete 0.30 - 3.0 0.012 - 0.12

Cast Iron 0.26 0.010

Galvanized Iron 0.15 0.006

Asphalted Cast Iron 0.12 0.0048

Commercial or Welded Steel 0.045 0.0018

PVC, Drawn Tubing, Glass 0.0015 0.000 06



From L. F. Moody, "Friction factors for Pipe Flow," Trans. A.S.M.E., Vol. 66, 1944, with
permission.

Figure 2.2  The Moody diagram for the Darcy-Weisbach friction factor  f.
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Because commercially available pipes of any material display some heterogeneity or
unevenness in roughness, any friction factor or its empirical equivalents can not be known
with multiple-digit precision.  The functional behavior  of  f  is displayed fully in the
Moody diagram in Fig. 2.2.

In the Moody diagram, which is Fig. 2.2, we see several zones that characterize different
kinds of pipe flow.  First we note that the plot is logarithmic along both axes.  Below the
Reynolds number  Re = 2100  (some authors prefer  2300) there is only one line, which
can be derived solely from the laminar, viscous flow equations without experimental input;
the resulting friction factor for laminar flow is  f = 64/Re.  Because there is only one line
in this region, we say all pipes are hydraulically smooth in laminar flow.  Then for
Reynolds numbers up to, say,  4000  is a so-called "critical" zone in which the flow
changes from laminar flow to weakly turbulent flow.  For still larger Reynolds numbers
we find three flow zones that deserve comment:

1.  A dashed line borders the upper right portion of the plot.  In that zone, called wholly
rough flow or the region of complete turbulence for rough pipes, the friction factor  f  is a
function only of the roughness  e/D  and not of  Re.  For relatively rough pipes and/or
large discharges this is a common flow type.  Thus, if the pipe material is known so  e/D
is known, then the value of  f  follows immediately.

2.  The lowest line is called the smooth-pipe line and is described by the empirical
equation

1 / f = 2 log10 Re f( ) − 0.8 (2.11)

This line continually slopes and never becomes horizontal, as in the wholly rough flow
zone,  so  f  always depends on  Re.  Since the flow in  PVC  pipe is described by this
line, it has become increasingly important in some fields in recent years.

3.  Between zones  1  and  2  is an important transitional band, called the turbulent
transition zone, in which  f  depends on both Reynolds number and  e/D.  The Colebrook-
White equation

1

f
= 1.14 − 2 log10

e

D
+

9.35

Re f









 (2.12)

is used, especially in computer codes, to replicate numerically the data in this zone of the
Moody diagram.  In spite of our prior caution about limited precision in friction factors,
we sometimes need to allow more significant figures in computations to assure that the
computer algorithms do indeed converge.  And additional significant figures in computed
values are also an aid in checking the success of computational examples, so we will
sometimes present results in this book with more digits for these reasons, even though
practical considerations may not seem to warrant it.

Table 2.2 summarizes the relations that describe the Darcy-Weisbach friction factor  f.
Early in Chapter 5 procedures will be described for the computer solution of the

Colebrook-White and Darcy-Weisbach equations as an alternative to the use of the Moody
diagram itself.  Readers who own a pocket calculator with the ability to solve implicit
equations should seriously consider writing the Colebrook-White equation, Eq. 2.12, into
the calculator memory for use in routinely computing friction factor values.

2.2.3. EMPIRICAL EQUATIONS
Empirical head loss equations have a long and honorable history of use in pipeline

problems.  Their initial use preceded by decades the development of the Moody diagram,
and they are still commonly used today in professional practice.  Some prefer to continue
to use such an equation owing simply to force of habit, while others prefer it to avoid
some of the difficulties of determining the friction factor in the Darcy-Weisbach equation.



As is common with empirical equations, each contains a constant that depends on the
chosen unit system.  Possibly the most widely used of these equations is the Hazen-
Williams equation.  

Table 2.2  DARCY-WEISBACH FRICTION EQUATIONS

    Type of Flow            Equation for  f R a n g e

Laminar f = 64/Re Re < 2100

Smooth pipe 1 / f = 2 log10 Re f( ) − 0.8 Re > 4000
and  e/D → 0

Transitional
 Colebrook-White Eq.

1

f
= 1.14 − 2 log10

e

D
+

9.35

Re f











Re > 4000

Wholly Rough 1

f
= 1.14 − 2 log10

e

D






Re > 4000

To compute the discharge, the equation takes the forms

Q = 1.318 CHW A R0.63S0.54      ES units (2.13)
or

Q = 0.849 CHW A R0.63S0.54      SI units (2.14)

in which  CHW  is the Hazen-Williams roughness coefficient,  S = hf/L  is the slope of the
energy line,  R = A/P  is the hydraulic radius,  A  is the cross-sectional area, and  P  is the
wetted perimeter, so that pipes flowing full will always have  R  = D/4.  Table 2.3 gives
values for  CHW  for some common pipe materials.

Another empirical equation, which was originally and primarily developed for flow in
open channels,  is the Manning equation

Q =
1.49

n
A R2/3S1/2     ES units (2.15)

or

Q =
1
n

A R2/3S1/2         SI units (2.16)

The pipe boundary roughness is described by the Manning  n,  for which some values are
listed in Table 2.3.

Table 2.3  HAZEN-WILLIAMS AND MANNING ROUGHNESSES

      Pipe Material   CH W     n

PVC     150    0.009
Very Smooth     140    0.010
Cement-lined Ductile Iron     140    0.012
New Cast Iron, Welded Steel     130    0.014
Wood,  Concrete     120    0.016
Clay, New Riveted Steel     110    0.017
Old Cast Iron,  Brick     100    0.020
Badly corroded Cast Iron       80    0.035



A comparison of the Hazen-Williams and Manning equations with the Darcy-Weisbach
equation would show conclusively that the empirical equations are much more limited in
their ranges of applicability.  Each is applicable only to the turbulent flow of water.  The
Manning equation is only valid for flows which correspond to the wholly rough flow
regime in pipes.  If the Hazen-Williams equation were plotted on the doubly-logarithmic
Moody chart, it would appear as a family of sloping (the slope is - 0.15) straight lines
across the turbulent transitional flow portion of the Moody diagram;  hence each choice of
a Hazen-Williams coefficient can at most replicate only a part of an individual  e/D  line on
the Moody diagram.

2.2.4. EXPONENTIAL FORMULA
It will later be advantageous to express the head loss in each pipe in a network by an

exponential  formula so one presentation of the theory covers all cases, regardless of
whether the Darcy-Weisbach equation, the Hazen-Williams equation or the Manning
equation is used to express the head loss as a function of discharge:

h f = KQn (2.17)

The values for  K  and  n  change, depending on whether the Darcy-Weisbach, Hazen-
Williams, or Manning equation is used.

The Hazen-Williams and Manning equations can be solved for  hf  and put in the form
of the exponential formula.  For the Hazen-Williams equation the exponent is  n = 1.852
and the coefficient  K  is

K =
CK L

CHW
1.852D4.87 (2.18)

For the Manning equation the exponent is  n = 2  and  K  is

K =
CK n2L

D5.33 (2.19)

in which the dimensional constant  CK  is given for various choices of units in Table 2.4.

Table 2.4  The Coefficient  C K

    Units of Hazen-Wil l iams     Manning

   D    L     CK   in Eq. 2.18   CK   in Eq. 2.19

    ft     ft           4.73         4.66

    in     ft           8.53x105         2.65x106

    m     m         10.67       10.29

To find  K  and  n  for the Darcy-Weisbach equation, we note that  f  can be
approximated over a limited range on the Moody diagram by an equation of the form

f = a / Qb (2.20)



This equation plots as a straight line on the Moody diagram (a log-log plot) if  a  and  b
are constant.  Substituting Eq. 2.20 into the Darcy-Weisbach equation and grouping terms
gives

n = 2 − b (2.21)
and

K =
aL

2gDA2 (2.22)

Hence a determination of  K  and  n  for use in  Eq. 2.17  is equivalent to a selection of
values for  a  and  b  in Eq. 2.20 which cause that equation to approximate  f  over the
expected discharge range.  If the chosen range is too large, then  K and  n  will cause Eq.
2.17 to produce frictional head losses that differ slightly from predictions that are obtained
directly from the Darcy-Weisbach and Colebrook-White equations.  If the chosen range is
too small, then the actual discharge may fall outside this range, and  K  and  n  should be
redetermined.  To obtain  a  and  b,  select an appropriate Reynolds number (discharge, or
velocity) range that brackets the expected discharge  Q.  Solve the Colebrook-White
equation with these two Reynolds numbers  Re1  and  Re2,  obtaining both  f1  and  f2
and the corresponding discharges  Q1  and  Q2.  Taking the logarithm (either natural or
base-10 logarithms can be used) of both sides of Eq. 2.20 now gives two equations for  a
and  b:

ln f1 = ln a − b ln Q1

ln f 2 = ln a − b ln Q2
(2.23)

Subtracting the second equation from the first and solving for  b  produces

b =
ln f1 / f 2( )
ln Q2 / Q1( )

(2.24)

Then  a  can be obtained as

a = f1Q1
b (2.25)

Calculations to determine  K  and  n  can readily be done with a pocket calculator, but if
many are needed, the computations should be implemented in a spreadsheet or a computer
program.  FORTRAN  program 2.1,  PIPK_N,  is included on the CD for this purpose.

Example Problem 2.1
Determine the values of  K  and  n  in the exponential formula for the three pipes in the

table which follows  (ν = 1.217x10-5 ft2/s  or  ν = 1.13x10-6 m2/s):

P i p e T y p e L e n g t h Diameter  e x 104  CHW     n Approx. Q

  1 PVC  1000 ft      8 in  0.08 in   150   0.009   2.5 ft3/s
  2 Riveted

steel
 1000 ft      8 in    2.5 ft   110   0.015   0.8 ft3/s

  3 Ductile
iron

 3000 m   300 mm 500 mm   140   0.011   0.4 m3/s

Only the solution details for pipe 1 are given here, but for practice the other answers
should be verified.  For the Hazen-Williams and Manning equations  K  and  n  are
computed from Eqs. 2.18 and 2.19, respectively.  For the Hazen-Williams equation  n1 =

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


1.852  and  K1 = 4.73(1000)/(1501.8520.6674.87) = 3.17;  for the Manning equation  n1

= 2.000,  K1 = 4.66(0.009)21000/0.6675.33 = 3.27.  For the Darcy-Weisbach equation

first select two discharges that span the expected range, say  Q1 = 2 ft3/s  and  Q2 = 3

ft3/s.  Next, from the Colebrook-White equation find the friction factors  f  corresponding
to these two discharges, or  f1 = 0.01435815,  f2 = 0.01332301.  For the accuracy that we
require, these values must be obtained from a pocket calculator or other computational
equipment and not just read from a Moody Diagram.  Next compute  b = {log f1/f2}/{log

Q2/Q1} = 0.18454,  leading to  n = 2 - b = 1.81546,  and  a = f1Q1
b = 0.016317,  from

which  K = aL/(2gDA2) = 3.2649.  The remainder of the computations for each
determination of  K  and  n  for these three pipes is summarized in the following pair of
tables:

P i p e Q1 Q2   Re 1    R e 2      f1      f2    b      a

   1 2.0 3.0 314000   471000 0.0145 0.0133 0.1845 0.0163
   2 0.4 1.2   62800   188000 0.0200 0.0160 0.1993 0.0166
   3 0.2 0.6 751000 2250000 0.0146 0.0134 0.0543 0.0133

                  Darcy-Weisbach      Hazen-Williams        Manning
Pipe    K    n    K    n    K    n
   1 3.2649 1.8155 3.1773 1.852 3.2649 2.000
   2 9.0692 1.8007 5.6431 1.852 9.0691 2.000
   3 2296.1 1.9957 1194.7 1.852 2296.1 2.000

*                              *                              *
In summary, the best equation for computing the frictional head loss in a given pipe for

a given discharge, or the best equation for the discharge if the head loss is known,
regardless of the fluid, is the Darcy-Weisbach equation.  The range of applicability for the
empirical equations is much more restricted.  Consequently, all engineers should consider
using the Darcy-Weisbach equation in professional practice even if it is sometimes more
difficult to use than the empirical equations.

2.2.5. LOCAL AND MINOR LOSSES
A local loss is any energy loss, in addition to that of pipe friction alone, caused by

some localized disruption of the flow by some flow appurtenances, such as valves, bends,
and other fittings.  The actual dissipation of this energy occurs over a finite but not
necessarily short longitudinal section of the pipe line, but it is an accepted convention in
hydraulics to lump or concentrate the entire amount of this loss at the location of the
device that causes the flow disruption and loss.  If a loss is sufficiently small in
comparison with other energy losses and with pipe friction, it may be regarded as a minor
loss.  Often minor losses are neglected in preliminary studies or when they are known to
be quite small, as will often happen when the pipes are very long.  However, some local
losses can be so large or significant that they will never be termed a minor loss, and they
must be retained;  one example is a valve that is only partly open.

Normally, theory alone is unable to quantify the magnitudes of the energy losses caused
by these devices, so the representation of these losses depends heavily upon experimental
data.  Local losses are usually computed from the equation

hL = KL
V 2

2g
(2.26)

in which  V  = Q/A  is normally the downstream mean velocity.  For enlargements the
following alternative formula applies:



hL = KL
V1 − V2( )2

2g
(2.27)

in which  V1  and  V2  are, respectively, the upstream and downstream velocities.  In Eq.
2.27 the loss coefficient  KL  is unity for a sudden enlargement and takes on values
between  0.2  and  1.2  for assorted gradual conical enlargements.  The head loss for flow
from a pipe into a reservoir is a special but important case of Eq. 2.27, called the exit loss;
in this case  KL = 1  and  V2 = 0, independent of the geometric details of the pipe exit
shape.

Local loss coefficients  KL  for some common valve and pipe fittings are listed in Table
2.5.  The energy losses for these fittings are mostly a consequence of fluid turbulence
caused by the device rather than by secondary motions which persist downstream.
Normally a locally accelerating flow will cause much less energy loss than does a
decelerating flow.  If deceleration is too rapid, it causes separation, which results in
additional turbulence and a high velocity in the non-separated region.  Some additional loss
coefficients from specific valve manufacturers and coefficient values as a function of the
amount of the valve opening can be found in Appendix C.

Table 2.5  Loss Coefficients for Fittings

                Fitting   KL

Globe valve,  fully open   10.0
Angle valve,  fully open     5.0
Butterfly valve,  fully open     0.4

Gate valve,  fully open     0.2
                   3/4 open     1.0
                   1/2 open     5.6
                   1/4 open   17.0

Check valve,  swing type, fully open     2.3
Check valve,  lift type, fully open   12.0
Check valve,  ball type, fully open   70.0

Foot valve,  fully open   15.0
Elbow,  45o     0.4
Long radius elbow,  90o     0.6

Medium radius elbow,  90o     0.8
Short radius (standard) elbow ,  90o     0.9
Close return bend,  180o     2.2

Pipe entrance,  rounded,  r/D < 0.16     0.1
Pipe entrance,  square-edged     0.5
Pipe entrance,  re-entrant     0.8

An abrupt contraction has first a region of accelerating flow, followed by a region of
decelerating flow caused by flow separation.  Though the region of accelerating flow may
be larger, the head loss is attributable principally to the deceleration and separation which
occurs immediately downstream from the contraction.  The local loss coefficient for a pipe
contraction is given in Fig 2.3.
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Figure 2.3  Local loss coefficient for a sudden contraction as a function of diameter ratio.

2.3 PUMP THEORY AND CHARACTERISTICS
The addition of mechanical energy  hm = hp  per unit weight to a fluid stream is accom-

plished by pumps, as was mentioned with Eq. 2.3.  Although positive displacement
pumps sometimes play a role, by far the more important class of pumps contains a
rotating impeller to inject energy, in the form of an increased pressure head, into the
flowing fluid in the pipe.  The characteristic shape of the impeller varies with the operating
regime of the pump.  The energy addition is called the net head  hp  of the pump.  The
water power  Pw  that is delivered to the fluid stream is the product of the net head, the
discharge, and the unit weight of the fluid, or  Pw = Qγ hp.  The mechanical power to
operate the pump must be larger;  it is called the brake horsepower or  bhp = Tω ,  in
which  T  and  ω  are the torque and angular velocity of the pump drive shaft.  The ratio  η
= Pw/bhp  is the pump efficiency, which may be larger than  0.8  for large and/or efficient
pumps that are operating near their best efficiency point  (bep),  also called the design
point, but which may be much lower for small, old or worn pumps.

Pumps are sufficiently complex that they cannot be designed on the basis of theory
alone.  To refine a new or revised design, model experiments are first conducted, and after
success is achieved with the model, then the full-scale or prototype pump is built.  The
results of dimensional analysis are used to relate the model and prototype to each other.
First we assume that the model and prototype are similar in shape, called geometric
similarity, and second that the velocity fields also have a similar shape, called kinematic
similarity.  Devices satisfying these requirements are called homologous.  The
nondimensional parameters that are used to complete the scaling process are called affinity
or scaling laws.  They are three in number and are called the head, discharge, and power
coefficients  CH,  CQ,  and  CP,  respectively:

CH =
ghp

N2D2 ; CQ =
Q

ND3 ; CP =
P

ρN3D5 (2.28)

The diameter of the rotating impeller is  D.  These coefficients may be computed in any
consistent set of units.  If plots of one nondimensional coefficient vs. another are



constructed, homologous units having different sizes and/or rotative speeds can be related to
each other.  Or one can say for homologous units that
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(2.29)

In a way these relations are more versatile than Eqs. (2.28) because the units no longer
must lead to a truly nondimensional group so long as each variable is measured in the
same units.  Thus rotative speed can be in rad/s, rev/s or rev/min.  If pumps  1  and  2
have the same diameter, Eqs. 2.29 show how  hp,  Q,  and  P  respond to changes in  N,
or for fixed  N  we see how the variables scale with the diameter  D.  

The specific speed  NS  is a parameter for homologous pumps that contains the
important pump variables, the discharge  Q  and head  hp,  without containing the unit size
D;  different ranges of this parameter therefore capture the essential differences in shape, not
mere size, that separates the performance of one kind of pump from another type of pump.
The nondimensional form of pump specific speed, with  N  in rad/s, is

NS =
NQ1/2

ghp( )3/4 (2.30)

In the United States, however, for many years it has been customary instead to use

NS
' =

rev / min( ) gal / min( )1/2

hp ( ft)[ ]3/4 (2.31)

which is clearly far from dimensionless.  Based on specific speed, pumps can be classified
into three categories, based on impeller shape, as given in Table 2.6.

Table 2.6
Pump Type vs. Specific Speed

   Radial Flow     Mixed Flow  Axial Flow

NS        NS  <  1.46   1.46  <  NS   <  3.7      3.7  <  NS

N'S   500 <  N'S  < 4000 4000 <  N'S  < 10000    10000  <  N'S

For relatively low specific speed the most efficient pump uses a radial-flow impeller, that
is, the primary flow direction through the impeller is radially outward from the axis of
rotation of the impeller;  this pump type has several names but is usually called a
centrifugal pump.  For the highest specific speed range, the flow through the impeller is
nearly parallel to the axis of rotation and is called axial flow in pumps that are termed
propeller pumps.  The transition from radial to axial flow occurs over the intermediate
range called mixed flow;  the pumps are called turbine pumps.  Certainly there is some
overlap between regions, and different authorities cite somewhat differing values for the
ends of the ranges.

The performance of an individual pump, or a family of pumps having the same pump
casing and several impellers that differ only in size, is usually described by a set of pump
characteristic curves, or simply pump curves, that are developed by manufacturers.
Appendix  B  contains eight sets of pump characteristic curves.  Across the upper portion
of each figure is a plot of head (per stage) vs. discharge;  although these curves are usually
approximated as straight lines or parabolic curves for subsequent analysis, the reader will



quickly notice that the actual head curves are more complex.  A change in the shape of a
curve normally means that the flow pattern within the pump has also changed. Crossing
the set of head curves are contour lines of constant efficiency.  By each contour is the
numerical percentage value of the efficiency;  usually the values are between 70 and 85%.
Across the bottom of each plot is a set of curves that relate brake horsepower to the
discharge;  we see that straight lines would fit most of these lines rather well but not
perfectly.  Finally, in the upper right corner of each plot is a plot of  NPSH  vs. discharge.

The Net Positive Suction Head (NPSH) for a pump is used to determine the head  zi
that is needed at the pump inlet so that cavitation is avoided in the pump.  Cavitation is
the conversion of liquid into vapor by locally low absolute pressure.  The onset of
cavitation can also be inferred from tests to note impaired operational efficiency, excessive
noise and possibly damage to the pump.  A useful form of the  NPSH  relation is

NPSH =
patm

γ
−

pv
γ

− hL − zi (2.32)

in which  patm  and  pv  are the atmospheric and vapor pressure of the liquid,  hL  is the
head loss in the inlet piping (often included in  NPSH  itself), and  zi  is the highest allow-
able or safe elevation for the pump impeller inlet.  For the operating discharge, read
NPSH from the pump curve, and  zi  can then be computed.

2.4 STEADY FLOW ANALYSES

This section will touch on several kinds of steady flow problems.  Although the
exponential formula or the empirical head loss equations could be used for this purpose, we
choose to employ the versatile Darcy-Weisbach formula here, sometimes simplifying by
assuming the value of the friction factor.  We will look at series pipe flow first, with and
without consideration of local losses and a pump in line.  Flow through parallel pipes will
follow, and the section concludes with a look at multiple-reservoir problems.

2.4.1. SERIES PIPE FLOW
The basic tools for analysis here are Eqs. 2.2, 2.3 and 2.10, which are the continuity,

work-energy and Darcy-Weisbach equations.  All series pipe flow problems fit one of three
computational categories, depending on which factors are known or given and which is
sought, as listed in Table 2.7:

Table 2.7  Problem Types

Category Known Quantities: To Find:
         1 Q,  pipeline properties hL

         2 hL,  pipeline properties Q
         3 Q,  hL Smallest size  D

The problems in categories  1  and  2  are analysis problems;  analysis of type 1 problems
is direct, without iteration, but iteration may be required for the second group.  Category  3
is a design problem, which normally requires more assumptions and more iterative compu-
tations to solve.  Pipeline properties include the length, diameter and material type so that
the relative roughness is known.

Example Problem 2.2
A cast iron pipe connects two reservoirs.  The line is  1200 ft  long and has a diameter

of  12 in.  If it were to convey  8  ft3/s, what would be the frictional head loss for this



pipe?  [In this and following examples in this chapter, we assume the fluid is  60oF water
with a kinematic viscosity  ν = 1.2x10-5 ft2/s.]

This problem is a type 1 problem.  The mean velocity in the pipe is

V =
Q

A
=

8
π / 4

= 10.18  ft/s.

Thus the pipe Reynolds number is

Re =
VD

ν
=

(10.18)(1)

1.2x10−5 = 8x105

Upon consulting Table 2.1 for cast iron pipe, we determine  e/D = 0.010/12 = 0.00083.
From the Moody diagram, Fig. 2.2, we find  f = f(Re, e/D) = 0.0185.  The Darcy-
Weisbach equation, Eq. 2.10, then produces

hf = f
L

D

V 2

2g
= 0.0185( ) 1200

12 /12

10.18( )2

2 32.2( )
= 35.7 ft

*                              *                              *

Example Problem 2.3
The pipe in Example Problem 2.2 actually connects two reservoirs having a difference

in water surface level of only  20 ft,  so that pipe is clearly incapable of conveying  8
ft3/s.

Now a new pipe has been installed between the reservoirs.  It is made of welded steel
and has a diameter of  18 in.

(a)  If only pipe friction is considered, what is the new discharge?
(b)  If local losses for a sharp-edged entrance, a fully open gate valve near the pipe exit,

and the pipe exit itself are also considered, how much does the computed discharge change?
(c)  If the gate valve in part (b) were only  1/4  open, what would then be the discharge?

All parts of this problem belong to category 2, since now  Q  and not  hL  is sought.
(a)  We are told to assume in this case that

z1 − z2 = 20 ft = h f = f
L

D

V 2

2g

From Table 2.1 for welded steel, we find  e/D = 0.0018/18 = 0.0001.  If the flow is
assumed to be in the wholly rough flow zone of the Moody diagram, Fig. 2.2,  f = 0.012.
Hence

h f = 20 = (0.012)
1200

18 /12
V 2

2(32.2)

and  V = 11.6 ft/s.  Now we must check  Re = VD/ν = 11.6(18/12)//1.2x10-5 = 1.4x106,
which is not in the wholly rough zone;  this  Re  and the value of  e/D  imply  f = 0.013.
Using  0.013 in place of  0.012  leads to  V  = 11.1 ft/s.  The small change in  Re  will
cause no further change in  f,  so the discharge can now be computed as

Q = VA = (11.1)
π
4

18
12







2
= 11.1( ) 1.77( ) = 19.6 ft3/s



(b)  In this case

20 = hL∑ = Kent. + f
L

D
+ Kvalve + Kexit
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V 2

2g

The velocity head factors out only because each loss term is associated with the same pipe
size, area and velocity.  Table 2.5 supplies  0.5  and  0.2  for the entrance and valve loss
coefficients;  always  Kexit = 1.0.  From part (a) we take our first estimate of the friction
factor as  0.013, leading to

20 = 0.5 + 0.013
1200

18 /12
+ 0.2 + 1.0





V 2

2g

and yielding  V = 10.3 ft/s.  Again check  Re = VD/ν = 10.3(18/12)//1.2x10-5 = 1.3x106,
so the initial estimate of  f  is adequate.  Now  Q = (10.3)(1.77) = 18.2 ft3/s  so the
discharge has decreased by  1.4 ft3/s, a bit under 8%,  as a consequence of considering the
local losses.

(c)  When the gate valve is only  1/4 open, we find from Table 2.5 that the valve loss
coefficient has increased from  0.2  to  17.0.  The valve loss remains a local loss, but it is
no longer in any way a minor loss, since it will cause more head loss than the pipe friction
term.  Replacing 0.2 in part (b) by 17.0, we recompute and find  V  = 6.68 ft/s.  The new,
lower Reynolds number is  Re = 8.4x105, so the new friction factor is  f = 0.0135.  A re-
computation of the velocity gives  V  = 6.63 ft/s, and so  Q  = 11.7 ft3/s,  a decrease of
about one third from the discharge in part (b).

*                              *                              *

2.4.2. SERIES PIPE FLOW WITH PUMP(S)
The solution of pipeflow problems involving pumps normally requires us to read data

from pump characteristic curves.  However, if we prefer to use a computer to solve these
problems, such readings can no longer be done in this way.  But the resolution of this
problem is not difficult.  As part of the computer solution of this kind of problem, we
supply sufficient data to the program so that the head  hp  can be expressed as a
polynomial in discharge that fits the pump-curve data.

Let the pump characteristic curve for the head  hp  be expressed by a second-order poly-

nomial  hp = AQ2 + BQ + C,  in which the coefficients  A,  B,  and  C  are determined by
the use of three  (hp, Q)  data pairs that bracket the expected range of operation of the
pump.  To obtain the coefficients, we write three equations by substituting each data pair
into the polynomial to obtain

AQ1
2 + BQ1 + C = hp1

AQ2
2 + BQ2 + C = hp2

AQ3
2 + BQ3 + C = hp3

(2.33)

In matrix notation Eq. 2.33 becomes
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2 Q1 1
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2 Q2 1
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(2.34)



which can be solved in various ways to determine the coefficients.
An alternative approach is to use the Lagrangian interpolation.  Lagrange's formula is

hp =
Q − Q2( ) Q − Q3( )

Q1 − Q2( ) Q1 − Q3( )
hp1 +

Q − Q1( ) Q − Q3( )
Q2 − Q1( ) Q2 − Q3( )

hp2 +
Q − Q1( ) Q − Q2( )

Q3 − Q1( ) Q3 − Q2( )
hp3 (2.35)

The head  hp  is again expressed as a quadratic equation in  Q,  but the terms are rearranged
from the earlier approach.  The coefficients  A,  B,  and  C  can be found by expanding the
numerators.  Letting

c1 = hp1 / (Q1 − Q2 )(Q1 − Q3 )

c2 = hp2 / (Q2 − Q1)(Q2 − Q3 )

c3 = hp3 / (Q3 − Q1)(Q3 − Q2 )

(2.36)

we find
A = c1 + c2 + c3

B = − 2 Q2 + Q3( )c1 + Q3 + Q1( )c2 + Q1 + Q2( )c3[ ]
C = Q2Q3c1 + Q3Q1c2 + Q1Q2c3

(2.37)

Irrespective of which approach is used, the results can be inserted in a computer program so
that the need to read data from a pump characteristic curve during the solution process is
avoided.  Additional uses of such polynomial representations and interpolations will be
found in later chapters, including Chapters  4,  5,  and  10.

Example Problem 2.4
A single-stage Ingersoll-Dresser 15H277 pump, outfitted with the largest impeller

(Refer to Appendix B for the pump characteristic curves), is used to pump water from a
reservoir at elevation  1350 ft  to another reservoir at elevation  1425 ft.  The line is  6000
ft  long and  18 in. in diameter with an equivalent sand grain roughness  e = 0.015 in.  (ν
= 1.14x10 - 5 ft2/s)  Neglecting local losses, compute the discharge in the pipeline.

We begin by applying the work-energy equation, Eq. 2.3, between the two reservoir
water surfaces, points  1  and  2:

1350 = 1425 + h f − hp

or

hp = 75 + f
L

D

Q2/A2

2g
= 75 + f

6000
1.5

Q2

2g(1.767)2 = 75 + 19.9 f Q2

There are three unknowns in this equation:  hp,  Q,  and  f.  They must be determined by
using this equation, the pump curve and the Colebrook-White equation.  We shall obtain
the solution in two ways, first by hand and then with the aid of a computer.

The hand solution begins by (a) selecting a trial discharge, (b) solving the Colebrook-
White equation, Eq. 2.12,  for  f,  (c) calculating  hp  from the above work-energy
equation, (d) comparing this  hp  with the value that is read from the pump characteristic
curve, and (e) repeating the process until the  hp's  match, as summarized in the table:



      (a)       (b)     (c)        (d)
    Q   Q      f    hp h p , curve
gal/min  ft3/s         ft          ft

   3000  6.68   0.01961      92.4       103
   3500  7.80   0.01950      98.6         88
   3300  7.35   0.01951      96.0         95
   3280  7.31   0.01954      95.8         95.8

The discharge is  3280 gal/min  by this method.
The pump curve must be defined by an algebraic equation if the computer is to be used

in solving for  hp,  Q,  and  f.  A second-order polynomial can be fit to the Ingersoll-
Dresser 15H277 pump curve by applying Eqs. 2.33 and 2.34 and using the three data pairs
(103.0, 6.68),  (95.0, 7.35),  and  (88.0, 7.80).  Equation 2.34 gives the matrix form of
this problem as
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yielding a solution  A = - 3.224,  B = 33.293,  and  C = 24.472  so that the pump curve is
approximately

hp = - 3.224Q2 + 33.293Q + 24.472

Using MathCAD, TK-Solver or some other mathematics application software to solve our
three simultaneous equations leads to   hp = 95.7 ft,  Q = 7.30 ft3/s = 3280 gal/min,  and
f = 0.019546.

*                              *                              *

Example Problem 2.5
Repeat the problem in Example Problem  2.4  with two three-stage Ingersoll-Dresser

15H277 pumps in parallel;  assume the smallest of the three impellers is used in each
pump stage.

The pipeline analysis itself in unchanged;  hence

hp = 75 + 19.9 f Q2

In this case  hp  is the total head developed in the three stages of either of the two pumps.
In addition, only half of the pipeline discharge passes through each pump.  The table of
trial solutions can be developed as

Pump  Q Pipe  Q     f Right Side h p h p / s t a g e Total h p

  gal/min  gal/min              ft         ft        ft

    3000    6000 0.01921           143.3       67      201
    3500    7000 0.01915           167.7       45      135
    3300    6600 0.01917           157.5       54      162
    3320    6640 0.01917           158.5       53      159

The total discharge is  6640 gal/min.
To set up the computer solution for this problem, we first obtain the polynomial

approximation to the pump curve by setting up the matrix
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resulting in  hp1 = − 3.74643Q1
2 + 34.536Q1 + 3.552  for one stage.  To account for the

number of stages, we multiply the coefficients by  3  so that  hp = 3hp1.  Since only half
of the pipe flow passes through each of the parallel pumps  Q1 = Q/2.  The final
composite pump curve is therefore

hp = 3 − 3.7464( ) Q / 2( )2 + 3 34.536( )Q / 2 + 3 3.552( )

= − 2.8098Q2 + 51.804Q + 10.656

Solving this equation, the Colebrook-White equation and the work-energy equation
simultaneously gives  hp = 159.4 ft,  Q = 14.878 ft3/s = 6680 gal/min, and  f = 0.01917.

*                              *                              *

2.4.3. PARALLEL PIPE FLOW, EQUIVALENT PIPES
In the flow of fluid in parallel pipes the roles of energy loss and discharge are reversed

from their roles in series pipe flow:  for a series of pipes, as we have seen earlier, the
discharge is identical in each pipe of the series while the head losses are additive;  for a set
of parallel pipes between two common junctions the head loss between the two junctions
is identical for each pipe while the total discharge is the sum of the individual discharges.

Since the analysis of flow in a series of pipes is more straightforward than the analysis
of flow through a combination of pipes that includes parallel pipes as a part of the
combination, it is advantageous to replace the set of parallel pipes by a single "equivalent
pipe."  This equivalent pipe, which is devised so it has the same head loss as the original
set of parallel pipes and conveys the same total discharge, will in some cases allow the
analyst to avoid the use of iteration in seeking a solution.  In other cases the amount of
iteration will be reduced.

The equivalent pipe formula can be constructed so it can be used with any pipe
combination having head loss characteristics that can be described by the exponential
formula, Eq. 2.17.  Assume that pipes  1  and  2  are two parallel pipes with frictional
losses described by  KQn;  then the equivalent pipe (unsubscripted) must satisfy

h f = KQn = K1Q1
n = K2Q2

n (2.38)

and

Q = Q1 + Q2 (2.39)

By solving Eqs. 2.38 for  Q1  and  Q2  and inserting the results into Eq. 2.39, we find
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(2.40)

For the remainder of the problem the equivalent variables  K  and  Q are then used in place
of the original parallel pipes.  Once  Q  has been found, then a back-substitution into Eq.
2.38 determines  Q1  and  Q2.  To treat several parallel pipes rather than two, simply add
one additional term to the right side of Eq. 2.40 for each pipe that is in parallel.



Example Problem 2.6
Two reservoirs have a difference in water surface elevation of  40 ft.  Water flows from

the higher reservoir through  4000 ft  of 12-in-diameter pipe, which then joins a pair of
parallel  2000-ft-long pipes which end at the lower reservoir.  One parallel pipe has a  10-
in diameter;  the diameter of the other pipe is  8 in.  For simplicity, assume  f = 0.02 for
all pipes.  Find the discharge in each pipe between the two reservoirs.

In this problem we use the exponential formula for head loss.  For each pipe  n = 2  and

K = f
L

D

1
2g

1

A2

With the given data  K12 = 2.01,  K10 = 2.51  and  K8 = 7.65.  The equivalent pipe
coefficient  Ke  is found from
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1/2

or  Ke = 1.014.  Omitting local losses, the work-energy equation for the change in water
surface elevation  ∆WS  between the reservoirs is

∆WS = 40 = K12 + Ke( )Q2

and  Q = 3.64 ft3/s.  From Eq. 2.38 we then find  Q10 = 2.31 ft3/s  and  Q8= 1.33 ft3/s.

*                              *                              *

If the friction factor is known, no iteration is needed in such a problem.  This will be
the case for problems involving large discharges and rough pipes, for the friction factor
will then come from the wholly rough flow region of the Moody diagram.  For problems
in which the friction factors are found in the transitional turbulent region of the Moody
diagram, some iteration to determine the friction factors will be required, but it is iteration
only to determine the correct friction factors.

2.4.4. THREE RESERVOIR PROBLEM
Problems involving pipe flow between more than two reservoirs will always require

some form of iterative solution.  Here we examine briefly an economical solution strategy
for these problems.  In Chapter 4 a computer-oriented solution to such problems will be
detailed.

Example Problem 2.7
The figure below is a diagram of the three reservoir problem; the reservoirs are

connected by three pipes with an external demand at the common junction of the pipes.
The highest reservoir has a water surface elevation of  100 m;  the middle reservoir water
surface elevation is  85 m;  and the lowest reservoir has a water surface elevation of  60 m.
Determine the discharge in each pipe.



100 m

60 m

85 m0.3 - 2000

[1]

(1)

(2)

(3)

e = 0.0005 m
v = 1.31 x 10-6 m2/s

0.25 - 3000

0.25 - 1500QJ1 = 0.06 m3/s

Diameters in m
Lengths in m

P i p e   K   n

   1 1469 1.974
   2 2432 1.927
   3 5646 1.971

It is clear that flow is out of the upper reservoir and into the lowest reservoir.  What is
unclear is the direction of flow in the pipe that connects the middle reservoir to the system.
The key step is to determine that direction in only one trial.

Let  HJ  be the head at the junction.  The discharges in pipes  1  and  2  can then be
found from these two head loss equations:

100 − K1Q1
n1 = HJ HJ − K3Q3

n3 = 60

Now select  HJ = 85 m, the water surface elevation of the middle reservoir, so that there is
no flow in pipe  2  for the first trial solution.  Inserting values of  K  and  n  from the
table, we find  Q1 = 0.0980 m3/s  and  Q3 = 0.0639 m3/s.  These values, combined with
the external demand  QJ1,  do not satisfy continuity at the junction  J.  To satisfy junction
continuity we need more inflow to the junction, so  HJ  must be less that  85 m;  thus we
find that the flow in pipe  2  will be toward the junction and will be governed by

85 − K2Q2
n2 = HJ

The junction continuity error for each trial will be  Qe = Q1 + Q2 - Q3 - QJ1.  Now we
select trial values for  HJ,  use the three head loss equations to compute the discharges and
finally compute the error  Qe.  Each trial outcome can be compactly recorded in a table:

  HJ

   m
   Q1

   m3/s
   Q2

   m3/s
   Q3

   m3/s
   Qe

   m3/s

  85.0  0.0980  0.0  0.0639 - 0.0259
  80.0  0.1134  0.0403  0.0571   0.0366
  83.0  0.1045  0.0251  0.0613   0.0083
  83.5  0.1029  0.0216  0.0620   0.0025
  83.7  0.1023  0.0200  0.0622   0.0001

The systematic assignment of values to the head at the junction, which is itself usually not
of great interest, is the step which allows us to search methodically for the solution.  This
approach can also be applied productively to similar problems which may even contain
more than three reservoirs.  The repeated manual intervention in selecting the trial values
of  HJ  may make other procedures more attractive for solutions by computer, however.



2.5 PROBLEMS
2.1   For the following pipe flows determine whether the flow is laminar, turbulent
smooth, turbulent rough, or turbulent transition, using the Moody diagram, Fig. 2.2.

(a)  A velocity of  3.05 m/s (10 ft/s)  occurs in a cast iron pipe having  e = 2.6x10- 4m
(8.5x10- 4 ft) which is  2.54 cm (1 in) in diameter.  The fluid kinematic viscosity is ν  =
9.29x10- 5 m2/s (10- 3 ft2/s).

(b)  A velocity of  2.44 m/s (8 ft/s)  occurs in a cast iron pipe having  e = 2.6x10- 4 m
(8.5x10- 4 ft) which is  0.15 m (6 in) in diameter.  Use  ν = 9.29x10- 8 m2/s (10- 6 ft2/s).

(c)  The velocity is  2.44 m/s (8 ft/s)  in a  0.91 m (3 ft) diameter welded steel pipe
having  e = 4.6x10- 5 m (1.5x10- 4 ft).  Use  ν = 9.29x10- 5 m2/s (10- 3 ft2/s).

(d)  The velocity is  2.44 m/s (8 ft/s)  in a  0.91 m (3 ft) diameter welded steel pipe
having  e = 4.6x10- 5 m (1.5x10- 4 ft).  Use  ν = 9.29x10- 7 m2/s (10- 5 ft2/s).

2.2  A  250 mm  diameter pipe is  1500 m  long.  When the discharge is  0.095 m3/s  in
this pipe,  the pressure drop between the ends of the pipe is measured as  98.06 kPa.  The
elevation at the end of the pipe is  10 m  below its beginning.  What type of flow is this?
What is the equivalent sand-grain roughness of the pipe wall?  What is the Hazen-Williams
roughness coefficient?  How much energy is dissipated by fluid friction during each hour
that this flow continues?  Use  ν = 1.31x10- 6 m2/s.

2.3   Find the pressure drop in  1000 m (3280 ft)  of  0.10 m (0.33 ft)  diameter pipe
carrying  0.015 m3/s (0.53 ft3/s)  of olive oil at 10 oC (50 oF).  The downstream end of
the pipe is  10 m (32.8 ft)  below the upstream end.

2.4  Determine the discharge that will occur in a  450 mm  diameter pipe that is  1000 m
long connecting two reservoirs with a difference in water surface elevations of  25 m.  The
wall roughness of the pipe is  e = 0.12 mm,  and  ν = 1.31x10- 6 m2/s.  How much head
must a pump supply to reverse the flow, i.e. cause the same discharge to flow from the
lower to the upper reservoir?  What power must be supplied by electricity to this pump if
the combined efficiency of the pump and motor is  75%?

2.5  A  0.305 m (1 ft)  diameter concrete pipe that is  366 m (1200 ft)  long carries water
from a reservoir with surface elevation  1086 m (3560 ft)  to a ditch at elevation  1041 m
(3415 ft).  If the Hazen-Williams roughness coefficient is  120,  find the discharge through
the pipe.

2.6  Determine the minimum pipe size to convey  0.028 m3/s (1 ft3/s)  of water at  15oC
(60oF)  for new cast iron pipe that is  914 m (3000 ft)  long with a change in HGL
between the ends of  15.2 m (50 ft).

2.7  Determine the values of  K  and  n  in the exponential formula  hf = KQn,  based on
the Darcy-Weisbach and Hazen-Williams formulas for these pipes:

(a)  L = 1000 ft,  D = 6 inches,  e = 0.002 inches,  CHW = 110,  V ≈  8 ft/s.
(b)  L = 1000 m,  D = 0.2 m,  e = 0.005 m,  CHW = 140,  V ≈  2 m/s.
(c)  hf = 50 ft,  L = 3000 ft,  D = 8 inches,  e = 0.0102 inches,  CHW = 120.

2.8  Plot the  K  and  n  values that were found in Example Problem 2.1 from the Darcy-
Weisbach equation on a Moody diagram.  How close are the slopes of these lines on the
Moody diagram to the slopes of the Hazen-Williams and Manning equations?  From this
comparison develop some guidelines for when the Hazen-Williams equation is most appro-
priate, and when the Manning equation may be more appropriate.



2.9  Use the  K  and  n  values that were found in Example Problem 2.1 from the Darcy-
Weisbach, Hazen-Williams and Manning equations to compute the head losses associated
with discharges that are  50  and  200%  of the given approximate  Q,  and compare the
results.

2.10   If the friction factor is held constant, show that the Darcy-Weisbach equation
indicates that the head loss is proportional to the velocity squared, or the discharge squared,
just as the Manning equation does.  For what flow type(s) is such a relation appropriate?

2.11  Determine the coefficient  K  and the exponent  n  in  hf = KQn  for the pipes in the
table which follows by using both the Darcy-Weisbach and Hazen-Williams equations.
The water flows in the pipe at about  6 m/s  and has a temperature of  10oC.

P i p e T y p e D i a . Length   Darcy-Weisbach   Hazen-Williams
N o .    m       m     K     n     K     n

   1 Smooth con-
crete

2.50    1000

   2 PVC 0.25    1500

   3 Old cast iron 0.08      800

   4 e = 0.005 mm 0.35    2000

2.12  For pipes  1  and  3  in Problem 2.11, determine the equivalent length of pipe that
could be used to replace the minor loss caused by a globe value (K = 10).  If needed, as-
sume a velocity of  6 m/s  in the pipe.

2.13  Determine the discharge of water at  20oC (68oF)  through a  10 cm (4 in) diameter
concrete pipe that is  457 m (1500 ft)  long.  Assume the wall roughness is  e = 0.61 mm
(0.002 ft).  The pipe connects two reservoirs with a  6.1 m (20 ft) difference in water
surface elevation.

2.14   One-tenth m3/s (3.53 ft3/s)  of water at  20oC (68oF)  flows through a  0.25 m
(0.82 ft)  diameter cast iron pipe.  Find the head loss in  200 m (656 ft)  of this pipe.

2.15  Compare the head loss for a discharge of  0.1 m3/s (3.53 ft3/s) of water at  20oC
(68oF)  through  (a) a  0.20 m (8 in)  diameter concrete pipe with  (b) a  0.20 m (8 in)
diame-ter PVC pipe.

2.16  Water at  10oC (50oF)  flows between reservoirs through a  0.30 m (1 ft)  diameter
cast iron pipe that is  1 km (3280 ft)  long.  Find the difference in elevation between the
reservoirs if the discharge is  0.2 m3/s (7.1 ft3/s).

2.17  Water is to be pumped from a lake to a canal which is  200 m (656 ft)  distant and
20 m (65.6 ft)  higher in elevation.  If  0.5 m3/s (17.66 ft3/s)  of water at  20oC (68oF)
is to be delivered through a  0.5 m (1.64 ft)  concrete pipe, what power must the pump
deliver to the water?

2.18  Find the power which pumps must supply to  3 m3/s (106 ft3/s)  of water at  20oC
(68oF)  which is to be delivered from the Snake River to the plateau  180 m (591 ft)
above the river through  1100 m (3610 ft)  of  1 m (3.28 ft)  asphalt-dipped cast iron pipe.



2.19   Use the Hazen-Williams formula to find  hf  when  0.013 m3/s (0.46 ft3/s)  of

water at  20oC (68oF)  flows through  300 m (984 ft) of  75 mm (0.25 ft)  diameter
smooth pipe.

2.20   A power plant is  16 km (52,500 ft)  from a reservoir.  A discharge of  25 m3/s
(883 ft3/s)  is to be delivered to the plant at an elevation that is  1120 m (3,670 ft)  below
the reservoir surface.  What size of riveted steel pipe is required?  Assume a temperature of
4oC (40oF).

2.21   What diameter of commercial steel pipe will convey  0.003 m3/s (0.106 ft3/s) of
crude oil at  40oC (104oF) with a pressure drop of  15 kPa (2.18 lb/in2) per 30 m (98 ft)?

2.22   The pump shown below delivers  8 ft3/s  of water.  The recorded pressures at
sections  1  and  2  on the gauges are  - 5.0 lb/in2  and  + 35.0 lb/in2.  (a)  Draw a
diagram of the system and locate the  EL  and  HGL  at sections  1  and  2  in the diagram.
(b)  Determine the required  hp  and power that must be supplied by the pump to the water
to deliver this discharge.  Neglect pipe friction and local losses.  (c)  If the rotative speed of
the pump impeller is  1000  rev/min, what type of pump is this?

 

 

1

2

12'

10" dia.

8" dia.

2.23  You are asked to design a pipe line for a farmer which will carry  0.2 m3/s  of water
from a lake on a mountainside at elevation  1905 m  to a farm sprinkler system  6 km
away at elevation  1795 m.  The sprinklers require a pressure of  400 kPa  to operate
properly.  PVC  pipe is to be used.  Assume a temperature of  10oC.

2.24  A farmer wants you to design his irrigation pipe line so it can be used in the winter
to generate electricity for his home.  He wants to run a  20 kW  turbine-generator (70%
efficient) from the 0.05 m3/s stream.  The PVC pipe line is  1050 m  long, and the up-
stream end is  75 m  above the turbine.  What pipe diameter should be selected?  Assume a
temperature of  10oC.

2.25   Use a computer program to generate several tables of  f versus Re  for different
values of relative roughness  e/D,  and use these to plot several curves on a Moody diagram
with a spreadsheet or other graphing software.

2.26   How much energy per unit weight would be saved by using a long radius elbow
instead of a short radius elbow in a  0.30 m (1 ft)  diameter pipe with a discharge of  0.23
m3/s (8 ft3/s)  of water at  20oC (68oF)?

2.27   What loss is caused by a close return bend in a  0.15 m (0.49 ft)  diameter pipe
carrying a discharge of  0.1 m3/s (3.53 ft3/s)  of gasoline at  20oC (68oF)?  How does this
loss compare with the use of two short radius bends?  Two long radius elbows?



2.28   A discharge of  0.283 m3/s (10 ft3/s)  flows in a  0.30 m (1 ft)  diameter pipe.
Compare the head losses for a completely open  (a) angle valve,  (b) gate valve, and  (c)
globe valve.  Under what conditions would you select the gate valve?  One of the other
valves?

2.29  An irrigation siphon tube is  76 mm (3 in)  in diameter and  3 m (9.84 ft)  long.
Estimate the discharge for a head difference of  0.5 m (1.64 ft),  assuming a re-entrant
entrance, an equivalent sand-grain roughness  e = 0.06 mm (2.36x10- 3 in),  and two bends
with loss coefficients of  0.2.  Draw the system, including the  EL  and  HGL.

2.30  To obtain more electrical energy during the day when there is a shortage and use it
during the late night when there is a surplus, a power company plans to pump water from
a lake to a reservoir through a  0.5 m  diameter pipe that is  2500 m  long (e = 0.001 m);
when the power is needed, the company will run that water through a turbine.  The
elevation difference between the reservoir and lake water surfaces is  90 m.  Surplus
electrical energy costs  $0.02/kWh,  prime time energy is worth  $0.10/kWh, and the
efficiencies of the pump and turbine are  80 percent.  Analyze the hydraulics and economics
of the proposed plan.  Suggest the discharges that should be used.

2.31  Write a program for a computer or calculator for determining the unknown discharge
Q  in a pipe line (Category 2), including local losses.

2.32  Write a program for a computer or calculator for determining the unknown diameter
of a pipe (Category 3), including local losses.



CHAPTER 3
_________________________________________________________________________

MANIFOLD FLOW

3.1 INTRODUCTION

Every hydraulic manifold consists of one relatively large pipe, or several in some kind
of series configuration, which may be called the barrel or main.  Along each main pipe
there are numerous junctions with small pipes or there are numerous ports, all allowing
flow from the main or (less common) all allowing flow into the main.  One characteristic
of manifolds is the presence of many junctions or ports, usually relatively closely spaced
but not so close that the flow at adjacent ports interacts.  Every flow in a manifold is a
spatially varied flow, and flows in manifolds are almost always analyzed as steady flows, as
we will do in this chapter.

Although manifold flow is a less-frequently studied topic than the flow in networks or
the behavior of hydraulic transients, this flow type does have numerous practical applica-
tions.  Manifold flow has several kinds of applications to farm irrigation systems (Jensen,
M. E., 1983; U. S. Soil Conservation Service, 1984; James, L. G., 1988; Cuenca, R. H.,
1989; Keller, J. and Bliesner, R. D., 1990), including recent research on trickle and
sprinkler systems (e.g., Scaloppi, E. J. and Allen, R. G., 1993; Hathoot, H. M. et al.,
1994).  Protective fire sprinkler systems in buildings are another application.  Marine
outfall systems (Vigander, S. et al., 1970;  Grace, R. A., 1978) rely on manifolds for the
initial distribution of the wastewater into the receiving water body through multi-port
diffuser manifolds.  The filling and emptying systems for large locks on navigable
waterways are basically manifolds (Richardson, G. C., 1964, 1969;  Stockstill, R. L. et
al., 1991).  And the ventilation of vehicle tunnels also relies in part on an understanding of
manifold flow (Pursall, B. R. and King, A. L., 1976).

This chapter will first describe several levels of analysis that are applicable to manifold
flow;  they differ in whether friction is considered and whether junction losses are
considered.  We will then look at one example of an analysis of the internal hydraulics of a
marine outfall diffuser and show how this approach can easily be aided with a short
computer program.  Articles by McNown (1954) and Rawn et al. (1961) and the book by
Miller (1984) are good places to begin further study of this topic.

3.2 ANALYSIS OF MANIFOLD FLOW

In this section we will look at the analysis of flow in a manifold on three levels.  The
first level will ignore all energy losses;  although this assumption is unrealistic, it will
serve as an introduction to manifold flow and allow us to unlearn some flow behavior from
the flow in pipes which is not spatially varied.  In the second and third levels we
progressively add friction in the barrel or main, and a consideration of energy losses at
junctions or ports.  At the end of these analyses we can draw some conclusions about the
importance of barrel friction and junction losses in various applications.

3.2.1. NO FRICTION
Primarily as an introduction to the subject, let us look briefly at the schematic diagram

of a small, simple manifold having only a few equally-spaced circular exit ports, all of the
same diameter, as shown in Fig. 3.1.  The downstream end of the main is a dead end.  In
the complete absence of real-fluid effects, the reservoir level on the left sets the elevation of



the horizontal energy line along the entire manifold, which is shown here as having five
single exit ports that are relatively closely spaced.  A sectional view is shown on the right,
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Figure 3.1  A small manifold, no pipe friction or junction losses.

with the transition region from the main to the exit point being rounded to suggest that
energy losses in the port region can indeed be neglected as a first approximation.  For
convenience in the analyses, the ports are numbered from the downstream end toward the
reservoir, beginning with  1.  The key feature here is the behavior of the hydraulic grade
line for this flow.  As always, we can locate the hydraulic grade line by measuring down a
distance of  V2/2g  from the energy line to it, in which  V   is the mean velocity in the
barrel segment.  Since this mean velocity becomes progressively larger as we move from
the lower- to higher-numbered ports, the hydraulic grade line, and therefore the pressure
head  p/γ,  is farthest below the energy line at the upstream end of the barrel.  Since it is
usual to think of the pressure in a horizontal pipe as decreasing in the direction of flow, we
have an immediate indication that some care will be required if we are to avoid reaching
incorrect conclusions as we study manifold flow.

In the absence of energy losses, the velocity from each port is  Vp = [2gHR]1/2.  The
discharge from each port is then identical if the ports are all the same.  With identical
ports, only two factors can cause the discharge to change from port to port:  differing
energy levels from port to port, and junction energy losses.  We shall look at both factors
in the next two sections.

A reading of past literature will reveal two points of view on the physics of the flow out
of a port:  Some articles assume that only the pressure head in the main is responsible for
driving the fluid out of an adjacent port.  Others, including this text, write a work-energy
equation between the main and the exit point of the port;  this approach assumes that the
full distance between the  EL  in the main and the exit point drives the flow.  The existence
of loss coefficients and discharge coefficients, which play somewhat differing roles,
depending on the point of view, allows the two approaches to be made compatible with one
another.

3.2.2. BARREL FRICTION ONLY
When barrel friction is considered, then the energy line slopes downward as a sequence of

straight-line segments in the direction of flow in the barrel, as shown in Fig. 3.2.  As we
look from port  1  to port  5, we find the velocity head in the barrel grows as it did in the
absence of friction, and each segment of the hydraulic grade line along the barrel also has a
slope that is parallel to the energy line above it.  We find the port velocity is  Vpi =

[2gHi]1/2,  in which  Hi  is the vertical distance from the centerline of port  i  to the local
energy line above that port.  And the discharge in the barrel changes in each segment, in
accordance with continuity at each junction.

In the manifold section of length  L  with five equally-spaced ports, we may record the
frictional head loss as
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Figure  3.2  A small manifold, n = 5 ports, with barrel friction but no junction losses.
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if we assume that the pipe Reynolds number is sufficiently high that the Darcy-Weisbach
friction factor  f  is a constant over the range of flow in the barrel.

Various results can be developed from Eq. 3.1 or an equation like it, depending on the
diameters of the ports.  For example, with a total discharge  QT  and the assumption that
the diameter of each port is chosen so that equal discharges issue from each of the five
ports, that is,  Qp = QT/5,  then in each barrel segment port continuity shows that  V5-4 =
4V/5,  V4-3 = 3V/5,  V3-2 = 2V/5, and  V2-1 = V/5.  Then Eq. 3.1 will simplify to
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with  V = QT/A  and  A = cross-sectional area of the main.  If instead there were  n  ports
with equal discharges  Qp = QT/n,  then by using mathematical induction we find that the
total frictional head loss for the section of the main containing the ports is
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However, the unhappy fact is that the diameter of each port must differ, if only slightly,
from the diameters of the other port openings for this expression to be completely
applicable.  But Eq. 3.4 may still be useful in obtaining an approximation for the head
loss over a group of  n  uniformly spaced ports in a distance  L  in a barrel.

3.2.3. BARREL FRICTION WITH JUNCTION LOSSES
Now the state of affairs at the intersection of the barrel and a pipe lateral of smaller

diameter, both assumed here to lie in one horizontal plane, is relatively complex.  We
begin with a diagram, Fig. 3.3, of one such barrel-lateral junction that displays the energy
line  EL  and hydraulic grade line  HGL  for the main and the lateral and also introduces a
set of locally-numbered variables:  subscript  1  denotes a variable that is defined upstream
of the lateral in the main;  subscript  2  denotes a variable that is defined downstream of the



lateral in the main;  and subscript  3  denotes a variable that is associated with the lateral
itself.  It is assumed that the spacing of the laterals is such that the flow to successive
laterals does not interact.  The energy line now has a loss  hL1−2

  along the main at the

junction, and there is also an energy loss  hL1−3
  at the junction that is associated with the

flow that passes into the lateral.  The hydraulic grade line experiences a rise  ∆h  along the
main as it passes the junction.  We must keep in mind that it is the art/science of
approximation in hydraulics that expresses these energy and pressure changes as discrete
jumps at a precise location;  actually all three factors represent phenomena that occur over a
larger but finite flow region, although we concentrate or lump the effect at a point.  All
parts of the energy line slope downward in the direction of flow in the main and in the
lateral, owing to the
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Figure 3.3  Diagram of a barrel-lateral junction with local notation.

effect of fluid friction.  The flow from the lateral is presumed to exit as a jet into the
atmosphere.

From Fig. 3.3 we see that the pressure head rise along the main is
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Dividing all by the upstream velocity head produces a nondimensional pressure head rise
coefficient
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Applying continuity  at the junction in the form  Q1 = Q2 + Q3  leads to

∆h

V1
2 / 2g

= 1 − 1−
Q3
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Q1
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V1
2 / 2g

(3.8)

If we employ the usual terminology, the last term in Eq. 3.8 is the head loss coefficient
KL1−2

.  Hence we can conclude that the pressure head rise coefficient is a function of only

two nondimensional factors, or

∆h

V1
2 / 2g

= Φ1
Q3

Q1
,

hL1−2

V1
2 / 2g









 (3.9)

in which  Φ1  is the function appearing in Eq. 3.8.

Statements about the functional behavior of the pressure head rise coefficient can be
made if we hypothesize how  hL1 −2

  behaves;  Figure 3.4 is the outcome of such an

inquiry.
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Figure 3.4  The expected range of pressure rise coefficients as a function of  Q3/Q1.

  To begin probing this point, it does not seem difficult to delimit the range of possible
values for  hL1−2

.  At the low end it seems reasonable simply to assume  (hL1−2
)min = 0 ,

i.e., no loss.  At the high end of the spectrum we note that the flow in the main at the



junction displays some of the character of the flow at a sudden enlargement, as a rapid
deceleration of the flow occurs in the barrel, accompanied by some increase in eddy motion
and other turbulence phenomena.  Hence we expect

hL1−2( )
max

=
V1 − V2( )2

2g
(3.10)

This behavior for the pressure head rise coefficient is plotted in Fig. 3.4 as a function of
the discharge ratio  Q3/Q1;  curve  1  is the curve for minimum head loss, and curve  2  is
the result of using Eq. 3.10 to represent the head loss.  Superimposed on Fig. 3.4 is a
dashed curve that is taken from Fig. 3.5, which shows experimental data (unpublished) for
the typical behavior of the pressure head rise coefficient as a function of the lateral-to-main
diameter ratio  D3/D1,  assuming in this example that  f = 0.02  and  L3/D3 = 5  for the
lateral.
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Figure 3.5  Typical experimental data for the pressure rise coefficient.

From Fig. 3.4 we find a remarkable result.  The experimental pressure head rise
coefficient data do not fall within the rather generous region of expected behavior for
D3/D1  below about  1/3.  The clear meaning is that the loss coefficient  KL1−2

  is

negative for small values of  D3/D1.  How can this be?  It is not simply caused by



experimental error but is a real phenomenon, another of the peculiarities of manifold flow,
the cause of which has been debated at some length.  Experts conclude that the flow must
be something like the diagram in Fig. 3.6, in which a small fraction of the upstream
discharge is drawn into the lateral.  This lateral fraction initially possessed less than the
average kinetic energy per unit weight of fluid, since the fluid near the pipe wall moves
more slowly than the central core fluid.  Consequently the mean energy that remains to
flow to section  2  appears to have been enhanced by a small amount.  In a one-
dimensional hydraulic representation of the flow, the effect shows up as a small "negative"
loss coefficient, however unrealistic that may seem.  Additional study would show that a
loss in the overall flux of energy does still occur in this situation.

Q3

Dividing streamline
Q1 Q2

Velocity profile

Figure 3.6  Flow at a lateral junction.

 The behavior of the flow in the lateral must also be quantified.  The habit began long
ago of treating these laterals as if they were orifices and assuming for convenience that the
flow through the lateral was driven by the pressure head  y1  that exists just upstream from
the entrance to the lateral.  Thus we write

Q3 = CA3 2gy1   or  y1 = 1

C2

V3
2

2g
(3.11)

in which  A3 = πD3
2 / 4   is the cross-sectional area of a lateral of diameter D3,  the

velocity  V3 = Q3/A3,  and  C  is the orifice coefficient, which can depend on several
variables, depending on the geometric details of the lateral.

We want to establish a relation between  C  and the head loss coefficient  KL1−3
  for

flow from the main to the lateral

KL1−3
=

hL1−3

V1
2/2g

(3.12)

since this coefficient can be found experimentally.  Assuming that the lateral flows full and
has length  L3  and a constant friction factor  f3,  from Fig. 3.3 we can write

y1 + V1
2

2g
= hL1−3

+ hf3
+ V3

2

2g
(3.13)

with  hf3
  being the frictional head loss in the lateral, or

1

C2
V3

2

2g
+ V1

2

2g
= KL1−3

V1
2

2g
+ f 3

L3

D3

V3
2

2g
+ V3

2

2g
(3.14)



Dividing throughout by the velocity head in the lateral and rearranging,

1

C2 = KL1−3
−1( ) V1

V3
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or
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In summary,

C = Φ2
Q3

Q1
, KL1−3









 (3.17)

in which  Φ2  is a shorthand notation for the function displayed in full in Eq. 3.16.  When
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Figure 3.7  The loss coefficient  KL1−3
  as a function of  D3/D1  and  Q3/Q1.

appropriate experiments have been conducted to determine the behavior of  KL1−3
,  one

will usually find a relation that is similar to that shown in Fig. 3.7.  And once  f3  and
L3/D3  have been prescribed, then a plot of  C  vs.  Q3/Q1  can be prepared;  for example,
Fig. 3.8 has been prepared from Fig. 3.7 by assuming  f3 = 0.02 and  L3/D3 = 5.  (Some
will be surprised to see how large the lateral loss coefficient may become;  keep in mind,
however, that a lateral that is less than  1/3  the diameter of the main will normally convey



1/3 or less of the upstream discharge to that junction, so such high loss coefficients are
rarely encountered in practice.)
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Figure 3.8  An example of the behavior of the orifice coefficient  C.

Example Problem 3.1
The  3-port manifold shown in the next diagram has a port-to-main diameter ratio

D3/D1 = D3/Dm = 0.4,  a friction factor  f = 0.02  in the main and all laterals, and  L3/D3
= 5  for each lateral.  Considering fluid friction in the main and laterals and junction losses,
as described by Figs. 3.5, 3.7, and 3.8, compute the port discharges  Qa,  Qb,  and  Qc.
The downstream end of the main is closed off by a blank plate.

This problem is more difficult than earlier problems where the junction losses were
ignored, but the results are valuable in helping us decide whether to include or ignore
junction losses in other similar problems.

Such a problem can be formulated in terms of a set of linear and nonlinear simultaneous
equations, but in the past solutions to this problem were normally sought by following the



HR = 20 ft

Dm = 4 in

30 ft 1 ft1 ft *

Qc QaQb

method that will now be used.  The solution process typically begins by arbitrarily
selecting an energy line elevation at the downstream end of the manifold, and computations
are started there.  Of course, the initial elevation will almost never be the correct final
elevation, but it is easy to adjust for this later in the computations.  So we begin by
choosing  EL = HGL = 10.0 ft downstream of port 1.

At port  a  the ratio  Qlateral/Qmain = Q3/Q1 = Qa/Q = 1.0.  Just before this port we
see that    y1 + ∆h = 10.00, with the discharge out the first port satisfying

Qa = Q3 = C
πD3

2

4
2gy1

From Fig. 3.5 we read  
∆h

V1
2 / 2g

= 0.63,  and from Fig. 3.8 we find  C = 0.84.  Hence

Qa
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2
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2
1

2g
= 10.00

with  D3 = 0.4(4)/12 = 0.1333 ft  and  g = 32.2 ft/s2.  From this equation we compute  Qa

=  0.296 ft3/s,  from which  V1
2 / 2g =   0.179 ft  and  ∆h =  0.113 ft,  which establishes

the values of the  EL  and  HGL  immediately before port  a  as  10.066 ft  and  9.887 ft,
respectively.  With these values the frictional loss between port  a  and port  b  is  0.011 ft
from the Darcy-Weisbach equation, giving  EL  and  HGL  elevations of  10.077 ft  and
9.898 ft  just downstream of port  b.

With no prior experience upon which to anticipate the flow behavior at port  b,  the
second port, the logical initial estimate for the discharge ratio is  Qlateral/Qmain = Qb/Q =

0.50.  Turning to the plots, from Fig. 3.5 we obtain  
∆h

V1
2 / 2g

= 0.680  and from Fig. 3.8

C = 0.795.  With  Q = Qb/0.5,  the equation  y1 + ∆h = 9.898 ft  at port  b  becomes
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2
1

2g
= 9.898

or  Qb = 0.274 ft3/s.  The discharge in the main is then  0.296 + 0.274 = 0.570 ft3/s  and
Qb/Q = 0.274/0.570 = 0.481,  which is not  0.50  as assumed.  Thus we repeat the
calculation using  Qb/Q = 0.481,  with  0.670  being read with some difficulty from Fig.



3.5 and  C = 0.795  from  Fig. 3.8. Also the discharge in the main shifts slightly to
become  Q = Qb/0.481 = 2.08Qb.  The new result is  Qb = 0.274 ft3/s  again.  For this

discharge we can compute  V1
2 / 2g =    0.662 ft  and  ∆h =  0.444 ft  with  y1 = 9.465 ft,

leading to  EL  and  HGL  elevations just before port  b  of  10.127 ft  and  9.465  ft.  The
Darcy-Weisbach frictional loss between port  b  and port  c  is then  0.040 ft  so that the
EL  and  HGL  elevations just downstream of port  c  are  10.167 ft  and  9.505 ft.

At port  c  the uninformed initial estimate for the discharge ratio would be  Qc/Q =
0.333.  But from our experience at port  b  we may speculate that this ratio will be too
high and instead choose our first estimate to be  Qc/Q = 0.31  so that  Q = Qc/0.31 =

3.23Qc.  Then Fig. 3.5 yields  
∆h

V1
2 / 2g

= 0.545,  and  C = 0.770  is obtained from Fig.

3.8.  The equation  y1 + ∆h = 9.505 ft  at port  c  is then
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giving  Qc = 0.255 ft3/s.  Then in the main  Q = 0.570 + 0.255 = 0.825 ft3/s, with a ratio
Qc/Q = 0.255/0.825 = 0.31.  We have been fortunate in our choice of the estimate!
Otherwise we must repeat the computational cycle of adjusting the discharge ratio and the
coefficients that depend on it before again computing a new discharge at port  c  and
checking the result for adequacy.  By now it should be clear that a limiting factor in our
ability to obtain an accurate solution that agrees with our starting estimates is the accuracy
of the coefficients.  Two factors affect this accuracy, the quality of the original experiments
that led to the preparation of the coefficient plots and our limited ability to read those
plots.  As a result, Miller (1984) suggested that agreement within  2%  is a reasonable
goal.  At least some of the computations in this example exceed this limit, but the results
have been presented in this way so the computations can be followed more easily.

Some computations upstream of port  c  remain.  With the discharge upstream of port  c
now computed, the velocity head in the main in this region is  V2/2g = 1.388 ft, and  y1
upstream of port  c  is

y1 =
1

2g

0.255
(0.770)(0.01396)


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





2
= 8.739  ft

The  EL  at this section is the sum of these two terms, or  10.127 ft.  Just downstream of
port  c  the  EL  was computed as  10.167 ft., so we observe the phenomenon of an
apparent negative head loss occurring at port  c.  This effect is small, but it is not an error.
Continuing, we compute the effect of the frictional head loss in  30 ft  of pipe leading to
the reservoir as

hL = f
L

D

V 2

2g
= 0.02

30
4 /12







1.388( ) = 2.498  ft

so that the computed  EL  at the reservoir is  10.127 + 2.498 = 12.625 ft.  Alas, this
value is actually specified as  HR = 20 ft.  Our work is not wasted, however.  Each
velocity, and consequently each discharge, is proportional to the square root of the total
head that is available in the problem, so long as  f  is assumed to be a constant.  To adjust
our estimated discharges to the true discharges, we need only multiply the estimates by the



square root of the ratio of the true total head,  20 ft,  to the computed head,  12.625 ft.
The discharge from each port, in ft3/s, is therefore

Qtrue = Qest
Htrue
Hest


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




1/2

Qa = 0.296
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1/2
= 0.373  ft3/s

Qb = 0.274
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1/2
= 0.345  ft3/s

Qc = 0.255
20.0

12.625






1/2
= 0.321  ft3/s

If it is desired, the actual elevation of each point on the  EL  and  HGL  could now be
computed directly since the discharges are known.

The foregoing hand solution has acquainted us with the complexities that come with the
inclusion of junction losses.  The modern alternative to such a solution is to formulate the
problem in terms of a set of equations that can be solved simultaneously for a chosen set
of unknown variables.  The CD contains both a MathCAD and a TK-Solver model of this
problem, listed under the names  PRB3_1.MCD  and  PRB3_1.TK,  respectively, which
are formulated in this way.  For this example we denote the hydraulic grade line
downstream (y1 + ∆h) from the three ports by  HGLa, HGLb  and  HGLc.  In a similar
way the  C's  from Fig. 3.8 and the coefficients  K  from Fig. 3.5 will be given subscripts
a, b,  and  c.  The following three equations are the result of adding  y1  and  ∆h  at the
three ports:

Qa /Ca( )2/ 2gAa
2( ) + KaQa

2 / 2gAm
2( ) = HGLa

Qb /Cb( )2/ 2gAa
2( ) + Kb Qa +Qb( )2/ 2gAm

2( ) = HGLb

Qc /Cc( )2/ 2gAa
2( ) + Kc Qa +Qb +Qc( )2/ 2gAm

2( ) = HGLc

in which  Aa = (π / 4)D3
2   is the area of each equally-sized port, and  Am = (π / 4)Dm

2 .
Along the main three energy equations

HGLb = HGLa + fLs /Dm − Ka( )Qa
2 / 2gAm

2( )
HGLc = HGLb + fLs /Dm − Kb( ) Qa +Qb( )2 / 2gAm

2( )
HR = HGLc + 1+ fL/Dm − Kc( ) Qa +Qb +Qc( )2 / 2gAm

2( )
can be written, in which  Ls = 1 ft  is the spacing between ports,  L = 30 ft  is the length
of the upstream main, and  HR = 20 ft  is the elevation of the reservoir water surface.
These six equations can be solved for six variables, which could be chosen as  Qa, Qb, Qc,
HGLa, HGLb,  and  HGLc.  Using any software that is capable of solving a nonlinear

system of equations produces  Qa = 0.373 ft3/s,  Qb = 0.345 ft3/s,  Qc = 0.321 ft3/s,
HGLa = 15.844 ft,  HGLb = 15.683 ft, and  HGLc = 15.043 ft,  if the coefficients that
were determined in the hand solution are used.  If the source of these coefficients must be
Figs. 3.5 and 3.8, a solution can be obtained with trial coefficient values, the coefficients
can then be adjusted and improved, and the problem can be solved again.  However, an

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


improved computational approach would use "list functions" that would obtain the
coefficients from values that are found from tables that describe the curves in these figures.
If a function subprogram that solves the Colebrook-White equation (so one Colebrook-
White equation would be written to determine the friction factor  f  in each flow segment of
the main;  in this case three equations) is added to the equation system, then one could
merely specify the pipe material (actually the equivalent sand grain roughness  e  for that
material) rather than specifying a value for  f  itself.  Talozi (1998) has analyzed manifold
flow recently using some of these computational approaches.

*                              *                              *

A review of these computations allows us to come to several conclusions:
1.  As the local ratio  Q3/Q1  changes, the experimentally determined coefficients

that describe the flow at each junction probably also change.  The flow from a
port cannot be determined accurately unless the lateral discharge coefficient  C  and
the nondimensional pressure head rise coefficient are known reasonably well.

2.  For practical manifold flows in which a large number (more than three or four is
large) of ports are present, the negative head loss phenomenon will in theory be
present at a large majority of the ports (all but the last few ports), but the actual
amount of the energy change across such a port will almost always be very small.
And if this energy change (gain) across a port along the main is neglected, the
effect of this neglect is a conservative one in the design process.

3.  The first end-of-chapter problems will demonstrate that ports of equal diameter,
in the absence of the consideration of junction losses, display a trend of increasing
port discharge with increasing  EL  in the main.  But Example Problem 3.1 is
one example where a consideration of junction losses leads to a decrease in port
discharge with an increasing  EL  as one moves upstream.  When this trend was
observed many years ago along with a decrease in pressure head in the upstream
direction, it was concluded that it was the pressure head, and not the energy line
location, that determined the port discharge;  old technical articles that emphasize
the importance of pressure head alone in manifold behavior should be viewed with
caution.

3.3 A HYDRAULIC DESIGN PROCEDURE

Whether the application is a submarine diffuser as part of a wastewater dispersal
operation or a drip irrigation system, some elements of the design procedure change little.
There are also some elements that vary from application to application, however.  A
submarine diffuser, for example, normally is laid on a slope in water of a different density
than that of the wastewater, which leads to external pressure differences from port to port
that must be incorporated into the design computations.  And the physical shape of a
submarine diffuser port differs substantially in size and other details from, say, a drip
irrigation emitter (port).  With some exceptions the trend in recent years is toward a larger
number of smaller ports.  And the ports within a major segment of the manifold, if not the
entire manifold, will be uniformly spaced and of uniform diameter for ease of construction.

In the design of a manifold there are several goals:
1.  To assure that the manifold functions in the intended manner, it must always

flow full.  For a simple manifold this is usually met by requiring the sum of the
individual port cross-sectional areas to be less than, typically about  90%  of, the
cross-sectional area of the main.  For larger manifolds with a stepped main, the
ratio of the sum of port areas downstream from a particular section to the cross-
sectional area of the main at that section is usually limited to some fraction
between  1/2  and  2/3.



2.  The ports and the main should both have a simple, clean design for several
reasons.  A simple design will often lead to low hydraulic losses, which will
reduce operating expense by saving energy and will lead to a much simpler
hydraulic analysis if junction losses can be neglected.  It ought also to reduce
maintenance costs.

3.  The primary design goal, but not one that is strictly attainable, is an even or
relatively even distribution of flow between ports.

4.  The range of acceptable velocities in the main should be examined carefully for
each application, especially if there is any possibility of some solids being
conveyed in the manifold.  The velocity of the carrier fluid must then be high
enough to prevent the settlement of the solids, and it must also be low enough to
avoid a scour or abrasion problem.  When solids are borne in water, the acceptable
range is between  2  and  15 ft/s  but usually below  5 ft/s.

The computational sequence for manifold design that will be described in the following
paragraphs was developed in the 1960s and 1970s by several investigators and authors,
including Rawn et al. (1960), Vigander et al. (1970), and Grace (1978).  A brief look into
these publications, however, will show the continuing influence of N. H. Brooks on all
these efforts.  Notationally we follow the presentation of Grace (1978), which is diagramed
in Fig. 3.9.  The procedure is organized so the entire sequence can be converted relatively
directly into computer code.
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Figure 3.9  A two-port segment of a manifold, to display notation.

The manifold ports and barrel segments are numbered from the downstream end toward
the upstream supply head or reservoir, with each port and segment number that is upstream
of it denoted by  j,  which will also be used as a subscript on the other variables to indicate
their location.  Other variables are  Q = discharge in the barrel segment,  V = mean velocity
in the barrel segment,  A = cross-sectional area of the barrel segment,  D = diameter of the
barrel segment,  q = discharge from a port,  u = mean velocity through a port,  a = cross-
sectional area of a port, and  d = diameter of a port.

To allow several different design environments, we assume that this design considers a
manifold or diffuser conveying a liquid fluid of constant unit weight  γ (the fluid is usually
water, but the design procedure is not restricted to water only) that is submerged in an
ambient body of fluid of constant unit weight  γa .  The horizontal surface of the exterior
fluid body serves as a datum where  h = 0;  the submerged elevation of a port is then  - h,
which will change from port to port if the manifold slopes.  The pressure outside a port is
pa = γah.  If the ambient fluid is air, then we choose  γa = 0.  The hydraulic model of flow
in a manifold has a discrete jump in pressure across a port;  just upstream of port  j  the
internal pressure is  pj,  and just downstream of the next port the pressure is  p'j.  Flow is
assumed to exit horizontally from ports having centerlines at the same elevation as the
centerline of the barrel.

The manifold computations begin at the downstream end.  Select an estimate of the
average port discharge  qp  as the total discharge through the manifold divided by the



number of ports.  If the fluid flow in the manifold is to carry with it any settleable
material, then it is advisable to put a large port, with a discharge of roughly  4qp,  at the
downstream end to counteract the siltation that would otherwise occur in a dead end.  The
discharge through this port is governed by an orifice equation, but the total head at this port
is not known;  simply pick a value for the total head that is consistent with the port
discharge that is chosen, and it will be corrected later.

The computations at a port, say port  j,  are basically the same for every port.  We
write an energy equation from a point inside the main, point  1,  to a point in the port
efflux stream, point  2:

− hj +
V j

2

2g
+

pj

γ
= − hj +

uj
2

2g
+

paj

γ
+ kL

u j
2

2g
(3.18)

In this equation  kL  is the port head loss coefficient.  If we define an energy parameter  E
at port  j  as

Ej =
pj − paj

γ
+

V j
2

2g
(3.19)

then the fluid exit velocity through the port is

uj = 1
1 + kL







1/2

2gEj( )1/2
(3.20)

The discharge through this port is the product of the port velocity and the flow cross-
sectional area of the jet from this port, or

q j = u jCca j (3.21)

or

q j = CDaj 2gEj( )1/2
(3.22)

with the discharge coefficient  CD  combining the effects of the port head loss and the local
contraction coefficient  Cc  into

CD = Cc / 1 + kL( )1/2
(3.23)

Since the local loss coefficient varies, for an unchanging individual port geometry, with
the ratio of the local velocity head to total head or its surrogate  Ej,  these relations can be
contracted to

CDj = CD
V j

2 / 2g

Ej













(3.24)

This function must initially be determined experimentally, and the results can be
summarized in any number of ways, in a graph or table, as an analytical curve fit or as data
pairs that can be interpolated by a computer program subroutine.  For example, Grace
(1978) cites an empirical equation fitting data that describe the flow through a bell-mouth
port that is part of the diffuser manifold in an ocean outfall for the city of Honolulu, valid
only when  dj/Dj < 0.1, as



CD = 0.975 1 −
V j

2 / 2g
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











3/8

(3.25)

and Rawn et al. (1960, p. 94) graphically present analogous curves for bell-mouth and
sharp-edged ports.

Along the main between points  3  and  1,  we may write the energy equation as

−hj+1 +
V j

2

2g
+

pj
'

γ
= −hj +

V j
2

2g
+

pj

γ
+ hLj (3.26)

The velocity head terms cancel, the elevation terms are either known or zero, the pressure
head term at port  j  has been computed, and the last term, the frictional loss term along
the barrel, can be computed from the Darcy-Weisbach equation.  Hence the pressure head
term  pj

' / γ   downstream of port  j+1  can be computed.  Now we assume that it is

acceptably accurate to assume no head loss across a port along the main, leading to

V j+1
2

2g
+

pj+1

γ
=

V j
2

2g
+

pj
'

γ
(3.27)

This last assumption may be questionable for the first two or three ports at the downstream
end, but thereafter it should be a very good and slightly conservative assumption.  The
right side of this equation is entirely known.  Since  paj+1  can be determined, then  Ej+1
is known, but the two terms on the left side of Eq. 3.27 are not yet separately known.
Consequently we can not immediately find  CD  at port  j+1,  since Eq. 3.24 shows that
we must know the upstream velocity head to do that.  So we proceed as follows.

If we know  qj+1,  then

Qj+1 = Qj + q j+1 (3.28)

and  Vj+1  can be found directly.  But Eq. 3.22 clearly requires a value for CDj+1.  We can
iterate our way to a solution by first computing an estimate of  qj+1  as

q j+1 = CDja j+1 2gEj+1( )1/2
(3.29)

with  CDj  based on  V j
2 / 2g( ) / E j+1  instead of V j+1

2 / 2g( ) / E j+1,  and then in turn

computing  Qj+1  from Eq. 3.28,  Vj+1  from  Qj+1, and then an improved value of
CDj+1  based on  Vj+1.  This cycle will almost always converge in one or two iterations
to give an accurate value of  CD  at port  j+1.  This computational routine is used at each
port.

This computational routine is repeated from one port to the next until the entire
manifold has been traversed.  At this point the total head has been computed at the
upstream end of the manifold.  For the manifold to function as the computations indicate,
this head or a larger head must be supplied to this point.  Commonly the goal is either to
match some head here to a reservoir head or the head from a pumping plant, and the
computed total will rarely be the same as the target head.  Two approaches are available for
the reconciliation of this difference:  (1)  Recognizing in the entire computational procedure



that heads are proportional to the square of the velocities or discharges, all discharges can be
proportionally scaled, as was demonstrated in Example Problem 3.1,

Qtrue = Qest
Htrue
Hest










1/2

(3.30)

in which  Htrue  is the desired target head,  Qest  and  Hest  are the estimated discharges and
heads that are the outcome of the computation, and  Qtrue  are the discharges that will
produce the desired head.  (2)  The other approach is simpler but still effective, and that is
simply to raise or lower the original head at port  1  in proportion to the amount by which
the target head is missed in the previous trial and to rerun the problem with the computer
program;  continue these adjustments until the target head is met with acceptable accuracy.

Computer programs that perform this sequence of computations have been developed by
various individuals and organizations.  Grace (1978, pp. 296-297) presents a typical set of
plots that are the outcome of such studies;  the plots display the relatively small variation
of discharge from port to port that is attainable by good design.  A relatively simple
version of a typical manifold program has been written and will be found with the other
programs on the  CD in file  MANIFOLD.  A study of the program listing should help the
reader understand the details of implementing the computational procedure.  The current
program follows the methodology in this section, including the neglect of head loss at a
port along the main.  But the code also indicates where modifications are needed to include
this factor, if it is to be added to the program.
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3.4 PROBLEMS

3.1  In the manifold shown below, neglect all losses except pipe friction in the barrel, and
assume  f = 0.02  is a reasonable estimate for the Darcy friction factor in the barrel.

(a)  Assume the discharge from each port  i  is  Qi = 0.35 ft3/s.  Compute each port
diameter  di,  i = 1,4,  that is required so that the assumption of equal discharges is true.
(b)  Now assume that all four port diameters are each the size  d1  that was computed
in part (a) and compute the resulting discharge  Qi  from each port.

HR = 20 ft

D = 4 in

30 ft 10 ft10 ft 10 ft

Vp

di
4 3 12

3.2   It is proposed to distribute water to irrigation furrows on two sides of a road, as
shown in the next figure, by a system which is supplied by an elevated reservoir and
consists of one  12-in-diameter used pipe (still in good condition) that serves both sides of
the road via many circular holes or ports on  5-ft intervals.  The largest port diameter is to
be  2.0 in.  Each port is to discharge  0.2 ft3/s.  Assuming for simplicity that  f = 0.02  is
a suitable friction factor and neglecting junction and other minor losses, estimate the
required water surface elevation in the reservoir to fulfill these requirements.

Elev. = ?

400 ft

Road

- Elev. 100.0

41 ports
@ 5 ft

ctrs.

21 ports
@ 5 ft

ctrs.

100 ft

3.3   Consider  n  equally-spaced ports in a length  L of pipe having diameter  D  and
friction factor  f.  Assume equal discharge  q  from each port.

(a)  Including friction but not junction losses, is it possible for the hydraulic grade line
to have the same elevation at both ends of the manifold section of the pipe?  Conclude
"yes" or "no" and then justify your answer by using equations.
(b)  Does conclusion (a) depend on the overall discharge  Q  in the manifold, or is your
conclusion independent of discharge?
(c)  If condition (a) were realized and  q  is constant, does this mean that each port
diameter must be the same?  Respond "yes" or "no" only.
(d)  Comment briefly on whether a consideration of junction losses would alter your
reply to part (a).



3.4   Compute the discharge from reservoir A to reservoir B for the system shown below.
Assume  f = 0.02  and neglect local losses.  The pump characteristic curve can be
represented by  hp = 300 - 20Q2  with  hp  in ft and  Q  in ft3/s.  Although the diameters
of the intake ports are not stated, assume as an approximation that they cause the inflow
over this section to be uniformly distributed.

 P

El. 300 ft

L
=

10
00

ft
D

=
12

in

L = 600 ft
D = 8 in

L = 60 ft

21 ports
@ 3 ft. ctrs.

El. 150 ft

3.5  Consider again the manifold shown for Problem 3.1, but now do not neglect junction
losses.  The ratio of diameters between the laterals and the main is  D3/D1 = 0.2,  and the
length of each lateral is  10 in.  Assume  f = 0.025.

(a)  Using Fig. 3.5, develop and plot  KL1-2  vs.  Q3/Q1.  Does the coefficient become 
negative?  Over what range of  Q3/Q1?
(b)  Develop a plot similar to Fig. 3.8 which displays  C  as a function of  Q3/Q1.
(c)  Starting with a trial  EL  of  10 ft,  determine the discharge from each port and the 
total discharge from the manifold.
(d)  What is the elevation of the actual  EL  downstream of the ports?

3.6  Certain assumptions are made in the analysis of a major submarine diffuser manifold
for the disposal of wastewater.  Indicate which of the following assumptions is both correct
and justified, and why the others are in some way incorrect or not justified.

(a)  All losses at a junction are ignored.
(b)  At a junction only port losses are considered.
(c)  Only losses along the main are considered at a junction.
(d)  All losses at a junction usually should be considered.

3.7  A city treats at least some wastewater by overland flow.  It is proposed to deliver  0.1
ft3/s  of dilute wastewater (same properties as water) through  50  ports, which are  5  feet
apart, to the land surface.  The main delivery line is old  8-inch-diameter metal pipe coming
from a raised reservoir.  You are asked to act as a consultant on the project.

(a)  It is proposed that the diameter of each port opening be  1.25  inch because it is 
easy to build.  Indicate whether this port size is an acceptable choice.  Secondly, tell the 
project workers whether  0.1 ft3/s  can be delivered through each port this way.



(b)  For a preliminary design assume  Qp  = 0.1 ft3/s  from each port,  f = 0.02  and 

neglect all local losses.  Estimate the minimum reservoir surface elevation that can be 
used successfully here.
(c)  Do you think a consideration of junction losses would significantly change your 
answer in part (b)?  Do you think a more detailed analysis of the flow out each port is 
needed?  In each case, why do you think so?  Reply briefly to both questions, but do no 
additional calculations.

3.8  Devise a computational scheme to determine the head loss across a port in the main
line of a manifold.  Implement the scheme in the manifold program  MANIFOLD  on the
CD, and test the scheme by running the program, using additional print statements to
obtain enough information to verify that the program operates correctly.

3.9  Trickle irrigation of a field may involve a hierarchy of manifolds;  that is, a delivery
main can serve as the supply to several manifolds, and each manifold will in turn serve a
number of laterals.  Finally, each lateral will contain along its length a number of
individual emitters.  The manifold program on the CD is suitable for application to the
pipes that are called manifolds in this application, so long as care is taken to treat the port
exit pressures properly.  However, each line called a lateral is itself a pipe containing
numerous emitters or "ports" and so is itself a kind of manifold having two significant
differences from the manifold which is modeled in the current manifold program:  (1)  At
each port the trickle emitter usually (but not always) has a "barb" that projects into the
main and causes a head loss at the port along the main;  (2)  Irrigation practitioners
represent the discharge from an individual emitter by  q = KH x , in which  K  is a discharge
coefficient that is characteristic of the emitter,  H = pressure head = (p - pa)/γ, and the
exponent varies with the type of emitter over the range  0 ≤ x ≤ 0.8.  For example, for
simple orifice or nozzle emitters  x = 0.5.  For more information see James (1988) or
Keller and Bliesner (1990).

Modify the manifold program on the CD to simulate the flow in a trickle irrigation
"lateral":

(a)  For barb losses along the main, called the lateral, irrigation references (e.g. James
1988, p. 281) describe the head loss in terms of an equivalent additional pipe length.  If
the head loss along the main at a port is  hL = KV2/2g,  then the loss coefficient is of
the form

K = Cf / Dm

with  C  being a pure number,  f = Darcy friction factor, D = pipe inside diameter, and
m =  exponent, usually approximately  3.
(b)  Replace the port discharge formula that is in the program with  q = KH x , and
modify the program input statements to read the new data that are required.
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CHAPTER 4
_________________________________________________________________________

PIPE NETWORK ANALYSIS

4.1 INTRODUCTION

This chapter describes the analysis of steady flow in pipe systems.  In any analysis
problem all of the physical features of the network are known, and the solution process
endeavors to determine the discharge in every pipe and the pressure, etc. at every node of the
network.  Therefore in this chapter the diameters of all pipes, their lengths and their
roughnesses are known, as well as where reservoirs, pumps, pressure reduction valves, and
other fittings are located.  The ways in which these devices influence the hydraulics of the
system will be specified.   Design problems, on the other hand, try to select (wisely!) the
diameters of pipes, the capacities of pumps, the water surfaces elevations of reservoirs, and
so on.  Thus, a design problem is distinguished from an analysis problem by the choice of
the variables that are regarded as unknown.  At some risk we dare to generalize by saying
that design problems are usually more challenging to solve than are analysis problems, and
design problems usually require the simultaneous solution of a larger system of equations
than do analysis problems.  A thorough understanding of the techniques of analysis for
large networks that are composed of known physical features is a prerequisite to the
understanding of the design of networks.  The design of pipe networks is the focus of
Chapter 5 and is not discussed directly in this chapter.

The analysis of a pipe network can be one of the more complex mathematical problems
that engineers are called upon to solve, particularly if the network is large, as occurs in the
water distribution systems of even quite small cities.  A significant fraction of the entire
set of equations consists of nonlinear equations, and a large number of these equations must
be solved simultaneously.  Before digital computers were widely used in engineering
practice, it simply was not practical to solve such network problems, and consequently
many existing water distribution systems have "grown" with time, based primarily on the
best professional judgment of engineers, without any thorough or detailed analysis of the
pressures and discharges that could exist in the pipes of the network in response to various
combinations of demands on the system.  The computer has made it possible to solve such
large network problems with ease, and as a result many municipalities and water districts
have benefited from the results of relatively detailed computer analyses of their systems in
recent years.  We believe it is important for an engineer to understand what is being
accomplished in these computer solutions.  To aid engineers in gaining this knowledge, we
begin with the basic principles, and the equations that embody them, that interrelate the
discharge in each pipe and the pressure at each node of the network.

The same few basic principles of fluid mechanics are the foundation of our work on
pipe network analyses.  These basic principles are  (1)  conservation of mass, or the
continuity principle,  (2)  the work-energy principle, and  (3)  the relation between fluid
friction and energy dissipation.  Chapter 2 has already introduced these principles.  The task
here is to employ these ideas effectively in describing a large hydraulic system accurately
by means of equations, and then to solve these simultaneous equations efficiently.

The oldest systematic method for solving the problem of steady flow in a pipe network
is the Hardy Cross method, which is itself an early adaptation of the method of moment
dis-tribution from structural engineering in 1936.  Before the ready availability of digital
computers in the late 1960s, this method was prized because it is so well suited for hand
computations.  Then it became the basis of most early computer software, but because of



convergence problems for large systems containing pumps and other appurtenances, it will
not be discussed herein.  Over the past quarter century the Newton method has proven to be
superior in solving the nonlinear equations, and now networks of  2500  pipes or more can
be analyzed successfully with a desktop computer.

4.1.1. DEFINING AN APPROPRIATE PIPE SYSTEM
The first step in studying pipe systems is to decide what features are important and to

retain them in defining the network of pipes.  For large water distribution systems some
"skeletonization" usually occurs in this process.  In other words, not all pipes in the
system are included in the analysis.  This skeletonization can take on many forms, such as
the following:

1.  Not all connections to houses are considered as separate nodes or junctions, and all
of the distributed demands along one block of a street, or even a small subdivision,
may instead be aggregated or lumped at a single node;

2.  Only those pipes that carry the water from the supply sources to the areas of
demand are included, i.e., only the main transmission system is considered;

3.  Only a few pipes and their associated appurtenances are considered;  these compo-
nents are regarded as vital to the proper operation of the system.

Any study of a pipe system may include one or even all of these levels of skeletoniza-
tion;  the first preliminary study may start with a model of type (3), and subsequent, more
complete analyses may proceed back to type (1) as the adequacy of each is verified, or as
components are adjusted.  After these analyses have been obtained and studied, it may then
be desirable to study intensively the network of pipes within a city block, or the pipes
within the area of a major water user, such as a large structure or a manufacturing facility.
Thus analyses can treat an entire delivery system, which is generally skeletonized, or a
more detailed analysis of the piping system or plumbing within a large building, or a golf
course, etc.  When an analysis of a building's piping system is conducted, the exterior
pressures that are supplied by the larger system can be specified with some degree of
confidence since the analyses of the larger "delivery" networks provide this information.
There are no hard rules that dictate which pipes should be omitted.  Such decisions are
often left to the professional judgment of the supervising engineer, and sometimes these
decisions are called "art," but the insight gained from analyses at different levels of
skeletonization often indicate which pipes should be included in the next level of analysis.
Computers can now analyze a problem consisting of many more pipes (e.g., several
thousand) than the human mind can visualize in detail when deciding which features should
be changed to improve the performance and reduce the costs of the system.

Another vital part of defining the network problem is to determine which demands
should be specified.  The demands on an existing system can be obtained from water usage
or billing records.  Even for existing systems the data are seldom complete in describing
how these demands vary during a day, or from day to day.  Analyses are usually needed for a
range of system demands, from peak hourly demands down to minimal demand periods
(e.g.,  2-3 a.m.).  During above-average demand periods tanks will have their storage
volumes partially depleted, but this loss of volume should be recovered when demands are
small.  Since a water system may be designed for a  50-year life, the specified demands
must appropriately reflect future growth and increases (or possibly decreases) in per capita
consumption.  In the design of a new system, the demands may have to be based on
comparisons with similar cities etc.  However, if a system is to be designed to deliver
known quantities at specified times, then the problem of determining appropriate demands
does not exist.  So we see that engineering experience, based on sound judgment, is often
required in defining the most appropriate piping system problems to analyze.

After the analyst has obtained one or several apparently reasonable solutions, the next
step is to verify by measurements in the actual system that reasonable agreement exists be-
tween the solution to the mathematical problem and the real system.  This process is called
network verification.  If significant disagreements occur, their causes must be identified.



Are some valves in the real system unknowingly closed or partly closed;  do some major
leaks exist in the real system;  has the skeletonization process inappropriately excluded
some pipes that carry large flows?  These and other possibilities should be explored until
reasonable agreement does exist.  Firms specialize in field flow measurements to verify
that the actual pipe system is modeled properly.

After analysis has provided solutions to the network problem for various levels of de-
mands, non-ideal or simply inadequate performance parameters can be identified.  Some
indicators of inadequate or poor performance consist of the following (many other
possibilities that are peculiar to an individual system do exist):

1. Pressures at some nodes are too low;
2. Pressures are too high at some nodes  (If water is pumped, excessively high

pressures cost money, owing to larger power consumption than is needed, more
frequent pipe ruptures and the premature replacement of facilities.);

3. Discharges are inadequate and/or pressures are too low to meet emergency demands,
such as fire fighting;

4. Pumps are not operating near their peak efficiencies;
5. Some water storage facilities are always nearly empty, while others are nearly full

or overtopping  (Are the tanks under- or over-sized and located at the best
elevations?  Unless storage facilities perform near their capacities, they represent
investments with cost/benefit ratios that are too large.);

6. Pressure reduction valves, or back pressure valves, are inactive or open  (Perhaps
they are not needed, or pipes should be removed or added.);

7. Too much of the supply is coming from expensive sources, etc.
Upon identifying deficiencies, the engineer's next task is to determine the best, most

economical means of overcoming these deficiencies and improving the performance of the
system.  How best to accomplish this will again require sound professional judgment, but
sound judgment seldom occurs in the absence of relevant information, i.e., the engineer
must understand the system.  Section 5.7 of the next chapter discusses sensitivity analyses,
which could materially aid this evaluation process.

In the following work we will express the head loss in each pipe in a network by an
exponential formula  hf = KQn,  Eq. 2.17,  so one presentation of the theory covers all
cases, regardless of whether the Darcy-Weisbach equation, the Hazen-Williams equation or
the Manning equation is used to express the head loss as a function of discharge.  Only the
values for  K  and  n  change, as we saw in Chapter 2.

4.1.2. BASIC RELATIONS BETWEEN NETWORK ELEMENTS
The two basic principles, upon which all network analysis is developed, are (1) the con-

servation of mass, or continuity, principle, and (2) the work-energy principle, including the
Darcy-Weisbach or Hazen-Williams equation to define the relation between the head loss
and the discharge in a pipe.  The equations that are developed from the continuity principle
will be called Junction Continuity Equations, and those that are based on the work-energy
principle will be called Energy Loop Equations.  The number of these equations that
constitutes a non-redundant system of equations is related directly to fundamental relations
between the number of pipes, number of nodes and number of independent loops that occur
in branched and looped pipe networks.  In defining these relations  NP  will denote the
number of pipes in the network,  NJ  will denote the number of junctions in the network,
and  NL  will denote the number of loops around which independent equations can be
written.  In defining junctions, a supply source will not be numbered as a junction.  A
supply source is a point where the elevation of the energy line, or hydraulic grade line, is
established;  a junction, or node, is a point where two or more pipes join.  A node can
exist at each end of a "dead end" pipe;  this instance is an exception to the usual rule, where
only one pipe is connected to a node.  In a branched system there are by definition no
loops, and thus  NL = 0  for any branched system.  In branched systems the number of
nodes is always one larger than the number of pipes, or  NP = NJ - 1,  unless a reservoir is



shown at the end of one pipe and this is not considered to be a junction.  Then  NP = NJ.
(This situation actually occurs.)  Figures 4.1a  and  4.1b  depict a small branched network
and also a small looped network.
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Figure 4.1  (a)  A small branched system.                      (b)  A small looped system.
                                 6  pipes,  7  nodes                                            12  pipes,  9  nodes

In the branched system the number of nodes is 7 and the number of pipes is 6 (one less
than the number of nodes), whereas in the looped system there are 12 pipes and 9 nodes,
i.e., the number of nodes is less than the number of pipes.

For a looped network the number of loops (around which independent energy equations
can be written) is given by

NL = NP − NJ (4.1)

if the network contains two or more supply sources, or

NL = NP − (NJ −1) = NP − NJ +1 (4.2)

If the network contains fewer than two supply sources and the flow from the single source
is determined by adding all of the other demands, then this source is shown as a negative
demand and the source is called a node.  We note that this is the case in the small looped
network in   4.1.b, so we have  NP = 12,  NJ = 9  and  NL = 12 -  (9 - 1) = 4.

Equation  4.2  also applies to a branched system with  NL = NP - NJ + 1 = 0,  since a
branched system can have at most one supply source.  Actually, every pipe system must
have at least one supply source, but sometimes the source is not shown since the discharge
from this supply source is known, and the source is replaced by a negative demand, which
is a flow coming into this junction, equal to the sum of the other demands.  When this is
done, the elevation of the energy line (or  HGL  or pressure) must be specified at a node so
the other  HGL elevations can be determined.  Energy loops that begin at one supply
source and end at another are called pseudo loops, i.e., these loops do not close on
themselves.  The number of pseudo loops, which are numbered as part of  NL,  equal the
number of supply sources minus one.  In forming pseudo loops all supply sources must be
located at the end of a pseudo loop.  It is generally possible to form more loops than are
needed to produce a set of independent equations.  As each new loop is formed, see that at
least one pipe in the new loop is not a part of any prior loop;  in this way the formation of
redundant loops can usually be avoided.  For special devices, such as pressure reduction
valves, this rule of experience must be modified slightly, as will be described later.

4.2 EQUATION SYSTEMS FOR STEADY FLOW IN NETWORKS
Three different systems of equations can be developed for the solution of network

analysis problems.  These systems of equations are named after the variables that are
regarded as the principal unknowns in that solution method.  These systems of equations
are called the  Q-equations (when the discharges in the pipes of the network are the



principal unknowns), the  H-equations (when the HGL-elevations, also simply called the
heads  H,  at the nodes are the principal unknowns), and the  ∆∆∆∆Q-equations (when
corrective discharges,  ∆Q,  are the principal unknowns).  Each of these three systems of
equations will be studied separately.

4.2.1. SYSTEM OF  Q -EQUATIONS
The analysis of flow in pipe networks is based on the continuity and work-energy

principles.  To satisfy continuity, the volumetric discharge into a junction must equal the
volumetric discharge from the junction.  Thus at each of the  NJ  (or  NJ - 1)  junctions an
equation of the form of Eq. 4.3 is obtained:

QJ j − ΣQi = 0 (4.3)

In this equation  QJj  is the demand at the junction  j,  and each  Qi  is the discharge in one
of the pipes that join at junction  j.  These junction continuity equations are the first
portion of the  Q-equations.  The work-energy principle provides additional equations
which must be satisfied.  These equations are obtained by summing head losses along both
real and pseudo loops to produce independent equations.  There are  NL  of these equations,
and they are of the form of Eq. 4.4 or 4.5, depending upon whether the loop is a real loop
or a pseudo loop, respectively, and they are the second portion of the  Q-equations:

Σh fi = 0 (4.4a)

Σh fi = ∆WS (4.5a)

When the head losses are expressed in terms of the exponential formula, then these
equations take the forms

Ki∑ Qi
n = 0 (4.4b)

Ki∑ Qi
n = ∆WS (4.5b)

in which the summation includes the pipes that form the loop.  If the direction of the flow
should oppose the direction that was assumed when the energy loop equations were written,
such that  Qi  becomes negative, then there are two alternatives:  One is to reverse the sign
in front of this term, i.e., correct the direction of the flow.  The second, which is generally
preferred when writing a program to solve these equations, is to rewrite the equations as
follows:

Ki Qi Qi∑ n−1= 0 (4.4c)

Ki Qi Qi∑ n−1= ∆WS (4.5c)

To illustrate the system of  Q-equations, consider the small  5-pipe network shown in
Fig. 4.2.  Since no supply sources are shown for this network, only  NJ - 1  junction
continuity equations are available.  Writing these continuity equations for nodes  1,  2,  and
3  leads to
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Figure 4.2  Small network.

F1 = Q1 +Q3 − 4.45 = 0

F2 = − Q1 +Q2 +Q4 +1.11 = 0

F3 = − Q4 −Q5 + 3.34 = 0

(4.6)

In these equations and throughout the text,  Fi  for any number  i  is any equation which
has been arranged into the form  Fi = 0;  this format is useful for identification purposes
and also for subsequent mathematical and numerical developments.  The continuity
equation at node 4  is  - Q3 - Q2 + Q5 = 0.  However, this equation is not independent of
the other three nodal equations since it is, except for sign, the sum of these three equations.
Now let us use the Hazen-Williams equation to define the head loss in each pipe.  In
expressing these head losses, the exponential equation will be used.  From Eq. 2.18  the
coefficients are the following:

K1 = 2.018, K2 = 5.722, K3 = 19.674, K4 = 4.847, K5 = 1.009 (4.7)

The energy equations around the two loops may be written as

F1 = K1Q1
1.852 + K2Q2

1.852 − K3Q3
1.852 = 0

F2 = K4Q4
1.852 − K5Q5

1.852 − K2Q2
1.852 = 0

(4.8)

or

F1 = 2.108Q1
1.852 + 5.722Q2

1.852 −19.674Q3
1.852 = 0

F2 = 4.847Q4
1.852 −1.009Q5

1.852 − 5.722Q2
1.852 = 0

(4.9)

which might alternatively be written as follows if the directions of the flows are uncertain:

F1 = 2.108Q1 Q1
0.852 + 5.722Q2 Q2

0.852 −19.674Q3 Q3
0.852 = 0

F2 = 4.847Q4 Q4
0.852 −1.009Q5 Q5

0.852 − 5.722Q2 Q2
0.852 = 0

(4.10)

These two work-energy equations are obtained by starting at nodes 1 and 2, respectively,
and traversing the respective loops  I  and  II  in the clockwise direction.  If the assumed
direction of flow opposes this traverse, a minus sign precedes the head loss term for that
pipe.  The simultaneous equations, such as those appearing as Eqs. 4.6 and 4.10, are called
Q-equations because it is the  Q's,  the discharges in the pipes, that are the set of primary
unknown variables.  After the  Q's  are found (and the head loss in each pipe is therefore



also known) for each pipe, the  HGL-elevations at the nodes can be found by starting at a
known  HGL-elevation and repeatedly applying the exponential formula for head loss to
each pipe.

If the network is a branched system, then the  Q-equations consist of only the junction
continuity equations.  These can be solved, giving the discharge in every pipe, with a linear
algebra solver, i.e. a pocket calculator that implements matrix algebra, a spreadsheet, TK-
solver,  MathCAD  or a solver such as  SOLVEQ.  Thereafter the individual heads are com-
puted from the head loss equation for each pipe.  Methods for solving looped systems are
described later.

Example Problem 4.1
The coefficients  K  and  n  for the exponential formula are given in the table for each of

the three pipes in this branched system.  Find the discharge in each pipe and the pressure at
each node.  The elevation of the HGL at node 1  is  H1 = 100 ft.

[1] (1)

[4]

[3]
[2]

(2)

(3)

17'

14'
15' 0.8 ft3/s

0.5 ft3/s

1.2 ft3/s
2.5 ft3/s

HGL1 = 100

20'

Pipe   K    n   

   1   3.772   1.944
   2   5.730   1.926
   3 16.29   1.889

A formal method for solving the  Q-equations for this network is to use matrix algebra to
write the coefficient matrix, an unknown vector, and a known vector in the following way:

1 −1 0

0 1 −1

0 0 1

















Q1
Q2
Q3
















=

0.8

1.2

0.5

















The solution is
Q1
Q2
Q3
















=

2.5

1.7

0.5

















We should note that it is easy to obtain this solution by inspection.  Starting at the down-
stream end of a branch, the analyst can progressively satisfy each junction continuity equa-
tion while working upstream.  After finding the discharges, the elevations  H  of the HGL
are determined by starting where the HGL is known, in this case at node 1, and computing
the head losses in the pipes that join this node;  then the frictional head losses  hf  are sub-
tracted from the known values of  H,  etc. until all of the nodal heads have been
determined.  The pressures are then determined by subtracting the nodal elevations  z  from
the heads  H  and multiplying this by the specific weight, i.e.,  p = γ(H -  z).  The tables
which follow present the computed values for this network:

P i p e Q , ft3/s hf  = K Q n , f t

   1    2.5     22.395
   2    1.7     15.922
   3    0.5        4.398



Node H down = Hup -  hf, ft.   Pressure , lb/in2

   1  100.0    Given     34.67
   2  100.0 -  22.395 = 77.61     27.13
   3  77.61 -  15.922 = 61.69     19.37
   4  61.69 -    4.398 = 57.29     18.76

*                              *                              *

Example Problem 4.2
Write the system of  Q-equations for this network.  In these equations use the

parameters  Ki  and  ni,  in which  i  is the pipe number.

[1]
(1)

[4]
[3]

[2]
(5)

(4)

(2) (3)
WS1

∆Q2

QJ1

QJ3

WS2

QJ4

(6)
∆Q1 I

II

QJ2

Since two supply sources are present, four junction continuity equations are available.
They are the following:

F1 = Q1 −Q2 −Q4 −QJ1 = 0

F2 = Q2 −Q3 −QJ2 = 0

F3 = Q3 +Q4 +Q5 −Q6 −QJ3 = 0

F4 = Q6 −QJ4 = 0

The number of energy loop equations is  NL = NP - NJ = 6 - 4 = 2  (one pseudo and one
real loop).  These equations follow:

F5 = K2Q2
n2 + K3Q3

n3 − K4Q4
n4 = 0

F6 = K1Q1
n1 + K4Q4

n4 − K5Q5
n5 − WS1 + WS2 = 0

Since  F4  requires  Q6 = QJ4,  this dead end pipe could be removed from the network, and
the demand at node  3  would then be changed to  QJ3 + QJ4.  These steps would reduce
NP  to  5  and  NJ  to  3, and they would eliminate any need for equation  F4.  After the
HGL elevation,  H3,  at node 3 has been determined by solving this equation set, then  H4
can be found by computing  hf6  and subtracting it from  H3.

*                              *                              *

4.2.2. SYSTEM OF  H -EQUATIONS
If the elevation of the energy line or hydraulic grade line throughout a network is

initially regarded as the primary set of unknown variables, then we develop and solve a
system of  H-equations.  One  H-equation is written at each junction (or at  NJ - 1
junctions if fewer than two supply sources exist).  Since looped pipe networks have fewer
junctions than pipes, there will be fewer  H-equations than  Q-equations.  Every equation
in this smaller set is nonlinear, however, whereas the junction continuity equations are  
linear in the system of  Q-equations.



To develop the system of  H-equations, we begin by solving the exponential equation
for the discharge in the form

Qij = (h f ij / Kij )
1/nij = [(Hi − H j ) / Kij ]

1/nij (4.11a)

Here the frictional head loss has been replaced by the difference in HGL values between the
upstream and downstream nodes.  In addition, in this equation a double subscript notation
has been introduced;  the first subscript defines the upstream node of the pipe, and the
second subscript defines the downstream node.  Thus  Qij  and  Kij  denote the discharge
and loss coefficient for the pipe from node  i  to node  j.  An alternative way of writing Eq.
4.11a  is

Qk = (h f k / Kk )1/nk = [(Hi − H j ) / Kk ]1/nk (4.11b)

in which  k  is the pipe number.
Substituting Eq. 4.11 into the junction continuity equations, Eq. 4.3, yields

QJ j − {[(Hi − H j ) / Kij ]
1/nij }in∑ + {[(H j − Hi ) / Kij ]

1/nij }out∑ = 0 (4.12a)

in which the summations are over all pipes that flow to and from junction  j,  respectively.
If it is desired to automate the choice of sign, then Eq. 4.12a can be written as

QJ j − {[(Hi − H j ) / Kij ] (Hi − H j ) / Kij
1/nij −1

}in∑

+ {[(H j − Hi ) / Kij ] (H j − Hi ) / Kij
1/nij −1

}out∑ = 0
(4.12b)

As an application of the  H-equations with  HGL-elevations at the nodes as the un-
knowns, consider the one-loop network in Fig. 4.3 which consists of three junctions and
three pipes.  In this network two independent continuity equations are available, and conse-
quently the head at one of the junctions must be specified.  In this case at node [1] the head
loss in the pipe that connects the reservoir to the network can first be determined, and then
this value can be subtracted from the reservoir water surface elevation to determine  H1.

[1]

[3]

[2]

Figure  4.3  A network with three pipes and three junctions.

The two continuity equations are

Q12 +Q13 = QJ1 = QJ2 +QJ3

Q21 +Q23 = − QJ2 (or −Q12 +Q23 = − QJ2 )
(4.13)



Although in the second equation the flow in pipe  1-2  is toward the junction, the discharge
Q21  is not preceded by a minus sign since the notation 2-1 takes care of this.
Alternatively the equations could have been written at junctions 2 and 3 instead of 1 and 2.
Substituting Eq. 4.11 into these continuity equations gives the following two equations to
determine  H2  and  H3:

H1 − H2
K12











1/n12

+
H1 − H3

K13











1/n13

= QJ2 +QJ3

−
H1 − H2

K12











1/n12

+
H2 − H3

K23











1/n23

= − QJ2

(4.14)

Since a negative value cannot be raised to a power, a minus sign must precede any term in
which the subscript notation opposes the direction of flow.  Systems of these equations
will be called  H-equations, since the HGL-elevations are the primary unknowns.  After the
heads  H  are found, then the discharge in each pipe can be obtained from Eq. 4.11.

Example Problem 4.3
Write the system of  H-equations for the network in Example Problem 4.2.

Refer to the figure in Example Problem 4.2.  Only the junction continuity equations are

used in forming the  H-equations, and each  Qi  is replaced by  [(Hui − Hdi ) / Ki ]1/ni ,   
in which subscript  u  is the upstream node and subscript  d  is the downstream node.  The
system is

F1 =
WS1 − H1

K1











1/n1

−
H1 − H2

K2











1/n2

−
H1 − H3

K4











1/n4

−QJ1 = 0

F2 =
H1 − H2

K2











1/n2

−
H2 − H3

K3











1/n3

−QJ2 = 0

F3 =
H2 − H3

K3











1/n3

+
H1 − H3

K4











1/n4

+
WS2 − H3

K5











1/n5

−
H3 − H4

K6











1/n6

−QJ3 = 0

F4 =
H3 − H4

K6











1/n6

−QJ4 = 0

*                              *                              *

4.2.3. SYSTEM OF  ∆∆∆∆Q -EQUATIONS
The number of  ∆Q-equations is normally about half the number of  H-equations for a

network.  This reduction in number is not necessarily an advantage, since all of the
equations are nonlinear and may contain many terms.  These equations consider the loop
corrective discharges or  ∆Q's  as the primary unknowns.  These corrective discharges or
∆Q's  will be determined from the energy equations that are written for  NL  loops in the
network, and thus  NL  of these corrective discharge equations must be developed.  To
obtain these equations, we replace the discharge in each pipe of the network by an initial



discharge, denoted by Qoi,  plus the sum of all of the initially unknown corrective
discharges that circulate through pipe  i,  or

Qi = Qoi + ∆Qk∑ (4.15)

in which the summation includes all of the corrective discharges passing through pipe  i.
The initial discharges  Qoi  must satisfy all of the junction continuity equations.  It is not
difficult to establish the initial discharge in each pipe so that the junction continuity equa-
tions are satisfied.  However, these initial discharges usually will not satisfy the energy
equations that are written around the loops of the network.

Equation 4.15 is based on the fact that any adjustment can be added (accounting for sign)
to the initially assumed flow in each pipe in a loop of the network without violating
continuity at the junctions.  It is very important to understand the validity of this
decompo-sition;  it may help to note that any  ∆Q  entering a junction as it flows around a
loop must also leave that junction, and vice versa (See Fig. 4.4).  Because of this fact, we
decide

I II

Figure 4.4  A two-loop portion of a network.

to establish  NL  energy loop equations around the  NL  loops of the network, in which
each initial discharge plus the sum of corrective loop discharges  Σ∆Qk  is used as the
discharge.  The junction continuity equations are satisfied by the initial discharges  Qoi
and are not a part of the system of equations.  The corrective discharges can be chosen as
positive if they circulate around a loop in either the clockwise or counterclockwise
direction.  It is necessary to be consistent within any one loop, but the sign convention
may change from loop to loop, if desired.   A corrective discharge adds to the flow  Qoi  in
pipe  i  if it is in the same direction as the pipe flow, and it subtracts from the initial
discharge if it is in the opposite direction.

To summarize how the  ∆Q-equations are obtained, replace the  Q's  in the energy loop
equations, Eqs. 4.4 and 4.5, by

Qi = Qoi ± ∆Qk∑ (4.16)

Here the summation includes all corrective discharges which pass through pipe  i,  and the
plus sign is used if the net corrective discharge and pipe flow are in the same direction;
otherwise the minus sign is used before the summation.  Thus Eqs. 4.4 and 4.5 become

Ki∑ Qoi ± ∆Qk∑{ }ni = 0  for real loops (4.17a)

and

Ki∑ Qoi ± ∆Qk∑{ }ni = ∆WS   for pseudo loops (4.18a)

To automate the choice of sign, these equations can be rewritten as

Ki∑ Qoi ± ∆Qk∑{ }Qoi ± ∆Qk∑
ni −1 = 0   for real loops (4.17b)



and Ki∑ Qoi ± ∆Qk∑{ }Qoi ± ∆Qk∑
ni −1 = ∆WS   for pseudo loops (4.18b)

To illustrate the development of the system of  ∆Q-equations, consider the network in
Fig. 4.5.  If the  Q-equations were used, there would be five junction continuity equations
and two loop equations, a total of seven equations.  If the  H-equations were used, there
would be an equation for the  HGL-elevation at each of the five nodes where the head is
unknown  (The head at one node must be known.).  But there will be only two

[1] (1)

[4]

[5]

[6][3]

[2] (5)

(6)

(4) (2)(3) (7)

5 ft3 /s

1.1 ft3 /s

3.3 ft3 /s3.5 ft3/s

0.7 ft3/s

K
=

2.
71

7
n

=
1.

94
5

K
=

0.
49

7
n

=
1.

93
8

K
=

2.
72

2
n

=
1.

94
2

K = 4.108
n = 1.921 n = 1.878

K = 1.628

n = 1.917
K = 0.755

n = 1.929
K = 1.793

Figure 4.5  A seven-pipe network.

∆Q-equations, one for each real loop in this network.  These two equations are

F1 = K1 Qo1 + ∆Q1( )n1 + K2 Qo2 + ∆Q1 − ∆Q2( )n2

− K3 Qo3 − ∆Q1( )n3 − K4 Qo4 − ∆Q1( )n4 = 0

F2 = − K5 Qo5 − ∆Q2( )n5 + K6 Qo6 + ∆Q2( )n6

+ K7 Qo7 + ∆Q2( )n7 − K2 Qo2 + ∆Q1 − ∆Q2( )n2 = 0

(4.19)

The next step is to find an initial estimate for the discharge in each pipe that will satisfy
all of the junction continuity equations.  One possible set of initial discharges is  Qo1 =

1.75 ft3/s,  Qo2 = 3.55 ft3/s,  Qo3 = 1.05 ft3/s,  Qo4 = 1.75 ft3/s,  Qo5 = 1.8 ft3/s,  Qo6

= 1.5  ft3/s,  and  Qo7 = 0.4 ft3/s.   When these initial discharges and the parameters that
are listed on the network sketch are substituted into Eqs. 4.19, the following two equations
result;  their solution will  yield values for the two unknowns  ∆Q1  and  ∆Q2:

F1 = 1.793 1.75 + ∆Q1( )1.929 + 0.497 3.55 + ∆Q1 − ∆Q2( )1.938

− 4.108 1.05 − ∆Q1( )1.921 − 2.717 1.75 − ∆Q1( )1.945 = 0

F2 = − 0.755 1.8 − ∆Q2( )1.917 + 2.722 1.5 + ∆Q2( )1.942

+1.628 0.4 + ∆Q2( )1.878 − 0.497 3.55 + ∆Q1 − ∆Q2( )1.938 = 0

(4.20)

Upon obtaining the solution to these two equations for the two unknowns,  ∆Q1  and
∆Q2,  the discharge in each pipe can easily be determined by adding these loop corrective
discharges to the initial discharges.  From these discharges the head loss in each pipe can be
determined, and from these values the head at each node can be found.

The nonlinearities in these systems of equations create difficulties when we seek the
solution.  Later in the chapter we apply the Newton method to overcome this problem.



Example Problem 4.4
Write the system of  ∆Q-equations for the network depicted in Example Problem 4.2.

The  ∆Q-equations are based on the energy loop equations alone.  Therefore these equa-
tions can be obtained by taking the equations for  F5  and  F6  directly from Example
Problem 4.3 and replacing each discharge  Qi  by  Qoi ± ∆Qk∑ .  The  ∆Q-equations are

F5 = K2 Qo2 + ∆Q1( )n2 + K3 Qo3 + ∆Q1( )n3 − K4 Qo4 − ∆Q1 + ∆Q2( )n4 = 0

F6 = K1 Qo1 + ∆Q2( )n1 + K4 Qo4 − ∆Q1 + ∆Q2( )n4 − K5 Qo5 − ∆Q2( )n5 − WS1 + WS2 = 0

With the writing of the  ∆Q-equations we must also provide values for  Qoi  that satisfy
all of the junction continuity equations.  For this purpose we assume that all four demands
are equal to  1.0.  Then the following values could serve as an acceptable initialization of
the discharges:  Qo1 = 3,  Qo2 = 1,  Qo3 = 0,  Qo4 = 1,  Qo5 = 1,  and  Qo6 = 1.

*                              *                              *

4.3 PRESSURE REDUCTION AND BACK PRESSURE VALVES

A pressure-reducing valve (PRV) is designed to maintain a constant pressure at its
downstream side, independent of the value of the upstream pressure at the device.  Only two
exceptions to the maintenance of this downstream pressure exist:  (1)  if the upstream
pressure becomes less than the valve setting;  or  (2)  if the downstream pressure exceeds
the pressure setting of the valve so that flow would occur in the upstream direction if the
PRV were not present.  If the first exception occurs, the valve has no effect on flow
conditions except to create a local loss;  generally its effect is then like a globe valve in
dissipating additional head beyond the friction loss in that line.  If the second condition
occurs, then the PRV acts as a check valve, preventing a reverse flow in the line.  Then the
PRV allows the pressure immediately downstream from the valve to exceed its pressure
setting.  In this way PRV's reduce pressures in portions of a pipe distribution system if the
pressure would otherwise be excessive, and they may also be used to control the choice of a
supply source in response to various demand levels.  In the latter applications the PRV
acts as a check valve until the pressure is reduced to a critical level by large demands, at
which time additional supply sources become available.

A back-pressure valve (BPV) is designed to maintain a constant pressure upstream from
it, independent of the value of the downstream pressure.  Like a PRV there are exceptions
to this normal mode of operation.  Should the upstream pressure become less than the
pressure setting, the valve can not maintain the pressure setting since it is not an energy-
creating device, and the most it can do is shut down the flow in its line.  Should the flow
want to reverse direction from the positive flow direction through the valve, the valve
opens completely and acts as a local loss device.  A  BPV  is used in situations where the
pressure would otherwise become too low in elevated portions of the network.  Such a
situation arises, for example, where a pump is needed to sustain adequate pressures in a
higher part of a network but is not needed in the lower portions of the network;  without a
BPV, or possibly several BPV's, the flow pattern might then lead to discharges through
pressure relief valves in the lower portions of the network and possibly create excessively
large pressures in the lower region.

The equations that describe the behavior of a pipe network that contains PRV's or BPV's
must include new features to account properly for the effects of these valves on the
discharges and pressures throughout the network.  Furthermore, the analysis of a pipe
network with such devices must be able to determine the correct operational conditions,



i.e., determine whether the PRV's and BPV's are operating in their normal modes or in one
of their exceptional modes.  Methods for adding such devices into network analyses are
described in these sections.  The discussion begins with pressure reduction valves.

Underlying the writing of the three systems of equations described in Section  4.2  is the
basic assumption that a relation exists between the magnitude of the discharge in a pipe and
the amount of the head loss, or head difference, between the ends of this pipe.  Such a
relation does not exist if a PRV (or a BPV) is present in the pipe.  Therefore a pipe with a
PRV in it should not appear in a normal energy loop equation.  However, in the usual
mode of operation for a PRV a constant head is maintained at its downstream end;  in this
way it behaves like a reservoir.  Furthermore, regardless of its mode of operation the
discharge at the upstream node of a pipe containing a PRV will be the same as the
discharge at the downstream node of this pipe.  The details of developing a proper system
of equations to describe a network containing one or more PRV's are different, depending
upon whether a system of  Q-equations,  H-equations, or  ∆Q-equations are desired.
Therefore, each of these will be described in a separate section.

4.3.1. Q-EQUATIONS FOR NETWORKS WITH PRV'S/BPV'S
The procedure for developing the  Q-equation system for a network containing PRV's is

as follows:  (1)  write the junction continuity equations in the usual manner, ignoring the
PRV's;  (2)  replace each PRV with an artificial reservoir which has a water surface
elevation equal to the HGL-elevation that is the sum of the pressure head set on the PRV
and its elevation in the pipeline;  finally  (3)  write the energy equations around the loops
of this modified network.  The resulting equations describe the normal mode of operation.

Let's try this procedure on the seven-pipe network shown in Fig. 4.6, in which a PRV
exists in pipe 6,  located  500 ft.  downstream from node 1, the upstream end of this pipe.
Since a PRV is a directional device, we must always identify the upstream and downstream
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Figure 4.6  A seven-pipe network.



ends of the pipe containing it.  The system of  Q-equations for this network consists of
four junction continuity equations and three energy loop equations.  According to the usual
rules,  an independent junction continuity equation can be written for each of the four
junctions since there are two supply sources for this network.  These junction continuity
equations are

F1 = − Q1 +Q2 +Q6 +Q7 = 0

F2 = 1.0 −Q2 −Q3 = 0

F3 = Q3 −Q4 +Q5 −Q7 = 0

F4 = 1.0 −Q5 −Q6 = 0

(4.21)

These continuity equations are unaffected by the presence or absence of a PRV in the net-
work.  We next modify the network so the upstream portion of the pipe containing the
PRV is removed and the PRV is replaced by a reservoir with a water surface elevation equal
to the HGL of the pressure setting of the PRV (see Fig. 4.7).  Of the three loops that exist
in this modified network, only one is a real loop which traverses pipes  2,  3,  and  7.
Two pseudo loops also exist.  One pseudo loop connects the two original supply sources.
This loop can start at the reservoir and end at the source pump so it includes pipes  4,  7,
and  1.  The second loop must extend from the artificial reservoir created by the PRV to
one of the other supply sources  (or another artificial reservoir, if two or more PRV's exist
in the network).  The shortest path for this second pseudo loop will traverse pipes  4,  5,
and  6.  In writing the head loss in pipe  6,  only that portion of the pipe downstream from
the PRV is used.  A modified loss coefficient  K'  will be used to denote this change in the
exponential formula.  The new coefficient  K'  equals the  K  for the pipe containing the
PRV, multiplied by the ratio of the pipe length from the PRV to the pipe's downstream
end divided by the total pipe length, or

K' = K(Ld / L) (4.22)

or in this example  K6
' = K6 (500 /1000) = 0.5K6 .
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Figure 4.7  The modified seven-pipe network.



The energy equations are

F5 = K2Q2
n2 − K3Q3

n3 − K7Q7
n7 = 0 (real loop)

F6 = K4Q4
n4 − K7Q7

n7 − K1Q1
n1 + hp1 −100 + 90 = 0 ( pseudo loop)

F7 = K4Q4
n4 + K5Q5

n5 − K6
' Q6

n6 + 55 −100 = 0 ( pseudo loop)

(4.23)

The head produced by the pump  hp1  can be defined by a second-order polynomial passing
through three points of the pump curve, or

hp1 = AQ1
2 + BQ1 + C (4.24)

We have now formed seven independent equations that contain the seven unknown
discharges Q1,  Q2, . . . ,  Q7.  In this example the real loop that was lost by having a
PRV in pipe 6 is replaced by an additional pseudo loop.  We see that the number of
equations again equals the number of unknown discharges.

To obtain a solution for this network by using the computer program  NETWK,  the in-
put data can be prepared (see the  NETWK  user manual for input data requirements or the
condensed description of this input on the  CD) as listed in Fig. 4.8.  The solution tables
from  NETWK  are reproduced in Fig. 4.9.  A study of this output will show that the PRV
is operating in its normal mode of operation.

Example of a network containing a PRV
/* 6 1 4 1000 RESER
PIPES 7 1 3 1500 1 4 100
1 0 1 1000 6 0.02 NODES PUMPS
2 1 2 1 0 50 1 1 60 1.5 55 2 48 90
3 3 2 800 2 1 VALVE
4 0 3 200 3 0 6 500 55
5 3 4 2000 4 1 20 RUN

Figure 4.8  Input data for the network shown in Figs. 4.6 and 4.7.

This solution indicates that the PRV is operating in its normal mode of maintaining
the set pressure at its downstream end because the reported downstream HGL-elevation
equals the value specified in the input data.  If this had not been the case, the solution from
NETWK  would have indicated either that the PRV had shut off the flow in pipe  6  or that
it was completely open and replaced by a minor loss.  In solving the network equations, if
the discharge in pipe 6 had been negative, then the program would have noted that the PRV
would act as a check valve, preventing a reverse flow.  If this situation should occur, then
the network problem would be altered so it would only have six pipes instead of seven
(pipe  6  would not exist in this modified network).  The equations describing the flows in

 LOSSES DUE TO FLUID FRICTION IN ALL PIPES
 POWER LOSS  =  11.51 H.P.  =  8.585 KWATTS.
 ENERGY LOSS  =  206.0  KWHRS/DAY

 PUMPS:
 PIPE   HEAD     Q   HORSEPOWER   KILOWATT   KWATT-HRS/DAY
  1     59.1   1.11    7.43        5.54        133.0
 ELEVATION OF HGL UPSTREAM AND DOWNSTREAM OF PRVS:

Figure 4.9  Output tables from NETWK.
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  PIPE    UPSTREAM  DOWNSTREAM
             HGL       HGL
   6       121.79     55.00
UNITS OF SOLUTION ARE:
DIAMETER,    inch
LENGTH,      feet
HEAD,        feet
ELEVATION,   feet

PRESSURE,    lb/in2

DISCHARGE,   ft3/s
DARCY-WEISBACH FORMULA USED FOR COMPUTING HEAD LOSSES

PIPE DATA

PIPE
N O .

 N O D E S
FROM   TO

   L DIA.   e
x 1 0 3

  Q VEL
.

HEAD
LOSS

HLOSS/
1 0 0 0

    ft.    in   in  ft3/s   ft/s    ft.
  1     0   1    1000    6.0   20.0   1.11 5.65   27.28   27.28
  2     1   2    1000    6.0   20.0   1.07 5.43   25.26   25.26
*3     2   3      800    6.0   20.0   0.07 0.34     0.10      0.12
  4     0   3      200    6.0   20.0   0.89 4.54     3.55   17.74
  5     3   4    2000    6.0   20.0   0.96 4.91   41.47   20.74
  6     1   4    1000    6.0   20.0   0.04 0.18      0.04      0.04
  7     1   3    1500    1.0   20.0   0.01 1.31   25.56   17.04

AVE. VEL. =  3.19 ft/s,  AVE. HL/1000 = 15.46,  MAX. VEL. = 5.65 ft/s,  MIN. VEL. =  0.18 ft/s
*Flow direction is reversed from input data.

NODE DATA

NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.
     ft3/s gal/min      ft.     ft.       lb/in2         ft.

     1       0.00        0.0        50.   71.81        31.1      121.81
     2       1.00   448.8        50.   46.55        20.2        96.55
     3       0.00        0.0        50.   46.45        20.1        96.45
     4       1.00   448.8        20.   34.98        15.2        54.98

AVE. HEAD  =  49.95 ft.,  AVE. HGL   =  92.45 ft.
MAX. HEAD =  71.81 ft.,  MIN HEAD =  34.98 ft.

Figure 4.9,  concluded.  Output tables from NETWK.

this modified network would consist of the original equations with the last one omitted.  If
the  HGL  elevation at node 1 had been lower than the HGL setting of the PRV, then it
would be known that the PRV would not be able to sustain its pressure setting, and the
network problem must then be solved by using equations that replace the PRV with a
minor loss device.  For this last mode of operation the last energy equation would be
replaced by a real loop equation traversing pipes  5,  6,  and  7.  Pipe 6 would contain a
minor loss device to represent the PRV as being fully open.

The procedure for writing the system of  Q-equations should now be apparent for back-
pressure valves (BPV's) in networks.  As with PRV's, the junction continuity equations are
written ignoring the presence of BPV's.  The junction continuity equations are unaffected
by the existence of a BPV.  In writing the energy equations, the upstream side of each BPV
is replaced by an artificial reservoir;  in each case the pipe segment from the downstream
end of the BPV to its downstream node is then removed, and the energy equations are
written for this revised network.



The writing of a system of  Q-equations will be illustrated with the network in Fig.
4.10, which has  9  pipes and  6  nodes, is supplied by a source pump and has two tanks
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Figure 4.10  A  9-pipe, 6-node network.

(reservoirs) connected to it.  Without a BPV (or some other device) this network would
cause the lower reservoir at the end of pipe  9  to overflow.  There are six junctions in this
network.  The corresponding six junction continuity equations are

F1 = 0.015 −Q1 −Q2 +Q3 = 0

F2 = 0.020 −Q3 +Q4 +Q8 = 0

F3 = 0.015 −Q4 +Q5 = 0

F4 = 0.020 −Q5 +Q6 −Q9 = 0

F5 = 0.020 −Q7 −Q6 = 0

F6 = 0.030 −Q8 +Q7 = 0

(4.25)

Before forming the loops around which the energy equations are written, an artificial reser-
voir is placed on the upstream side of the BPV with a water surface elevation equal to the
HGL resulting from the pressure setting of the valve.  The pipe downstream from the BPV
is removed.  When these changes are completed, the network appears as in Fig. 4.11,  and
energy equations can next be written around the loops of this modified network.  Three
loops are needed, since  NL = NP - NJ = 9 - 6 = 3.  These are all pseudo loops and may be
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Figure 4.11  The modified 9-pipe, 6-node network.



composed in the following way:  the pipes in loop  1  are  1  and  2;  the pipes in loop  2
are  1,  3,  and  4 (upstream portion);  and the pipes in loop  3  are  9,  6,  7,  8,  and  4
(upstream portion).  It is incorrect to write a loop through pipes  9,  5,  and  4  (the
upstream portion) because a BPV sets the pressure on its upstream side.  Hence the energy
equations in the  Q-equation system are the following:

F7 = K1Q1
n1 − hp1 − K2Q2

n2 −180 + 200 = 0

F8 = K1Q1
n1 − hp1 + K3Q3

n3 + K4
' Q4

n4 −180 +195 = 0

F9 = K9Q9
n9 + K6Q6

n6 − K7Q7
n7 − K8Q8

n8 + K4
' Q4

n4 −135 +195 = 0

(4.26)

One possible input file to  NETWK  for the solution of this problem is presented in
Fig. 4.12, and the resulting solution tables are presented in Fig. 4.13.

Network Containing BPV 1 .015 140
/* 2 .02 140
$SPECIF NFLOW=3,NPGPM=3,NUNIT=4 $END 3 .015 70
PIPES 4 .02 60
1 0 1 1200 250 .02 5 .02 80
2 0 1 2000 150 6 .03 100
3 1 2 1000 300 RESER
4 2 3 2000 2 200
5 3 4 1000 150 9 135
6 4 5 1200 PUMPS
7 6 5 1500 1 .1 35 .15 32 .2 28 180
8 2 6 1500 200 BPVALVE
9 0 4 1000 150 4 1200 195
NODES RUN

Figure 4.12  The input data file to  NETWK  for the 9-pipe, 6-node network.

From this solution we see that the BPV dissipates  65.88 m  of head to sustain the
upstream HGL setting of  195 m.  This value is obtained by subtracting the downstream
HGL from the BPV setting.  It is a worthwhile exercise to begin with the head losses in
the PIPE DATA table and verify the HGL elevations reported in the NODE DATA table;
it will lead to a better understanding of the BPV and its effect on pressures and discharges in
this network as the BPV operates in its normal mode.  If the solution had shown a
negative flow through pipe  4,  then the downstream pressure would actually be larger than
the BPV setting, and the valve would open up completely.  For this occurrence the BPV
must be re-placed by a minor loss device, and then this modified network problem could be
studied.  If the HGL at node  2  (the node immediately upstream from the BPV) were less
than the HGL established by the BPV setting, then the BPV would close completely.  The
pipe

 LOSSES DUE TO FLUID FRICTION IN ALL PIPES
 POWER LOSS  =  65.18 H.P.  =  48.63 KWATTS.
 ENERGY LOSS  =  1167.0  KWHRS/DAY

 PUMPS:
 PIPE   HEAD     Q   HORSEPOWER   KILOWATT   KWATT-HRS/DAY
  1     34.88   10.0    46.9       35.0        839.8
 HGL DOWNSTREAM AND UPSTREAM FROM BPV
  4     129.12       195.00

Figure 4.13  The output tables from  NETWK  for the 9-pipe, 6-node network.



PIPE DATA

PIPE
N O .

 N O D E S
FROM   TO

   L DIA.   e
x 1 0 3

  Q VEL. HEAD
LOSS

HLOSS/
1 0 0 0

      m    mm   mm  m3/s   m/s      m
  1     0   1    1200    250   20.0 0.102 2.09   15.58   12.98
  2     0   1    2000    150   20.0 0.004 0.21     0.75     0.37
  3     1   2    1000    300.   20.0 0.091 1.29     4.28     4.28
  4     2   3    2000    300.   20.0 0.006 0.08     0.06     0.03
  5     4   3    1000    150.   20.0 0.009 0.52     1.90     1.89
  6     5   4    1200    150.   20.0 0.015 0.86     5.69     4.74
  7     6   5    1500    150.   20.0 0.035 2.00   33.11   22.07
  8     2   6    1500    200.   20.0 0.065 2.08   25.25   16.83
  9     0   4    1000    150.   20.0 0.014 0.79     4.03     4.03

AVE. VEL. = 1.10 m/s,  AVE. HL/1000 = 7.47,  MAX. VEL. = 2.09 m/s,  MIN. VEL. = 0.08 m/s

NODE DATA

NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.
     m3/s      ft3/s      m     m        kPa         m

     1     0.015     0.53    140.0  59.25      580.7     199.25
     2     0.020     0.71    140.0  55.02      539.2     195.02
     3     0.015     0.53      70.0  59.08      579.0     129.08
     4     0.020     0.71      60.0  70.97      695.6     130.97
     5     0.020     0.71      80.0  56.66      555.3     136.66
     6     0.030     1.06    100.0  69.78      683.8     169.78

AVE. HEAD  =   61.79 m,  AVE. HGL    =  160.13 m
MAX. HEAD =   70.97 m,  MIN. HEAD =     55.02 m

Figure 4.13  (Concluded)  The output tables from  NETWK  for the 9-pipe, 6-node network.

containing the BPV should then be removed from the network, and the problem could then
be solved by using the equations for this modified network;  then the BPV could not
maintain the pressure setting, and it would simply prevent any flow from passing through
the pipe in which it is installed.

4.3.2. H -EQUATIONS FOR NETWORKS WITH PRV'S/BPV'S
The procedure for writing the  H-equations for a network that contains PRV's and/or

BPV's is described here.  First, view the HGL resulting from the pressure setting of the de-
vice as a reservoir, since under normal operation the HGL is fixed by the device.  Second,
place an additional unknown variable on the other side of the device to represent the eleva-
tion of the HGL there.  We will denote this variable by  Hvi,  in which  i  is the number
of the device.  For the first PRV or BPV  i = 1, for the second  i = 2,  etc.  For a PRV the
value of  Hvi  is the HGL-elevation immediately upstream from the valve, whereas  Hvi  
is the HGL-elevation immediately downstream from the valve for a BPV.  Third, the
junction continuity equations are written in the usual way, with the difference between the
upstream and downstream HGL-elevations, divided by  K  for this pipe, all raised to the

reciprocal of the discharge exponent  n,  i.e.,  Qk = {(Hi − H j ) / Kk }1/nk .  Finally, since

an additional unknown is introduced for each PRV or BPV, one additional equation must be
added to the system of continuity equations for each device.  These additional equations are
obtained by noting that the head losses in the upstream and downstream portions of the
pipe containing the device are proportional to these two lengths.  For a PRV this equation
is



(HGL − Hd )Lu − (Hu − Hvi )Ld = 0 (4.27)

in which  Lu  and  Ld  are the lengths upstream and downstream from the device, respec-
tively,  and  Hd  and  Hu  are the HGL-elevations at the downstream and upstream ends of
pipe  i  containing the device.

Using again the network depicted previously in Fig. 4.6 to illustrate the formation of
the  H-equation system, we would first modify the network as shown in Fig. 4.14:
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Figure 4.14  A 9-pipe, 6-node network containing a BVP, as modified.

The final  H-equations for this network are the following:

− {(90 + hp1 − H1) / K1 }1/n1 + {(H1 − H2 ) / K2 }1/n2

+ {(H1 − Hv1) / K6
" }1/n6 + {(H1 − H3 ) / K7 }1/n7 = 0

1.0 − {(H1 − H2 ) / K2 }1/n2 − {(H3 − H2 ) / K3 }1/n3 = 0

{(H3 − H2 ) / K3 }1/n3 − {(100 − H3 ) / K4 }1/n4

+ {(H3 − H4 ) / K5 }1/n5 − {(H1 − H3 ) / K7 }1/n7 = 0

1.0 − {(H3 − H4 ) / K5 }1/n5 − {(HGL1 − H4 ) / K6
' }1/n6 = 0

(HGL1 − H4 )Lu − (H1 − Hv1)Ld = (HGL1 − H4 ) − (H1 − Hv1) = 0

(4.28)

in which  K6
"   and  K6

'   are the coefficients for the upstream and downstream portions of
pipe  6,  respectively.

The network in Fig. 4.10 that contains the BPV should now be viewed as shown in
Fig. 4.15, and the  H-equation system for this network is presented as Eqs. 4.29.



F1 = 0.015 − {(180 + hp1 − H1) / K1 }1/n1

− {(200 − H1) / K2 }1/n2 + {(H1 − H2 ) / K3 }1/n3 = 0

F2 = 0.020 − {(H1 − H2 ) / K3 }1/n3

+ {(H2 − HGL1) / K4
'' }1/n4 + {(H2 − H6 ) / K8 }1/n8 = 0

F3 = 0.015 − {(Hv1 − H3 ) / K4
' }1/n4 + {(H3 − H4 ) / K5 }1/n5 = 0

F4 = 0.020 − {(H3 − H4 ) / K5 }1/n5

+ {(H4 − H5 ) / K6 }1/n6 − {(135 − H4 ) / K9 }1/n9 = 0

F5 = 0.020 − {(H4 − H5 ) / K6 }1/n6 − {(H6 − H5 ) / K7 }1/n7 = 0

F6 = 0.020 − {(H2 − H6 ) / K8 }1/n8 + {(H6 − H5 ) / K7 }1/n7 = 0

F7 = 1200(H2 − HGL1) − 800(Hv1 − H3 ) = 0

(4.29)

P1

[1]
(1)

[4]

[3]
[2]

(5)

(6)

(4)

(2)

(3)

(7)

200 m

(8)

(9)
[6]

[5]

150 - 2000

Diameters in mm
Lengths in m

0.015 m3/s

0.015 m3/s

800 m
200 - 1500

15
0 m

0.02 m3/s30
0

-
10

00

140 m

250 - 1200

15
0

-
10

00

135 m

70 m

0.03 m3/s

10
0 m150 - 1500

180 m

150 - 1200
80

m
0.02 m3/s0.02 m3/s

150 - 1000

All e = 0.02 mm

195 m

1200 m
Hv1

Figure 4.15  A seven-pipe network, modified.

4.3.3. ∆∆∆∆Q-EQUATIONS FOR NETWORKS WITH PRV'S/BPV'S
Let us begin this section by reviewing the underlying concept that is used in writing

the  ∆Q-equations:  if the junction continuity equations are satisfied by the initial
discharges  Qoi,  then a corrective loop discharge,  ∆Q,  can flow around a loop without
violating the principle that the discharge into all junctions will still equal the discharge out
of these junctions, regardless of the magnitude of  ∆Q.  These corrective loop discharges
can be regarded as the primary unknowns, and the resulting solution to the system of
equations will produce discharges that also satisfy the energy equations around the loops.
Therefore the discharges  Qi  in the  Q-equation loops were replaced by  Qoi ± ∆Qk∑ .  
For the junction continuity equations to remain valid for any values of  ∆Qk,  these
corrective loop discharges must circulate around loops that are formed before any PRV's or
BPV's are converted into artificial reservoirs.  Thus it is necessary to consider two sets of
loops with this method.  The first set is the set of loops around which the  ∆Q's  circulate,
and the second set is the set of loops that is used in writing the energy equations.  These
two sets of loops will be called the corrective discharge or  ∆Q loops, and the energy
loops.  The  ∆Q  loops are formed while ignoring the existence of PRV's or BPV's.  These
devices are later replaced by artificial reservoirs, and the energy e quations are written for
this modified network.  Thus the energy set of loops will always contain more pseudo
loops than does the  ∆Q  set of loops by the number of PRV's and/or BPV's that exist in



the network.  To track these two separate sets of loops in figures, the  ∆Q  loops will list
∆Qi  by the arc denoting the loop, and the energy loops will be numbered by roman
numerals  I,  II,  etc.

To illustrate the writing of the  ∆Q-equations, we examine again the network with a
PRV that is in Fig. 4.6.  This network is redrawn below in Fig. 4.16 to display both the
corrective discharge loops and the energy loops.  To emphasize that  ∆Q  loops  are
different than energy loops,  ∆Q3  is chosen to pass through pipes  4,  3,  2,  and  1.  A
more effi-cient route for this corrective discharge loop would traverse pipes  4,  7,  and  1,
coinciding with energy loop II, because one less pipe is in this loop.

To obtain the  ∆Q-equations, we replace each  Qi  in the energy equation portion of the
Q-equations by  Qi = Qoi ± ∆Qk∑ ,  in which the  ∆Q's  must be those circulating
through pipe  i,  as defined by the  ∆Q  loops, and the sign before each term in the sum is
determined by whether  ∆Q  agrees with or opposes the direction of the assumed discharge
Qoi.  If the directions agree, the sign is positive;  otherwise the sign is negative.  The
resulting  ∆Q-equations for this network are listed as Eqs. 4.30.
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Figure 4.16  The network in Fig. 4.6, modified for solution with the  ∆Q-equations.

F1 = K2 Qo2 + ∆Q1 − ∆Q3( )n2 − K3 Qo3 − ∆Q1 + ∆Q3( )n3

− K7 Qo7 − ∆Q1 + ∆Q2( )n7 = 0

F2 = K4 Qo4 + ∆Q3( )n4 − K7 Qo7 − ∆Q1 + ∆Q2( )n7

− K1 Qo1 − ∆Q3( )n1 + hp1 −10 = 0

F3 = K4 Qo4 + ∆Q3( )n4 + K5 Qo5 + ∆Q2( )n5 − K6
' Qo6 − ∆Q2( )n6 − 45 = 0

(4.30)

These equations are in a sense incomplete until each  Qoi  is replaced by a value.  When
this step is completed, then these three equations contain only three unknowns,  ∆Q1,
∆Q2  and  ∆Q3.  In principle each reader could produce a different set of acceptable values
for the initial discharges, so long as they do indeed satisfy each and every junction



continuity equation.  One valid set of  Qoi's  is  Qo1 = 1.0,  Qo2 = 1.0,  Qo3 = 0.0,  Qo4
= 1.0,  Qo5 = 1.0,  Qo6 = 0.0,  and  Qo7 = 0.0.  Finally, the pump head now becomes

hp1 = A Qo1 + ∆Q1 − ∆Q3( )2 + B Qo1 + ∆Q1 − ∆Q3( ) + C   when the pump curve is fitted

with a second-order polynomial.  If desired, as an alternative either a linear or a higher-order
polynomial could be chosen to describe the operating characteristics of this pump.

Now let us revisit the network in Fig. 4.10 that contains a BPV as a second illustration
of forming the  ∆Q-equations.  In this analysis we can visualize the two sets of loops as
shown in Fig. 4.17.  The  ∆Q  loops ignore the presence of the BPV in this network, but
the energy loops will be written for the modified network with the BPV converted into an
artificial reservoir.  The resulting  ∆Q-equations for this network appear as Eqs. 4.31.  In

F1 = K1 Qo1 + ∆Q2( )n1 − hp1 − K2 Qo2 − ∆Q2 − ∆Q3( )n2 + 20 = 0

F2 = K1 Qo1 + ∆Q2( )n1 − hp1 + K3 Qo3 − ∆Q3( )n3

+ K4
' Qo4 − ∆Q1 − ∆Q3( )n4 +15 = 0

F3 = K9 Qo9 + ∆Q3( )n9 + K6 Qo6 − ∆Q1( )n6 − K7 Qo7 + ∆Q1( )n7

− K8 Qo8 + ∆Q1( )n8 + K4
' Qo4 − ∆Q1 − ∆Q3( )n4 + 60 = 0

(4.31)
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Figure 4.17  The network of Fig. 4.10, modified for the  ∆Q-equation system.

these equations  hp1 = A Qo1 + ∆Q2( )2 + B Qo1 + ∆Q2( ) + C .  The initial flows that satisfy

the junction continuity equations are chosen as  Qo1 = 0.1,  Qo2 = 0.0,  Qo3 = 0.085,
Qo4 = 0.015,  Qo5 = 0.0,  Qo6 = 0.0,  Qo7 = 0.02,  Qo8 = 0.05,  and  Qo9 = 0.02.  The
substitution of these values into Eqs. 4.31 yields the final set of  ∆Q-equations.

If large differences in ground elevation occur in a network, PRV's are often installed in a
sequence of pipes to prevent excessively large pressures in the lower part of the network.
Such a series of PRV's may cause pressures in one subregion to be completely independent
of the remainder of the network.  Such isolation creates what are commonly called separate
pressure zones.  When separate pressure zones are created, it is normally better to form sub-
networks and analyze each one separately, starting with the subnetwork at the lower eleva-
tion.  The solution from the isolated lower subnetwork can then be used to determine the
demands at the nodes of the next higher network, and so on.



The  10-pipe,  6-node network in Fig. 4.18  contains three PRV's in pipes  4,  5,  and
7,  respectively;  it typifies such a situation.  In this network the three PRV's cause the
pressures at nodes  4  and  6  to be independent of pressures in the remainder of the
network.  The best analysis, therefore, would begin by studying separately the subnetwork
that is composed of pipes  5,  4,  7,  and  8  downstream from the PRV's.  In this
subnetwork the PRV's are modeled as three constant-head reservoirs.  The values of  Q4,
Q5,  and  Q7  from the solution of the subnetwork are next added to the other demands to
determine the demands at nodes  3,  2,  and  5, respectively, in organizing the remainder of
the network for analysis.
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Figure 4.18  A network with two pressure zones.

While it is generally not difficult to determine by visual examination of a map of the
piping system whether PRV's isolate a portion of a network into a separate pressure zone,
in computer programs a simple test is needed to identify this situation.  Such a test can be
based on the fact that no series of connected pipes exists between any of the artificial
reservoirs created by the PRV's and any of the other reservoirs and source pumps.  That no
connection exists in the network example can be seen by resketching the network, as
shown in Fig. 4.19.  As a consequence, if pseudo loops between artificial reservoirs or
source pumps cannot be found by a computer program that uses its own internal loop-
finding algorithm, then the PRV's isolate a subnetwork into a pressure zone that is
separate from the remainder of the network.  One difficulty with this kind of test, which
relies on the inability to find paths which connect all supply sources, is that errors in the
network input data or an ill-defined network itself can also cause this test to be satisfied;
network computer programs are supposed to identify such input errors and terminate if any
such errors are found.  Thus it is desirable to have an independent verification, i.e., a
separate test, that can indicate that separate pressure zones exist.

This alternative or verification test could take the form that is described next.  The goal
in this "test" is to determine whether the sum  NJ + NL,  determined in the usual way, is
equal to, or exceeds, the number of pipes in the network.
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To highlight the problem, let us examine closely the network in Fig. 4.19 which is
known to have two separate pressure zones.  Overall there are six junctions, so  NJ = 6.
There is one real loop, and the usual rule indicates there is  Nres - 1 = 5 - 1 = 4 pseudo
loops, or  NL = 5.  Using these values, we obtain  NJ + NL = 6 + 5 = 11, which is larger
than the actual number of pipes, which is  NP = 10.  In this instance the inequality occurs
because only four independent loops exist, one real loop and three pseudo loops.  These
numbers will be found to be correct when we view the overall network as two separate
networks.  The higher network in Fig. 4.19 has  NP = 6,  one real loop and one pseudo
loop,  Ns = Nres - 1  and  NL = 2.  Since there are four junctions in the network with the
higher pressure zone,  NJ = 4, and  NP = NJ + NL = 6.  For the network with the lower
pressure zone  NP = 4,  NJ = 2,  there are no real loops, and the expected number of pseudo
loops is  Nres - 1 = 2, giving  NL = 2.  Again  NP = NJ + NL.

The verification test to determine whether PRV's isolate a portion of a network into a
separate pressure zone might therefore be as follows:

1.  Find the real loops which exist after pipes containing PRV's have been disconnected
from their upstream junctions.

2.  Compute  NLs  from  NLs = Nres + Npump - 1.
3.  Add the number of loops that were found in steps  1  and  2  to determine  NL,  and

then determine  NP  from  NP = NJ + NL.
4.  If this computed  NP  exceeds the number of pipes in the network, then the PRV's

isolate a portion of the network.  The amount of the difference between the newly
computed  NP  and the actual number of pipes in the network is the number of
additional pressure zones that exist in the network;  the total number of zones is one
more than this number of additional zones.

4.4 SOLVING THE NETWORK EQUATIONS

4.4.1. NEWTON METHOD FOR LARGE SYSTEMS OF EQUATIONS
In Sections 4.2 and 4.3 we explored the writing of systems of algebraic equations to de-

scribe the relations between the discharges, pressures, and other variables and parameters in
a pipe network.  Many of the equations in these systems of equations are nonlinear.  A
good method for solving nonlinear equations is therefore needed.  Numerous methods exist,
but the Newton Method is the method of choice here.  Its application to the solution of the
Q-equations, the  H-equations and the  ∆Q-equations will be discussed in this section.  To
treat the unknown discharges (when using the  Q-equations), the unknown heads (when
using the  H-equations), and the unknown corrective loop discharges (when using the  ∆Q-



equations) in a uniform way, the primary unknown variable in this section will be called
the vector  {x}.

The Newton iterative formula for solving a system of equations can be written as

{ x }(m+1) = { x }(m) − [ D ]−1{ F}(m) (4.32a)

Here  x  is an entire column vector  {x}  of unknowns,  {F}  is an entire column vector of
equations, and  [D]-1  is the inverse of a matrix  [D]  which is the Jacobian.  The Jacobian
occurs in several applications in mathematics, and it represents the following matrix of
derivatives:
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Likewise {x}  and  {F} are actually
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(4.34)

Equation 4.32a  indicates that the Newton method solves a system of nonlinear
equations by iteratively solving a system of linear equations because  [D]-1{F} represents
the solution of the linear system of equations

[ D ]{ z } = { F} (4.32b)

That is, the vector that is subtracted from the current estimate of the unknown vector  {x}
in Eq. 4.32a  is the solution  {z}  to the linear system of equations that is Eq. 4.32b.  In
practice we therefore see that the Newton method solves a system of equations by the
iterative formula

{ x }(m+1) = { x }(m) − { z } (4.32c)

where  {z}  is the solution vector that is obtained by solving  [D]{z} = {F}.  If the system
should actually contain only linear equations, then the first iteration will produce the exact
solution.

The development of Eq. 4.32 follows.  We begin by using a multi-dimensional Taylor
series expansion to evaluate the individual equations  Fi  in the neighborhood of an initial
solution estimate that we call  {x}  which is presumed to be near the actual solution:
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When we use matrix notation and make the substitution  ∆xi = xi
(m+1) − xi

(m) ,  this sys-

tem of equations becomes
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which can be written compactly as  {F}(m) + [D](m)({x}(m+1) - {x}(m)) = {0}  and solved
for  {x}(m+1)  to produce Eq. 4.32a.

Now let us see in some detail how the Newton method works in practice.  First we shall
examine the three-reservoir problem by forming and solving manually the appropriate
systems of  Q-equations,  H-equations and  ∆Q-equations.  Then we will look at computer
programs that could be used to find the solution to the  Q-equations;  the first program is
simpler and more specialized, and the second program is longer but more versatile.  Finally
we examine a third program that will solve any equation system that is supplied to it in a
subroutine.
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Figure 4.20 The three-reservoir problem.



Figure 4.20 shows three reservoirs that are connected by three pipes with an external de-
mand at the common junction of the pipes.  The highest reservoir has a water surface
elevation of  100 m;  the middle reservoir water surface elevation is  85 m,  and the lowest
reservoir has a water surface elevation of  60 m.  We will use the data in the figure and
table to form and solve the three systems of equations.

The  Q-equations are

F1 = Q1 +Q2 −Q3 −QJ1 = 0 F1 = Q1 +Q2 −Q3 − 0.06 = 0

F2 = K1Q1
n1 − K2Q2

n2 − WS1 + WS2 = 0 F2 = 1469Q1
1.974 − 2432Q2

1.927 −15 = 0

F3 = K1Q1
n1 + K3Q3

n3 − WS1 + WS3 = 0 F3 = 1469Q1
1.974 + 5646Q3

1.971 − 40 = 0

(4.37)

To satisfy the junction continuity equation, equation  F1,  and also determine initial values

for the Newton method, we can select  Q1
(0) =  Qo1 = 0.10 m3/s,  Q2

(0) =  Qo2 = 0.05

m3/s,  and  Q3
(0) =  Qo3 = 0.09 m3/s.  The superscript  (0)  denotes initial values for use

by the Newton method in solving the  Q-equations, and the subscripts denote initial
discharge values for the  ∆Q-equations.  The initial values for use with the  Q-equations are
not required to satisfy the junction continuity equations, although this set of values does.

The  H-equation is
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(4.38)

The  ∆Q-equations are

F1 = K1 Qo1 + ∆Q1 + ∆Q2( )n1 − K2 Qo2 − ∆Q1( )n2 − WS1 + WS2 = 0

F2 = K1 Qo1 + ∆Q1 + ∆Q2( )n1 + K3 Qo3 + ∆Q2( )n3 − WS1 + WS3 = 0
(4.39a)

With the initial discharges that we have chosen, these equations become

F1 = 1469 0.10 + ∆Q1 + ∆Q2( )1.974 − 2432 0.05 − ∆Q1( )1.927 −15 = 0

F2 = 1469 0.10 + ∆Q1 + ∆Q2( )1.974 + 5646 0.09 + ∆Q2( )1.971 − 40 = 0
(4.39b)

We now begin the solution of the  Q-equations by the Newton method using the equa-
tions  [D]{z} = {F},  {Q}(m+1) = {Q}(m) - {z}.  According to Eq. 4.33, the Jacobian is
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or
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For the first computational cycle we therefore solve the equation set

1.00 1.00 −1.00

307.89 − 291.57 0.00

307.89 0.00 1073.96

















z1
z2
z3
















=

0.00

− 6.97

24.64

















(4.41a)

and obtain the results
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We now iterate to obtain the following equation set and updated solution:
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One more iteration leads to
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This solution is now sufficiently accurate!
The solution of the  H-equations by the Newton method uses basically the same equa-

tions  [D]{z} = {F}  and  {H}(m+1) = {H}(m) - {z}.  These relations lead to a single update
equation

H1
(m+1) = H1

(m) − F1 / (
dF1
dH1

) (4.43)

The derivative is
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or
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If we initiate the solution procedure with the initial estimate of  H1
(0) = 84 ,  then the first

two iterative cycles produce

F1 = − 0.00415,
dF1
dH1

= − 0.0136, H1
(1) = 84 − 0.00415 / 0.0136 = 83.70 (4.45a)

and

F1 = − 0.000247,
dF1
dH1

= − 0.01251, H1
(2) = 83.70 − 0.000247 / 0.01251 = 83.68m

(4.45b)
which will be regarded as adequate.

Finally, we now solve the  ∆Q-equations by the Newton method using again the equa-
tions  [D]{z} = {F}  and  {∆∆∆∆Q(m+1)} = {∆∆∆∆Q(m)} - {z}.  In this case we solve repeatedly
the two-equation system for updated correction vectors {z} until it is declared to be
sufficiently small.  Three cycles of computation yield these results:
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
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
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
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
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(4.46a)

472 309

309 1115










z1
z2








=

−1.523

3.13








z1
z2








=

− 0.0062

0.0045








∆Q1
∆Q2








=

0.0296

− 0.0275








(4.46b)
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(4.46c)

Now the discharges can be computed as  Q1 = 0.1 + ∆Q1 + ∆Q2 = 0.1022 m3/s,  Q2 =

0.05 -  ∆Q1 = 0.0200 m3/s,  and  Q3 = 0.09 +  ∆Q2 = 0.0622 m3/s.
Computer programs of differing complexity and generality can also be developed for the

solution of these equation systems by application of the Newton method.  We will now
look at two programs.  The first program is relatively simple but must be recoded in part
for each application;  it will be applied to the solution of the  Q-equations for the three-
reservoir problem.  The second program is more versatile.

Program 4.2, the FORTRAN program listed in Fig. 4.21, is designed to solve three si-
multaneous equations with the Newton method.  It calls a matrix solver that has the coef-
ficient matrix expanded by one column to contain the known vector, and it places the
inverse in additional columns beyond the location of the known vector.  The first part of
the main program is currently written specifically to solve the  Q-equations for the three-
reservoir problem.  However, the portion that numerically evaluates the derivatives in the
Jacobian matrix is written more generally, with  N  giving the size of the matrix problem
to be solved.  Careful study of this listing will clarify considerably how the various tasks



are performed.  The subroutine INVERM employs a common method in linear algebra
problems by using an expanded matrix.  The coefficient matrix is square, here  3  rows by
3  columns.  The known vector is placed in the next column, in this case column  4.  The
subroutine solves the system of equations and provides the inverse matrix.  The solution is
returned in the same column that initially contained the known vector, here column  4.  

*************************************************************************
*   PROGRAM NO. 4.2, NEWTON, FORTRAN
*   THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
*   THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
*   USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.
*************************************************************************
*   IMPLEMENTS THE NEWTON METHOD IN SOLVING THREE EQUATIONS
      REAL X(3),F(3),D(3,7),RK(3),RN(3),K1,K2,K3,N1,N2,N3
      DATA N,N1/3,4/,DX/.001/,MAX/15/,ERR/.0001/
      WRITE(5,*)' GIVE: K1,K2,K3,N1,N2,N3,Q1,Q2,Q3'
      READ(5,*) RK,RN,X
      M=0
    1 NT=0
    5 F(1)=X(1)+X(2)-X(3)-0.06
      F(2)=RK(1)*X(1)**RN(1)-RK(2)*X(2)**RN(2)-15.0
      F(3)=RK(1)*X(1)**RN(1)+RK(3)*X(3)**RN(3)-40.0
      IF(NT.NE.0) GO TO 15
      DO 10 I=1,N
   10 D(I,N1)=F(I)
      X(1)=X(1)-DX
      NT=1
      GO TO 5
   15 X(NT)=X(NT)+DX
      DO 20 I=1,N
   20 D(I,NT)=(D(I,N1)-F(I))/DX
      NT=NT+1
      IF(NT.GT.N) GO TO 30
      X(NT)=X(NT)-DX
      GO TO 5
   30 CALL INVERM(D,N)
      DIF=0.
      DO 40 I=1,N
      DIF=DIF+ABS(D(I,N1))
   40 X(I)=X(I)-D(I,N1)
      M=M+1
      IF(DIF.GT. ERR .AND. M.LT.MAX) GO TO 1
      WRITE(5,*)' THE SOLUTION IS ',X
      END

Figure  4.21  Program 4.2 to use the Newton method to solve three equations.

The listing of the inverse starts in the next column.  In solving three equations the array
D(3,7)  therefore has  7  as its second subscript, and the last three columns contain the
inverse.

Currently the input data to this program includes the coefficients  K  and  n  for each
pipe and an initial estimate of the discharge in each pipe:  1469  2432  5646  1.974  1.927
1.971  0.10  0.05  0.09.  The program produces the same solution as we obtained
manually.

The next program, listed in Fig. 4.22, is essentially the same as the previous program,
except that it calls the linear equation solver  GAUSEL,  described in Appendix A, rather
than  INVERM.  GAUSEL  is a more versatile subroutine that interchanges rows to
minimize truncation error, applies one iterative correction to the solution vector, and



returns an estimate of the relative error for each unknown in the array  ERRNOR,  so the
user has parameters to determine the accuracy of the solution.  However, the relative error
is not printed in this program.  This subroutine also illustrates the Microsoft FORTRAN
ability to allocate the array sizes that are needed.

*************************************************************************
*   PROGRAM NO. 4.3, NEWTON, FORTRAN
*   THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
*   THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
*   USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.
*************************************************************************
*   IMPLEMENTS THE NEWTON METHOD IN SOLVING THREE EQUATIONS
      REAL X(3),F(3),D(3,3),F1(3),ERRNOR(3),RK(3),RN(3),K1,K2,K3,N1,N2,N3
      DATA N/3/,DX/.001/,MAX/15/,ERR/.0001/
      WRITE(5,*)' GIVE: K1,K2,K3,N1,N2,N3,Q1,Q2,Q3'
      READ(5,*) RK,RN,X
      M=0
    1 NT=0
    5 F(1)=X(1)+X(2)-X(3)-0.06
      F(2)=RK(1)*X(1)**RN(1)-RK(2)*X(2)**RN(2)-15.0
      F(3)=RK(1)*X(1)**RN(1)+RK(3)*X(3)**RN(3)-40.0
      IF(NT.NE.0) GO TO 15
      DO 10 I=1,N
   10 F1(I)=F(I)
      X(1)=X(1)-DX
      NT=1
      GO TO 5
   15 X(NT)=X(NT)+DX
      DO 20 I=1,N
   20 D(I,NT)=(F1(I)-F(I))/DX
      NT=NT+1
      IF(NT.GT.N) GO TO 30
      X(NT)=X(NT)-DX
      GO TO 5
   30 CALL GAUSEL(3,3,D,F1,DET,ERRNOR)
      DIF=0.
      DO 40 I=1,N
      DIF=DIF+ABS(F1(I))
   40 X(I)=X(I)-F1(I)
      M=M+1
      IF(DIF.GT. ERR .AND. M.LT.MAX) GO TO 1
      WRITE(5,*)' THE SOLUTION IS ',X
      END

Figure  4.22 Program 4.3, a more versatile implementation of the Newton method.

With this introduction to the Newton method, let us look further at the structure of a
computer program that would solve any system of equations.  This program should consist
of two primary elements:  First, a main or driver program that accomplishes the following
tasks:  (a)  it allows the user to assign values to known variables and initial estimates for
unknown variables;  (b)  it creates the Jacobian matrix and the known vector and supplies
values to these arrays;  (c)  it calls a linear algebra solver;  (d)  it implements the Newton
iteration;  and  (e)  it prints the solution.  Second, it must contain a subroutine (or
function subprogram) that defines the system of equations to be solved.  The equations in
this subroutine will change, depending upon the nature of the problem that is being solved,
and therefore the statements in this subroutine would be changed as different types of
problems are to be solved.  A listing of such a general purpose program  EQUSOL1.FOR
will be found in Fig. 4.23.  The subroutine  FUNCT  provides the equations for this



program.  The main program calls on the linear algebra solver  SOLVEQ  that is described
in Appendix B.

*************************************************************************
*   PROGRAM NO. 4.4, EQUSOL1, FORTRAN
*   THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
*   THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
*   USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.
*************************************************************************
*   THIS EQUATION SOLVER IMPLEMENTS THE NEWTON METHOD
      LOGICAL IV[ALLOCATABLE](:)
      INTEGER*2 INDX[ALLOCATABLE](:)
      CHARACTER*3 SYMB[ALLOCATABLE](:),CH
      REAL X[ALLOCATABLE](:),F[ALLOCATABLE](:),F1[ALLOCATABLE](:),
     &D[ALLOCATABLE](:,:)
*
      WRITE(*,*)' GIVE (1) NO. OF EQS., (2) NO. OF VARIABLES,',
     &' (3) INPUT UNIT, (4) OUTPUT UNIT'
      READ(*,*) N,NV,IN,IOUT
      ALLOCATE(X(NV),F(N),F1(N),D(N,N),SYMB(NV),IV(NV),INDX(N))
      IF(IN.EQ.0 .OR. IN.EQ.5) WRITE(IN,100) NV
  100 FORMAT(' GIVE',I3,' LINES WITH:',/,3X,'(1) SYMBOL FOR VAR.(3 CH)',
     &/,3X,'(2) K OR U FOR KNOWN OR UNKNOWN AND',/,3X,'(3) VALUE')
      J=0
      DO 10 I=1,NV
      READ(IN,110) SYMB(I),CH,X(I)
  110 FORMAT(A3,1X,A1,1X,F10.0)
      IF(CH.EQ.'U' .OR.  CH.EQ.'u') THEN
      IV(I)=.TRUE.
      J=J+1
      ELSE IF(CH.EQ.'K' .OR. CH.EQ.'k') THEN
      IV(I)=.FALSE.
      ELSE
      WRITE(*,*)' ERROR IN INPUT FOR VARIABLE', I
      STOP
      ENDIF
   10 CONTINUE
      IF(J.EQ.N) GO TO 12
      WRITE(*,*)' YOU GAVE',N,' EQS. BUT',J,' UNKNOWNS'
      STOP
  12 NCT=0
  15 CALL FUNCT(X,F)
     J=0
     DO 30 JJ=1,NV
     IF(IV(JJ)) THEN
     XX=X(JJ)
     X(JJ)=1.005*X(JJ)
     J=J+1
     CALL FUNCT(X,F1)
     DO 20 I=1,N
  20 D(I,J)=(F1(I)-F(I))/(X(JJ)-XX)
     X(JJ)=XX
     ENDIF
  30 CONTINUE
     CALL SOLVEQ(N,1,N,D,F,1,DD,INDX)
     NCT=NCT+1
     SUM=0.

Figure 4.23  A listing of the program  EQUSOL1.FOR.



     J=0
     DO 40 I=1,NV
     IF(IV(I)) THEN
     J=J+1
     X(I)=X(I)-F(J)
     SUM=SUM+ABS(F(J))
     ENDIF
  40 CONTINUE
     WRITE(*,*)' NCT =',NCT,' SUM =',SUM
     IF(NCT.LT.20 .AND. SUM.GT. 0.0001) GO TO 15
      WRITE(IOUT,120)(I,SYMB(I),X(I),I=1,NV)
  120 FORMAT(I5,1X,A3,' =',F10.3)
      END
*
      SUBROUTINE FUNCT(X,F)
      REAL F(22),X(41)
      DATA E,G2,P,AP/0.005,64.4,8.6714174E-6,5.4541539E-3/
      F(1)=X(41)-X(1)-X(3)-X(35) !Unknowns
      F(2)=X(1)-X(2)-X(36)       !  1=Q2   15=H4   29=L1
      F(3)=X(3)-X(4)-X(37)       !  2=Q3   16=H5   30=L2
      F(4)=X(2)+X(4)-X(5)-X(38)  !  3=Q4   17=f1   31=L3
      F(5)=X(12)-X(40)+X(6)      !  4=Q5   18=f2   32=L4
      F(6)=X(13)-X(12)+X(7)      !  5=Q6   19=f3   33=L5
      F(7)=X(14)-X(12)+X(9)      !  6=hf1  20=f4   34=L6
      F(8)=X(15)-X(13)+X(8)      !  7=hf2  21=f5   35=QJ1
      F(9)=X(16)-X(15)+X(11)     !  8=hf3  22=f6   36=QJ2
      F(10)=X(7)+X(8)-X(10)-X(9) !  9=hf4 Knowns   37=QJ3
      RF1=1./SQRT(X(17))         ! 10=hf5  23=D1   38=QJ4
      RF2=1./SQRT(X(18))         ! 11=hf6  24=D2   39=QJ5
      RF3=1./SQRT(X(19))         ! 12=H1   25=D3   40=WS1
      RF4=1./SQRT(X(20))         ! 13=H2   26=D4   41=Q1
      RF5=1./SQRT(X(21))         ! 14=H3   27=D5
      RF6=1./SQRT(X(22))         ! 15=H4   28=D6
      F(11)=X(6)-X(17)*X(29)*12./X(23)*(X(41)/(AP*X(23)**2))**2/G2
      F(12)=X(7)-X(18)*X(30)*12./X(24)*(X(1)/(AP*X(24)**2))**2/G2
      F(13)=X(8)-X(19)*X(31)*12./X(25)*(X(2)/(AP*X(25)**2))**2/G2
      F(14)=X(9)-X(20)*X(32)*12./X(26)*(X(3)/(AP*X(26)**2))**2/G2
      F(15)=X(10)-X(21)*X(33)*12./X(27)*(X(4)/(AP*X(27)**2))**2/G2
      F(16)=X(11)-X(22)*X(34)*12./X(28)*(X(5)/(AP*X(28)**2))**2/G2
      F(17)=RF1-1.14+2.*ALOG10(E/X(23)+P*X(23)*RF1/X(41))
      F(18)=RF2-1.14+2.*ALOG10(E/X(24)+P*X(24)*RF2/X(1))
      F(19)=RF3-1.14+2.*ALOG10(E/X(25)+P*X(25)*RF3/X(2))
      F(20)=RF4-1.14+2.*ALOG10(E/X(26)+P*X(26)*RF4/X(3))
      F(21)=RF5-1.14+2.*ALOG10(E/X(27)+P*X(27)*RF5/X(4))
      F(22)=RF6-1.14+2.*ALOG10(E/X(28)+P*X(28)*RF6/X(5))
      RETURN
      END

Figure 4.23   (Concluded)  A listing of the program  EQUSOL1.FOR.

Let's examine how the main program does its tasks of providing values to the Jacobian
matrix  [D]  and equation vector  {F}  and then carrying out a Newton solution.  The key
portion of the main program that implements the Newton method appears in bold
characters in Fig. 4.23.  Three tasks are accomplished by these statements:  (1)  defining
the equation vector;  (2) numerically evaluating the elements of the Jacobian matrix;  and
(3)  solving the resulting linear system of equations and subtracting this solution from the
current vector of unknowns, as described by Eq. 4.32a.

The  FORTRAN  integer  NCT  is the iteration counter;  it is set to  0  before
beginning the Newton iteration.  Statement  15 CALL FUNCT(X,F)  has two arguments,



an array  X  for the variables and an array  F  for the equations.  The array  X  includes both
the known and unknown variables of the problem.  Upon returning from  CALL FUNCT,
the array  F  contains a set of equations that have been evaluated by using the initial
estimates of the unknowns.  Since the initial estimates are incorrect, the individual
elements of  {F}  will not be zero, but subsequent Newton iterations will drive these
elements progressively closer to zero.  Statement  DO 30 JJ=1,NV,  in which  NV  is the
total of all variables, evaluates individual columns of the Jacobian matrix  D(I,J)  by
using a first-order numerical evaluation of the derivatives.  Since  IV(JJ)  is  .FALSE.  for
known variables and  .TRUE.  for unknown variables, we note that nothing happens in
loop  30  if  IV  is  .FALSE.  Hence  J,  which identifies the column in which the
Jacobian derivatives are entered, is incremented only for unknown variables.  When an
unknown is encountered,  xj,  which is  X(JJ),  is incremented by multiplying its current
value by  1.005  before the equation is evaluated again by calling  FUNCT.  Upon returning
from  FUNCT,  the array  F1  now contains equation values based on  1.005xj,  and then the
statement  D(I,J) = (F1(I) - F(I))/(X(JJ) - XX)  numerically evaluates the
derivatives of the equations by using a first-order approximation.  The statement  DO 20
I=1,N  fills all row entries for column  J  of the Jacobian matrix  [D].

Upon completing the  DO 30  loop, the equation vector  {F}  and the Jacobian matrix
[D]  have been fully evaluated.  The next statement  CALL SOLVEQ  calls a linear equation
solver, which upon return has replaced the elements of the array  F  with the solution
vector  {z}  found in Eq. 4.32b.  The statement  DO 40 I=1,NV  implements Eq. 4.32c
with  SUM  accumulating the absolute sum of the corrections applied to the unknown vector
{x}.  If this  SUM  is larger than the allowable error and fewer than 20 iterations have been
completed, then  GO TO 15  at the end of this code segment will begin another Newton
iteration.

In our example it would be relatively easy to derive the actual partial derivatives of each
equation with respect to each unknown, and the elements of the Jacobian could be evaluated
by using these derivatives.  The length of the program would be longer if these derivative
expressions were used.  The numerical approximation of the derivatives requires extra arith-
metic, particularly since many derivatives are zero, but the advantage of a shorter code
makes the numerical approximation of the derivatives attractive.

Example Problem 4.5
Use program  EQUSOL1  to solve the 6-pipe, 5-node network shown below.  Obtain

this solution in four ways:  (1)  use the program as it now exists with subroutine
FUNCT;  (2)  use the  Q-equations;  (3)  use the  H-equations;  (4)  use the  ∆Q-equations.

[1](1)
[4]

[3]

[2]

(5)

(6)

(4)

(2)
(3)

[5]

All e = 0.005"

QJ5 = 0.25 ft3/s

QJ3 = 0.5 ft3/s

QJ2 = 0.35 ft3/s

QJ1 = 0.5 ft3/s QJ4 = 0.5 ft3/s

All elev. = 350'

8" - 1500'

4" - 1000'

WS1 = 500'

6"
- 10

00
'

6" - 1500'

6" - 1200'
6" - 1500'

1.  The existing subroutine  FUNCT  explicitly defines the equations that we want to
solve;  there are 22 equations,  F(1)  through  F(22).  There are 41 variables associated
with the solution;  therefore  41 - 22 = 19  of these variables are known.  These equations
are as follows:



Junction continuity equations:

Q1 −Q2 −Q4 −QJ1 = 0 (1)
Q2 −Q3 −QJ2 = 0 (2)
Q4 −Q5 −QJ3 = 0 (3)
Q3 +Q5 −Q6 −QJ4 = 0 (4)

(The junction continuity equation at node  5  is not included here, but this simple equation
Q6 -  QJ5 = 0  establishes the discharge in pipe  6  as  0.25 ft3/s.)

Head loss equations giving  the  HGL  at a downstream node relative to the upstream node:

H1 = WS1 − h f 1 (5)

H2 = H1 − h f 2 (6)

H3 = H1 − h f 4 (7)

H4 = H2 − h f 3     (or  H4 = H3 − h f 5) (8)

H5 = H4 − h f 6 (9)

Energy equation around a loop:

h f 2 + h f 3 − h f 5 − h f 4 = 0 (10)

Darcy-Weisbach equations to define the frictional head losses  (pipe numbers i = 1, 6):

h fi = f i
Li
Di

Qi
2

2gAi
2 (11-16)

Colebrook-White equations  (pipe numbers i = 1, 6):

1

f i
= 1.14 − 2 log10

ei
Di

+
9.35νDi

4/π( )Qi f i












(17-22)

In the program listing the integer within  X( )  identifies the variable in the array, as is
seen by the comments following the exclamation points there.  We note there are 22
equations:  a continuity equation for  NJ - 1 = 4  junctions, a separate head difference
equation for each pipe, a Darcy-Weisbach equation for each pipe, a companion Colebrook-
White equation for each pipe, and finally an energy loop equation, for a total of  3NP + NJ
= 18 + 5 = 22 equations.  Since the entire system demand must come from pipe 1, its
discharge must be  Q1 = 2.1 ft3/s,  and the unknowns are  5  unknown discharges  Q2 . .
Q6,  6  unknown head losses  hf1 .. hf6,  5  unknown heads  H1 .. H5,  and  6  unknown
friction factors  f1 .. f6,  for a total of  22.  The input and solution files for the program
now follow:



Input File Output File
Q2  U  0.8 f6   U  0.020   1  Q2  =     0.820 22   f6  =     0.024
Q3  U  0.5 D1  K  8.0   2  Q3  =     0.470 23  D1  =    8.000
Q4  U  0.8 D2  K  6.0   3  Q4  =     0.780 24  D2  =    6.000
Q5  U  0.3 D3  K  6.0   4  Q5  =     0.280 25  D3  =    6.000
Q6  U  0.3 D4  K  6.0   5  Q6  =     0.250 26  D4  =    6.000
hf1 U  24.0 D5  K  6.0   6  hf1 =   23.952 27  D5  =    6.000
hf2 U  11.0 D6  K  4.0   7  hf2 =   11.279 28  D6  =    4.000
hf3 U  0.2 L1  K  1500.0   8  hf3 =     5.872 29  L1  = 1500.0
hf4 U  0.15 L2  K  1000.0   9  hf4 =   15.368 30  L2  = 1000.0
hf5 U  2.0 L3  K  1500.0 10  hf5 =     1.783 31  L3  = 1500.0
hf6 U  6.0 L4  K  1500.0 11  hf6 =     9.117 32  L4  = 1500.0
H1  U  476.0 L5  K  1200.0 12  H1  =  476.048 33  L5  = 1200.0
H2  U  465.0 L6  K  1000.0 13  H2  =  464.769 34  L6  = 1000.0
H3  U  460.0 QJ1 K  0.50 14  H3  =  460.680 35 QJ1 =     0.50
H4  U  458.0 QJ2 K  0.35 15  H4  =  458.897 36 QJ2 =     0.35
H5  U  450.0 QJ3 K  0.50 16  H5  =  449.780 37 QJ3 =     0.50
f1   U  0.020 QJ4 K  0.50 17  f1  =     0.019 38 QJ4 =     0.50
f2   U  0.020 QJ5 K  0.25 18  f2  =     0.021 39 QJ5 =     0.25
f3   U  0.020 WS1 K  500.0 19  f3  =     0.022 40 WS1 =  500.0
f4   U  0.020 Q1  K  2.1 20  f4  =     0.021 41 Q1  =    2.100
f5   U  0.020 21  f5  =     0.024

2.  The  Q-equations are

                  

F1 = Q1 −Q2 −Q4 −QJ1 = 0

F2 = Q2 −Q3 −QJ2 = 0

F3 = Q4 −Q5 −QJ3 = 0

F4 = Q3 +Q5 −Q6 −QJ4 = 0

F5 = K2Q2
n2 + K3Q3

n3 − K5Q5
n5 − K4Q4

n4 = 0

The  K  and  n  for each pipe must now be determined.  Program  2.1, PIPK_N,  or some
other means will provide these values:

P i p e      K    n

  1     5.6845 1.9381
  2   16.4967 1.9185
  3   24.3685 1.8858
  4   24.7450 1.9185
  5   19.0411 1.8611
  6 126.3843 1.8970

To compute the five unknown discharges  Qi   (i = 2, 6) (with  Q1 = 2.1 ft3/s  known), the
subroutine  FUNCT  must be modified as follows:

      SUBROUTINE FUNCT(X,F)
      REAL F(5),X(11)
      REAL K2/16.4967/,K3/24.3685/,K4/24.745/,K5/19.0411/
      REAL N2/1.9185/,N3/1.8858/,N4/1.9185/,N5/1.8611/
      F(1)=X(6)-X(1)-X(3)-X(7)    ! Unknowns        Knowns
      F(2)=X(1)-X(2)-X(8)         ! 1 = Q2, 4 = Q5, 6 =  Q1,  9 = QJ3
      F(3)=X(3)-X(4)-X(9)         ! 2 = Q3, 5 = Q6, 7 = QJ1, 10 = QJ4
      F(4)=X(2)+X(4)-X(5)-X(10)   ! 3 = Q4,         8 = QJ2, 11 = QJ5
      F(5)=K2*X(1)**N2+K3*X(2)**N3-K5*X(4)**N5-K4*X(3)**N4
      RETURN
      END



The input data (all in  ft3/s) that were used to solve this problem (with 5 and 11 plus 2 and
3 for I/O units from the keyboard) and the solution are listed now:

                            Input Data                                Solution

Variable T y p e I n i t i a l
va lue

Index Value

    Q2   U   0.80   1  Q2     0.82
    Q3   U   0.50   2  Q3     0.47
    Q4   U   0.80   3  Q4     0.78
    Q5   U   0.30   4  Q5     0.28
    Q6   U   0.25   5  Q6     0.25
    Q1   K   2.10   6  Q1     2.10
    QJ1   K   0.50   7  QJ1     0.50
    QJ2   K   0.35   8  QJ2     0.35
    QJ3   K   0.50   9  QJ3     0.50
    QJ4   K   0.50 10  QJ4     0.50
    QJ5   K   0.25 11  QJ5     0.25

Since  X(11) = QJ5  is not used in the equations, the keyboard input could have been
changed to  5  10  2  3,  and the last line of input could then be deleted.

3.  The number of  H-equations could be reduced below five, but we will use five head
equations to determine the head at the five nodes.  These equations are

F1 =
500 − H1
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
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These equations are arranged to allow us to find  Hi  (i = 1, 5)  with a demand at each of the
five nodes as additional variables, so there are 5 unknowns and 10 variables.  The
appropriate modifications of subroutine FUNCT are as follows:

      SUBROUTINE FUNCT(X,F)
      REAL F(5),X(10)
      REAL K1/5.6845/,K2/16.4967/,K3/24.3685/,K4/24.745/,K5/19.0411/
     &,K6/126.3843/,R1/.515969/,R2/.52124/,R3/.53028/,R4/.52124/
     &,R5/.53732/,R6/.52715/
C UNKNOWNS: 1 = H1, 2 = H2, 3 = H3, 4 = H4, 5 = H5;



C KNOWNS: 6 = QJ1, 7 = QJ2, 8 = QJ3, 9 = QJ4, 10 = QJ5
      F(1)=(ABS(500-X(1))/K1)**R1-(ABS(X(1)-X(2))/K2)**R2
     &-(ABS(X(1)-X(3))/K4)**R4-X(6)
      F(2)=(ABS(X(1)-X(2))/K2)**R2-(ABS(X(2)-X(4))/K3)**R3-X(7)
      F(3)=(ABS(X(1)-X(3))/K4)**R4-(ABS(X(3)-X(4))/K5)**R5-X(8)
      F(4)=(ABS(X(2)-X(4))/K3)**R3+(ABS(X(3)-X(4))/K5)**R5
     &-(ABS(X(4)-X(5))/K6)**R6-X(9)
      F(5)=(ABS(X(4)-X(5))/K6)**R6-X(10)
      RETURN
      END

The input data (all in  ft  or  ft3/s) for this problem (with an additional 5 and 10 plus 2 and
3 for I/O units from the keyboard) and the solution follow:

                            Input Data                                Solution

Variable T y p e I n i t i a l
va lue

Index Value

    H1   U  476.0   1  H1    476.1
    H2   U  465.0   2  H2    464.8
    H3   U  460.0   3  H3    460.7
    H4   U  458.0   4  H4    458.9
    H5   U  450.0   5  H5    449.8
    QJ1   K   0.50   6  QJ1     0.50
    QJ2   K   0.35   7  QJ2     0.35
    QJ3   K   0.50   8  QJ3     0.50
    QJ4   K   0.50   9  QJ4     0.50
    QJ5   K   0.25 10  QJ5     0.25

4.  For this problem there is only one  ∆Q-equation, which is

F1 = K2 Qo2 + ∆Q1( )n1 + K3 Qo3 + ∆Q1( )n3 − K5 Qo5 − ∆Q1( )n5 − K4 Qo4 − ∆Q1( )n4 = 0

The input, since it is only two lines, can be given directly from the keyboard as

1 1 5 6
DQ1 U 0.1

The estimate of  0.1  ft3/s  is used because the main program uses  1.005  times the
current value.  This might be changed with an  IF  statement that adds  0.001  to the
variable if its value is zero.  The solution is  DQ1 = 0.020 ft3/s.  The subroutine FUNCT
can be modified, with the initial discharge in each pipe chosen to be  Qo2 = 0.8 ft3/s,  Qo3

= 0.45 ft3/s,  Qo4 = 0.80 ft3/s,  and  Qo5 = 0.30 ft3/s  to satisfy continuity, as shown:

      SUBROUTINE FUNCT(X,F)
      REAL F(1),X(1)
      REAL K2/16.4967/,K3/24.3685/,K4/24.745/,K5/19.0411/,N2/1.9185/
     &,N3/1.8858/,N4/1.9185/,N5/1.8611/
      REAL QO2/0.80/,QO3/0.45/,QO4/0.80/,QO5/0.30/
C UNKNOWN: DQ1
      F(1)=K2*(QO2+X(1))**N2+K3*(QO3+X(1))**N3-
     &K5*(QO5-X(1))**N5-K4*(QO4-X(1))**N4
      RETURN
      END



Writing every equation, as was done in the listing of  EQUSOL1,  makes it easy to fol-
low the computational sequence in subroutine  FUNCT.  However, since there are as many
Darcy-Weisbach equations as there are pipes and the Gauss-Seidel iteration could be used to
solve the Colebrook-White equations internally within the system of equations,  FUNCT
can be simplified.  A separate function can be written to evaluate the Colebrook-White
equation, and the Darcy-Weisbach equations are in a DO loop.  Now the equations to be
solved are the four junction continuity equations and the six head loss equations that
indicate the difference in head along a pipe is equal to the frictional head loss between the
pipe ends.  For variety,  Q1  is now unknown, and in its place  Q6  is assumed to be
known.

The listing of the modified subroutine  FUNCT  follows:

      SUBROUTINE FUNCT(X,F)
      INTEGER*2 ID(6)/7,8,10,9,10,11/    ! 1 = Q1, 10 = H4,  19 = D3
     &,IU(6)/16,7,8,7,9,10/              ! 2 = Q2, 11 = H5,  20 = D4
      REAL F(10),X(28)                   ! 3 = Q3, 12 = QJ1, 21 = D5
      DATA G2/64.4/,P4/0.7853982/        ! 4 = Q4, 13 = QJ2, 22 = D6
      F(1)=X(1)-X(2)-X(4)-X(12)          ! 5 = Q5, 14 = QJ3, 23 = L1
      F(2)=X(2)-X(3)-X(13)               ! 6 = Q6, 15 = QJ4, 24 = L2
      F(3)=X(4)-X(5)-X(14)               ! 7 = H1, 16 = WS1, 25 = L3
      F(4)=X(3)+X(5)-X(6)-X(15)          ! 8 = H2, 17 = D1,  26 = L4
      DO 10 I=1,6                        ! 9 = H3, 18 = D2,  27 = L5
      J=I+16                             !                   28 = L6
   10 F(I+4)=X(ID(I))-X(IU(I))+FR(I,J,X)*X(I+22)
     & /X(J)*(X(I)/(P4*X(J)**2))**2/G2
      RETURN
      END
*
      FUNCTION FR(I,J,X)
      REAL X(28)
      REAL FI(6)/6*.02/
      DATA E/0.0004166667/,CCVISC/1.03543E-4/
      F1=1./SQRT(FI(I))
   10 F2=F1
      F1=1.14-2.*ALOG10(E/X(J)+CCVISC*X(J)*F2/X(I))
      IF(ABS(F1-F2).GT. 1.E-6) GO TO 10
      FR=1./F1/F1
      FI(I)=FR
      RETURN
      END

The input data file (all in  ft  or  ft3/s) and the solution are given next:
                            Input Data                                Solution

Variable T y p e I n i t i a l
va lue

Index Value

    Q1   U   2.10   1  Q1   2.000
    Q2   U   0.80   2  Q2   0.770
    Q3   U   0.50   3  Q3   0.420
    Q4   U   0.80   4  Q4   0.730
    Q5   U   0.30   5  Q5   0.230
    Q6   K   0.25   6  Q6   0.250
    H1   U  476.0   7  H1   478.2
    H2   U  465.0   8  H2   468.2
    H3   U  460.0   9  H3   464.7



Cont inued:                   Input Data                                Solution

Variable T y p e I n i t i a l
va lue

Index Value

    H4   U  458.0 10  H4   463.5
    H5   U  450.0 11  H5   454.3
    QJ1   K   0.50 12  QJ1   0.50
    QJ2   K   0.35 13  QJ2   0.35
    QJ3   K   0.50 14  QJ3   0.50
    QJ4   K   0.50 15  QJ4   0.50
   WS1   K  500.0 16

WS1
 500.0

    D1   K   0.667 17  D1   0.667
    D2   K   0.50 18  D2   0.50
    D3   K   0.50 19  D3   0.50
    D4   K   0.50 20  D4   0.50
    D5   K   0.50  21  D5   0.50
    D6   K   0.333 22  D6   0.333
    L1   K  1500 23  L1  1500
    L2   K  1000 24  L2  1000
    L3   K  1500 25  L3  1500
    L4   K  1500 26  L4  1500
    L5   K  1200 27  L5  1200
    L6   K  1000 28  L6  1000

*                              *                              *

4.4.2. SOLVING THE THREE EQUATION SYSTEMS VIA NEWTON
The Newton method will now be applied in turn to the solution of the  Q-equations, the

H-equations and the  ∆Q-equations for network shown in Fig. 4.24.  Considerable detail
will be presented in these solutions so the details of applying the Newton method can be

[1]

(1)

[3]

[2]

(5)

(4)

(2)

(3)

0.8 ft3/s

100'

90'

1.5 ft3/s

1.0 ft3/s

I

II

∆Q1

∆Q2

P i p e   K    n

   1   7.59 1.936
   2   9.63 1.901
   3 48.6 1.882
   4 39.7 1.768
   5 16.5 1.935

Figure 4.24  A  5-pipe,  3-node network.



examined.  The reader is encouraged to check numerically some of these steps.  In the  Q-
equations the elements of the Jacobian will either be  ∂Fi / ∂Qj = ±1  or zero in row  i  for

a junction continuity equation row.  The Jacobian terms for the energy loop equation rows

will either be  ∂Fi / ∂Qj = ± njK jQj
n j −1

 or zero.  The non-zero elements of the Jacobian

for the  H-equations are  ∂Fi / ∂H j = ± {1 / (nmKm )}{(H j − Hk ) / Km }1/nm −1 in which

the sign is determined by the sign in front of this term in the equation and the sign before
Hj  within the parentheses.  Non-zero terms in the Jacobian for the  ∆Q-equations will be

of the form  ∂Fi / ∂∆Qj  = ± nk Kk (Qok ± ∆Qm∑ )nk −1.

The  Q-equations are

F1 = Q1 −Q2 −Q4 −1.0 = 0

F2 = Q2 +Q3 −1.5 = 0

F3 = Q4 −Q3 +Q5 − 0.8 = 0

F4 = K1Q1
n1 + K4Q4

n4 − K5Q5
n5 −10 = 0

F5 = K2Q2
n2 − K3Q3

n3 − K4Q4
n4 = 0

(4.47)

The Newton method is described by  [D]{z}={F}  and  {Q}(m+1) = {Q}(m) - {z}  with

D[ ] =

1 −1 0 −1 0

0 1 1 0 0

0 0 −1 1 1

n1K1Q1
n1−1 0 0 n4K4Q4

n4 −1 − n5K5Q5
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0 n2K2Q2
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n4 −1 0


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
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(4.48)

If we choose the initial estimate of the solution vector to be

Q{ }(0) =
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(4.49)

with which we have been careful to satisfy the junction continuity equations, so these
discharges can be used in the  ∆Q-equations, the first evaluation of the Jacobian matrix and
right-hand side leads to

1.0000 − 1.0000 0.0000 − 1.0000 0.0000

0.0000 1.0000 1.0000 0.0000 0.0000
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(4.50a)



with the solution
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(4.51a)

The Newton equations for the next cycle are

1.0000 − 1.0000 0.0000 − 1.0000 0.0000

0.0000 1.0000 1.0000 0.0000 0.0000

0.0000 0.0000 −1.0000 1.0000 1.0000
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(4.50b)

with the solution

z{ } =
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(4.51b)

One more cycle would yield the final solution

Q{ }(3) =
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(4.51c)

Referring again to Fig. 4.24, since we have only three nodes, we must construct three
H-equations.  They are

F1 =
100 − H1
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Using  [D]{z} = {F}  and  {H}(m+1) = {H}(m) - {z}  to implement the Newton method
with an initial estimate of the nodal heads as
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(4.53)

successive computational cycles produce
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(4.54a)
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(4.54b)
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(4.54e)

Depending on the desired accuracy of this solution, the process might have been terminated
one or two cycles sooner.  One of the best features of the Newton method is a quadratic
convergence rate as the solution is approached;  here we can easily see the rapid reduction in
the size of the corrections  {z}  in successive cycles.

When this problem is solved by using the  ∆∆∆∆Q-equations, we need only one energy
loop and one pseudo loop, as is indicated on Fig. 4.24.  The  ∆Q-equations are

F1 = K1 Qo1 + ∆Q1( )n1 + K4 Qo4 − ∆Q2 + ∆Q1( )n4 − K5 Qo5 − ∆Q1( )n5 −10 = 0

F2 = K2 Qo2 + ∆Q2( )n2 − K3 Qo3 − ∆Q2( )n3 − K4 Qo4 − ∆Q2 + ∆Q1( )n4 = 0
(4.55)



The equations for the Newton method are  [D]{z}={F}  and  {∆∆∆∆Q}(m+1) = {∆∆∆∆Q}(m) - {z}
in which the Jacobian and vector of initial discharges are
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Three successive solution cycles produce
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From these results we can compute the discharges themselves in ft3/s as

Q1 = Qo1 + ∆Q1 = 2.119

Q2 = Qo2 + ∆Q2 = 1.058

Q3 = Qo3 − ∆Q2 = 0.442

Q4 = Qo4 + ∆Q1 − ∆Q2 = 0.061

Q5 = Qo5 − ∆Q1 = 1.181

(4.58)

Readers will find it instructive to solve this same problem by modifying subroutine
FUNCT  in program  EQUSOL1.  For still more experience the reader should consider the
use of an equation-solving software program such as MathCAD, TK-Solver, or MathLab.

4.4.3. COMPUTER SOLUTIONS TO NETWORKS
In this section we concentrate on the implementation of solutions to networks using

computers, and how pumps, local losses and/or PRV's are readily included.  To begin this
process consider first the eight-pipe network in Fig. 4.25 that includes a source pump that
supplies some of the system demand and a booster pump in pipe  1.  There are also local
loss devices in pipes  7,  8,  and  3,  the first two of which have a loss coefficient of  10,
and the third has a loss coefficient of  2.  (The Roman numeral loop notation will be used
in Example Problem 4.6.)  After developing and solving the equations for this network, we
will place a  PRV  in pipe  5.
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Pump Characteristics
(Q   in  m3/s  and  h p   in meters)

Pump No.     Point 1     Point 2     Point 3
   Q   h p    Q   h p    Q   h p

         1 0.025 12.0 0.040 10.5 0.055   8.0
         2 0.060   4.0 0.090   3.8 0.120   3.5

Figure 4.25  An eight-pipe network with pumps and local losses.

For this network there are five junction continuity equations and three energy loop equa-
tions.  The  Q-equations are

F1 = −Q1 +Q4 +Q7 − 0.03 = 0

F2 = Q1 +Q2 −Q5 − 0.08 = 0

F3 = −Q2 +Q3 −Q6 − 0.05 = 0

F4 = −Q3 −Q4 +Q8 − 0.00 = 0

F5 = Q5 +Q6 − 0.08 = 0

F6 = K1Q1
n1 − hp2 − K2Q2

n2 − K3Q3
n3 − 2Q3

2 / (2gA3
2 ) + K4Q4

n4 = 0

F7 = K5Q5
n5 − K6Q6

n6 + K2Q2
n2 = 0

F8 = K7Q7
n7 − hp1 +10Q7

2 / (2gA7
2 ) − K4Q4

n4 − K8Q8
n8 −10Q8

2 / (2gA8
2 ) + 30 = 0

(4.59)

In these equations the local loss coefficients  10,  10,  and  2  have been inserted in the
equations, but the pump heads are written as  hp1  and  hp2.  These pump heads can be
expressed as a function of discharge by fitting a second-order polynomial through three
points on the pump characteristic curve over the range of expected operation.
Alternatively, if the power supplied by the pump to the fluid is assumed to be constant,
then these pump heads can be defined by  hp = Power/(γQ).



Example Problem 4.6
Solve the 8-equation system, Eqs. 4.59, for the network shown in Fig. 4.25 by using hand
methods.  Then verify this solution by using program  EQUSOL1  and/or an equation-
solving software package such as MathCAD or TK-Solver.

This and the next few Example Problems will be solved by rewriting the subroutine
FUNCT  for use with  EQUSOL1  in each case.  MathCAD and TK-Solver models of
these problems will be found on the  CD  that accompanies this book.

The first step is to estimate the pipe discharges;  based on these values, we then
compute  K  and  n  for the 8 pipes.  The listed discharges produce the  K  and  n  values in
the table:

Pipe No.    1    2    3    4    5    6    7    8
Q  (m3/s ) 0.100 0.015 0.100 0.080 0.030 0.050 0.070 0.170
     K  1160    613  1160    690  1292  1115    322    239
     n 1.827 1.788 1.827 1.824 1.801 1.812 1.772 1.832
     f 0.0134 0.0314 0.0134 0.0212 0.0168 0.0152 0.0223 0.0127

The next step is to fit the three pairs of points for the two pumps to obtain the coefficients
for the polynomials:  A1 = - 2220,  B1 = 44.4,  C1 = 12.28  and  A2 = - 55.6,  B2 =
1.667,  C2 = 4.10.  These values can now be substituted into the equations, the equations
can be differentiated to produce the Jacobian matrix and equation vector, and all of the terms
can be evaluated by using the data in the table and figure.  (The reader should evaluate some
terms to verify that the process is fully understood.)  The results are

D[ ] =
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































and

{F}T =  {0.020  0.005  - 0.015  -0.010  0.000  1.560  -2.226  4.903}

with the superscript  T  indicating the transpose of the right-side equation vector.  The
solution to this linear system of equations produces

{z}T = {- 0.0029  0.0008  - 0.0071  0.0021  - 0.0071  0.0071  0.0150  - 0.0150}

so that the discharges after the first iteration are

{Q}T =  {0.1029  0.0142  0.1071  0.0779  0.0371  0.0429  0.0550  0.1850}

After two additional iterations, the following solution, in  m3/s,  is obtained:

{Q}T =  {0.1028  0.0142  0.1072  0.0780  0.0370  0.0430  0.0548  0.1852}
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The subroutine  FUNCT  is on the  CD  under  EPRB4_6Q.FOR  for use with
EQUSOL1,  and the  TK-Solver model is listed on the  CD  under  EPRB4_6Q.TK.  Upon
supplying the input file in column one below to  EQUSOL1,  the solution in the second
column is obtained:

From the keyboard:  8  8  2  3 Solution  (m3/s)
Q1  U  0.100     1  Q1  =  0.103
Q2  U  0.015     2  Q2  =  0.014
Q3  U  0.100     3  Q3  =  0.107
Q4  U  0.080     4  Q4  =  0.078
Q5  U  0.030     5  Q5  =  0.037
Q6  U  0.050     6  Q6  =  0.043
Q7  U  0.070     7  Q7  =  0.055
Q8  U  0.170     8  Q8  =  0.185

*                              *                              *

Next let us examine the formulation and the solution of the  H-equations for the
network in Example Problem 4.6.  The  H-equations are presented as Eqs. 4.60.  The
pump heads have been added to the upstream HGL-elevations by indicating these heads as
hp.  In a similar way the local losses, denoted simply as  hL,  have been subtracted from
the HGL-elevations in pipes  3,  7,  and  8.  By using second-order polynomials for the
pump characteristics and noting that each  Q   in these equations can again be replaced by
similar
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(4.60)

head-difference terms, we find that we cannot create an equation that does not contain the
pump discharge in the pipes that contain the pumps.  The same is true for pipes that
contain local losses because again the magnitude of the loss is a function of the discharge
through the pipe.  If an iterative approach were used to approximate the discharge in terms
of the upstream and downstream nodal heads, the quadratic convergence rate of the Newton
method would be sacrificed.  This dilemma highlights a deficiency in using the  H-
equations when pumps, whose heads are strongly dependent upon the discharges passing
through them, are present.  If many pumps exist in a network and the  H-equations are to
be used, especially if equation-solving software such as MathCAD or TK-Solver is used, it
might be advantageous to write the continuity equations in terms of the discharges, then
add additional equations to describe these discharges in terms of nodal heads, and finally
solve simultaneously for the heads and discharges.  This approach will be taken in

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806
http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


Example Problem 4.7.  A successful technique that solves the  H-equations in a computer
program will be described in a subsequent section.  This technique obtains the current value
of the discharge in every pipe from the heads that exist during an iteration by calculating  
Q = [(Hi - Hj)/K]1/n, and when a pump exists in a pipe, the Newton method can find the

discharge  Q  from the single equation for that pipe  Q = [(Hi + hp - Hj)/K]1/n  in which

the pump head is  hp = AQ2 + BQ + C.

Example Problem 4.7
Solve the  H-equations for the 8-pipe network shown in Fig. 4.25 that was the subject

of study in Example Problem 4.6.
The form of the subroutine  FUNCT  that is needed in  EQUSOL1  to solve the  H-

equations is on the  CD  in  EPRB4_7H.FOR  with input data in  EPRB4_7H.DAT;  the
corresponding  TK-Solver model will be found there as  EPRB4_7H.TK.

*                              *                              *

Finally, we now turn our attention to the  ∆Q-equations, which are given in Eq. 4.61
for this same pipe network.  In addition, we must select an appropriate set of initial
discharges.

F1 = K1 Qo1 + ∆Q1( )n1− hp2 − K2 Qo2 − ∆Q1 + ∆Q2( )n2 − K3 Qo3 − ∆Q1( )n3

− 2 Qo3 − ∆Q1( )2 / 2gA3
2( ) + K4 Qo4 + ∆Q1 − ∆Q3( )n4 = 0

F2 = K5 Qo5 + ∆Q2( )n5 − K6 Qo6 − ∆Q2( )n6 + K2 Qo2 − ∆Q1 + ∆Q2( )n2 = 0

F3 = K7 Qo7 + ∆Q3( )n7 +10 Qo7 + ∆Q3( )2/ 2gA7
2( ) − K4 Qo4 + ∆Q1 − ∆Q3( )n4

− hp1 − K8 Qo8 − ∆Q3( )n8 −10 Qo8 − ∆Q3( )2/ 2gA8
2( ) + 30 = 0

(4.61)

In these  ∆Q-equations the pump heads will be replaced by second-order polynomial
equations in the forms

hp1 = A1(Qo7 + ∆Q3 )2 + B1(Qo7 + ∆Q3 ) + C1

hp2 = A2 (Qo1 + ∆Q1)2 + B2 (Qo1 + ∆Q1) + C2

(4.62)

The local losses are replaced by  hL = KLQ2/(2gA2),  in which each discharge is written as
the algebraic sum of  Qoi  and the corrective discharges in that pipe.  The derivatives of
these terms that contribute to elements of the Jacobian are then easily evaluated.

Example Problem 4.8
Solve the  ∆Q-equations for the 8-pipe network depicted in Fig. 4.25.

To solve the  ∆Q-equations using  EQUSOL1,  download  EPRB4_8D.FOR  from the
CD;  the appropriate input is found in  EPRB4_8D.DAT.  A  TK-Solver model will be
found as  EPRB4_8D.TK.  A set of initial discharges might be selected as follows:  Qo1 =

0.100 m3/s,  Qo2 = 0.015 m3/s,  Qo3 = 0.110 m3/s,  Qo4 = 0.060 m3/s,  Qo5 = 0.035

m3/s,  Qo6 = 0.045 m3/s,  Qo7 = 0.070 m3/s,  and  Qo8 = 0.170 m3/s.

*                              *                              *
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4.4.4. INCLUDING PRESSURE REDUCING VALVES
To acquire experience in analyzing networks containing pressure reducing valves (and

similar appurtenances such as back pressure valves), let us assume that pipe  5  in our  8-
pipe network contains a PRV that is  200 m  downstream from junction  2,  and the pres-
sure setting of this valve is equivalent to a reservoir water surface elevation of  149 m.
The five junction continuity equations are unchanged for this network.  The energy
equations now consist of one real loop and two pseudo loops, as the revised diagram of this
network shows in Fig. 4.26.  The pump data in Fig. 4.25 are unchanged.  In the 
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Figure 4.26  An eight-pipe network with pumps and local losses, now including a PRV.

Q-equations, Eqs. 4.72, equations  F6  and  F8  are unchanged, but equation  F7  must
now be written around the new pseudo loop;  it becomes

F7 = K5
' Q5

n5 − K6Q6
n6 − K3Q3

n3 − 2Q3
2 / (2gA3

2 )

− K8Q8
n8 −10Q8

2 / (2gA8
2 ) + 200 − HGL1 = 0

(4.63)

in which  K5
'   represents the portion of pipe  5  downstream from the PRV.  Eight inde-

pendent equations therefore exist, which may be solved for the discharges  Qi, i = 1,8.  If
the PRV does not close completely, the solution is obtained with  HGL1  in  F7  equal to
the head that is set at the valve, i.e.,  149 m  in this example.  If the Newton solution
process that is based on this assumption should produce a negative value for  Q5,  the
PRV will close completely.  Then the discharge in the pipe containing the PRV is no
longer an unknown but is zero, i.e.,  Q5 = 0,  and the value of the  HGL  immediately
downstream from the PRV becomes the unknown.  In other words, when this PRV closes,
the same system of equations still describes the network operation, but the set of
unknowns changes to  {Q1, Q2, Q3, Q4, HGL1, Q6, Q7, Q8}.  In a computer program
this change can be accommodated by dropping the pipe number containing the PRV from
the integer arrays that define the junction continuity equations and the energy loop
equations.  Also, a flag is set in the program to indicate in the solution array that the  
HGL  of the PRV is stored in place of the discharge in that pipe.

Subroutine  FUNCT  for use with  EQUSOL1  for this problem is on the  CD  under
the name  EPRB4_VQ.FOR.  The reader should study a listing of this file to understand
the logic that will model the PRV when it closes.  The input from the keyboard for this
problem is  8  8  2  3  (Thus there are  8  unknowns and  8  variables, and the  2  and  3
are the input and output units.).  The input file that was used in Example Problem 4.6 still
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applies.  There are only two basic changes in the program that was used to solve this
network problem in the absence of the PRV:  (1)  element  X(5)  is now either  Q5  or
HGL,  depending upon whether it is negative, and (2)  now  F(7)  has become a pseudo
loop from the artificial reservoir at the PRV to the reservoir at the end of pipe  5.  The
computer provides the following solution  (units are  m3/s  or  m):

Q1 = 0.102,  Q2 = -  0.022,  Q3 = 0.108,  Q4 = 0.077,
Q5 = 149.227,  Q6 = 0.080,  Q7 = 0.055,  Q8 = 0.185.

From this solution we see that the flow has tried to reverse direction in pipe  5,  indicating
that the PRV must then close.  Thus  Q5 = 0,  and the reported value of  149.227  is the
HGL on the downstream side of the PRV, which is slightly above its pressure setting.  In-
stead of operating in its normal mode, the PRV has acted as a check valve, not permitting
the flow to reverse its direction.

Let's increase the demand at node  5  to  0.100 m3/s.  To obtain a solution for this de-
mand, we must change the line that defines the continuity equation at node  5  in
subroutine  FUNCT  to  F(5)=Q5+X(6)-0.100.  Now the execution of the program
produces the following solution (units are  m3/s):

Q1 = 0.113,  Q2 = 0.002,  Q3 = 0.117,  Q4 = 0.079
Q5 = 0.034,  Q6 = 0.066,  Q7 = 0.063,  Q8 = 0.197

With this slightly larger demand at node  5  the PRV operates normally, maintaining an
HGL = 149 m  on its downstream side.  From these discharges the pipe head losses, the
pump heads, and other quantities can be evaluated, and from these the head at each node can
be determined.  Upon carrying out such computations, we find that the heads are  H1 =
173.6 m,  H2 = 155.7 m,  H3 = 155.7 m,  H4 = 180.3 m,  and  H5 = 147.2 m.  The head
on the upstream side of the PRV is  154.8 m,  so the PRV loss is  154.8 - 149 = 5.8 m.

If the demand at node  5  is  QJ5 = 0.16 m3/s,  the continuity statement in  FUNCT

for node  5  is changed to  F(5)=Q5+X(6)-0.16,  then the solution (units are m3/s)
becomes

Q1 = 0.145,  Q2 = 0.050,  Q3 = 0.145,  Q4 = 0.088
Q5 = 0.115,  Q6 = 0.045,  Q7 = 0.087,  Q8 = 0.233

Without a more complete examination of these solutions, we might be inclined to accept
all of them as valid.  However, upon computing some head losses and pump heads, the
following are found:  hf7 = 6.98 m,  hp1 = -  28.0 m,  hp2 = 4.04 m,  and  hf1 = 4.92 m,
so the HGL at node  2  is  H2 = 134.2 m.  Obviously the negative head for pump  1  is
unrealistic;  it is caused by operating the pump with a discharge that is outside the range of
the three pairs of points that were used to define this pump characteristic curve.  Also  H2
= 134.2 m  is much smaller than the HGL setting of the PRV, and since this device can
not act as a pump to increase the head across it, the most it can do is open completely.  If
a PRV opens completely, it typically still acts as a local loss device in a way that is
similar to a globe valve with a loss coefficient of about  10.  Thus the last solution is not
valid, and the problem must be solved again with another local loss device in place of the
PRV.  Currently there exists no simple a priori test to learn that the PRV should open
fully and that it is unable to maintain its pressure setting;  a solution must first be
obtained when we use the  Q-equations, because the nodal heads are determined as a
secondary step after the discharges are found.  The same statements apply to the use of the
∆Q-equations.

The three modes in which a PRV may operate are treated most conveniently with the
H-equations, since it is then possible to check directly, as the solution is obtained, whether



the head at the upstream side of the PRV is less than  Hv (the HGL upstream of the PRV)
and whether the head at the downstream pipe node is greater than the set  HGL.  If the head
H  at the downstream node becomes larger than the HGL setting of the PRV, then it
should shut off the flow in the pipe, and if  Hv  becomes smaller than HGL, then the PRV
should open fully.

When the  ∆Q-equations are used to analyze networks that contain PRV's, we must
work with two different sets of loops, one around which the  ∆Q's circulate, and one
around which the energy equations are written.  For our  8-pipe example, Fig. 4.27, the
first and

P1

P2
[1] (1)

[3]

[2]

(5)

(6)

(4)

(2)

(3)

(7)

(8)
0.05 m3/s

200 m

170 m

[5]

III
I

0.03 m3/s
0.08 m3/s

0.08 m3/s

II

∆Q1 ∆Q2

∆Q3

[4]

(HGL)1 

(PRV)1

Figure 4.27  The eight-pipe network with a PRV, with loop notation shown.

third equations match the corresponding equations, Eqs. 4.61, for this network without a
PRV in pipe  5.  The second equation is replaced by

F2 = K5
' (Qo5 + ∆Q2 )n5 − K6 (Qo6 − ∆Q2 )n6 − K3(Qo3 − ∆Q1)n3

− 2(Qo3 − ∆Q1)2 / (2gA3
2 ) − K8 (Qo8 − ∆Q3 )n8

−10(Qo8 − ∆Q3 )2 / (2gA8
2 ) − HGL + 200 = 0

(4.64)

It is notable that this equation does not contain  ∆Q2  in every term and that the system of
equations does not produce a symmetric Jacobian.  To determine the correct operational
mode for a PRV when using the  ∆Q-equations is much the same as with the  Q-equations.
Should the flow in a pipe reverse direction, then the PRV should close, and if the  HGL  at
the upstream end of the PRV is less than its setting, then the PRV should open fully;
otherwise the PRV is operating in its normal mode.  Logic can easily be included in the
computer program to check whether the flow is negative in pipes containing PRV's and
then change the nature of the problem being solved.  The fully-open mode of operation can
not be determined until the nodal heads are computed, as with the  Q-equations.  Should a
PRV close, then the discharge in that pipe becomes zero, and the  HGL  becomes unknown
and larger than the setting.  If a pipe containing a PRV has only one  ∆Q  flowing through
it, then that corrective discharge becomes known and is  ∆Qj = ± Qoi,  in which the minus
sign applies if the assumed directions for  Qoi  and  ∆Qj  coincide, and the plus sign
applies if these directions are opposed.  In place of  ∆Qj  as the unknown, the  HGL  is
unknown, and the number of unknowns still equals the number of equations.  Should a
PRV close that is internal, with two or more corrective discharges circulating through it,
then one of these corrective discharges must be expressed in terms of the others, and the
HGL  of the PRV replaces this  ∆Q  in the list of unknowns.  In our example, if the PRV



were in pipe  2  instead of  pipe  5,  as shown in Fig. 4.28, then  ∆Q2 = Qo2 + ∆Q1,  and
it is replaced by this quantity wherever else  ∆Q2  appears, such as in the discharges for
pipes  6  and  7.
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Figure 4.28  The modeling of a PRV in pipe  2  of the 8-pipe network.

To study this problem further, the reader should obtain a listing of  FUNCT  under the
name  EPRB4_9.FOR.  It can be used to solve this problem.  One additional integer
variable  IDOO  has been added to the list of arguments in  FUNCT;  it is given a value of
0  in the calling program when the equation vector is evaluated and  1  when the Jacobian
is evaluated.  This variable is needed because we do not want to close the PRV when we
evaluate the derivatives.  It is instructive to trace the logic that sets  Q5  to zero when the
PRV is closed, fixes the value of  ∆Q2 = Qo5  and replaces  ∆Q2  by the HGL as the
unknown represented by  X(2).  These changes are made when  Q5  becomes negative.
Subsequent checks might determine whether the HGL becomes less than the PRV setting;
if this occurs, the PRV should be reopened.  Another modification of this subroutine
allows the initial discharges  Qoi, i = 1-8,  to enter  FUNCT  through  X(i), i = 4-11,  
thus making it possible to change the demands without changing  Qoi  within the
subroutine.

Example Problem 4.9
Solve the eight-pipe network shown in Fig. 4.27 by using the  ∆Q-equations.  Obtain

this solution first for a demand at node  5  of  QJ5 = 0.100 m3/s  and then for  QJ5 =

0.080 m3/s.
The input data  (EPRB4_9.DAT)  to solve this problem with a demand of  0.100 m3/s

at node  5  is listed below with the solution:

                  Input Data                          Solution

DQ1  U  0.00   1  DQ1 = - 0.00749
DQ2  U  0.00   2  DQ2 = - 0.00570
DQ3  U  0.00   3  DQ3 = - 0.01668
Qo1  K  0.12   4  Qo1 =   0.12
Qo2  K  0.00   5  Qo2 =   0.00
Qo3  K  0.11   6  Qo3 =   0.11
Qo4  K  0.07   7  Qo4 =   0.07
Qo5  K  0.04   8  Qo5 =   0.04
Qo6  K  0.06   9  Qo6 =   0.06
Qo7  K  0.08 10  Qo7 =   0.08
Qo8  K  0.18 11  Qo8 =   0.18



Applying these solution values for the  ∆Qi, as appropriate, to the initial discharges gives
the final discharges, and then the pipe head losses can be computed, using the proper  K
and  n  for each pipe, as listed in the table:

P i p e     1     2     3     4     5     6     7     8

Q, m3/s 0.1125 - 0.0018 0.1175 0.0792 0.0343 0.0657 0.0633 0.1967
hL, m  21.40  0.0075  23.20   6.77   2.97   8.03   2.43   12.14

From these discharges the pump heads and local losses are  hp1 = 6.18 m,  hp2 = 3.58 m,
hL1 = 0.848 m,  hL2 = 8.18 m,  and  hL3 = 1.426 m.  From these the nodal heads can be
found as  H1 = 175.3 m,  H2 = 157.5 m,  H3 = 155.1 m,  H4 = 179.7 m,  H5 = 147.0 m,
and  Hv1 = 156.5 m.  We see that the head upstream from the PRV is 156.5 m  which is
less than  H2 = 157.5 m,  so the PRV has not opened fully.  The head at node 5 down-
stream,  H5 = 147.0 m,  is less than the HGL setting of the PRV (149 m) so the PRV has
not closed but operates normally.

When the demand at node 5 is  QJ5 = 0.080 m3/s,  then the input data and solution are

                  Input Data                          Solution

DQ1  U  0.00   1  DQ1 = - 0.01827
DQ2  U  0.00   2  DQ2 =     149.2
DQ3  U  0.00   3  DQ3 = - 0.02508
Qo1  K  0.12   4  Qo1 =   0.12
Qo2  K  0.00   5  Qo2 =   0.00
Qo3  K  0.09   6  Qo3 =   0.09
Qo4  K  0.07   7  Qo4 =   0.07
Qo5  K  0.04   8  Qo5 =   0.04
Qo6  K  0.04   9  Qo6 =   0.04
Qo7  K  0.08 10  Qo7 =   0.08
Qo8  K  0.16 11  Qo8 =   0.16

In this input file the initial discharge estimates  Qoi  have been altered from previous
values so that all continuity equations remain satisfied with  QJ5 = 0.080 m3/s.  The
solution values remind us that  ∆Q2  is actually the  HGL  at the downstream end of the
PRV since it has closed, and  FUNCT  has set  ∆Q2 = - Qo5  and then used  X(2)  as the
position for  HGL.  The table lists the discharges and head losses for this situation:

P i p e     1     2     3     4     5     6     7     8

Q, m3/s 0.1017  0.0217 0.1083 0.0768     0.0 0.0800 0.0549 0.1851
hL, m  17.83  0.652 19.98   6.40     0.0  11.47  1.887   10.86

The pump heads and local losses are  hp1 = 8.02 m,  hp2 = 3.69 m,  hL1 = 0.638 m,
hL2 = 7.25 m  and  hL3 = 1.211 m,  with nodal heads of  H1 = 177.4 m,  H2 = 163.2 m,
H3 = 160.7 m,  H4 = 181.9 m, and  H5 = 149.2 m.  Now the PRV has closed entirely so
the flow in pipe  5  is zero, and the  HGL  at its downstream end is above its set point.

*                              *                              *
4.4.5. SYSTEMATIC SOLUTION OF THE  Q-EQUATIONS

In earlier sections we have developed the three systems of equations that can be used to
analyze pipe networks.  We have written these equation systems for several small
networks, seen how the Newton method can be applied to any system of nonlinear
equations and how to solve a problem by using a general purpose program that implements



the Newton method for all three equation systems, and finally we have carried out detailed
computations by hand to obtain some solutions by iteration.  In this section we will see
how this knowledge can be used in developing computer programs that will analyze any
pipe network by using the  Q-equations, and the programs will require only enough
information from the user to describe adequately the network and its connectivity.  In the
next two sections similar programs will be developed for the solution of the  H-equations
and the  ∆Q-equations.

Let us begin by assuming that there are no local losses.  If they exist, they can be mod-
eled simply by assigning a larger equivalent sand roughness, or Hazen-Williams  CHW, to
the pipes containing minor losses.  Here we ignore the Manning equation.

In describing any network of pipes, we need two types of information:  (1)  Pipe infor-
mation consisting of the diameter, length, roughness coefficient, and end nodes for each
pipe.  This information can be called pipe-oriented data, since we assemble it by going
though a list of the pipes in the network;  (2)  Junction information, including the demand
at the junction, its elevation, and possibly the pipes that join at the junction.  This
information is called node-oriented data, since it is assembled by moving through the nodes
of the network.  Actually the connectivity of the network can be defined either by giving
the nodes at the ends of each pipe, or by giving the pipe numbers that join at each node.
We shall use this duplicative information to check that the user has not erred in defining
the network.

Now we shall describe the input data that are required.  Details on the form of this input
will be provided subsequently.  Prior to study of this section the reader should obtain a
listing of the program  SOLQEQS.FOR  (or  C  if you prefer) from the text  CD.  The
information that is required from the user is the following:

1.  A line that gives (a) the number of pipes, (b) the number of nodes, (c) the number of
reservoirs that supply the network, (d) the number of pumps, and (e) the options
which you wish to change from the default values.  (The default options and how
these are changed will be described later.)

2.  For each pipe, list its (a) number, (b) upstream node, (c) downstream node, (d)
length, (e) diameter, and (f) roughness coefficient.

3.  For each node, list its (a) number, (b) demand, and (c) elevation, and (d) a list of
pipes that join this node.

4.  For each reservoir, list (a) the pipe number that connects this reservoir to the net-
work, and (b) the water surface elevation of the reservoir.

5.  For each pump, list (a) the number of the pipe that contains the pump, and (b) three
(Q, hp)  pairs of discharge vs. pump head that will allow its operating characteristics
to be defined.

6.  Finally, because the algorithms that could be used to determine the minimum set of
independent loops for the energy equations are relatively complex, we require a list
of pipe numbers around each loop (with a minus sign before a pipe number if the
movement around the loop opposes the assumed direction of flow in that pipe).  We
require that pseudo loops be provided first, and then the real loops.

The information in item one is used to dimension the arrays that will store the
remaining information about the pipe network and to determine how many lines of each
information type will be read from the input data file.  The information must be provided
in the sequence that is listed above.

The program must perform five major tasks:
1.  Read the input data that defines the network.
2.  Develop from this information the system of  Q-equations, i.e., the junction contin-

uity equations and the energy equations around pseudo and real loops of the network.
This task defines the equations and also forms each element of the Jacobian matrix.

3.  Solve the system of equations.  Here we will simply call a standard linear algebra
solver.  However, a program for larger network problems should have a special
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linear algebra solver that takes advantage of the special properties of a sparse
Jacobian matrix.

4.  Obtain the head  H  at each node after the pipe discharges have been found.
5.  Write the solution results in tables that can be readily understood.  We choose to  

provide these results in two tables:  a pipe data table and a node data table.
In reading the pipe numbers that connect at a node and the pipe numbers that define a

loop, a pointer is used to separate data for consecutive nodes, and a second pointer separates
data for consecutive loops.  The pipes that join at nodes are placed consecutively in a one-
dimensional array  JN,  with  NN  pointing to the position in this array that separates data
for consecutive nodes.  A similar one-dimensional array  IK  contains the pipe numbers
that form the loops, with  LP  pointing to the first pipe number in each loop.  The use of
one-dimensional arrays with pointers is a more efficient use of storage than the use of two-
dimensional arrays, because the second subscript of a two-dimensional array must then be
at least as large as the maximum number of pipes that may exist in a loop.

When solving the  Q-equations (or  ∆Q-equations), we compute the nodal heads after
obtaining the solution for the discharges.  These heads are found by starting at all
reservoirs and computing each  H  at the node at the other end of a pipe from (to) the
reservoir by subtracting (adding) the pipe head loss from (to) the reservoir water surface
elevation.  After these heads have been determined, the nodes one pipe away from these can
be determined next, and so on.  This process continues until the head at every node has
been determined.

In program  SOLQEQS  the computation of heads begins after the  PIPE DATA  table
is written by the  DO 130  loop.  This loop finds each head at the other end of a pipe that is
connected to a reservoir, and upon computing  H  the integer array  INDX,  with its
argument equal to this node number, is set to 1 to show that nodal head has been
computed.  Now loop  DO 160  passes through the nodes, but nothing is done if  INDX(I)
for node  I  is zero.  Otherwise  INDX(I) = 1,  and then the pipes that join this node are
accessed through array  JN;  if  H  at the other end of a pipe is not known, it is computed.
Since not all nodal heads will be found from the first pass through the nodes, the integer  IJ
also accumulates the number of nodes whose head has been found.  One way to learn if
another pass is needed is to check whether  IJ  is less than  NJ,  the total number of nodes.
Actually we see whether  IJ  has increased from the previous pass.  If so, we pass through
the nodes again.  This method may result in passing through the nodes one extra time, but
it prevents the creation of an infinite loop if there is an error in the network description so
that fewer than  NJ  heads can be found.  After finding every head, the  NODE DATA  
table is written.  The program then allows the user to solve another problem whose data is
in a different file, or to change the peaking factor for the same network.

Detailed instructions on the preparation of input data to  SOLQEQS  follows:
Line 1:  No. of Pipes (NP),  No. of Nodes (NJ),  No. of Reservoirs (NRES),  No. of 

Pumps (NPUMP),  No. of Options (NOPT),  Option Pairs.
The options consist of a letter in quotes followed by a value, as follows:

Letter Controls What Value Default

U  or  u ES  or  SI  units 0 = ES,  1 = SI 0
Q  or  q Discharge units 0 = ft3/s, 1 = gal/min,

2 = mgd, 3 = m3/s,
4 = l/s

0 or 3

D  or  d Pipe diameter  and
  roughness units

0 = in, 1 = ft, 2 = m,
3 = cm, 4 = mm

0 if ES
4 if SI

F  or  f Peaking factor Multiplier of demands 1.0
V  or  v Kinematic viscosity ν = value ES,  1.217E-5

SI,   1.310E-6
G  or  g Specific weight γ = value ES,  62.4

SI,   9806.0
C  or  c Network check 1 = yes, 0 = no   1



Here is an example of specifying options:  2 'U' 1 'F' 1.5.  The 2 indicates two options are
being changed,  to specify  SI  units and to specify a peaking factor of  1.5.  In giving the
options, the units (ES or SI) option should appear first if it is to be elected, but otherwise
the options can be given in any order.
Next group:  Pipe data consisting of  NP  lines, each giving pipe number, node 1,  node
2,  length, diameter, and roughness.  Pipes must be numbered consecutively, starting with
1,  but they need not be entered consecutively.  The roughness may be either the equivalent
sand roughness  e  (in the same units as the diameter) for use in the Colebrook-White and
Darcy-Weisbach equations, or a Hazen-Williams  CHW,  and these may be mixed.  The
program decides which equation to use, based on the roughness size.
Next group:  Node data consisting of  NJ  lines, each giving node number, demand,
elevation, number of pipes at the node, and a list of these pipe numbers with a minus if the
flow is from the junction.  This information is used to define the junction continuity
equations.
Next group:  Reservoir data consisting of  NRES  lines, each giving the number of the
pipe connecting the reservoir to the network and the water surface elevation.
Next group:  Pump data consisting of  NPUMP  lines, each with the number of the pipe
containing the pump, followed by three (Q, hp) pairs to define the pump curve.
Next group:  Loop data consisting of  NL = NP - NJ  lines, one loop on each line with
the number of pipes in the loop and a list of these pipes.  A negative sign must precede the
pipe number if the direction around the loop opposes the assumed direction of flow in this
pipe.  Pseudo loops connecting reservoirs must appear first in this list, and the real loops
follow.

Example Problem 4.10
Use program  SOLQEQS  to solve the network of Example Problem 4.5.  Obtain two
solutions:  (1) for the given demands and (2) with these demands multiplied by  2.0.

The input data takes the form

6 5 1 0 1 'D' 1 1 0.50 350.  3  1  - 2  - 4
1 0 1 1500 0.667 0.000417 2 0.35 350.  2  2  - 3
2 1 2 1000 0.5 0.000417 3 0.50 350.  2  4  - 5
3 2 4 1500 0.5 0.000417 4 0.50 350.  3  3  5  - 6
4 1 3 1500 0.5 0.000417 5 0.25 350.  1  6
5 3 4 1200 0.5 0.000417 1 500
6 4 5 1000 0.333 0.000417 4  2  3  - 5  - 4

or, if the diameters and  e  are given in inches (Inches is the default;  either giving  0
options as the last  0  in the first line below, or giving  1 'D' 0,  tells  SOLQEQS  to use
inches), then the input would be

6 5 1 0 0 1 0.50  350.  3  1  - 2  - 4
1 0 1 1500 8.0 0.005 2 0.35  350.  2  2  - 3
2 1 2 1000 6.0 0.005 3 0.50  350.  2  4  - 5
3 2 4 1500 6.0 0.005 4 0.50  350.  3  3  5  - 6
4 1 3 1500 6.0 0.005 5 0.25  350.  1  6
5 3 4 1200 6.0 0.005 1 500
6 4 5 1000 4.0 0.005 4  2  3  - 5  - 4

When prompted after the first solution, we give the peaking factor  2.0.  The solution
tables follow.  In the last  NODE DATA  table we see that some heads are negative, so the
network is unable to supply demands that are double the initial values.



PIPE DATA

PIPE
N O .

 N O D E S
FROM   TO

   L DIA.   e
x 1 0 4

  Q VEL. HEAD
LOSS

HLOSS/
1 0 0 0

    ft.    ft   ft  ft3/s   ft/s    ft.
  1     0   1   1500 0.667  4.17   2.10 6.02   23.50   15.67
  2     1   2   1000 0.500  4.17   0.82 4.18   11.00   11.00
  3     2   4   1500 0.500  4.17   0.47 2.39     5.67     3.78
  4     1   3   1500 0.500  4.17   0.78 3.97   14.97     9.98
  5     3   4   1200 0.500  4.17   0.28 1.43     1.70     1.42
  6     4   5   1000 0.333  4.17   0.25 2.87     8.83     8.83

NODE DATA

NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.
 Estimate      ft3/s       ft.     ft.       lb/in2         ft.

     1        0.5    0.500    350.0 126.50     54.82    476.50
     2        0.3    0.350    350.0 115.50     50.05    465.50
     3        0.5    0.500    350.0 111.53     48.33    461.53
     4        0.5    0.500    350.0 109.82     47.59    459.82
     5        0.3    0.250    350.0 101.00     43.77    451.00

For peaking factor = 2.0: PIPE DATA

PIPE
N O .

 N O D E S
FROM   TO

   L DIA.   e
x 1 0 4

  Q VEL. HEAD
LOSS

HLOSS/
1 0 0 0

    ft.    ft   ft  ft3/s   ft/s    ft.
  1     0   1   1500 0.667  4.17   4.20 12.03   91.53   61.01
  2     1   2   1000 0.500  4.17   1.64   8.36   42.48   42.48
  3     2   4   1500 0.500  4.17   0.94   4.79   21.53   14.35
  4     1   3   1500 0.500  4.17   1.56   7.94   57.69   38.46
  5     3   4   1200 0.500  4.17   0.56   2.85     6.32     5.27
  6     4   5   1000 0.333  4.17   0.50   5.73   33.66   33.66

NODE DATA

NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.
 Estimate      ft3/s       ft.     ft.       lb/in2         ft.

     1        1.0    1.000    350.0   58.48     25.34    408.48
     2        0.7    0.700    350.0   15.99       6.93    365.99
     3        1.0    1.000    350.0     0.79       0.34    350.79
     4        1.0    1.000    350.0 -   5.53   -   2.40    344.47
     5        0.5    0.500    350.0 - 39.20   - 16.99    310.80

*                              *                              *

Example Problem 4.11
Use program  SOLQEQS  to analyze the  5-pipe,  3-node network in the figure.  In pipe  1
is a pump, with the characteristics given in the table, which is connected to a reservoir.
Let  ν = 1.417x10-5 ft2/sec.  The elevation of all nodes is zero.



P [1]
(1)

[3]
[2]

(5)

(4)

(2)

(3)

1.2 ft3/s

All e = 0.002"

8" - 4000'
6" - 3000'

8" - 6000'100'

12" - 4000'

1.5 ft3/s

1.0 ft3/s

6" - 2000'

90'

The pump curve is described by data in the following table:

Q , ft3/s H, ft

   4.5   54
   4.0   50
   3.5   44

The input data this problem are listed first in two columns, followed by the solution
tables.

5 3 2 1 1 'V' 1.417E-5 2 1.2 0  2  3  - 4
1 0 1 4000 12 0.002 3 1.0 0  3  2  4  - 5
2 1 3 6000 8 0.002 1 100
3 1 2 4000 8 0.002 5 90
4 2 3 3000 6 0.002 1  4.5  54  4.0  50  3.5  44
5 3 0 2000 6 0.002 3  1  2  5
1 1.5 0  3  1  - 2  - 3 3  2  - 4  - 3

PIPE DATA

PIPE
N O .

 N O D E S
FROM   TO

   L DIA.   e
x 1 0 3

  Q VEL. HEAD
LOSS

HLOSS/
1 0 0 0

    ft.    in    in  ft3/s   ft/s    ft.
  1     0   1   4000   12.0   2.0   4.13   5.26   26.24     6.56
  2     1   3   6000     8.0   2.0   1.21   3.45   29.13     4.85
  3     1   2   4000     8.0   2.0   1.42   4.08   26.48     6.62
  4     2   3   3000     6.0   2.0   0.22   1.14     2.64     0.88
  5     3   0   2000     6.0   2.0   0.43   2.18     5.85     2.93

 Pump  1  in pipe  1:    Head  =  52.21 ft,  Q =  4.13 ft3/s

NODE DATA

NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.
 Estimate      ft3/s       ft.     ft.       lb/in2         ft.

     1        1.5    1.500      0.0 124.98      54.16    124.98
     2        1.2    1.200      0.0   98.50      42.68      98.50
     3        1.0    1.000      0.0   95.85      41.54      95.85

*                              *                              *

Example Problem 4.12
Solve the 7-pipe, 4-node network shown in Fig. 4.6, which contains a PRV in pipe  6, 
by using program  SOLQEQS.

The input data for this problem are listed after this paragraph.  Then the two solution
tables follow.  Several observations should be made here:  In the lines of nodal data the
information after the nodal demand that lists the pipes that join at a node is used to define



the junction continuity equations;  therefore the list of pipes that join at node  1  must
include pipe  6  with the PRV in it.  The input that lists the pipes that define the loops of
the network are used to define the energy loop equations;  this group should therefore define
a loop that starts (or ends) at the artificial reservoir created by the PRV, so for this network
there will be two pseudo loops and one real loop.  Also, since the downstream part of pipe
6  defines  K',  its length is  500 ft,  and its upstream node is given as  0 (a reservoir).

7 4 3 1 1 'C' 0 3 0 50 4 4 7 -3 -5
1 0 1 1000 6 0.02 4 20 1 2 5 6
2 1 2 1000 6 0.02 1 90
3 3 2 800 6 0.02 4 100
4 0 3 200 6 0.02 6 55
5 3 4 2000 6 0.02 1  1.0  60  1.5  55  2.0  48
6 0 4 500 6 0.02 3  1  7  - 4
7 1 3 1500 1 0.02 3  6  - 5  -  4
1 0 50 4 1 - 2 - 6 - 7 3  2  -  3  -  7
2 1 50 2 2 3

PIPE DATA

PIPE
N O .

 N O D E S
FROM   TO

   L DIA.   e
x 1 0 3

  Q VEL. HEAD
LOSS

HLOSS/
1 0 0 0

    ft.    in    in  ft3/s   ft/s    ft.
  1     0   1   1000     6.0   20.0   1.11   5.65   27.28   27.28
  2     1   2   1000     6.0   20.0   1.07   5.43   25.26   25.26
  3     3   2     800     6.0   20.0 -

0.07
- 0.34     0.10     0.12

  4     0   3     200     6.0   20.0   0.89   4.54     3.53   17.74
  5     3   4   2000     6.0   20.0   0.96   4.91   41.47   20.74
  6     0   4     500     6.0   20.0   0.04   0.18     0.04     0.04
  7     1   3   1500     1.0   20.0   0.01   1.31   25.56   17.04

Pump  1  in pipe  1:    Head  =  59.09 ft,  Q =  1.11 ft3/s

NODE DATA
NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.

 Estimate      ft3/s       ft.     ft.       lb/in2         ft.

     1        0.0    0.000      50.0   71.81        31.1    121.81
     2        1.0    1.000      50.0   46.55        20.2      96.55
     3        0.0    0.000      50.0   46.45        20.1      96.45
     4        1.0    1.000      20.0   34.98        15.2      54.98

*                              *                              *
4.4.6. SYSTEMATIC SOLUTION OF THE  H -EQUATIONS

This section is similar to Section 4.4.5, but now the objective is to describe a program
that analyzes a network by solving the  H-equations.  This program will be restricted to the
solution of the  H-equations for networks that do not contain a PRV or a BPV and in
which minor losses can be neglected.  (Exercises to include these devices can be found in
the end-of-chapter problems.)  With these restrictions the Jacobian matrix of the equation
system is symmetric.  Symmetry occurs because the partial derivatives of terms which

describe the discharge in pipe  k  between nodes  i  and  j, such as {(Hi − H j ) /Kk }1/nk ,

will be the same in the equations where this discharge occurs, so long as neither  i  nor  j
are the node for which this junction continuity equation is written.  With the sign
convention that flow to a junction is positive and flow from a junction is negative, this
term will be preceded by a plus sign when  j  is the junction for which the equation is
written.  The derivative with respect to  Hi  will be positive.  The derivative with respect
to  Hj  will be negative.  If the term describes a pipe whose flow leaves the junction, a



negative sign will precede the term and  i  will be the junction for which the equation is
written, and the derivative for the other node  j  will be positive.  Thus the off-diagonal
elements of the Jacobian matrix are positive, and the diagonal elements are negative, as we
have already seen in an example.  We will utilize this symmetry property in developing an
algorithm to generate the Jacobian.  However, we first examine alternative means for
evaluating the derivatives.

The direct way to differentiate  {(Hi − H j ) /K }1/n ,  in which the pipe number subscript

k  has been omitted, is to use the power rule of calculus to obtain

±[{(Hi − H j ) / K }(1−n)/n ] / (nK) (4.65)

in which the minus sign applies when differentiating with respect to  Hj.  When a pump is
present in the pipe, however, it is no longer a straightforward process to differentiate this
term, as it now is  {(Hi + hp - Hj)/K}1/n,  in which  hp = hp(Q)  is normally expressed as

hp = AQ2 + BQ + C.
Another way to obtain these derivatives is to start with

Q =
Hi − H j

K











1/n

(4.66)

and compute the differential of this formula as

dQ = { Hi − H j }1/n−1dH / (nK1/n ) = Q1−ndH / (nK) (4.67)

The partial derivative with respect to  Hi  is then

∂Q /∂Hi = Q1−n/(nK) (4.68)

and the partial derivative with respect to  Hj  is identical, except for a minus sign.  So
Jacobian matrix elements can be obtained quickly via Eq. 4.68.  With this approach we can
compute the Jacobian terms for a pipe with a pump in it.  Also write {(Hi - Hj)/K}1/n  as

|(Hi - Hj)/K|1/n-1(Hi - Hj)/K  to allow a sign change for flows that oppose the assumed
direction, which may occur during an intermediate iteration even if the assumed direction is
correct for the final solution.

When a pump is present in a pipe, then we can write

Hi − H j + AQ2 + BQ + C − KQn = 0 (4.69)

Following the procedure of computing the differential of this equation, we find

∂Q / ∂H = ±1 / (nKQn−1 − 2AQ − B) (4.70)

If the derivative is with respect to  Hi,  choose the plus sign;  otherwise choose the minus
sign for  Hj.  Thus, for a pipe containing a pump, Eq. 4.69 is first solved for  Q,  and this
Q  is then used in Eq. 4.70 to evaluate the derivatives for the Jacobian matrix.

Now we can modify  SOLQEQS  to solve a system of  H-equations.  Now please obtain
a listing from the  CD  of  SOLHEQS  and refer to it as you read this section.  Here a
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NAMELIST  (actually an extension of standard Fortran 77, but implemented in many
Fortran compilers) will be used to handle options.  The  NAMELIST  will also be used in
programs in later chapters.  The options that may be in the  &OPTIONS  list are the
following:  IU (to set ES or SI units),  IQ (to set the discharge units),  ID (to give the
units for diameters and roughnesses),  IC ( = 0 to omit checking the dual network con-
nectivity description),  VIS (kinematic viscosity),  PF (peaking factor),  GAMMA (specific
weight)  and  ERR (Newton error criterion).  With the  H-equations there are no loop
energy equations, so the input for loops is eliminated, as is the program segment that
generates the loop equations.  The section that creates the system of equations will include
the junction continuity equations, but this section is modified to implement the new
method of obtaining the system Jacobian and the  H-equations.  In  SOLHEQS  the length
of array  H,  which stores the nodal heads, has been augmented to include the reservoir
heads, so that  Hi  and  Hj  now provide the nodal heads at the ends of each pipe, including
those that supply the network from a reservoir.  So we can easily detect a pump in a pipe,
its upstream node number is changed to a negative value.  The function subprogram
COMPK_N  now supplies  n , but (1 - 1/n ) is stored in array  N  for later use.

In this program we must have access to discharge values during any iteration for any
pipe containing a pump.  We do this by computing the discharge from the heads that exist
during any iteration by letting  ARG = [(K/(Hi - Hj)]  and  DD = ARG(1 - 1/n);  then we
find  that  Q = ARG/DD.  Statements following label 146 in the program listing carry out
this step.  When a pump exists in the pipe, then the Newton method is used to solve Eq.
4.69 by statements found in the  DO 145  loop.

Example Problem 4.13
Prepare suitable input data to analyze the network of Example Problem 4.11 by using pro-
gram  SOLHEQS.

Only minor modifications to the input data in Example Problem 4.11 are needed.  First,
because the options are entered via a  NAMELIST  in program  SOLHEQS,  the first line
of the input data now should contain only four values:  the numbers of pipes, nodes,
reservoirs, and pumps.  The second line of input data begins with  &OPTIONS,  and the
next entries contain the namelist variables that differ from the default values, each followed
by an equals sign and the value of that variable.  This list is ended with a  /.  Since no
loop data are needed, the two lines of loop data are deleted from the input data for the
solution to Example Problem 4.11.  Since  IQ = 0  is the default value, it need not be
included in the list after  &OPTIONS.  With these changes, the input data are now as
follows:

5 3 2 1 1 1.5 0  3  1  - 2  - 3
&OPTIONS IQ=0,VIS=1.417E-5/ 2 1.2 0  2  3  - 4
1 0 1 4000 12 0.002 3 1.0 0  3  2  4  - 5
2 1 3 6000 8 0.002 1 100
3 1 2 4000 8 0.002 5 90
4 2 3 3000 6 0.002 1  4.5  54  4.0  50  3.5  44
5 3 0 2000 6 0.002

*                              *                              *

Example Problem 4.14
The network below is supplied by the source pump in pipe  1,  and a booster pump is
needed to get the water over the hill below nodes  2  and  3.  A turbine is placed in pipe  6
to extract the extra head after the water is moved over the hill crest.  Analyze this network
using program  SOLHEQS.  Diameters are in  mm,  and lengths in  m.  The kinematic
viscosity is  ν = 1.31x10- 6 m2/s.



P
[1]

(1)

[4]

[3]

[2]

(5)

(6)

(4)

(2)

(3)

(7)

(8)

[5]

[6]

0.08 m3/s

All e = 0.4 mm

T

P80 m
400 - 500

75 m

150 - 2500

350 - 1500

0.01 m3/s

150 - 2000

5 m

0.04 m3/s

0.03 m3/s

0.05 m3/s

0.025 m3/s

200 - 1500

20 m

200
- 500

20 m

300
-1000

350 - 1500100 m

Diameters in mm
Lengths in m

90 m

Source Pump                      Booster Pump                         Turbine

  Q
m3/s

 hp  
 m

  Q
m3/s

 hp  
 m

  Q
m3/s

 ht  
 m

0.20  50 0.20  15 0.15 - 30
0.30  47 0.25  14 0.25 - 25
0.50  43 0.30  12 0.35 - 18

The turbine can be modeled as a pump;  the heads are recorded as negative values in
preparing its operating characteristics.  Since this network is described in  SI  units, the
options for units, discharges and diameters must all be specified.  The input data file for
this problem, listed in two columns, is therefore

8 6 2 3 2 100 0.04 2 2 - 3
&OPTIONS IU=1,IQ=3,ID=4/ 3  90 0.03 2 3 - 6
1 0 1 500 400 0.4 4  10 0.05 3 4 5 - 8
2 1 2 1500 350 0.4 5  20 0.025 3 6 - 5 - 7
3 2 3 1500 350 0.4 6   5 0.01  1 8
4 1 4 2500 150 0.4 1 80
5 5 4 1500 200 0.4 7 20
6 3 5 1000 300 0.4 1  0.2  50  0.3  47  0.5  43
7 5 0 500  200 0.4 2  0.20  15  0.25  14  0.30  12
8 4 6 2000 150 0.4 6  0.15  - 30  0.25  - 25  0.35  - 18
1 75 0.08 3 1 - 2 - 4

The solution tables from  SOLHEQS  are

PIPE DATA

PIPE
N O .

 N O D E S
FROM   TO

   L DIA.   e
x 1 0 2

  Q VEL. HEAD
LOSS

HLOSS/
1 0 0 0

    m    mm    mm  m3/s   m/s     m
  1     0   1    500    400   40.0 0.330  2.63     8.78   17.55
  2   - 1   2  1500    350   40.0 0.217  2.26   23.02   15.35
  3     2   3  1500    350   40.0 0.177  1.84   15.39   10.26
  4     1   4  2500    150   40.0 0.033  1.87   76.55   30.62
  5     5   4  1500    200   40.0 0.027  0.86     6.93     4.62
  6   - 3   5  1000    300   40.0 0.147  2.08   15.87   15.87
  7     5   8    500    200   40.0 0.095  3.03   27.83   55.66
  8     4   6  2000    150   40.0 0.010  0.57     5.89     2.95



 Pump  1  in pipe  1:    Head  =      46.22 m,  Q =  0.330 m3/s
 Pump  2  in pipe  2:    Head  =      14.77 m,  Q =  0.217 m3/s
 Pump  3  in pipe  6:    Head  =  -  30.11 m,  Q =   0.147 m3/s

NODE DATA

NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.
 Estimate      m3/s       m      M         kPa           m

    1       0.1    0.080      75.0   42.45      416.2      117.45
    2       0.0    0.040   100.0     9.19        90.1      109.19
    3       0.0    0.030      90.0     3.80        37.3        93.80
    4       0.1    0.050      10.0   30.90      303.0        40.90
    5       0.0    0.025      20.0   27.83      272.9        47.83
    6       0.0    0.010        5.0   30.01      294.3        35.01

*                              *                              *

4.4.7. SYSTEMATIC SOLUTION OF THE  ∆∆∆∆Q-EQUATIONS
In this section we describe the development of the computer program  SOLDQEQS  that

is based on the  ∆Q-equations and analyzes pipe networks.  This program requires the user
to specify the initial discharges,  Qoi,  so they satisfy all of the junction continuity
equations, because algorithms that do this automatically involve considerable logic.  We
will also omit the input that provides the dual description of the network connectivity;
instead we will generate the pipe numbers that interconnect the network nodes from the data
on the nodes at the ends of the pipes.  This generated data will be used to verify that the
input  Qoi  do satisfy the junction continuity equations.  Finally, this program will not
allow a PRV or any similar device in the network.  With this restriction the Jacobian
matrix will be symmetric and positive definite, thereby allowing a special linear algebra
solver that requires only the upper (or lower) triangular and diagonal elements of the
Jacobian to be available during the solution process.  This approach provides us a solution
variant that could also be used in solving the  H-equations by the Newton method.

To describe the computer program logic that forms the  ∆Q-equations and the derivatives
that form the Jacobian elements, it will be convenient to be able to refer to the equations
and the nonzero derivatives with respect to  ∆Q  from an example.  At this time obtain a
listing of  SOLDQEQS  from the  CD  so it can be studied while you read the rest of this
section.  The network in Example Problem 4.14 will serve the purpose of illustrating the
logic of this program.  Since this network contains several pumps, one of which produces
a negative head as a turbine, this example will help us incorporate pumps correctly into the
code.  The two  ∆Q-equations for this network are

F1 = K1(Qo1 + ∆Q1)n1 − hp1 + K4 (Qo4 + ∆Q1 − ∆Q2 )n4

− K5 (Qo5 − ∆Q1 + ∆Q2 )n5 + K7 (Qo7 + ∆Q1)n7 − 80 + 20 = 0
(4.71)

and

F2 = K2 (Qo2 + ∆Q2 )n2 − hp2 + K3(Qo3 + ∆Q2 )n3 + K6 (Qo6 + ∆Q2 )n6

− hp3 + K5 (Qo5 − ∆Q1 + ∆Q2 )n5 − K4 (Qo4 + ∆Q1 − ∆Q2 )n4 = 0
(4.72)

In these equations the head  hpj  of  pump  j  is described by  hpj = Aj (Qoi ± ∆Qk∑ )2

+Bj (Qoi ± ∆Qk∑ ) + Cj ,  and the coefficients  A,  B,  and  C  are chosen to fit three pairs

of points along the pump curve, as before.  These energy equations are written around the
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same loops in which the corrective discharges  ∆Q1  and  ∆Q2  circulate.  Therefore, every
term in  Eq. 4.71  contains a  ∆Q1,  and every term in Eq. 4.72 contains a  ∆Q2.

The Jacobian  [D]  will have two rows, one for each of the two equations, and two
columns corresponding to the two unknowns  ∆Q1  and  ∆Q2,  or

D[ ] =

∂F1
∂∆Q1

∂F1
∂∆Q2

∂F2
∂∆Q1

∂F2
∂∆Q2



















(4.73)

in which the individual elements are

∂F1
∂∆Q1

= n4K4 (Qo4 + ∆Q1 − ∆Q2 )n4 −1 + n5K5 (Qo5 − ∆Q1 + ∆Q2 )n5−1

+ n7K7 (Qo7 + ∆Q1)n7 −1 + n1K1(Qo1 + ∆Q1)n1−1 − 2A1(Qo1 + ∆Q1) − B1

(4.74)

∂F1
∂∆Q2

=
∂F2
∂∆Q1

= − n4K4 (Qo4 + ∆Q1 − ∆Q2 )n4 −1− n5K5 (Qo5 − ∆Q1 + ∆Q2 )n5−1 (4.75)

∂F2
∂∆Q2

= n2K2 (Qo2 + ∆Q2 )n2 −1 + n3K3(Qo3 + ∆Q2 )n3−1 + n6K6 (Qo6 + ∆Q2 )n6 −1

+ n5K5 (Qo5 − ∆Q1 + ∆Q2 )n5−1 + n4K4 (Qo4 + ∆Q1 − ∆Q2 )n4 −1

− 2A2 (Qo2 + ∆Q2 ) − B2 − 2A3(Qo6 + ∆Q2 ) − B3

(4.76)

To allow for the possibility that one of more flows might change direction and

Qoi ± ∆Qk∑   would become negative, the quantities  Ki (Qoi ± ∆Qk∑ )ni   will be rewrit-

ten as  Ki | (Qoi ± ∆Qk∑ )|ni −1(Qoi ± ∆Qk∑ ) .  Doing this will be convenient since all
factors but the last are also needed to evaluate terms in the derivatives.

For this program we must define the loops around which  (1) the energy equations will
be written, and  (2) each  ∆Q  circulates.  Thus the user must supply the pipe numbers
which define each energy loop, with a negative pipe number whenever the direction around
the loop opposes the assumed direction of flow in that pipe.  This  information was also
required as input to  SOLQEQS.  These loop data determine the terms in each equation and
the sign of each term.  As in  SOLQEQS,  this data resides in a one-dimensional integer
array  IK,  with a pointer  LP  to separate individual loops.  The corrective loop discharge
data for each pipe is in a similar array  IK1,  with a pointer  LP1  to separate entries be-
tween individual pipes.  Thus the positions in array  IK1  that will contain information on
a corrective loop discharge through pipe  I  will start with subscript (argument of the array)
LP1(I) + 1  and end with subscript  LP1(I+1).  Thus  LP1  must have dimension  NP + 1.
In a similar way  LP  must have dimension  NL + 1 = NP -  NJ + 1.

Let us now examine an algorithm to obtain the corrective loop discharges in each pipe
from the loop information.  The pipes around the two loops in the example network are

Loop 1:  1  4  - 5  7
Loop 2:  2  3  6  5  - 4

and this data will be stored in  IK  as follows:
IK(1) = 1,  IK(2) = 4,  IK(3) = - 5,  IK(4) = 7,



IK(5) = 2,  IK(6) = 3,  IK(7) = 6,  IK(8) = 5  IK(9) = - 4,
with LP(1) = 0,  LP(2) = 4,  and  LP(3) = 9.
Since  ∆Q1 circulates through loop 1 and  ∆Q2 circulates through loop 2, we see that the
loop number (the argument of  LP) gives the corrective loop discharge through a pipe when
the pipe number occurs in the list of IK's for that loop.  For example, since pipe  4  is a
pipe number in loops  1  and  2,  the corrective loop discharges  ∆Q1  and  ∆Q2  both
circulate through it, and also  ∆Q1  is in the same direction as the assumed flow in pipe  4
since it is positive in loop 1, whereas  ∆Q2   opposes the assumed flow since it is nega-
tive in the list of pipes in loop  2.  The number of corrective loop discharges through a
pipe is not known in advance, so it is simpler to use a two-dimensional array initially,
with the pipe number as the first subscript and the number of corrective loop discharges
through that pipe as the second subscript.  Hence the second subscript of this array must
equal or exceed the maximum number of  ∆Q's  passing through any pipe, so most of this
array space will be unused;  once these numbers are known, the information can be trans-
ferred into the one-dimensional array  IK1.  Then the two-dimensional array can be deallo-
cated and the memory used for other purposes.  An alternative for this array is to
EQUIVALENCE  it to another array that is not used until later, such as the array for the
Jacobian matrix.  Figure 4.29 lists Fortran statements that could be used to generate these
arrays, with the array  LP1  zeroed before beginning this algorithm.

A very similar algorithm can be used to generate the pipe numbers that join at each
node.  The essential difference is that the upstream and downstream nodes in the arrays  L1
and  L2  identify the node to which the pipes attach.  In program  SOLDQEQS  this started
in the  DO 24  loop.  Since we want to verify that the user-supplied initial discharges  Qoi  

      DO 50 I=1,NL
      DO 50 J=LP(I)+1,LP(I+1)
      II=IABS(IK(J))
      NI=LP1(II)+1
      IK2(II,NI)=ISIGN(I,IK(J))
   50 LP1(II)=NI
      NI=0
      NCT=NI
      DO 54 I=1,NP
      DO 53 J=1,LP1(I)
      NI=NI+1
   53 IK1(NI)=IK2(I,J)
      LP1(I)=NCT
   54 NCT=NI
      LP1(NP+1)=NI

Figure 4.29  Listing of Fortran code to generate arrays  IK1  and  LP1.

do satisfy all of the junction continuity equations, this check is performed immediately
after the pipes that join at each node are identified.  This information makes it easy to
obtain the heads  H  at the nodes after the discharges and head losses in the pipes are
computed by using essentially the algorithm that is in  SOLQEQS  for this purpose.

Now let's see how to obtain the system of ∆Q-equations and the Jacobian that are
needed to implement the Newton method.  The symmetry that occurs in the Jacobian, if
devices such as  PRV's  do not exist, will be advantageously used, and a one-dimensional
array will store the banded portion of the Jacobian.  In  SOLDQEQS  these tasks are
accomplished within the outer  DO 90  loop.  The index  I  in this loop tracks the  NL
loop equations, and the equation values are generated and stored in the array  F.  The
process begins with  F(I)=F(I)+FI* ...  The columns of the Jacobian matrix are each related
to a  ∆Q,  and these values are placed in the one-dimensional array  IK1.  The pipe
numbers in each loop, which identify the terms that are needed to evaluate the equations



and the Jacobian elements, are stored in the one-dimensional array  IK.  The array  LP  is a
pointer that separates consecutive equations, e.g. loops, in array  IK.

In a banded matrix all elements which are displaced more than the band width from the
diagonal are zero.  If  i  is the row number and  j  is the column number, then the band
width  NBAND  is the maximum difference between a nonzero element in any column and
its row number, plus one, or

NBAND = |j - i|max + 1 (4.77)

In some literature this definition is the half band width since, if the matrix is not symmet-
ric, as many elements must to be stored to the left of the diagonal as to its right.  In any
symmetric matrix  [A]  each element  Aij = Aji.  If a two-dimensional array is used in a
computer program to store the elements of a banded matrix, the first subscript (for rows)
must be at least as large as the number of equations to be solved, and the second subscript
must be as least as large as  2NBAND - 1.  A special algorithm that properly accounts for
the matrix properties is needed to solve a banded matrix problem.  If the banded matrix is
symmetric, it is not necessary to store all of the elements above and below the diagonal if
the solution algorithm accounts for this symmetry.  Either the elements above and on the
diagonal, or those below and on the diagonal, are all that must be stored.

Program  SOLDQEQS  uses a one-dimensional array to store the banded elements of
the Jacobian and calls a linear algebra subroutine  SYMMAT  to return the solution to the
linear equation system in the array  F.  Before calling  SYMMAT,  the upper triangular
portion of a banded symmetric Jacobian matrix is stored in a one-dimensional array  DJ.  In
the declaration portion of  SOLDQEQS  we will find that  DJ  is a one-dimensional
allocatable array with  DJ[ALLOCATABLE](:)  and that the number of real positions to
store values in  DJ  is allocated with  ALLOCATE(DJ(NL*NBAND-MM)),  in which
NBAND  is the band width and  MM = NBAND - 1.  Thus a preliminary task is to
determine the band width before allocating  DJ  and storing the nonzero derivative values in
it.  The listing in Fig. 4.30 determines the required band width.

C     FINDS BAND WIDTH
      MM=0
      DO 56 I=1,NL
      DO 56 J=LP(I)+1,LP(I+1)
      IJ=IABS(IK(J))
      DO 56 JJ=LP1(IJ)+1,LP1(IJ+1)
      II=IABS(IK1(JJ))-I
      IF(II.GT.MM) MM=II
   56 CONTINUE
      NBAND=MM+1

Figure 4.30  Band width algorithm.

The first position in array  DJ  is the diagonal element in the first row.  The diagonal
element of the second row is in position  (2 - 1)NBAND + 1,  the position of the diagonal
element in the third row is  (3 - 1)NBAND + 1,  and in general the diagonal element in the
ith row is in position  id = (i - 1)NBAND + 1.  An alternative formula for locating the
diagonal position is  id = i NBAND - MM  in which  MM = NBAND - 1,  the number of
elements beyond the diagonal.  Thus we see that the storage that is needed by  DJ  is
NL*NBAND - MM  (NL  is the number of equations), as given in the  ALLOCATE  state-
ment.  The position of off-diagonal elements in this one-dimensional array will be the
diagonal position  id  plus the difference between the column number and the row number
for the element.  In any equation this position is  iu = id + (j - i) = id - i + j.  Thus in
SOLDQEQS  the statement after  DO 90 I=1,NL  that is used to define the  NL  equations
is  ID=NBAND*I-MM,  which locates the position of the diagonal element for each row,
and the statement  NI = ID - I  is an integer which locates the nonzero off-diagonal



positions in  DJ  when the column position is added.  Thus the statements that store the
values in the proper locations of  DJ  are

      DJ(NI+JJ1)=DJ(NI+JJ1)+FI*FLOAT(IK1(JJ)/JJ1)*DD1
   87 CONTINUE
   90 DJ(ID)=DJ(ID)+DD1

The portion of the code, within the  DO 90  loop in program  SOLDQEQS,  that
generates the system of equations and the values for the Jacobian and then obtains the
solution that is used as the Newton correction, consists of the lines listed in Fig. 4.31:

      DO 90 I=1,NL
      IB=NBAND*I-MM
      NI=IB-I
      II=LP(I)+1
      II1=LP(I+1)
      DO 90 J=II,II1
      IJ=IABS(IK(J))
      IF(I.GE.NRES.OR.J.GT.II) GO TO 83
      IJ1=IABS(IK(II1))
      DO 80 JJ=1,NRES
      IF(IRES(JJ).EQ.IJ) F(I)=F(I)-ELE(JJ)
      IF(IRES(JJ).EQ.IJ1) F(I)=F(I)+ELE(JJ)
   80 CONTINUE
   83 FI=IK(J)/IJ
      QQ=Q(IJ)
      DO 85 JJ=LP1(IJ)+1,LP1(IJ+1)
      JJ1=IABS(IK1(JJ))
   85 QQ=QQ+FLOAT(IK1(JJ)/JJ1)*DQ(JJ1)
      DD=K(IJ)*ABS(QQ)**N(IJ)
      DD1=DD*(N(IJ)+1.)
      IF(L1(IJ).LT.0) THEN
      JJ=1
      DO 86 WHILE (IPUMP(JJ).NE.IJ)
   86 JJ=JJ+1
      DD1=DD1-2.*AP(JJ)*QQ-BP(JJ)
      F(I)=F(I)+FI*(DD*QQ-(AP(JJ)*QQ+BP(JJ))*QQ-CP(JJ))
      ELSE
      F(I)=F(I)+FI*DD*QQ
      ENDIF
      DO 87 JJ=LP1(IJ)+1,LP1(IJ+1)
      JJ1=IABS(IK1(JJ))
      IF(JJ1.LE.I) GO TO 87
      DJ(NI+JJ1)=DJ(NI+JJ1)+FI*FLOAT(IK1(JJ)/JJ1)*DD1
   87 CONTINUE
   90 DJ(IB)=DJ(IB)+DD1
C     SOLVES LINEAR EQUATIONS
      CALL SYMMAT(NL,NBAND,DJ,F)

Figure 4.31  The solution algorithm.

To enhance solution efficiency we might try to arrange the equations to reduce the
band width as much as possible.  Not only will a smaller band width reduce the required
amount of computer memory for a solution, but it also reduces the computational effort in
solving the linear equation system.  As the loop data are developed, the user can reduce the
band width of the Jacobian matrix by trying to arrange the  ∆Q  numbering to be as close
as possible to the equation numbering .  The band width will equal the maximum
difference in any equation between the equation number and the  ∆Q  number, plus 1.



However, placing this burden on the user is not desirable, especially since a banding
algorithm can readily be implemented in computer code that will probably achieve a tighter
banding than the user could arrange, even after some attention is given to the order in
which equations should be listed and loops formed.  One approach to minimizing the band
width is described by Jeppson and Davis (1976).  This approach is implemented in
SOLDQBAN.FOR,  which is on the CD.  Also on the CD is  SOLDQEQ1  that does not
use the band width of the Jacobian but instead uses the standard linear algebra solver
SOLVEQ,  as do  SOLQEQS  and  SOLHEQS,  as it solves the  ∆Q-equations.

Example Problem 4.15
In the sketch is a network with  10  pipes and  6  nodes which contains three pumps

and one turbine.  Prepare input data files for  SOLQEQS,  SOLHEQS  and  SOLDQEQS
so these programs can be used to analyze this network.  Use the pairs of  (Q, hp)  data in
the table to define the pump curves.  Then replace the pump curve for pump  1  with the
new pump data listed later in the solution, and resolve the problem with all three
programs.

P1
[1]

(1)

[4]

[3][2]

(5)

(6)

(4)

(2)

(3)

(7)

(8)
(9)

[5]

[6]

0.04 m3/s

All e = 0.0001 m

P2

P3

T1

0.10 m3/s

0.07 m3/s

0.05 m3/s

0.04 m3/s
0.06 m3/s

0.05 m3/s

0.25 - 2000

0.25 - 2000

0.20 - 2000

245 m
0.45 - 1000

220 m228 m

200 m

180 m 170 m

160 m

160 m

200 m

0.
2

-
90

0

0.2 - 600
0.2 - 800

(10)
0.

2
-

80
0

0.
25

-
90

0

v = 1.31 x 10-6 m2/s 

170 m

0.
35

-
80

0

Diameters in mm
Lengths in m

      Pump 1      Pump 2      Pump 3     Turbine
   Q
  m3/s

  H
   m

   Q
  m3/s

  H
   m

   Q
  m3/s

  H
   m

   Q
  m3/s

   H
    m

  0.40  20.0   0.12  16.0   0.06   8.0   0.09  - 8.0
  0.42  18.0   0.15  15.0   0.08   7.5   0.10  - 7.5
  0.44  15.0   0.18  13.6   0.10   6.8   0.11  - 6.8

Since  SI  units are used, options must be changed from the default values.  The input
data file for each of these three programs are listed next, using two columns for each set:

Input Data For SOLQEQS

10 7 2 4 2 'U' 1 'D' 2 4 0.06 180 2 6 -7
1 0 1 1000 0.45 0.0001 5 0.04 170 2 7 -8
2 1 2  800 0.35 0.0001 6 0.07 160 4 4 5 8 -9
3 2 3 2000 0.25 0.0001 7 0.04 160 2 9 -10
4 1 6 2000 0.25 0.0001 1 245
5 3 6  800 0.20 0.0001 10 200
6 1 4  900 0.25 0.0001 1 0.40 20 0.42 18 0.44 15
7 4 5 2000 0.20 0.0001 2 0.12 16 0.15 15 0.18 13.6
8 5 6  900 0.20 0.0001 4 0.06 8 0.08 7.5 0.1 6.8
9 6 7  600 0.20 0.0001 5 0.09 -8 0.10 -7.5 0.11 -6.8
10 7 0 800 0.20 0.0001 4 1 4 9 10
1 0.05 200 4 1 -2 -4 -6 4 2 3 5 -4
2 0.05 228 2 2 -3 4 4 -8 -7 -6
3 0.10 220 2 3 -5

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806
http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


Input Data For  SOLHEQS

10 7 2 4 2 0.05 228 2 2 -3
&OPTIONS IU=1,IQ=3,ID=2/ 3 0.10 220 2 3 -5
1 0 1 1000 0.45 0.0001 4 0.06 180 2 6 -7
2 1 2  800 0.35 0.0001 5 0.04 170 2 7 -8
3 2 3 2000 0.25 0.0001 6 0.07 160 4 4 5 8 -9
4 1 6 2000 0.25 0.0001 7 0.04 160 2 9 -10
5 3 6  800 0.20 0.0001 1 245
6 1 4  900 0.25 0.0001 10 200
7 4 5 2000 0.20 0.0001 1 0.40 20 0.42 18 0.44 15
8 5 6  900 0.20 0.0001 2 0.12 16 0.15 15 0.18 13.6
9 6 7  600 0.20 0.0001 4 0.06  8 0.08 7.5 0.10 6.8
10 7 0 800 0.20 0.0001 5 0.09 -8 0.10 -7.5 0.11 -6.8
1 0.05 200 4 1 -2 -4 -6

Input Data For  SOLDQEQS

10 7 2 4 3 0.10 220
&OPTIONS IU=1,IQ=3,ID=2/ 4 0.06 180
1 0 1 1000 0.45 0.0001  0.44 5 0.04 170
2 1 2 0800 0.35 0.0001  0.20 6 0.07 160
3 2 3 2000 0.25 0.0001  0.15 7 0.04 160
4 1 6 2000 0.25 0.0001  0.12 1 245
5 3 6 0800 0.20 0.0001  0.05 10 200
6 1 4 0900 0.25 0.0001  0.07 1 0.4 20 0.42 18 0.44 15
7 4 5 2000 0.20 0.0001  0.01 2 0.12 16 0.15 15 0.18 13.6
8 5 6 0900 0.20 0.0001 -0.03 4 0.06 8.0 0.08 7.5 0.10 6.8
9 6 7 0600 0.20 0.0001  0.07 5 0.09 -8.0 0.10 -7.5 0.11 -6.8
10 7 0 800 0.20 0.0001  0.03 4 1 4 9 10
1 0.05 200 4 2 3 5 -4
2 0.05 228 4 4 -8 -7 -6

The solution tables from  SOLQEQS  and  SOLDQEQS  are identical, as shown
below.  SOLHEQS  failed to converge.  The failure was caused by the relative inaccuracy
of the initial values of the heads that were provided to the Newton method by the
automated estimator in the code;  the values were too crude in relation to the sensitivity of
the code to the way that the three pairs of points for pump  1  define its operating
characteristics.  If

PIPE DATA

PIPE
N O .

 N O D E S
FROM   TO

   L DIA.   e
x 1 0 4

  Q VEL. HEAD
LOSS

HLOSS/
1 0 0 0

    m     m     m  m3/s   m/s     m
  1     0   1  1000  0.450   1.0 0.436 2.74   12.61   12.61
  2     1   2    800  0.350   1.0 0.163  1.70     5.39     6.73
  3     2   3  2000  0.250   1.0 0.113  2.31   36.76   18.38
  4     1   6  2000  0.250   1.0 0.118  2.40   39.64   19.82
  5     3   6    800  0.200   1.0 0.013  0.42     0.74     0.92
  6     1   4    900  0.250   1.0 0.105  2.14   14.29   15.88
  7     4   5  2000  0.200   1.0 0.045  1.43   19.20     9.60
  8     5   6    900  0.200   1.0 0.005  0.16     0.14     0.15
  9     6   7    600  0.200   1.0 0.066  2.10   11.92   19.87
10     7   0    800  0.200   1.0 0.026  0.82     2.56     3.20

 Pump  1  in pipe  1:    Head  =      15.71 m,  Q =  0.436 m3/s
 Pump  2  in pipe  2:    Head  =      14.44 m,  Q =  0.163 m3/s
 Pump  3  in pipe  4:    Head  =        6.02 m,  Q =  0.118 m3/s
 Pump  4  in pipe  5:    Head  =     -  5.17 m,  Q =  0.013 m3/s



NODE DATA

NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.
 Estimate      m3/s       m      m         kPa           M

    1       0.1    0.050   200.0   48.10      471.7      248.10
    2       0.1    0.050   228.0   29.15      285.8      257.15
    3       0.1    0.100   220.0     0.39           3.8      220.39
    4       0.1    0.060   180.0   53.81      527.7      233.81
    5       0.0    0.040   170.0   44.61      437.5      214.61
    6       0.1    0.070   160.0   48.46      475.2      208.46
    7       0.0    0.040   160.0   42.56      417.3      202.56

this pump curve is plotted, we see immediately how the curve turns steeply downward
outside each end of the given data.  Using pump curves of this nature should be avoided.
To obtain a solution from  SOLHEQS,  either the points that define the pump curve must
be adjusted, or the code must be modified so the user can supply the initial estimates of the
heads for the Newton method.  If the pump curve for pump  1  is modified so the three
discharge-head data pairs are  (0.40, 16.0),  (0.43, 15.8),  and  (0.46, 15.5),  then
SOLHEQS  can solve the modified problem.

*                              *                              *

4.5 CONCLUDING REMARKS

This chapter concentrated on the analysis of pipeline networks.  The first area of empha-
sis was on the development of the three kinds of systems of equations to describe mathe-
matically the flow in a pipe network, first for simpler networks and then for networks
which contain pumps or turbines and loss-producing devices such as a pressure reducing
valve or a back pressure valve.  The Newton method for the solution of these equation
systems was introduced and later included in computer programs to solve the equation
systems.  Later sections of the chapter developed solution routines and implemented them
for each of the three types of equation systems.

There are features that a production network program would usually include that these
programs do not have.  For example, rather than requiring the user to provide a set of esti-
mated initial discharges  Qoi  that satisfy all of the junction continuity equations, the pro-
gram should develop these values.  One way to create these values is to reduce the network
to a branched system by deleting some pipes with smaller diameters and then using the
methods in this chapter to obtain a solution for the branched network.

Another burden that would not be placed on the user of a production program is the need
to supply the pipe numbers that define the loops around which the energy equations are
written and the corrective loop discharges circulate.  An algorithm for this task must satisfy
two criteria:  (a)  the pipes that define any loop should be minimum in number, and also
(b)  these loops must lead to the creation of energy equations that are independent so that
none of the equations are a combination of any group of the other equations.  The first
criterion can be achieved by using a "minimum path algorithm," and the second criterion
requires each new loop to contain at least one pipe that does not exist in any of the
previous loops.

Production programs will also take full advantage of the sparsity of the Jacobian matrix
in computing network solutions in an efficient manner.

Network solvers can also allow the user to obtain time-dependent solutions.  Such solu-
tions, which do not account for the forces that are required to accelerate or decelerate the
fluid columns, have become known as "extended time simulations."  To develop an
extended time simulation, additional information of several kinds is needed, such as demand
functions which describe how one or several external nodal demands  QJ  vary with time,
rules based on pressures at nodes or on water surface elevations in tanks or reservoirs can



determine how many pumps should operate in series or parallel, and storage-elevation-
capacity curves can be used to describe the behavior of tanks, and so on.

The use of programs for network analysis can also allow designers to obtain answers for
the many questions that naturally occur during the design process.  For example, what head
and capacity should a pump produce to maintain a prescribed pressure and/or discharge at
the far end of the network?  What is the discharge from a junction if the pressure is known
from a measurement there?  How much head should a  PRV  dissipate so the pressure does
not exceed a set value?  How much flow can be obtained from a fire hydrant if its discharge
characteristics are known?  What are the flows from sprinkler heads if their sizes are
known?  How does a contaminant spread through a pipe network if it is accidentally
introduced at a point?

Chapter 5 will explore the design of these pipe networks, and Chapter 6 will examine
further several topics, including extended-time simulations.



4.6 PROBLEMS

4.1  For the two pipe networks shown below, write the system of  Q-equations.  In writ-
ing these equations, use  K  and  n  with subscripts that correspond to the pipe number.

[1]

(1)

[4]

[3]

[2]

(5)

(6)

(4)

(2)

(3)

(7)

0.5 m3/s

0.18 m3/s

0.15 m3/s

0.3 - 500

P

[1]

(1)

[4]

[3]

[2]

(5)

(6)

(4)

(2)

(3)

(7)
[5][6]

All e's for both networks = 0.00002 m

0.25 m3/s

0.1 m3/s

0.1 m3/s

0.5 - 500

0.5 m3/s

0.25 m3/s

0.2 - 5000.4 - 500

HGL = 300 m

0.
2

-
60

0

0.
5

-
60

0

0.
4

-
60

0

100 m

0.45 - 1600

0.5 - 1500

0.6 - 900

0.
25

-
14

00

0.5 - 1800 0.
4

-
90

0

80 m

0.
4

-
50

0

Diameters in mm
Lengths in m

                                                                                          P u m p
  Q
m3/s

 h p

 m

 0.2  30
 0.4  27
 0.7  21

4.2   Write the system of  Q-equations for the network shown.  It is not necessary to
substitute the values of  K  and  n  from the table into the equations;  instead use  Ki  and

ni  where  i  is the pipe number.  If the discharge in pipe  1  is  Q1 = 3.1 ft3/s,  then what
is the friction factor  f  for this pipe?

P i p e   K    n

   1 1.841 1.928
   2 11.47 1.871
   3   7.47 1.839
   4 1.615 1.914
   5 11.08 1.828
   6   7.69 1.884



[4]

[2]

(5)

(6)

(2)

(3)

[1]

(1)

[3] (4)

1.1 ft3/s

120'

8" - 3000'

1.4 ft3/s

100'
8" - 3000'

8"
 -

 2
00

0'

8"
 -

 2
00

0'

10" - 1300'

10" - 1500'

1.0 ft3/s1.3 ft3/s

4.3   A  5-pipe, 3-node network appears below.  On this diagram the first number along
each line is the pipe diameter in inches, and the second number is the pipe length in feet.
All pipes have an equivalent sand roughness  e = 0.001 ft = 0.012 inches.  Do the follow-
ing:  (a)  compute the values of  K  and  n  in  hf = KQn  for pipe  1,  based on the Darcy-
Weisbach equation, and  (b)  write the system of  Q-equations for this network.  (Use sub-
scripts on  K,  n  and  Q  corresponding to the pipe number.)

[2]

(5)
(2)

(3)

[1]

(1)

[3]

(4)
1.1 ft3/s

140'

1.2 ft3/s

100'

6" - 2500'

0.9 ft3/s

All e = 0.001' = 0.012"

v = 1.217 x 105 ft2/s 

8" - 600'

8" - 1000'
8" - 800'

6" - 400'

P i p e   K    n

   1
   2 3.53 1.961
   3   4.44 1.929
   4 48.6 1.934
   5 6.40 1.817

4.4  In the sketch the network consists of  6  pipes and  3  nodes.  A source pump and one
reservoir supply the network, and the lower reservoir receives water.  Do the following
tasks:  (a)  write the system of  Q-equations;  (b)  write the system of  H-equations;  
(c)  write the system of  ∆Q-equations;  (d)  if the discharge in pipe  5  is  Q5 = 0.026

m3/s  into the reservoir, what is the elevation of the HGL at node  3;  (e)  if the discharge
in pipe  6  is  Q6 = 0.112 m3/s, what are the HGL and pressure at node  2?



[2]

(5)

(6)

(2)

(3)

0.02 m3/s

P

[1]
(1)

[3]
(4)

0.05 m3/s

300 m 280 m

170 m

180 m

190 m

280 m

0.03 m3/s

P i p e D i a .
 m

Length
    m

   K    n

1 0.30  1000     543 1.886
2 0.20  2500 13700 1.946
3 0.20  1000   3270 1.839 P t .  Q hp

4 0.30  1500   1077 1.965 m3/s m

5 0.15  1000 27400 1.974  1 0.05 35
6 0.35    800    260 1.968  2 0.10 31

 3 0.15 24

4.5  For the network below:  (a) write the  Q-equations;  (b)  write the  H-equations;  and
(c)  write the  ∆Q-equations.  (Use the symbols  K  and  n  with correct subscripts for the
pipes in the equations.)

P i p e   K    n

  1   3.59 1.922
  2   7.97 1.917
  3   7.94 1.821
  4 28.80 1.809

[2]

(2)

(3)

[1]

(1)

(4)
1.0 ft3/s

70'

100'

6" - 2000'

1.5 ft3/s

10" - 3000'

6" - 500'

8" - 2200'

4.6  For the network shown,  write  (a)  the  Q-equations,  (b)  the  H-equations, and  (c)
the  ∆Q-equations.  The  K  and  n  values for the pipes in this network are given in the
table which follows.  (Your equations should contain only numerical values and
unknowns.)

P i p e  D
 in.

  L
   ft.

  K    n

   1   8 1500   5.72 1.930
   2   6 2000 33.00 1.931
   3   6 1000 16.30 1.889
   4   8 1700   6.53 1.913
   5   6 2500 40.70 1.890



(2)

(3)

[1]

(1)

(4)0.5 ft3/s
90'

120'

6" - 2500'

0.6 ft3/s

140'

[2]
(5)

All e = 0.005" 

8" - 1700'

6" - 2000'8" - 1500'

6" - 1000'

4.7  Prepare the input data for, and obtain the solution from,  NETWK  for the network
described in Problem 4.6.

4.8  A pipe branches into a  6-in diameter, 1500-ft long pipe and a 8-in diameter, 1400-ft
long pipe and then rejoins, so the two pipes are in parallel.  Pipe  1  contains an open
globe valve with a local loss coefficient  K = 10.  If the total discharge is Q = 3 ft3/s, de-
termine the discharges  Q1  and  Q2  in the individual pipes.  For simplicity, we shall as-
sume  f1 = 0.018  and  f2 = 0.015.

(2)

(1)

Q = 3 ft3/s
 e = 0.005"

6" - 1500'

f1 = 0.018

8" - 1400'

 Open globe valve
 K = 10

f2 = 0.015

4.9  This sketch of a small water system shows two reservoirs, with a pipe connected to
the center node with an inflow of  1.0 ft3/s  at the other end.  Set up the three equation
systems that could be used to solve this problem, and then obtain a solution by using one
of them.

(2)

(3)

[1]

(1)

100'

8" - 1800'

1.0 ft3/s

80'

[2]

 e = 0.012"8" - 2000' 6"
-

10
00

'



4.10  In the diagram three pipes that form a triangle are supplied by a reservoir at one ver-
tex of the triangle, and demands of  1.0  and  3.0 ft3/s  are found at the other two vertices.
A booster pump exists in pipe  3.  What head should the pump in pipe  3  produce so the
pressure at node  2  causes an HGL of  60 ft  there.  The ground elevation is everywhere  0
ft.  You may solve this problem by using any, or all, of the equation systems that are
available.  Assume  e = 0.012 in  and  ν = 1.41x10- 5 ft2/s.

[2]

(2)

(3)

3.0 ft3/s

P[1]

(1)

1.0 ft3/s

100'

Head = 60'8" - 6000'

6" - 8000'

Pump10
"

-
20

00
'

hp = ?

4.11   In the network of Problem 4.10 the diameters of pipes  2  and  3  have been
enlarged to  12  inches.  In place of the pump a pressure reduction valve is now needed in
pipe  3  to create a pressure head at node  2  of  60 ft.  Determine the required setting, i.e.
HGL, of the pressure reduction valve.  You can use any of the equation systems.

4.12   A network is shown in the diagram.  Write the system of  ∆Q-equations for this
network and complete one Newton iteration toward a solution of the problem.  Verify this
result by using an application software package such as MathCAD or TK-Solver.

[4]

[2]

(5)

(2)

(3)

0.5 ft3/s

0.5 ft3/s

P

[1] (1)

[3](4)

 e = 0.005' 

2.0 ft3/s

1.0 ft3/s8" - 3000'

4" - 3000'

8"
-

15
00

'

4"
-

15
00

'

6" - 3500'

40'30'

50' 160'

Pump Characteristics P i p e   K    n

     Q     h p     1 375.0 1.860
     ft3/s       ft     2   57.4 1.902

     0.3      40     3 190.0 1.898
     0.5      35     4   11.5 1.880
     0.8      28     5     5.72 1.930

4.13  Write the system of  H-equations for the two networks in Problem 4.1.

4.14  Write the system of  ∆Q-equations for the two networks in Problem 4.1.

4.15   The following network contains a pressure reducing valve (PRV) that is set so it
will produce a HGL of  145 m  on its downstream side. This valve is  800 m  downstream
from node  1.  Do the following:  (a) write the system of  Q-equations;  (b)  write the
system of  H-equations;  (c)  write the system of  ∆Q-equations;  (d)  using the Newton



method, solve the system of  ∆Q-equations;  (e)  and what is the HGL on the upstream
side of the PRV?

[1]

(1)

[3]

[2]

(5)(4)

(2)
(3)

0.05 m3/s

All e = 0.15 mm0.08 m3/s

0.06 m3/s

200 m

140 m

v = 1.31 x 10-6 m2/s 

HGL = 145 m

400
- 1000

250
- 2500

250
- 2000

250  - 3500 300  - 500 
800 m

All elev. = 100 m 

P i p e      1      2     3     4     5

  K    196  3520  2380  4130    192
   n 1.819 1.955 1.895 1.892 1.834

4.16  The reservoir water surface elevation at the beginning of pipe  1  in Problem 4.15 is
lowered by  50 m so it is  WS1 = 150 m, and a pump with the characteristics given below
is installed in pipe  1.  Write the three equation systems and solve one of them, also
finding the HGL elevation on the upstream side of the PRV.

     Q     h p

     m3/s       m

     0.18      55
     0.22      51
     0.26      44

4.17  For the network shown below write  (a)  the  Q-equations,  (b)  the  H-equations,
and  (c)  the  ∆Q-equations.  Pipe  3  contains a pressure reduction value  200 ft  down-
stream from node  1  that is set to maintain an HGL = 430 ft  on its discharge side. Use the
notation  Ki  and  ni  in these equations.

P i p e   K    n

    1    1.93 1.935
    2    4.44 1.940
    3    3.50 1.840
    4 47.90 1.866
    5   7.67 1.917

[1](1)

[3]

[2]
(5)

(4)

(2)

(3)
All e = 0.005'

520'

420'

v = 1.27 x 10-5 ft2/s 

HGL = 430'

0.9 ft3/s

1.2 ft3/s1.0 ft3/s

12" - 4000' 8" - 2000'10" - 3500'

10" - 3000'

350'

280'

320'

PRV

200'

6"
- 30

00
'

4.18   For the network below:  (a)  write the  Q-equations;  (b)  write the  H-equations;  
(c)  write the  ∆Q-equations;  and  (d)  solve the system of  ∆Q-equations.  The water



surface elevation of the right reservoir is  300 ft, and the following three (Q, hp) pairs
define the pump characteristic curve:  (1.0, 26), (1.5, 24), (2.2, 20).

[2]
(5)

(6)

(2)

(3)
P[1]

(1)

[3]
(4)

2.0 ft3/s

80'
2.0 ft3/s

4" - 1000'
4" - 3000'

6" - 5000'

6" - 6000'

8" - 3000'
All elev. = 0'
All e = 0.005'

10" - 1000'

4.19   Solution tables from  NETWK  follow, with four values omitted.  Fill in the
missing values.  What head drop occurs across the PRV?  What horsepower does this loss
represent?

PIPE DATA
PIPE
N O .

 N O D E S
FROM   TO

   L DIA.   e
x 1 0 3

  Q VEL
.

HEAD
LOSS

HLOS
S / 1 0 0
0

    ft.    in    in  ft3/s   ft/s      ft.
    1      0     1   4000   12.0   5.0   4.72   6.01     9.69
    2      1     2   3500   10.0   5.0   3.26   5.97    41.87   11.96
    3      1     3   3000   10.0   5.0   0.46   0.85      0.91     0.30
    4      2     3   3000     6.0   5.0   0.44   2.22    10.21     3.40
    5      2     0   2000     8.0   5.0   1.62   4.64    19.36     9.68

AVE. VEL.  =  3.94 ft/s,  AVE. HL/1000 =  7.01,  MAX. VEL. =  6.01 ft/s,  MIN. VEL. =  0.85 ft/s

NODE DATA
NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.

     ft3/s  gal/min       ft.     ft.       lb/in2         ft.

     1       1.0     449      350  131.2      56.87       481.2
     2       1.2     539      320  119.4      51.72       439.4
     3       0.9     404      280

    AVE. HEAD   =   133.3 ft,  AVE. HGL    =  450.0 ft
    MAX. HEAD =   149.2 ft,  MIN. HEAD  = 119.4 ft

4.20   For the network shown:  (a) write the  Q-equations;  (b)  write the  H-equations;   
(c)  write the  ∆Q-equations;  and  (d)  solve the  ∆Q-equation system.  

P

[1]

(1)

[4]
[3]

[2]

(5)

(6)

(4)

(2)

(3) (7)

[5]

[6]

All e = 0.0005 m

0.025 m3/s

0.005 m3/s

0.02 m3/s

0.30 - 1000
0.015 m3/s

0.35 - 600

0.045 m3/s

0.
20

-
75

0

0.
25

-
75

0

0.
35

-
50

0

60 m

40 m 38 m 35 m

35 m36 m 33 m

0.25 - 1000

0.025 m3/s

0.
20

- 15
00Diameters in m
Lengths in m

     Q     h p

     m3/s       m

     0.120      40
     0.140      38
     0.165      35



4.21  For the two networks in Problem 4.1, solve the  Q-equation system using the New-
ton method.

4.22  For the two networks in Problem 4.1, solve the  H-equation system using the New-
ton method.

4.23   For the two networks in Problem 4.1, solve the  ∆Q-equation system using the
Newton method.

4.24  Determine the pressures in lb/in2 at the six nodes of Problem 4.1a.

4.25  For the network below, write the  ∆Q-equation system and solve them, and verify
your solution by obtaining a computer solution by using  NETWK.

90' 100'

[1]
(1)

[4]

[3]

[2]

(5)
(6)(4)

(2) (3)

(7) (8) (9)

[5]

[6]

1.0 ft3/s

0.6 ft3/s

0.5 ft3/s

6" - 1800'8" - 2500'

HGL = 80'

P

All e = 0.005"

0.5 ft3/s

10" - 1000' 8" - 1500'

All elev. = 20'

1000'

6" - 2600'

6" - 2800'

0.6 ft3/s

6" - 1000'

6"
-

20
00

'

1.5 ft3/s

8"
-2

00
0'

     Q     h p

     ft3/s       ft

      1.0      50
      2.0      48
      3.0      45

4.26   Determine the discharge and head loss in each pipe of the networks shown on the
following pages by first determining a set of values for the coefficients  K  and  n;  then
setting up and solving the equations without using a computer, except perhaps to solve
each linear system of equations that is formed as a part of the Newton method.



(a)  Analyze this network with the Hazen-Williams equation and  CHW = 120  for all pipes.

[1] (1)

[4]
[3]

[2]

(5)

(4)

(2)
(3)

500 gal/min

6"
-1

00
0'

12" - 3000'

12" - 1500'

8"
- 1

00
0'

10" - 3500'

1500 gal/min

2000 gal/min

I

II

(b)  Analyze this network by using the Hazen-Williams equation;  for pipes  1  through  5
use  CHW = 120,  and for pipes  6  through  11  use  CHW = 100.

[1]

(1)

[4]
[3]

[2]

(5)

(6)
(4)

(2)
(3)

(7)

(8)

(9)

[5]

[6]

6.5 ft3/s

2.0 ft3/s

4.5 ft3/s

12" - 3000'

12" - 3000'

1.0 ft3/s

6" - 2000'

10
"

-
20

00
'

[7]

(11)

(10)

10
"

-
20

00
'

12" - 4250'

10" -2500'

II

I

III
IV

6" - 3000'

14" - 5000'

10
"

-
10

00
'

10
"

-
10

00
'

V

2.0 ft3/s

1.0 ft3/s

(c)  Use the Hazen-Williams equation to analyze this network;  all pipes are cast iron.



0.15 m3/s

0.1 m3/s

0.1 m3/s

0.2 m3/s

0.1 m3/s

0.05 m3/s

0.2 m3/s

[1] (1)

[4]

[3]

[2]

(5)

(6)

(4)

(2)(3)

(7)

(8)

(9)
[5][6]
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[7]
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II
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III

IV
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00
m

- 0.
5 m 900 m
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0

m
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0.
3

m

700 m
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0

m
- 0
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V

(d)  Analyze this network with the Darcy-Weisbach equation,  assuming  e = 0.001 ft  for
the  8-in  and  10-in  pipes and  e = 0.0005 ft  for all other pipes.

[1]

(1)

[4]

[3]

[2]

(5)

(6)

(4)

(2)

(3)

(7)

(8)

(9)

[5]

[6] [7]

(11)

(10)

II

I

III

IV

(13)
(14)

(12)

[9]

[8]

4 ft3/s

5 ft3/s

4 ft3/s

15" - 3000'

5 ft3/s

15" - 3000'
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"

-
25

00
'

8"
-
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00

'

V

10 ft3/s

10 ft3/s

15" - 800'

VI
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-
15
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'

10" - 1500'

12" - 1500' 12" - 2500'
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" - 1

00
0'

10
"

- 3
35

0'

21" - 2000' 10
" - 21

20
'

2 ft3/s

15" - 800'



(e)  Analyze the network of part (a) by using the Darcy-Weisbach equation with a rough-
ness of  e = 0.0005 ft  for all pipes.

(f)  Analyze the network of part (b) by using the Darcy-Weisbach equation;  for pipes  1
through  5  use  e = 0.005 ft,  and for pipes  6  through  11  use  e = 0.006 ft.

(g)  Use the Hazen-Williams equation to analyze this network;  all pipes are made of cast
iron.  The diameters are given in centimeters;  lengths and elevations are in meters.  Pump
performance data are listed in the table.

     Pump 1      Pump 2
   Q   h p    Q   h p

  m3/s    m   m3/s    m

  0.10    50   0.05   10
  0.15    48   0.10     8
  0.20    44   0.15     5

20 - 1000

P2

[1]
(1)

[3]

[2]

(5)

(4)

(2)

(3)

100 m

0.03 m3/s

0.09 m3/s

0.06 m3/s

P1

15 - 1000

40 m

30 m

60 m

0 m

15
-

15
00

15 - 1500

20" - 1500'

(h)  Use the Hazen-Williams equation to analyze this network that is diagrammed atop the
next page;  all pipes are made of cast iron.  The diameters are given in centimeters;  lengths
and elevations are in meters.  Pump performance data are listed in the table.
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[1] (1)

[4][3]

[2]
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(7)

(8)
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0

0.01425 m3/s
0.0285 m3/s

115 
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P2

15
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0

120 

Diameters in cm
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     Pump 1      Pump 2
   Q   h p    Q   h p

  m3/s    m   m3/s    m

0.0425   36.6 0.0283   12.2
0.0708   30.5 0.0425   10.7
0.0991   22.9 0.0566     8.5

4.27  Only the Colebrook-White equation is used in subroutine  COMPK_N  that deter-
mines the values of  K  and  n  in the exponential formula for programs  SOLQEQS,
SOLQEQS  and  SOLDQEQS.  Modify this subroutine so it will allow laminar flow in
the pipe.  Also modify the subroutine so the discharge can become zero;  e.g., this might
commonly occur for initial discharges  Qoi  for use with the  ∆Q-equations.

4.28  Assume that the flow in all pipes will always be turbulent;  however, a user might
select initial values for  Qoi  that are zero when solving the  ∆Q-equations.  Then the sub-
routine  COMPK_N  would fail, as it is now written in  SOLQEQS,  SOLHEQS  and
SOLDQEQS.  Modify  COMPK_N  so it can accept a value of zero for the discharge.

4.29  Modify  SOLQEQS  so an option allows the user to supply starting values for  Q
that will be used in the Newton method rather than generating these values internally.

4.30  Modify  SOLHEQS so it has an option that allows the user to supply initial values
for  H  that will be used in the Newton method rather than generating these values internal-
ly.  The additional input could be supplied from another read statement, or these heads
could be listed after the nodal elevations in the node data.

4.31  Modify  SOLDQEQS  so it will allow PRV's to exist in the network.  This change
will require two sets of loop data to be read as input data (unless you wish to obtain these
loops internally), one around which the  ∆Q's circulate, and one around which the energy
equations are written.  Since the two sets of loops will not be identical, the Jacobian will
not be symmetric.

4.32   Modify  SOLHEQS  and/or  SOLDQEQS  so it calls a symmetric matrix solver
such as  SYMMAT.



4.33  SOLQEQS,  SOLHEQS  and  SOLDQEQS  can all analyze networks that contain
local losses if the user will provide the actual length of the pipe and the additional length
of pipe that would cause a frictional pipe loss that is equivalent to what the local loss
device would cause.  Modify one, or all, of these programs so each equivalent pipe length
is computed internally within the program and then added to the actual length before the
problem is solved.

4.34   Rather than compute an equivalent length of pipe for a local loss, as in Problem
4.33, modify  SOLQEQS  so that local losses, where they occur, are treated by adding a
head loss term of the form  hL = KQ2/(2gA2)  to the energy loop equation.

4.35  Repeat Problem 4.34, but modify  SOLDQEQS.

4.36  Use  SOLQEQS,  SOLHEQS,  and  SOLDQEQS  to analyze the network depicted
in Problem 4.20.

4.37  Use  SOLQEQS to analyze the network in Problem 4.25.  This network contains a
PRV in pipe  3  that is located  1000 ft  downstream from the beginning of this pipe.

4.38  SOLQEQS,  SOLHEQS  and  SOLDQEQS  all represent pump performance by fit-
ting three  (Q, hp)  pairs of pump characteristic curve data with a second-order polynomial.
Modify one or all of these programs so they accept the normal capacity (discharge at best
efficiency) and head at this discharge as input, and then the relation between  hp  and  Q  is
obtained from the power equation  P = γQhp  under the assumption that the power  P  re-
mains constant.

4.39   Modify the program that was developed in Problem 4.38 so the efficiency of the
pump is a linear function of the difference of the discharge from its normal capacity.

4.40  Place a PRV in pipe  2  of the network in Example Problem 4.5 with a pressure
setting of  HGL = 445 ft.  Obtain a solution for this network using  SOLQEQS.  Verify
this solution using  NETWK.

4.41  SOLQEQS  contains a code segment that cross checks the connectivity of the net-
work by looking at the two node numbers at the ends of a pipe and at the pipe numbers
that join at a junction.  It also checks that upstream node numbers are negative and that
downstream node numbers are positive.  But the algorithm currently can not determine
whether an extra pipe might be connected to a node.  Modify the code so a check can iden-
tify any extra pipe(s) that might be specified in the data that lists the pipes that are con-
nected to nodes.

4.42  Modify  SOLDQEQS  so PRV's can exist in the network.  Now two separate kinds
of loops will exist, those around which the corrective loop discharges circulate and those
around which the energy equations are written.  Therefore two sets of loop data must be in-
cluded in the input data file.

4.43  Use the resulting computer program from Problem 4.42 to obtain a solution to the
network in Example Problem 4.5 with a PRV in pipe  2  having a pressure setting that
causes the downstream head to be HGL = 445 ft.  Verify this solution by  (1)  using
NETWK  and by  (2)  changing subroutine  FUNCT  in program  EQUSOL1.
4.44   The network diagram below lists average demands on it.  The storage tank that is
connected to the network by pipes  14  and  16  has a  20-m diameter;  at  6 a.m.  its water
surface elevation should be  200 m.  The demands at all nodes change according to the



peaking factors in the table.  The pump characteristics represent two pumps in parallel at
each location.  Obtain a series of solutions for the times at which the peaking factors are
given.  For each solution of this series determine the new water level in the tank and the
electrical energy consumed by each pump during the latest time increment.  Suggest when
one pump at each station should be shut off.  What might be done to improve the design
and thereby the operation of the system?

Time 6 a.m. 9 a.m. 12 Noon 4 p.m. 7 p.m. 10 p.m. 12 Mid. 3 a.m.
  PF   1.0   1.8    1.3   1.3   1.7    1.5    0.6   0.2

     Pump 1      Pump 2

   Q   h p    Q   h p

  m3/s    m   m3/s    m

  0.15     50   0.20     30
  0.25     47   0.25     28
  0.35     42   0.30     25
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[10]
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0.25 - 1500

220 m0.4 - 3500 0.3 - 2000
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0.20 - 2200
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200 m

200 m
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130 m
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200 m

165 m

170 m

175 m

[6]

0.3 - 1500

0.3 - 1500
0.25 - 1500

0.25 - 1500
0.25 - 1500

0.20 - 1500
0.20 - 1500

0.04 m3/s

All e = 0.0002 m

0.03 m3/s

0.06 m3/s

0.025 m3/s

0.05 m3/s

0.03 m3/s

0.02 m3/s

0.03 m3/s

0.03 m3/s

0.025 m3/s
0.03 m3/s

0.03 m3/s

0.35
-500

0.25
- 1000

0.25
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CHAPTER 5
_________________________________________________________________________

DESIGN OF PIPE NETWORKS

5.1 INTRODUCTION

When dealing with problems associated with pipelines (or pipe networks) for which all
diameters, lengths, roughness coefficients, and demands are known, then the nodal  HGL
elevation, or  H's,  and pipe discharges are the unknown quantities to be found.  Problems
of this nature are classified as analysis problems since a known piping system is being
ana-lyzed for a given demand pattern.  Chapter 4 dealt with the analysis of networks.  In an
analysis problem for a network, the demands at all nodes of the network are specified, and
the elevation of the  HGL  is known at one or more positions (where reservoirs exist), and
the solution seeks to find the discharges (and head losses) in all pipes, and the  HGL
elevation, head, and pressure at each node in the network.

The focus of this chapter is on the design of pipe networks, which most frequently
means that the pipe diameters are unknown and are to be determined.  A brief introduction
to design problems was presented in Chapter 4,  where the equations for mass and energy
conservation were used in determining any desired variables associated with the problem.
This chapter will greatly expand upon these principles, but we start with a single pipe.

5.1.1. SOLVING FOR PIPE DIAMETERS
A typical design problem consists of sizing, i.e., determining the size of, as many

pipes as the equations allow to meet specified pressures and discharges throughout the
network.  For such design problems the pressures at all nodes, the heads at all nodes, or the
HGL  elevations are typically specified.  (Knowing any one of these allows the others to be
com-puted if the nodal elevations are known.)  In addition to finding pipe diameters, one
might want to determine the heads that pumps must produce to satisfy the specified
pressures.

Consider a single pipe that conveys water from a reservoir with a known water surface
elevation  H1  to another reservoir with a known water surface elevation  H2,  as shown in
Fig. 5.1,  as the simplest possible design problem.  For this case there is one unknown
diameter  D,  a known length  L,  and a known roughness  e.  The problem is to determine
the smallest pipe diameter that will convey the known discharge  Q  between the two
reservoirs.

H1
H2

D, L
e

Figure 5.1  A simple two-reservoir design problem.

5.1.2. SOLUTION BASED ON THE DARCY-WEISBACH EQUATION
The Darcy-Weisbach equation will be used here to describe the head loss in a pipe as a

function of the discharge in that pipe.  The next section will base solution procedures on
the Hazen-Williams equation.  We recall the Darcy-Weisbach equation



h f = f
L

D
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in which  hf  is the head loss due to friction in units of energy per unit weight, i.e., a
length, the friction factor  f  is in general a function of the Reynolds number and the
relative roughness  e/D  of the pipe, and the cross-sectional area of the pipe is  A = πD2/4.
Since nearly all water flows are in the transitional zone of the Moody diagram, the
behavior of the friction factor can be defined by the implicit Colebrook-White equation in
the form
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in which  Re = VD/ν = 4Q/(πνD) = 1.27324 Q/(νD)  is the Reynolds number.  Since Eq.
5.2 merges into the equation that describes the wholly rough zone on the Moody diagram
well, and it also merges into the equation that describes hydraulically smooth flow, it will
be used whenever the flow is turbulent.  If the flow is laminar with  Re  below 2100,  then
Eq. 5.2 must be replaced by

f  =  64/Re  =  64ν/(VD)  =  81.487νD/Q (5.3)

The basic problem that seeks to determine a diameter now requires that Eqs. 5.1 and 5.2
(or possibly Eq. 5.3) be solved simultaneously for the two unknowns  D  and  f.  Several
methods will be applied to obtain a simultaneous solution of these equations.  These
methods will be implemented in the computer programs  DIAPIP,  DIAPIPA,  DIAPIP2,
and  DIAPIP3.  The reader will benefit most by printing a copy of these programs now and
consulting the listings as the methods are described.

The first method uses the Newton method to solve simultaneously the Darcy-Weisbach
and Colebrook-White equations for  D  and  f.  This approach is similar to that used in
program DW_CW in Chapter 4,  with the difference that  D  is chosen to be the second
unknown in place of some other variable of the problem.  In solving Eqs. 5.1 and 5.2
simultaneously by the Newton method, we first rewrite the original equations in the
generic form  F(D, f)  =  0.  One way of rewriting these equations is as follows:
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F2 (D, f ) = h f − f
L

D

Q2

2gA2 = 0 (5.1a)

The Jacobian matrix for this system of equations is a  2x2  square matrix  J:
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(5.4)

Program  DIAPIP  implements the Newton method to determine simultaneously the
friction factor  f  and diameter  D.  Prompts in the program ask the user for the data that are



required to define the problem. The acceleration of gravity is required so that problems in
either of the ES or SI unit systems can be solved.  If the solution is to be written to a disk
file and also displayed on the monitor, then the Output unit number (the second  input
item) should not be  6.  Microsoft's Fortran version  5  and higher versions prompt the
user for the disk file if writing to a logic unit other than  6  and this unit is not already
open.  The next input statement requests values for the desired discharge  Q,  the roughness
e,  the pipe length  L,  and the frictional head loss  hf.  For our problem the difference in

the water surface elevations  H1  and  H2  is this frictional head loss.  Since  1 / f

occurs on both sides of Eq. 5.2a,  let it be the unknown in place of  f.  In the program this
variable is  SF.

The Jacobian is defined by the expanded  2x3  array  DJ.  The first two columns in this
array contain the Jacobian derivatives, and the third column contains the equation vector  F.
The derivatives are determined with respect to SF,  rather than  f,  because this is slightly
simpler.  The two unknowns are  SF  and  D,  which are initialized to  8  and  0.5 ft,
respectively, for the Newton method.  The two equations are denoted by  F1  and  F2;  after
they are evaluated for the first time in each Newton iteration, they are stored in the third
column of matrix  DJ.  Then the two statements that define the equations are evaluated
twice more by the  IF  and  GO TO  statements.  The last two times repeat the first
computations with incremented values of  SF  and  D.  The program variable  NCT  
counts the number of iterations.  The number of Newton iterations should always be
limited to avoid the possibility of an infinite loop in these computations.  With two
unknowns the solution by Gaussian elimination requires only one element  D21  to be
eliminated.  Thereafter, the solution vector  z  is obtained by back substitution.  Thus the
approach is much like that in Chapter 4 to solve simultaneously for the discharge  Q  and
the friction factor  f  (or SF).  The major difference is the change in unknowns to  D  and  f
(or SF);  when the unknowns are treated properly, the Newton method works in the same
way.
 If we want to find the diameter that will convey  2.0 ft3/s  when the difference  is
40 ft in a 3000 ft  long pipe of roughness  0.002 inches, the computer program  DIAPIP
will produce the solution  f = 0.01668,  D = 7.941 in, listed below as case 1. Although in
practice these results would be rounded, we present them in this way to aid the checking of
the computer output.  To verify that the program works properly, the reader should  use
DIAPIP to solve the four problems in Table 5.1;  these steps will also augment  the
reader's understanding of the program logic. We assume either v = 1.41 × 10−5 ft2/s or
v = 1.31 × 10−6 m2/s.

Table 5.1  Test Problems
N o .        1         2         3        4

 L     3000 ft       1000 m      1000 m    10,000 ft
 hf        40 ft            8 m          80 m          15 ft
 e   0.002 in    0.0001 m    0.0001 m    0.0004 ft
 f   0.0168    0.01598    0.01679     0.01559
 D   7.941 in    0.3664 m    0.3335 m    23.052 in

   (0.662 ft)     (1.921 ft)

The attractive convergence behavior of the Colebrook-White equation, Eq. 5.2, using
Gauss-Seidel iteration is the basis for an alternative to the simultaneous solution of Eqs.
5.1 and 5.2 by the Newton method.  By starting with some reasonable value for  f,  Eq. 5.2
must only be solved a few times by always using the newly computed value of  f  to
recompute  f.  When Gauss-Seidel iteration is used to solve Eq. 5.2, then Eq. 5.1 can be
solved via the Newton method with  f  treated as if it were known in each  Newton
iteration.  In this process the Newton method is therefore used to solve only one equation
for the one unknown,  D.  Since  D  does affect the value of  f,  the Gauss-Seidel iteration



must be repeated within each new Newton iteration, however.  Therefore this alternative
solution process consists of applying the Newton method to solve Eq. 5.1  for  D,  and
within this iteration Gauss-Seidel iteration is used to resolve Eq. 5.2 for  f.  The Newton
iteration is achieved via the equation

D(m+1) = D(m) −
F(D(m) )

dF(D(m) ) / dD
(5.5)

in which  F(D),  under the assumption that  f  is known, is Eq. 5.1 written as follows:

F(D) = h f − f (L / D)Q2 / (2gA2 ) = 0 (5.6)

This method is implemented by program  DIAPIPA.
The approach in  DIAPIPA  can be used in a slightly modified manner in solving for  D

and  f  with an  HP48  or equivalent handheld calculator.  Retrieve both the Colebrook-
White and Darcy-Weisbach equations from memory.  Using an estimate for  D,  solve the
Colebrook-White equation with the  SOLVR  function.  Next solve the Darcy-Weisbach
equation using  SOLVR,  and repeat this process until small changes in  D  occur between
consecutive iterations.

A third alternative is to replace the Newton solution of the Darcy-Weisbach equation
with a direct solution of this equation.  Since the area  A = πD2/4, this equation can be
written as
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(5.1b)

Because  f  depends upon  D,  Eq. 5.1b  must be solved iteratively, with the Colebrook-
White equation being solved either by the Gauss-Seidel method or the Newton method as
soon as a new  D  is available.  The program  DIAPIP2  implements this solution method,
applying the Gauss-Seidel method to the Colebrook-White equation.  In previous programs
a conversion factor  CONV  allowed  D  and  e  to be given in inches when using ES
units, but program DIAPIP2 requires consistent units for all variables.  One could use this
same approach with an  HP48  calculator.  However, now one does not use  SOLVR  in
obtaining the solution to the Darcy-Weisbach equation.

Yet another possible approach is to eliminate the friction factor by solving for it in the
Darcy-Weisbach equation and substituting the result into the Colebrook-White equation;  
then the resulting equation for  D  is solved by using the Newton method.  The Darcy-
Weisbach equation, with  f  on the left of the equal sign, is

f = h f D(2g)A2/(LQ2 ) = h f D(2g)/(LV2 ) = 1.2337h f gD5/(LQ2 ) (5.1c)

or
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The equation to be solved for  D  is obtained by replacing  1 / f   in this last equation

with the expression on the right wherever it appears in the Colebrook-White equation.  In
implementing the solution in a computer program it is better to use two lines of code, one
for the above expression for  SF = 1 / f   and the other for the Colebrook-White equation.



The program  DIAPIP3  uses this method to determine the diameter, with the derivative of
the equation with respect to diameter being obtained numerically.  After the diameter has
been found, Eq. 5.1c is used to determine  f.

5.1.3. SOLUTION BASED ON THE HAZEN-WILLIAMS EQUATION
The empirical Hazen-Williams equation is widely used in practice to define the

discharge-head loss relation for water flows in full pipes.  The Hazen-Williams equation is

Q = KCHW ARh
0.63S0.54 (5.8)

in which  K = 1.318  for ES units and  K = 0.849  for SI units,  CHW  is the Hazen-
Williams roughness coefficient which ranges from  150  for smooth-walled pipes to as low
as  80  for old, corroded cast iron pipes (see Table 2, Chapter 2),  Rh  is the hydraulic
radius, and  S   is the slope of the HGL or energy line so that  S = hf/L.  Another
convenient form of the Hazen-Williams equation is

h f = K1L

CHW
1.852D4.87 Q1.852 (5.9)

in which  K1 = 4.727  with ES units, and  K1 = 10.7  with SI units.  If the Hazen-
Williams equation is solved directly for the pipe diameter  D,  it then appears as

D =
QK1

0.54

CHW S0.54













0.380228

= K2
Q

CHW S0.54













0.38

(5.10)

in which  K2 = 1.376  for ES units and  K2 = 1.626  for SI units.  As Eq. 5.10 indicates,
use of the Hazen-Williams equation allows the pipe diameter to be found directly if the
discharge  Q,  head loss  hf,  length  L,  and roughness coefficient  CHW are known.  This
obvious computational advantage, simplicity, is the main reason for its popularity.
Program  DIAPIPH  obtains a solution for  D  from the Hazen-Williams equation.

When computers (and programmable pocket calculators) are used, the ease of
computation will be of minor importance in relation to the validity of the formula over a
large range of flow conditions.  The Hazen-Williams equation agrees closely with results
produced by the Darcy-Weisbach equation for water flowing in relatively smooth-walled
pipes with Reynolds Numbers in the range of 105 to 106 (the typical range for pipe
design).  However, it does not produce results that agree well with the Darcy-Weisbach
equation over a range of flow conditions in rough-walled pipes.  In fact, the Manning
equation is a better empirical equation for the representation of flow in rough-walled pipes,
especially if the pipe does not flow full.

5.1.4. BRANCHED PIPE NETWORKS
In a branched pipe system it is easy to determine the discharge that must be carried by

each pipe if all external demands are specified.   If the pressures, heads, or  HGL  elevations
are also known, then it is possible to use the methods described above to find the diameter
of every pipe in the system, simply by repeating the computation for a single pipe.  This
can be done because the head loss and discharge for each pipe can be determined from
simple preliminary computations.  Thus no additional computational methods are needed to
compute results for a branched system.  Even though a more detailed look at the variables
in pipe systems is presented later, it may be instructive to look at an example now.



Example Problem 5.1
As a consulting engineer you have been asked by an irrigation district to prepare a

preliminary study of a pipeline using PVC pipe (Assume  e = 0.000084 in.) that will
bring irrigation water from a river that is  5 miles  from the first farm.  There are  20
farms.  The turnout for each is to receive  0.5 ft3/s,  and these turnouts are spaced at  1000
ft  intervals along the pipeline.  The water level in the river is  100 ft  below the elevation
of the irrigated land, which is essentially flat.  The water at the last turnout is to be
delivered at a pressure of  40 lb/in2.  The pipeline will be laid on a constant grade between
these two elevations, and a pump will be required at the river to provide sufficient head.

You decide to base computations on a  1-mile  increment for the first  5  miles, and on a
1000 ft  increment thereafter, with each turnout at a junction between pipe segments.  A
sketch of this pipe system is shown below.  To determine the pipe size that will result in
the least (or near least) cost, you decide to obtain a series of design solutions in which the
slope of the  HGL  will vary.  The sum of the pipe cost and the energy cost for pumping
will be plotted as a function of the slope of the  HGL,  and the minimum cost on this
graph will identify the best design for the piping system.

[1]

(1) [4]
[3]

[2]

(5) (6)
(4)

(2)
(3)

(7)

[5]
[7]

(23) (24)

[6] [8] [24] [26][25]
(25)

Demand of 0.5 ft3/s at each node

Segment spacing = 1000'

Segment spacing = 5280'
Elev. = 0'

Hp

Elev. = 100'

The following tables present the solution to this problem with the slope of the  HGL
specified to be  1.2424x10-3.  The discharges in column  9  are obtained first.  Thereafter
the diameters are computed by using any of the methods described in this section.  The last
column lists the incremental head losses (because this is commonly given), but since the
slope of the  HGL  has been specified here, they are directly related to the pipe lengths.
You should verify some of these results.   If the Hazen-Williams equation is used in place
of the Darcy-Weisbach equation, then a solution such as that given below can easily be
completed by using a spread sheet.  If the spread sheet has the ability to solve an implicit
equation, then the Darcy-Weisbach equation could also be used.  The design solution is
followed by an analysis, in which the nearest standard pipe sizes have replaced the
computed values.  The correctness of some of these head losses for the standard pipe sizes
should be verified.  The cost analysis assumes the life expectancy of  45  years and energy
costs of  $0.09/kWh.  A knowledge of engineering economic analysis will allow the
pumping cost for this system to be verified.  Pumping is assumed to occur  365  days per
year and has a combined motor-pump efficiency of  70  percent.



DESIGN PIPE DIAMETERS
PIPE
 NO.

 N O D E S
FROM   TO

DIA. AREA NOM.
DIA.

  L    e
x 1 0 5

  Q VEL. HEAD
LOSS

    in   ft2    in   ft     in  ft3/s  ft/s    ft.
   1       1    2  23.22 2.940  24.0 5280    8.4  10.0 3.40     6.56
   2       2    3  23.22 2.940  24.0 5280    8.4  10.0 3.40    6.56
   3       3    4  23.22 2.940  24.0 5280    8.4  10.0 3.40    6.56
   4       4    5  23.22 2.940  24.0 5280    8.4  10.0 3.40     6.56
   5       5    6  23.22 2.940  24.0 5280    8.4  10.0 3.40    6.56
   6       6    7  23.22 2.940  24.0 1000    8.4  10.0 3.40    1.24
   7       7    8  22.77 2.828  24.0 1000    8.4     9.5 3.36    1.24
   8       8    9  22.31 2.715  24.0 1000    8.4     9.0 3.31    1.24
   9       9  10  21.84 2.601  20.0 1000    8.4     8.5 3.27    1.24
 10     10  11  21.34 2.484  20.0 1000    8.4     8.0 3.22    1.24
 11     11  12  20.83 2.366  20.0 1000    8.4     7.5 3.17    1.24
 12     12  13  20.29 2.246  20.0 1000    8.4     7.0 3.12     1.24
 13     13  14  19.74 2.124  20.0 1000    8.4     6.5 3.06    1.24
 14     14  15  19.15 2.000  20.0 1000    8.4     6.0 3.00     1.24
 15     15  16  18.53 1.873  18.0 1000    8.4     5.5 2.94    1.24
 16     16  17  17.88 1.743  18.0 1000    8.4     5.0 2.87    1.24
 17     17  18  17.18 1.610  18.0 1000    8.4     4.5 2.79    1.24
 18     18  19  16.44 1.474  15.0 1000    8.4     4.0 2.71    1.24
 19     19  20  15.63 1.333  15.0 1000    8.4     3.5 2.63   1.24
 20     20  21  14.75 1.187  15.0 1000    8.4     3.0 2.53    1.24
 21     21  22  13.78 1.035  15.0 1000    8.4     2.5 2.42    1.24
 22     22  23  12.67 0.875  12.0 1000    8.4     2.0 2.28     1.24
 23     23  24  11.37 0.706  12.0 1000    8.4     1.5 2.13    1.24
 24     24  25    9.77 0.521  10.0 1000    8.4     1.0 1.92    1.24
 25     25  26    7.54 0.310    8.0 1000    8.4     0.5 1.61     1.24

NODE DATA
 NODE DEMAND

      ft3/s
   ELEV.
        ft.

    HEAD
          ft.

PRESSURE
      lb/in2

HGL ELEV.
         ft.

     1     -10.0       100.     150.00      65.00     250.00
     2         0.0       100.     143.44      62.16     243.44
     3         0.0       100.     136.88      59.31     236.88
     4         0.0       100.     130.32      56.47     230.32
     5         0.0       100.     123.76      53.63     223.76
     6         0.0       100.     117.20      50.79     217.20
     7         0.5       100.     115.96      50.25     215.96
     8         0.5       100.     114.72      49.71     214.72
     9         0.5       100.     113.47      49.17     213.47
   10         0.5       100.     112.23      48.63     212.23
   11         0.5       100.     110.99      48.09     210.99
   12         0.5       100.     109.75      47.56     209.75
   13         0.5       100.     108.50      47.02     208.50
   14         0.5       100.     107.26      46.48     207.26
   15         0.5       100.     106.02      45.94     206.02
   16         0.5       100.     104.78      45.40     204.78
   17         0.5       100.     103.53      44.86     203.53
   18         0.5       100.     102.29      44.33     202.29
   19         0.5       100.     101.05      43.79     201.05
   20         0.5       100.        99.81      43.25     199.81
   21         0.5       100.        98.56      42.71     198.56
   22         0.5       100.        97.32      42.17     197.32
   23         0.5       100.        96.08      41.63     196.08
   24         0.5       100.        94.84      41.10     194.84
   25         0.5       100.        93.59      40.56     193.59
   26         0.5       100.        92.35      40.02     192.35



An analysis based on the nearest standard pipe diameter yields the following results:

STANDARD PIPE DIAMETER SOLUTION

PIPE
 NO.

  N O D E S
FROM    TO

    L  DIA.    e
x 1 0 5

   Q VEL . HEAD
LOSS

HLOS
S
/ 1 0 0 0

       ft.     in     in   ft3/s  ft/s      ft.
   1      1      2    5280.   24.0    8.4  10.0 3.18   5.59   1.06
   2      2      3    5280.   24.0    8.4  10.0 3.18   5.59   1.06
   3      3      4    5280.   24.0    8.4  10.0 3.18   5.59   1.06
   4      4      5    5280.   24.0    8.4  10.0 3.18   5.59   1.06
   5      5      6    5280.   24.0    8.4  10.0 3.18   5.59   1.06
   6      6      7    1000.   24.0    8.4  10.0 3.18   1.06   1.06
   7      7      8    1000.   24.0    8.4    9.5 3.02   0.96   0.96
   8      8      9    1000.   24.0    8.4    9.0 2.86   0.87   0.87
   9      9   10    1000.   20.0    8.4    8.5 3.90   1.90   1.90
 10   10   11    1000.   20.0    8.4    8.0 3.67   1.70   1.70
 11   11   12    1000.   20.0    8.4    7.5 3.44   1.51   1.51
 12   12   13    1000.   20.0    8.4    7.0 3.21   1.33   1.33
 13   13   14    1000.   20.0    8.4    6.5 2.98   1.17   1.17
 14   14   15    1000.   20.0    8.4    6.0 2.75   1.01   1.01
 15   15   16    1000.   18.0    8.4    5.5 3.11   1.43   1.43
 16   16   17    1000.   18.0    8.4    5.0 2.83   1.20   1.20
 17   17   18    1000.   18.0    8.4    4.5 2.55   0.99   0.99
 18   18   19    1000.   15.0    8.4    4.0 3.26   1.93   1.93
 19   19   20    1000.   15.0    8.4    3.5 2.85   1.52   1.52
 20   20   21    1000.   15.0    8.4    3.0 2.44   1.15   1.15
 21   21   22    1000.   15.0    8.4    2.5 2.04   0.83   0.83
 22   22   23    1000.   12.0    8.4    2.0 2.55   0.61   1.61
 23   23   24    1000.   12.0    8.4    1.5 1.91   0.96   0.96
 24   24   25    1000.   10.0    8.4    1.0 1.83   1.11   1.11
 25   25   26    1000.      8.0    8.4    0.5 1.43   0.94   0.94

AVE. VEL. = 2.87  ft/s,  AVE. HL/1000 = 1.22,  MAX. VEL. = 3.90  ft/s,  MIN. VEL. = 1.43  ft/s

In one more table we can summarize the information that describes this solution fully by
listing various data associated with each node.



NODE DATA

NODE    D E M A N D ELEV. HEAD PRESSURE HGL ELEV.
   ft3/s gal/min    ft.    ft.     lb/in2        ft.

    1 - 10.00 -  4490.0 100.0 150.00     65.00    250.00
    2      0.00            0.0 100.0 144.41     62.58    244.41
    3      0.00            0.0 100.0 138.82     60.16    238.82
    4      0.00            0.0 100.0 133.23     57.73    233.23
    5      0.00            0.0 100.0 127.64     55.31    227.64
    6      0.00            0.0 100.0 122.05     52.89    222.05
    7      0.50       224.4 100.0 120.99     52.43    220.99
    8      0.50       224.4 100.0 120.03     52.01    220.03
    9      0.50       224.4 100.0 119.15     51.63    219.15
  10      0.50       224.4 100.0 117.25     50.81    217.25
  11      0.50       224.4 100.0 115.55     50.07    215.55
  12      0.50       224.4 100.0 114.04     49.42    214.04
  13      0.50       224.4 100.0 112.71     48.84    212.71
  14      0.50       224.4 100.0 111.54     48.34    211.54
  15      0.50       224.4 100.0 110.54     47.90    210.54
  16      0.50       224.4 100.0 109.11     47.28    209.11
  17      0.50       224.4 100.0 107.90     46.76    207.90
  18      0.50       224.4 100.0 106.91     46.33    206.91
  19      0.50       224.4 100.0 104.98     45.49    204.98
  20      0.50       224.4 100.0 103.46     44.83    203.46
  21      0.50       224.4 100.0 102.32     44.34    202.32
  22      0.50       224.4 100.0 101.49     43.98    201.49
  23      0.50       224.4 100.0    99.88     43.28    199.88
  24      0.50       224.4 100.0    98.92     42.86    198.92
  25      0.50       224.4 100.0    97.81     42.38    197.81
  26      0.50       224.4 100.0    96.87     41.98    196.87

AVE. HEAD   =  114.9 ft.,      AVE. HGL     =  214.91 ft.,
MAX. HEAD  =  150.0 ft.,      MIN. HEAD  =    96.87 ft.

COSTS ASSOCIATED WITH THIS NETWORK

 ITEM   TYPE PRESENT WORTH ANNUAL COST
     1 ELEC. POWER $      101,898,590 $     10,277,391
     2 PIPE              2,969,690               299,520
             TOTAL $      104,868,280 $     10,576,910

The solution was obtained by applying the  NETWK  program with this input data file:

EXAMPLE PROBLEM 5.1,  PIPE BRANCHED NETWORK
/*
$SPECIF IHGL=-2,NOMSOL=1,DESIGN=1,ICOST=1 $END
250. -10 100 0 .000084
1 6  .001242424 5280./
DEMAND
.5
6 26 .00124242 1000./
END
RUN
1 250.
END

*                              *                              *



Example Problem 5.2
This branched network is to be designed (i.e., pipe sizes determined) for the stated

demands so the slope of the  EL-HGL  is  1/500  and a pressure of  50 kPa  exists at node
[8], the downstream node.  What will be the cost per  30-day period for pumping if
electricity costs  $0.09/kWh  and the combined efficiency of the motor and pump is  75
percent?
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To determine the solution, first the discharge in each pipe is calculated by starting at the
downstream nodes and working upstream, applying continuity at each node, and then the
diameters are found by using any of the programs  DIAPIP*.  The results are given below
in the table.  The head that the pump must supply can be determined by starting at node [8]
and computing successively the elevations of the  HGL  at the nodes that are farther
upstream;  finally the supply water surface elevation is subtracted to obtain the net rise that
is needed in the  HGL,  or  hp = 123.5 - 100  =  23.5 m.  The cost per month is the cost
per  kWh  multiplied by the number of hours in 30 days and the power rate in  kW;  thus

Cost  =  0.09(30x24)(0.095x9.81x23.5)/0.75  =  $1892 per month.

P i p e     Q
 m3/s

   hf
    m

    D
    m

Node   HGL
     m

  1   0.095     2.0  0.370     1   123.5
  2   0.020     1.6  0.206     2   121.5
  3   0.075     2.0  0.339     3   119.9
  4   0.020     2.4  0.206     4   119.9
  5   0.055     2.8  0.301     5   117.5
  6   0.020     1.0  0.206     6   116.7
  7   0.015     1.6  0.184     7   115.7

    8   115.1

*                              *                              *

5.2 LARGE BRANCHED SYSTEMS OF PIPES

Section 5.1 has shown how to determine the diameters of pipes in branched systems.
First the discharges in all pipes are determined from the nodal external demands;  second,
once the discharge in each pipe is known, one of the methods described in Section 5.1 is
applied repeatedly until all of the diameters have been computed.  The discharges in all
pipes of a branched system are obtained by satisfying the junction continuity equations.  If
we assume that the node which supplies the system is numbered (and that its demand is
negative), then in general for a branched system there will be one more node or junction
than there are pipes.  Therefore the number of pipe flow equations will be  NJ - 1,  and a
junction continuity equation will not be written for one of the nodes.  The node that is
omitted is seemingly arbitrary, but typically the omitted junction continuity equation is
associated with either the last or first node.  Let's examine how this approach can be
implemented effectively in computer codes.



Three somewhat disparate methods can be used to obtain the discharges in a systematic
manner that can be implemented in computer code.  The three methods focus on either  (1)
the network layout,  (2)  the coefficient matrix produced by the junction continuity
equations, or  (3)  the use of standard linear algebra.  The reader can prepare best for the
next three sections by obtaining now a listing of programs  SOLBRAN,  SOLBRAN2,
and  SOLBRAN3  from the CD.

5.2.1. NETWORK LAYOUT
The implementation of this method is based on the layout or topological connectivity of

the network;  it notes that pipes that have a dead end, i.e., that have at most one connection
or nodal demand at one of their ends, must convey a discharge that is equal to the demand at
that node.  After the discharge in such a dead end pipe is determined, the demand at the other
end of this pipe is modified to be the sum of the original nodal demand there and the
discharge in the pipe, and then the dead end pipe is removed from the network of pipes.
This reduced network will contain other dead end pipes, and the process is continued until
the discharge is established for all pipes in the network.  This process can be defined by the
following steps:

1.  Examine the network to find all nodes that have only one pipe connected to them,
and  assign the discharge in each such pipe to be the demand at this node.

2.  Modify the demand at the node at the other end of each such pipe to reflect the origi-
nal demand and the discharge in the pipe, and remove the pipe from the definition of
the network.

3.  Repeat steps  1  and  2  until the discharge is determined for all pipes in the
branched network.

The  10-pipe network shown in Fig. 5.2 will be used to illustrate this method.  In step
1  we note that pipes  1,  5,  9,  and  10  are dead end pipes, i.e., pipes connected to nodes
that have only one pipe connected to them, and the discharges in these pipes equal the
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Figure 5.2  A  10-pipe network.

demands at these nodes:  Q1 = QJ1 = 3.7 ft3/s,  Q5 = QJ7 = 0.5 ft3/s,  Q10 = QJ10 = 0.3

ft3/s  and  Q9 = QJ11 = 0.2 ft3/s.  Upon obtaining these discharges, step  2  is to reduce
the branched system of pipes, by removing these pipes, to that shown in Fig. 5.3, in
which the new demands account for the discharges in the pipes that have been removed:
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Figure 5.3  The reduced network.

For step  3  the process is repeated.  After two additional applications (as shown below)
there are only two pipes left, both of which are dead end pipes.  The resulting discharges are
Q1 = 3.7 ft3/s,  Q2 = 1.4 ft3/s, Q3 = 1.8 ft3/s,  Q4 = 1.1 ft3/s,  Q5 = 0.5 ft3/s,  Q6 = 1.6

ft3/s,  Q7 = 1.3 ft3/s,  Q8 = 0.9 ft3/s,  Q9 = 0.3 ft3/s,  and  Q10 = 0.2
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Figure 5.4  The final arrangement of the pipes.

Let's examine how this process can be implemented effectively in computer code.  The
details of the process will vary slightly, depending on the description of the network and
one's sign convention.  The description we will use for this purpose consists of a table
with one line for each node.  Each line contains the demand at the node, followed by a list
of the pipes that join at this node.  An extraction or outflow will be a positive demand, so
if an external flow enters the network at a node it will be a negative demand.  Pipes that
receive flow from a node will be given positive numbers, whereas a pipe having flow into
a node will be given a negative number.  Using this nomenclature, the description of the
branched network example is given by the two lists in Table 5.2.  These lists are prepared
in the order in which the nodes are numbered, and the entries under the second heading are
the numbers of the pipes that join at this node.  Thus dead end pipes are identified
immediately by the single number on one row in this list.



Table 5.2

Demand  QJi
        ft3/s

Pipes a t
Node

    -   3.7     1
        0.5 -   1   2   3
        0.3 -   2   4
        0.2 -   3   6
        0.6 -   4   5
        0.3 -   6   7
        0.5 -   5
        0.1 -   7   8   9
        0.7 -   8   10
        0.3 - 10
        0.2 -   9

The process for determining the discharge in each pipe can consist of these steps:  
1.  Scan the list "Pipes at Node."  If only one pipe number appears in a row, assign the

demand at this node to the discharge in this pipe.  To account properly for the
direction of flow, the discharge in this pipe  k  can be assigned as  Qk = - QJi|k|/k.
The absolute value of the pipe number, divided by its number, will give the proper
sign to the discharge.

2.  Mark this node for deletion, as it is not needed during the next pass through the list.
3.  Scan the list of nodes and note all other appearances of this same pipe number.

Modify the demand at any node that has this pipe joining it by the discharge of this
pipe, i.e. modify demand  QJj  by  (QJj)new = (QJj)old + Qk|k|/k,  and remove this
pipe from the list "Pipes at Node."

4.  Delete all nodes that have been marked for deletion.
5.  Repeat steps  1  through  4  until all nodes have been deleted from the list.
The program  SOLBRAN  executes the procedure that has just been described.  After the

discharges in the pipes are determined, then the diameters can be computed by the
procedures described earlier.  In this program these diameters are determined by solving the
Darcy-Weisbach and Colebrook-White equations simultaneously;  thus the previous
program is now a subroutine that finds the diameter  D  (program variable DIA)  given the
discharge (program variable Q) and pipe roughness  e.  Then this subroutine finds  D  and  
f  simultaneously.

The input to this program consists of the following:  
1.  The first line, which comes from the keyboard, gives the number of pipes  NP  (and

in the C program the file names of the input and output units INPUT and IOUT);
2.  The acceleration of gravity (32.2  for ES units or  9.81  for SI units)  G,  the

kinematic viscosity of the fluid  VISC,  and the slope  S = hf/L  of the  HGL  line;
3.  A list of pipe lengths;
4.  A list of pipe roughnesses  e   in inches when using ES units and in meters when

using SI units (by ending this list with / the missing  e's  will be equated to the last
one supplied);

5.  The list of demands and pipes at node as described above.  Each line of item 5 must
terminate with a / with the Fortran program.  The program is dimensioned to allow
up to four pipes to join at any node, but this can be changed by assigning
PARAMETER N4  a different value.

The input file for this problem is presented in Fig. 5.5.



Input to FORTRAN program
32.2 1.41E-5 0.001
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
0.0002/
-3.7 1/
0.5 -1 2 3/
0.3 -2 4/
0.2 -3 6/
0.6 -4 5/
0.3 -6 7/
0.5 -5/
0.1 -7 8 9/
0.7 -8 10/
0.3 -10/
0.2 -9/

Figure 5.5  Input file for program  SOLBRAN.

Table 5.3  Solution for a 10-pipe, 11-node Branched System

P i p e Length
    ft.

     e
in x104

     Dia.
      in.

  Area
     ft2

Discharge
      ft3/s

V e l o c i t y
     ft/s

Head Loss
        ft.

    1   1000.0     2.0 16.7139    1.52        3.7     2.43      1.00
    2   1100.0     2.0 11.6044    0.73        1.4     1.91      1.10
    3   1200.0     2.0 12.7509    0.89        1.8     2.03      1.20
    4   1300.0     2.0 10.6023    0.61        1.1     1.79      1.30
    5   1400.0     2.0   7.8967    0.34        0.5     1.47      1.40
    6   1500.0     2.0 12.2000    0.81        1.6     1.97      1.50
    7   1600.0     2.0 11.2867    0.69        1.3     1.87      1.60
    8   1700.0     2.0 10.2308    0.57        1.0     1.75      1.70
    9   1800.0     2.0    5.6149    0.17        0.2     1.16      1.80
 10   1900.0     2.0    6.5282    0.23        0.3     1.29      1.90

5.2.2. COEFFICIENT MATRIX
This method writes the junction continuity equations in matrix form as  [C]{Q} = {QJ}.

The elements in the coefficient matrix  [C]  consist of three possible values,  0,  1, or  - 1.
The vector of unknowns  {Q}  contains the discharges in the pipes, and the known vector
{QJ}  lists the demands at the nodes.  This method uses a very efficient method, rather than
standard methods such as Gaussian or Gauss-Jordan elimination, to solve the linear algebra
problem.  The approach to the linear algebra problem can be very similar to the process
employed in our first method, but the focus is on the coefficient matrix rather than the
layout of the network.  The steps can be identified as follows:

1.  Examine the coefficient matrix for rows that contain only one element that is not
zero, and solve this equation.  (The solution of this equation will force the discharge
in the pipe identified by the column in this coefficient matrix to be the demand at
the downstream end of this pipe, i.e., equal to  QJ  in this row.)  Then mark this
equation as solved;  i.e., remove this row from the existing linear equation system.

2.  Find all other rows in the coefficient matrix that are not zero in this column;  for
each of these modify the known vector  {QJ}  in this row by multiplying the
coefficient ( 1  or  - 1) by the discharge determined in step  1,  and subtract this
amount from the existing value of  QJ  in this row.  In effect this step removes this
column from the coefficient matrix so that it has been reduced in size by one row
and one column.

3.  Repeat steps  1  and  2  until all rows and columns of the linear algebra problem
have been removed.

The implementation of this method should not form the coefficient matrix as a N-row
by N-column matrix, with  N  being the number of junctions  NJ  minus  1.  Instead,



identify which columns of the coefficient matrix contain the nonzero elements (the  1's  or
- 1's) for each of its rows, to save the storage needed for a two-dimensional array.  Listing
the pipe numbers that join at a node, as was done in implementing the first method,
provides this identification, i.e. the node number identifies the row of the matrix, and the
pipes joining at this node provide the column numbers that contain the non-zero elements.
In program  SOLBRAN  this pipe information was read into the two-dimensional integer
array  JN(NJ,4)  (the second subscript is the number of pipes that can join at any junction).
Thus step  1  will identify those rows, i.e. the first subscript of  JN,  that have only one
pipe and use only one position in the second subscript of  JN.  For these rows the  Q's
will be determined, and the row will be marked and eliminated.  For step  2  all of the rows
not yet marked as eliminated will be searched for the same pipe number, and whenever this
number is found it will be removed, and the number of elements used in the second
subscript will be reduced by one.  Thus the actual solution process becomes very similar to
the first method.  The program  SOLBRAN2  shows one way to implement the second
method.  The subroutine  DIAPIP  is unchanged from the listing in  SOLBRAN.

5.2.3. STANDARD LINEAR ALGEBRA
In this method the junction continuity equations are written as a coefficient matrix that

multiplies the vector of unknown discharges (of length  NP  pipes) in the system.  This
product equals the known vector which consists of the demands at  NP = NJ - 1  nodes of
the network.  This method requires the coefficient matrix to be a square matrix with  NP
rows and  columns.  The coefficient matrix elements will have the values  0,  1,  or  - 1.
The row numbers correspond to the junction numbers for which the  NP  junction
continuity equations are written, and the column numbers correspond to the pipe numbers.
Upon properly defining the coefficient matrix and the known vector, a standard linear
algebra subroutine (function) is called to solve the linear system of equations.  One
implementation of such a solution is given below in program  SOLBRAN3.  In this
program the junction continuity equation is not written at the last junction of the network.
Since the linear algebra solver  SOLVEQ  (see Appendix A) returns the solution in the
same array that originally contained the known vector, the demands are now placed in the
array  Q  at the outset, and the array  QJ  has been removed.  In studying this listing you
should strive to understand how the coefficient matrix is stored as  0's,  1's,  or  - 1's  in
the two-dimensional array  C.

This method can be implemented easily by using spread sheets and general-purpose
mathematics application software such as  MathCAD,  MATLAB,  or  TK-Solver.  While
the use of such software will result in computationally inefficient solutions, as is the case
with  SOLBRAN3,  especially for large branched networks, the near-zero cost associated
with such computations and the large PC RAMS makes it a viable approach.  The  CD
contains a  TK-Solver model and a brief description of it as files  SOLBRAN3.TK2  and
SOLBRAN3.DOC.  A variation of the  C  program  SOLBRAN.C  is also on the  CD
under the name  SOLBRAN4.C.  This  C  program calls special pointer functions to
allocate arrays beginning with  1,  rather than  0,  as is standard in  C.  (See Appendix A
and the file SOLVEQC.DOC on the  CD  for more information.)

Example Problem 5.3
Water from a reservoir with a water surface elevation of  3020 ft  passes through a pump

to a pipeline that supplies twelve center-pivot irrigation sprinklers, each receiving a
discharge of  1.5 ft3/s  at elevation  3020 ft  and having a  1-mile spacing, as shown in the
diagram.  A pressure of  60 lb/in2  or more is needed at each pivot location.  Design the
system to minimize costs.  The capital cost of the pump is  $100,000.  Electrical energy
costs  $0.0935/kWh  (actually  $0.11/kWh,  accounting for the  85% pump efficiency).
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The cost per unit length for different pipe sizes is as follows (The  NETWK  program uses
these default values.):

Diameter, in   10   12   15   18   20   24     30     36
Cost,  cents/ft 10.67 16.67 24.00 43.33 56.67 80.00 100.00 120.00

The life expectancy of all components is  50  years, and the interest rate for acquiring
capital for the project is  11 percent.

The cost of a system with pipes that are too small will be excessive, owing to the large
energy cost of pumping the water.  On the other hand the capital recovery cost for the pipes
will be excessive if they are too large.  The minimum total cost will be somewhere
between these two extremes and will be determined by solving this branched system for
several slopes of the  HGL  along the main line from node 1 though node 6 so that the
pressure at node 6 is  60 lb/in2.  Likewise the pressures at nodes 7 through 13 will be
specified as  60 lb/in2.  Thus a number of tentative designs will be required, and for each of
these the costs will be determined.  Since standard pipe sizes will be used, the nearest
standard pipe size will be used in computing these costs.

The solution procedure will consist of the following steps:
1.  Select a slope for the  HGL  along the main branch.
2.  With a pressure of 60 lb/in2 at node 6, or HGL6 = 3020 + 60(144)/62.4 = 3158.46

ft,  and the slope chosen in step 1, find the  HGL  slopes of pipes  6  through  12.
3.  Compute all of the pipe diameters based on these  HGL  slopes.
4.  Select standard pipe sizes that are nearest to the computed diameters.
5.  Analyze the system that is composed of these standard pipe sizes, and compute the

head and power that the pump must supply;  then compute the electrical energy
cost.

6.  Determine the cost of the pipes, and convert this cost to an equivalent uniform
annual cost by applying the capital recovery factor.

7.  Repeat steps 1 through 6 until the least total cost is found.

SOLBRAN  can not be used to seek this solution in a single run because the slope of
the  HGL  is not the same for all pipes.  The code would require modification to allow
different slopes for different pipes.  In its present form it could use the following input data
to size pipes 1 through 6, but separate runs would be needed for the pipe pairs  6 and 9,  7
and 10,  and  8 and 11  owing to the different HGL slopes.  It is an instructive exercise to
use the following input with  SOLBRAN  to compute the diameters of the pipes;  those
results can then be compared with those from  NETWK.



Input to SOLBRAN
32.2  1.41E-5  0.001
10560  5280  5280  5280  5280/
0.005/
-18.  1/
4.5  -1 2/
4.5  -2 3/
4.5  -3 4/
3.0  -4 5/
1.5  -5/

The program  NETWK  will accomplish steps 1 through 6 with the input file below.
In this input file the option  IHGL = -  2  allows the main branch to be described by  2
lines of input, and the regular input is added to describe the lateral pipes.  This input file
has a HGL slope of  0.001  (and this slope results in the least cost).  To obtain a solution
for a different slope, this value (0.001) is changed;  additional required changes are the HGL
elevation at the beginning node (3190.14) and, on the line after the RUN command, a
beginning  HGL  elevation for the analysis that is requested with the option  NOMSOL=1.
To pursue this solution process further, you should now obtain a solution from  NETWK.
The input file is on the  CD  under the name  EXP5_3.IN.  In obtaining the solution you
should note that  NETWK  first computes a design solution in which the pipe diameters
are

Example Problem  5.3
/*
$SPECIF IHGL=-2,NOMSOL=1,DESIGN=1,ICOST=1 $END
3190.14 -18. 3020. 1.5 .005
1 6 0.001  10560. 5280./
END
PIPES 9 1.5
6 2 7 5280. 0. .005 10 1.5
7 3 8/ 11 1.5
8 4 9/ 12 1.5
9 2 10/ 13 1.5
10 3 11/ RUN
11 4 12/ 1 3190.14
12 5 13 PUMPS
NODES UNIT=0.11
7 1.5 3020. 3158.46 CAPI=100000
8 1.5 END

determined.  Then the nearest standard pipe sizes are used to "analyze" the network.  The
final cost is based on this analysis and should agree with the data in this table:

COSTS ASSOCIATED WITH THIS NETWORK

 ITEM   TYPE PRESENT WORTH ANNUAL COST
     1 PIPE $      2,749,243 $      277,286
     2 ELEC. ENERGY          2,575,937          259,857
             TOTAL $       5,325,180 $       537,143

The least cost is $537,143 per year with the energy costing  $259,857 per year and the
amortized cost of the pipes being  $277,256 per year.  Pipes 1 and 2 should be  30  inches
in diameter, pipe  3 should be  24  inches in diameter, pipe 12 should be  12  inches in
diameter, and the other pipes should be  10  inches in diameter.

*                              *                              *
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5.3 LOOPED NETWORK DESIGN SOLUTION CRITERIA

This section will discuss the means for establishing equations to determine diameters
and other desired quantities associated with looped pipe network problems.  As background
it is appropriate to review some of the fundamental relations that apply to the analysis of
pipe networks, whether looped or branched.  If the number of pipes that exist in a network
is denoted by  NP,  the number of nodes (or junctions) is denoted by  NJ,  and the number
of independent loops is denoted by  NL,  then this basic relation must be satisfied:

NP = NJ + NL    if the network has two or more supply sources
or

NP = (NJ - 1) + NL    if the network has fewer than two supply sources.

Actually a network can never be devoid of supply sources, but often problems are shown
without a supply source.  Instead the supply source is simply a node that has a negative
demand or a flow into the system. If a network has only one supply source, it can always
be shown as a network with no reservoir, or source pump, by obtaining the sum of the
other demands and then indicating that this discharge amount enters at a particular point.
For this relation to apply we tacitly assume that supply sources are not numbered as nodes.

The two kinds of basic equations are (1) junction continuity equations (NJ  or  NJ - 1
in number) that simply give mathematical expression to the fact that the mass rate of flow
(or volumetric discharge for an incompressible fluid) from a junction must equal the mass
rate of flow (or discharge) to a junction, and (2) equations that describe the relation between
head loss and discharge in a pipe, e.g., the Darcy-Weisbach or Hazen-Williams equations.
Of course other equations could be written and may be needed, but these are not considered
to be basic equations.  For example, in using the Darcy-Weisbach equation a friction factor
f  is introduced for each pipe, but alternative equations such as the Colebrook-White
equation could express this relation.  In a similar way pipe cross-sectional areas could be
introduced as variables, and for each such area an additional equation becomes available.
These secondary equations will not be included in the subsequent discussion.

One might wonder whether the equations around the loops constitute additional
independent equations?  The answer is no;  they are not independent if all of the pipe head
loss equations are written.  The connectivity of the network, in conjunction with the pipe
head loss equations, can be used to obtain the loop equations around both pseudo and real
loops.  To demonstrate this situation, consider the 16-pipe, 9-node network in Fig. 5.6.
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Figure 5.6  A  16-pipe,  9-node network.

The number of independent loop equations that can be written is  NP - NJ  =  16 - 9  =  7.
These  7  loops are clear;  four of them are real loops and three are pseudo loops connecting
the four supply sources in some manner.  However, the total number of basic equations
consists of  NJ = 9  junction continuity equations, and  NP = 16  pipe head loss equations,



for a total of  25.  Thus  25  variables might be regarded as unknown, and if the other
variables of the problem were all known, a solution for them could be sought.

To verify that the loop equations do not constitute additional independent equations,
consider the four pipes (6, 9, 7, and 4) in loop I, using the exponential formula to express
the head loss in each pipe:

H1 − H4 = K6Q6
n6 (5.11)

H4 − H5 = K9Q9
n9 (5.12)

H2 − H5 = K7Q7
n7 (5.13)

H2 − H1 = K4Q4
n4 (5.14)

Adding  Eqs. 5.11  and  5.14  gives

H2 − H4 = K4Q4
n4 + K6Q6

n6 (5.15)

Subtracting Eq.  5.12  from  5.13  gives

H2 − H4 = K7Q7
n7 − K9Q9

n9 (5.16)

Now the subtraction of Eq.  5.16  from Eq.  5.15  produces

K4Q4
n4 + K6Q6

n6 + K9Q9
n9 − K7Q7

n7 = 0 (5.17)

which is the loop equation for loop I.  In a similar way writing the pipe head loss
equations for pipes  1, 4,  and  2  leads to

WS1 − H1 = K1Q1
n1 (5.18)

H2 − H1 = K4Q4
n4 (5.19)

WS2 + hp − H2 = K2Q2
n2 (5.20)

Subtracting Eq.  5.19  from  5.18  results in

WS1 − H2 = K1Q1
n1 − K4Q4

n4 (5.21)

Finally subtract Eq.  5.20  from  5.21  to eliminate  H2  and obtain

WS1 − WS2 − hp + K2Q2
n2 + K4Q4

n4 − K1Q1
n1 = 0 (5.22)

which is the loop equation for pseudo loop V.
If a pipe head loss equation were written for every pipe in the network and the  H's  

were then eliminated from these equations, an independent set of loop equations would be
obtain-ed.  Thus we see that loop equations are not independent of the pipe head loss
equations and cannot also be used if the head loss equations are used.  It is the way in
which pipes are connected in a network that allows the loop equations to replace the pipe
head loss equa-tions.  This realization was the basis for the development of the  Q-



equations in Chapter 4  to analyze a network. If one desires, it is always possible to omit
pipe head loss equations and use loop equations in their place.  Doing this, however,
generally results in more arithmetic in obtaining the solution.

For the present we regard a design problem as one in which pipe diameters are to be
determined.  The definition of a design problem could be given a broader meaning, but at
this time we are not concerned with the sizing of other components of a pipe system.
Design problems can be further divided into two categories:  (1)  those in which we seek to
determine as many diameters as there are nodes in the network (branched networks are a
special case here);  and  (2)  those in which we seek only certain individual pipe diameters
to meet specified pressures.  The latter category of problems will be treated in a later
section.  In the first category it is not possible to solve for more pipe diameters than there
are nodes because the number of unknowns would then exceed the number of available
equations.  If the maximum possible number of pipe diameters is to be found (category 1),
then it is assumed that the  HGL  elevations, or the heads  H  (pressure heads, or
pressures), are specified at all nodes of the network.  The number of basic equations is then
NP + NJ  (or  NP + NJ - 1  if no supply sources are specified), but some of these must be
used to determine other variables, usually the individual pipe discharges.  Thus a basic
difference between the first type of design problem and an analysis problem is that the  H's
at the nodes are known (specified) rather than unknown, and pipe diameters are to be found
in place of the  H's.  The discharges are unknown variables in both the first type of design
problem and the analysis problem.  Thus diameters replace  H's  in the list of unknowns.
The number of diameters in the list of unknowns must equal the number of  H's  which are
specified.  Looking again at the most recent network as an example, if the  H's  at all  9
nodes are given, one can in principle determine  9  pipe diameters.  In this case the  25
independent equations would be used to determine  16  discharges plus  9  diameters.

To gain further insight into how this interchange of unknowns for knowns occurs, and
what works and what won't work, consider the three-pipe looped system in Fig. 5.7, for
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(1)

[3]
[2] (2)

(3)

QJ1 

QJ2 

QJ3 

Figure 5.7  The three-pipe looped system.

which there exist two independent junction continuity equations and three head loss equa-
tions.  If this were an analysis problem, all pipe diameters (and their lengths and rough-
nesses) would be given, and the five unknowns to be found would be  Q1,  Q2,  Q3,  H2,
and  H3  (assuming  H1  is known).  For the design problem  H2  and  H3  are given,
along with  H1,  and two diameters can then be found.  The unknowns in the design
problem would be  Q1,  Q2,  Q3,  and two diameters.  There are three possible
combinations of two diameters:  D1  and  D2,  D1  and  D3,  and  D2  and  D3.  In the
first combination  D3  must be given, in the second  D2,  and in the third  D1.  Specifying
a diameter plus the head at both ends of a pipe establishes from the head loss equation the
discharge in that pipe.  These three combinations of diameters create the three problem
cases shown in Fig. 5.8.
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Figure 5.8  The three cases.

One approach to the solution of these three cases is to write the 5 basic equations (plus
the secondary equations), specify the knowns and solve for the unknowns.  In other words
the independent equations are simultaneously solved for as many unknowns as there are
equations.  This approach is illustrated by the "Rule Sheet" from TK-Solver, shown below
with the three variable sheets for these three cases.  The diameter that is regarded as known
is listed in the "Input" column, and the diameters that are to be found are listed in the
"Output" column.

However, from these cases one may be able to see a computationally more efficient
means of solving the problem.  First, the discharges in the pipes with given diameters can
be computed by solving a head loss equation.  Next, by removing these pipes and

RULE SHEET
                            S Rule-------------------------------------------------------------------------
                               Q2+Q3=QJ3
                               Q1-Q2=QJ2
                               H1-H2=f1*(L1/D1)*Q1^2/(G2*(pi()/4.*D1^2)^2)
                               H2-H3=f2*(L2/D2)*Q2^2/(G2*(pi()/4.*D2^2)^2)
                               H1-H3=f3*(L3/D3)*Q3^2/(G2*(pi()/4.*D3^2)^2)
                               1/sqrt(f1)=1.14-2*log(e/D1+7.34347283*v*D1/(Q1*sqrt(f1)))
                               1/sqrt(f2)=1.14-2*log(e/D2+7.34347283*v*D2/(Q2*sqrt(f2)))
                               1/sqrt(f3)=1.14-2*log(e/D3+7.34347283*v*D3/(Q3*sqrt(f3)))

Case  1                                                 Case  2                                                   Case  3
   VARIABLE SHEET              VARIABLE SHEET              VARIABLE SHEET

St Input---- Name--- Output---         St Input---- Name--- Output---        St Input---- Name--- Output---
D1 .1209918 D1 .1211631 .12 D1
D2 .1244984 .125 D2 D2 .1215503

.125 D3 D3 .1247196 D3 .1265911
Q1 .0459944 Q1 .0461667 Q1 .0450043
Q2 .0159944 Q2 .0161667 Q2 .0150043
Q3 .0290056 Q3 .0288333 Q3 .0299957

150 L1 150 L1 150 L1
400 L2 400 L2 400 L2
550 L3 550 L3 550 L3
.045 QJ3 .045 QJ3 .045 QJ3
.03 QJ2 .03 QJ2 .03 QJ2
100 H1 100 H1 100 H1
85 H2 85 H2 85 H2
80 H3 80 H3 80 H3
.0000
1

e .0000
1

e .0000
1

e

1.3E-6 ν 1.3E-6 ν 1.3E-6 ν
19.62 G2 19.62 G2 19.62 G2

f2 .0176878 f2 .0176642 f2 .0178295
f1 .0148337 f1 .0148277 f1 .0148689
f3 .0159636 f3 .0159747 f3 .0159017

Figure 5.9  The TK-Solver variable and rule sheets for the three cases.



modifying the demands on the reduced network, the discharges in the remaining pipes can
be determined so they satisfy the junction continuity equations.  Finally, for the remaining
two pipes whose discharges are now known, the head loss equations can be solved for the
diameters.  Thus for all three cases the problem can be reduced to the solution of three
separate equations, in proper order, each with only one unknown.  (If the Darcy-Weisbach
equation is selected for use, then actually pairs of equations must be solved, because the
Colebrook-White equation for  f  must also be employed.)

For Case  1  this procedure would consist of the following steps if the heads are
specified as  H1 = 100 m,  H2 = 85 m  and  H3 = 80 m,  each  e = 0.00001 m,  L1 = 150
m,  L2 = 400 m,  and  L3 = 550 m:

(a)  Find  Q3  from  H1 - H3 = f3(L3/D3)Q3
2/(2gA3

2)  and the Colebrook-White

equation using  D3 = 0.15 m,  L3 = 550 m,  e3 = 0.00001 m,  QJ2 = 0.03 m3/s,

and  QJ3 =  0.045 m3/s;  the solution is  Q3 = 0.029 m3/s,  f3 = 0.016.

(b)  From continuity (i.e. inspection)  Q1 = 0.0460 m3/s,  Q2 = 0.0160 m3/s.

(c)  Seek  D1  from  H1 - H2 = f1(L1/D1)Q1
2/(2gA1

2)  and the Colebrook-White
equation;  the result is  D1 = 0.1210 m.

(d)  Finally, find  D2  from  H2 - H3 = f2(L2/D2)Q2
2/(2gA2

2)  and the Colebrook-
White equation;  the result is  D2 = 0.1245 m.

When our discussion indicated that the number of pipe diameters that can be sought is
equal to the number of junction continuity equations, one might infer that a simultaneous
solution of continuity equations would provide all of the unknown diameters.  This is not
the case.  In fact a simultaneous solution of the junction continuity equations provides the
discharges in the pipes with unknown diameters (since this case uses only one continuity
equation at a time), and the head loss equations (e.g., the Darcy-Weisbach equation) are used
to find the unknown diameters and also to determine the discharges in pipes whose
diameters are specified.  In other words, all of the equations were used.

Before moving on to additional and more complex networks, we must note that it is
quite possible to create combinations of specifications that lead to impossible situations.
In this three-pipe network, for example, if the diameter of pipe  3  in case  1  were specified
to be too large so that the discharge it conveys in response to the head loss  H1 - H3
exceeds the demand  QJ3,  an impossible problem is defined in which the flow in pipe  2
must be from node  3  to node  2,  but this is not possible because H2 is greater than H3.
A specified diameter which is too small can also create impossible conditions:  if in case  3
D1 = 0.1 m, then the discharge in pipe  1  must be  (with  H1 = 100 m and  H2 = 85 m)

Q1 = 0.028 m3/s,  which is less than the demand  QJ2,  and so the flow in pipe  2  must
be from node  3  to  node 2,  but this is not possible because  H2 = 85 m  is larger than
H3 = 80 m.  The prescribed diameters and the heads at the pipe ends must be within certain
limits so the flow pattern is consistent with what is required by continuity at both ends of
these pipes and with the head distribution in nearby pipes.

Consider next the design of a simple network consisting of only two pipes with
reservoirs at both ends, as shown in Fig. 5.10.  If this network is viewed as a design

(1) (2)
QJ

1
WS

1

[1]D1, L1, e D2, L2, e

WS
2

Figure 5.10  A simple two-pipe, two-reservoir network.

problem in which the head is specified at the one node, then only one pipe diameter can be
found.  There are three basic equations available, one junction continuity equation and two



head loss equations, since  NJ + NP = 1 + 2 = 3.  Below are results from TK-Solver for a
set of known values for two cases;  in the first case  D1  is unknown, and in the second
case  D2  is unknown.  This simple network with a pseudo loop (because there are two
supply sources) shows that the same principles govern how many diameters can be found
for a looped network with two or more supply sources and for a looped network with one
supply source.  Clearly the number of diameters that can be regarded as unknown equals the
number of junction continuity equations.  This same principle applies to branched
networks.

RULE SHEET
                            S Rule---------------------------------------------------------------------------
                                Q1-Q2=QJ1
                                WS1-H1=f1*(L1/D1)*Q1^2/(G2*(pi()/4.*D1^2)^2)
                                H1-WS2=f2*(L2/D2)*Q2^2/(G2*(pi()/4.*D2^2)^2)
                                1/sqrt(f1)=1.14-2*log(e/D1+7.34347283*v*D1/(Q1*sqrt(f1)))
                                1/sqrt(f2)=1.14-2*log(e/D2+7.34347283*v*D2/(Q2*sqrt(f2)))

                   Case  1                                                                      Case  2
                 VARIABLE SHEET                           VARIABLE SHEET
                   St Input----- Name---- Output------                       St Input----- Name---- Output------

D1 .67179122 . 8 D1
. 5 D2 D2 .76556319

Q1 2.0806609 Q1 3.299349
Q2 .58066088 Q2 1.799349

1200 L1 1200 L1
1000 L2 1000 L2
1.5 QJ1 1.5 QJ1
85 H1 85 H1
.0001 e .0001 e
1.217E-5 ν 1.217E-5 ν
64.4 G2 64.4 G2

f1 .01569440 f1 .01494752
f2 .01840944 f2 .01613281

100 WS1 100 WS1
80 WS2 80 WS2

Figure 5.11  The rule and variable sheets for the network of Fig. 5.10.

Another view of this two-pipe network problem might be as in Fig. 5.12;  now a
desired pressure at the downstream end is sought.  This specified pressure could equally well
be interpreted as a reservoir with a specified water surface elevation, as in the previous
example.  If so, then the demand at node 2,  QJ2,  is unknown since it is the discharge into
the downstream reservoir.  If the diameters of both pipes are specified, then this is an
analysis problem.

[1](1) [2](2)

QJ2 = ? 
e2 = 0.005"

v = 1.2 x 10-5 ft2/s

e1 = 0.005"
8" - 3000' 6" - 3500'

QJ1 = 0.5 ft2/s 

p2 = 40 lb/in2
H = 150'

H2 = 92.3 ft
or

Figure 5.12  An alternative view of the network in Fig. 5.10.



The unknowns are  Q1,  Q2,  and  QJ2,  and the three equations that are to be solved to
determine these unknown values are

Node  1  continuity Q1 −Q2 −QJ1 = 0 (5.23)

Node  2  continuity Q2 −QJ2 = 0 (5.24)

Pseudo loop equation h f 1 + h f 2 = 150 − 92.3 = 57.7  (5.25)

For this problem the pressure specification in place of the demand at node  2  allows this
unknown demand to be computed.  The solution requires the first continuity equation and
the loop equation to be solved simultaneously (if the Darcy-Weisbach equation is used,
then one Colebrook-White equation must be added for each  f;  so we actually require the
simultaneous solution of four equations for the four unknowns  Q1,  Q2,  f1,  and  f2),
followed by noting from the second continuity equation that  Q2 = QJ2.  The results are

Q2 = QJ2 = 0.815 ft3/s,  Q1 = 1.315 ft3/s,  f1 = 0.01935,  and  f2 = 0.02056.  We
encourage you to verify this solution.

An alternative would be to pose the question:  What pipe diameter  D2  would be needed

if the demand  QJ2  were to be  0.6 ft3/s  and the pressure at node  2  were to be  p2 = 40

lb/in2 (HGL = 92.3  ft)?  This is now a design problem;  in our three equations  QJ2  is
known, and the unknowns are  Q1,  Q2,  and  D2.  A logical sequence in solving this

problem would first note that  Q2 = 0.6 ft3/s (the specified demand);  next find  Q1 = 1.1

ft3/s  from the first continuity equation, and with  Q1  known compute  hf1 = 13.77 ft,

leading to  hf2 = f2(L2/D2)(Q2/A2)2/(2g) = 31.7f2/D2
5 = 43.9 ft  from the loop equation,

which when solved with the Colebrook-White equation would produce  f2 = 0.02157  and
D2 = 5.194 in.  If the pressure is also specified at node 2, then both pipe diameters can be
found.  Then the problem is converted into a branched system with demands known at all
three nodes, and the heads are also known at these nodes.

This example illustrates a principle that can be applied to our second looped-network
category:  each alternate specification allows us to regard another variable as a member of
the set of unknowns.  In this case if pressures are specified, then diameters can be left
unspecified, and the resulting equations can be used to determine these diameters.  
However, if the pipe roughness coefficients are unknown, then we must specify the
diameters.  In brief, any variable in a pipe network may be left unspecified while another is
specified in its place, so long as the number of independent equations equals the number of
unspecified variables, or unknowns, for which a solution is sought.

Flow through a single pipe illustrates this principle.  For the Darcy-Weisbach approach
six variables appear in the problem:  L, D, e, Q, f,  and  hf.  Two independent equations are

available,  the Darcy-Weisbach equation  hf = f(L/D)Q2/(2gA2) and the Colebrook-White

equation  1/ f  = 1.14 - 2 Log{e/D + 9.35/(Re f )}, that allow two unknowns to be

found.  Any pair of variables may be selected as unknown, so long as the other four
variables are given values.  Other equations may appear in this process, such as  A =
πD2/4,  Re = VD/ν,  and  V = Q/A;  these equations define secondary quantities.  More
fundamentally, however, these additional variables may be added to the list of variables, and
the equations may be added to the list of equations.  Then  V   may be counted as an
unknown, for example.  For each additional pipe in a network one can add variables to the
list of unknowns, and at the same time equations are added to that list.  Thus for two pipes
the list of six variables becomes  12,  and the number of unknowns that can be found
increases to four, etc.  Almost any combination of variables may be chosen as unknowns.

In summary:  (1)  We use two basic fluid mechanics principles in the design of pipe
systems, the continuity principle (conservation of mass) and the energy principle.  (2)  The



continuity principle assures that the discharge into each junction (or node) in the network
equals the discharge from that junction.  Mathematically,  ΣQi - QJj = 0, in which the
subscript on  Q  denotes the pipe numbers that join at that junction, and  QJ  is the demand
at this junction.  (QJ  is positive from, and negative to, the junction.  The reverse
convention applies for pipe discharges;  Qi  is positive if to the junction, and negative if
from the junction.)  (3) The energy principle accounts for the head loss that occurs in a
pipe,  Hi - Hj = hfk,  in which subscript  k  denotes the pipe number and subscripts  i  and
j  denote the upstream and downstream node numbers.  If every pipe head loss equation is
used, then the network connectivity guarantees that the head losses around loops sum to
zero and through pseudo loops equals the difference in water surface supply elevations.  (4)
These two principles provide all of the basic equations that are available.  (5)  The number
of unknowns and independent equations must match for a unique solution to exist.  (6)
Any variable may be selected as an unknown.  Once the unknowns have been chosen, then
the remaining variables must be specified.  (7)  It is possible, however, to assign values to
known variables in such a way that physically impossible situations are created.

No one set procedure exists for the design of looped networks.  Professional judgment is
required to balance the concern for redundancy (i.e., the ability to satisfy large emergency
demands, or to allow components to be pulled out of service) with the desire to minimize
costs.  Since the equations will allow only  NJ  pipe diameters to be determined, one
workable procedure would first select  NL = NP - NJ  pipes, for which we specify the
diameters.  The selection of these pipes should be such that, if they were to be removed,
the remaining network would be a branched network.  Normally there are several pipe
combinations that could be selected to reduce a network to a branched system, and this
branched system should be considered to be the main transmission lines.  The specification
of diameters for the pipes  (NL  in number) that have been selected is also based on
judgment;  if these pipes are secondary, they might be given diameters that are the
minimum size that is allowed for this network.  Second, with the heads known at the ends
of these pipes, compute their discharges, and then modify the demands at the two pipe ends
to include these discharges in defining the branched system.  Third, solve the branched
network.  The diameters that are found for this branched system are normally then replaced
by the nearest standard pipe sizes, but they may be rounded up to the next larger standard
pipe size.  Fourth, conduct analyses that cover a variety of conditions that the proposed
network is expected to encounter, and study these results.  If deficiencies are noted, adjust
the pipe diameters (or other network components) so these deficiencies no longer exist.

To illustrate this procedure, assume that the  16-pipe network in Fig. 5.6 is the subject
of a design study.  The supply sources denoted by  WS1  and  WS3  are imported from
another water supplier with a head of  50 m,  but this water is costly and will be used only
when demands are large.  The other source,  WS2,  is from a groundwater well with an
aquifer water surface elevation that is  40 m  below the ground surface.  Lastly,  WS4  is a
storage tank with a  45-m  diameter, a bottom elevation at  118 m  and a maximum depth
of  3 m.  The average demands are given in the accompanying table, and the demands (in
m3/s) for the hour of greatest demand, on which the design is to be based, are twice these
values.
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Figure 5.13  Another view of the network of Fig. 5.6.

First  NP - NJ = 16 - 9 = 7  pipes must be given diameters, say  150 mm,  the smallest
size allowed in this system.  Pipes  1, 3, 9, 10, 12, 13,  and  16  are selected, based on
judgment.  Pipes  1  and  3  are chosen because they supply the expensive water and will
be shut off during this design process.  Using the maximum capacity of the pumping
station, which is  0.22 m3/s  with all pumps on, the demands are summed, and it is
determined that the storage tank must supply  0.14 m3/s.  Therefore, the demand at node  8
is changed from  0.04 m3/s  to an inflow of  0.10 m3/s,  and pipe 16  is removed.
Elimination of these pipes results in the branched system in the figure.  Of course,
depending upon the choice for the main transmission system, there are several alternatives
that could be explored.  For this reduced system, node  9  is the farthest downstream, and
its pressure should be set to the minimum allowable pressure, say  275 kPa,  which
corresponds to  H9 = 113 m  for the elevation of the  HGL.  The pipe discharges in this
branched network can now be determined directly, as given below in the first table.  Based
on energy-line slopes, which are also in this table, and on economic considerations, the
heads at the nodes can be computed;  they are listed in the second table.  By solving the
Darcy-Weisbach and Colebrook-White equations simultaneously for the  9  single pipes,
the diameters can then be computed.  These computed diameters, also listed in the first of
Tables 5.4, should be replaced by sizes chosen from a set of standard sizes (such as the
following:  150, 205, 255, 305, 355, and 405 mm).  As a final step, analyses of the full
network should be completed for several different demand levels, storage tank levels, fire
flows, etc.

Table 5.4

P i p e    Q
 m3/s

   Sf   hf
  m

 D i a .
 mm

Node    H
   m

  2  0.23 0.005   5.0 428.6    1 125.0
  4  0.07 0.006   4.8 263.1    2 129.8
  5  0.07 0.005   4.0 272.7    3 125.8
  6  0.02 0.010 16.0 148.1    4 109.0
  7  0.04 0.002   4.0 253.0    5 125.8
  8  0.03 0.005   8.0 197.9    6 117.8
 11  0.02 0.0025   4.0 194.8    7 113.0
 14  0.06 0.005   4.0 257.5    8 117.0
 15  0.04 0.005   4.0 220.6    9 113.0



The newly-found diameters in Table 5.4 ignore any influence of the pipes that were
removed.  This approach assumes that the discharges in the other (ignored) pipes assist the
network in performing adequately under the variety of conditions that will occur, but the
branched system can by design supply the required demands without the other pipes.  In a
sense it also assumes that the discharges carried by the pipes that are ignored is small in
comparison to the discharges in the pipes that are retained throughout the computations.

Next let us explore the design process further by attempting another design without
ignoring the flows in pipes  1, 3, 9, 10, 12,  and  13  that were removed to form the
branched network.  Assume these all have a diameter of 150 mm and that pipes  1 and 3
(that bring water from the more costly water supply) are open.  With the additional flow
from these two pipes let us also assume that no flow enters or leaves the storage tank
through pipe  16,  and that the head losses in the pipes are as specified in the third part of
Tables 5.5.  Under these assumptions the flow in pipes  11  and  14  now reverse direction
from what they were previously.  Consequently the heads at the nodes are as given in the
second part of Tables 5.5, and with these heads the discharges in the other pipes can be
computed, as listed in the first of Tables 5.5:

Tables 5.5

P i p e   hf
  m

   L
    m

D i a .
mm

  Q
 m3/s

Node   H
   m

P i p e  hf
  m

   Q
  m3/s

D i a .
 Mm

  1 16.0   800 150 0.030    1 129.0    2 5.0   0.311 480.8
  3 15.8   800 150 0.029    2 133.8    4 4.8   0.131 334.1
  9   4.8   800 150 0.016    3 129.8    5 4.0   0.034 207.5
10   8.0   800 150 0.021    4 125.0    6 4.0   0.111 372.4
12 12.8 1600 150 0.018    5 129.8    7 4.0   0.095 351.1
13   8.8 1600 150 0.015    6 121.8    8 8.0   0.025 161.2

   7 121.0  11 4.0   0.087 339.5
   8 117.0  14 4.0   0.047 234.5
   9 113.0  15 4.0   0.025 184.7

If the assumption was, as before, that the storage tank was supplying  0.14 m3/s  along
with the supply through pipes  1  and  3,  and the  HGL-elevations at the nodes was as
before, then the results in Tables 5.6 would be obtained:

Tables 5.6

P i p e   hf
  m

   L
    m

D i a .
mm

  Q
 m3/s

Node   H
   m

P i p e  hf
  m

   Q
  m3/s

D i a .
 Mm

  1 20.0   800 150 0.033    1 125.0    2 5.0   0.114 480.8
  3 19.2   800 150 0.033    2 129.8    4 4.8 - 0.011 *
  9   8.8   800 150 0.022    3 125.8    5 4.0   0.027 190.2
10   8.0   800 150 0.021    4 109.0    6 8.0 - 0.028 *
12   8.8 1600 150 0.015    5 125.8    7 4.0   0.098 355.2
13   4.0 1600 150 0.011    6 117.8    8 8.0   0.020 169.8
16   4.0 1200 384 0.140    7 123.0  11 4.0   0.046 266.8

   8 117.0  14 4.0   0.086 294.9
   9 113.0  15 4.0   0.029 195.4

* The heads do not allow a negative  Q.

The newer set of assumptions has led to an impossible situation in which the junction
con-tinuity equations require flows in pipes  4  and  6  in the opposite direction from what
the heads at their ends require.  The specified flow from the storage tank was too large to be
compatible with the heads and pipe diameters that were specified.  In the earlier case the
absence of flow from the storage tank avoided the impossible situation that was created in
the last set of specifications.  However, we see clearly that various combinations of



specified variables can lead to situations in which the direction of flow is inconsistent with
the heads at some nodes.

One even simpler example of an inappropriately specified diameter consists of two
pipes which meet at junction  [2];  the  HGL  at this junction is smaller than the  HGL  at
the other ends of these pipes, as shown in Fig. 5.14.  The discharge for each pipe must be
toward the common junction.  If the diameter of either pipe is specified so that the
resulting discharge in that pipe exceeds the demand  QJ2,  then an impossible situation has
been created, since the direction of the discharge in the other pipe must oppose the direction
of flow implied by the  HGL  for that line.

(2)

QJ2 

[1]

(1)

[3][2]

HGL1 > HGL2  HGL2 HGL3 > HGL2  

Figure 5.14  A problem with an inappropriate diameter.

For example, let  HGL1 = 100 ft.,  HGL2 = 88 ft.,  HGL3 = 90 ft.,  L1 = 2000 ft.,  L2

= 2500 ft.  and  QJ2 = 1.0 ft3/s.  If  D1 = 8.0 in,  then  Q1 = 1.15 ft3/s,  and we must

have  Q2 = -  0.15 ft3/s  to satisfy continuity at the junction, which is inconsistent with

the set of specified heads.  If  Q1 = 1.0 ft3/s,  then  D1 = 7.60 in;  hence  D1  must be less
than  7.6 in  for a solution to be possible.

These analyses illustrate the important fact that the outcome of a design depends directly
upon the assumptions that go into that design.  While cost has not yet been considered in
these designs, the usual objective is to minimize the total cost of meeting a set of specified
demands.  We will include cost considerations later in the chapter.

Now let's examine a larger network of  30  pipes and  16  nodes, as shown in Fig.
5.15.  For this network with  3  supply sources there are  16  junction continuity
equations, and it is therefore possible to determine  16  pipe diameters if the heads are
given at all  16  nodes.  The input data to obtain a "design" solution by using  NETWK  is
in the file  FIG5_15.IN  on the CD.  The reader can list this file and use it as input to
NETWK  to obtain a solution.  This input lists the pipe lengths and the nodal demands.  If
the option  DESIGN=1  is given in the  $SPECIF  list, then  (1)  NETWK  interprets a  0
for a diameter as one that is to be determined, and  (2)  the elevation of the HGL at each
node must be listed after the elevation of the node under the  NODES  command.  Thus for
this network with  DESIGN=1  we must assign  16  pipes a zero diameter in the input
data.  The example input data set has assigned diameters of  18 in and 15 in, respectively,
to the two pipes from the source pumps, and pipes  10, 11, 12, 17, 18, 19, 24, 25, 26, 27,
28,  and  29  have been given diameters of  6  inches.  This problem is quite large for a
hand solution, but the approach to a solution, if done by hand, could follow precisely the
approach that was applied to the networks that have just been examined.  First, the
discharges in the pipes with specified diameters would be computed so that each pipe head
loss matches the difference in head between its end nodes.  These pipes would then be
removed from the network, and the demands at their ends would be adjusted for their
discharges.  Next, from the junction continuity equations the discharges in the remaining
pipes would be determined, and finally, with these discharges known, the diameters of the
remaining pipes would be found.
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                  Pump  1                                                                  Pump  2
Q,  ft3/s      8   15   22 Q,  ft3/s     6   12   18
hp,  ft 157 152 144 hp,  ft 152 147 139

Figure  5.15  A  30-pipe,  16-node network.

In the solution from  NETWK  we find after the design solution has computed the pipe
diameters that  NETWK  then selects the closest standard diameter from its default list of
standard diameters and performs an analysis of this system since the option  NOMSOL=1
is included in the  $SPECIF  list.  From the analysis the column giving  HGL  elevations
will change from the initially specified values because the standard pipe sizes will not
produce the same frictional head losses.

The program  NETWEQST  in the  NETWK  program package is intended specifically
for design problems.  It allows the user to specify the unknown variables and allows any of
the variables in the network to be regarded as an unknown.  The mechanics of this solution
will be explained later in this chapter.  By selecting all of the pipe discharges and a number
of pipe diameters that is equal to the number of nodes in the network, this type of design
problem can be solved.  The input data file for  NETWEQST  for this problem follows.  

Large Design Example 16 8 12 1600 12 .004 5 2 6 152 12 147 18 139 500
/* 17 10 9 800 6 .004 1 NODES
$SPECIF IUNENT=4 $END 18 10 11 800 6 .004 .2 1 1.2 500 630
PIPES 19 11 12 800 6 .004 .2 2 1.2 490 645
1 0 2 500 18 .004 15 20 9 13 1600 12 .004 4 3 .8 485 640
2 0 3 500 15 .004 11 21 10 14 1600 8 .004 1 4 1.6 480 632
3 2 1 800 12 .004 5 22 11 15 1600 8 .004 2 5 1.4 495 618
4 2 3 800 6  .004 1 23 12 16 1600 8 .004 1 6 1.2 494 620
5 3 4 800 12 .004 6 24 14 13  800 6 .004 1 7 1. 490 616
6 1 5 1800 6 .004 5 25 14 15  800 6 .004 1 8 .8 483 613
7 2 6 1800 12 .004 6 26 15 16  800 6 .004 1 9 2. 493 605
8 3 7 1800 12 .004 6 27 2 5 2500 6 .004 1 10 2 492 608
9 4 8 1800 12 .004 3 28 2 7 2500 6 .004 1 11 3.6 488 605
10 6 5 800 6  .004 .5 29 3 8 2500 6 .004 1 12 2.8 484 603
11 6 7 800 6  .004 .5 30 0 14 1000 10 .004 2.5 13 4. 480 595
12 7 8 800 6  .004 .5 RESER 14 2 478 600
13 5 9 1600 12 .004 5 30 605 15 1.8 475 594
14 6 10 1600 12 .004 5 PUMPS 16 2 470 586
15 7 11 1600 12 .004 5 1 8 157 15 152 22 144 500 RUN

Figure  5.16  Input for  NETWEQST.



The option  IUNENT=4  tells  NETWEQST  that the  HGL-elevations at the nodes are
listed as the last item after the NODES  command, and the last item on each line following
the  PIPES  command is an initial estimate of the discharge in that pipe, to be used to start
the Newton solution method.  The manual for  NETWEQST  is on the  CD  as file
NETWEQST.DOC.  To solve this problem with  NETWEQST,  the responses listed in
Fig. 5.17 should be provided in response to the bold prompts from  NETWEQST.

Pipes = 30, Nodes = 16, Sources = 3
46 unknowns must be given.  Give no. of each:
1. HGLs at nodes  0
2. Nodal demands  0
3. Pipe discharges  30
4. Pipe diameters  16
Give 16 pipe diameter numbers  3-9  13-17  20-23  30

Figure  5.17  Prompts and responses for the  30-pipe example.

In obtaining solutions to these design problems, one must have considerable
understand-ing of either the system performance or the sizes of the specified diameters;
otherwise the corresponding set of specified heads can lead to an impossible situation.  We
have already seen how such a situation can occur for the 16-pipe network.  So we cannot
select arbitrari-ly all of the pipes that will be assigned a prescribed diameter.  Since the
pipes having specified diameters carry a fixed discharge, the network problem becomes in
essence one with these pipes removed.  The reduced network must still be able to satisfy
all specified demands at the nodes.  There are different combinations of circumstances that
may make this impossible to do.  First, if in creating the reduced network the original
network has become divided into two or more separate networks, then each separate
network must have at least one supply source.  Second, in the reduced network  the
specified heads must allow the flow to move in the direction that is dictated by the
demands.  Furthermore, we know it will not be possible to prescribe a diameter for every
supply pipe in the network, because the resulting set of computed discharges (that are fixed
by the prescription of diameters and of heads at the end nodes) will generally not sum to
the total demand in the network.

In the  30-pipe problem the diameters of the pipes connected to the source pumps were
both given, but the reservoir pipe diameter was not given.  If  D30  is given, then either
D1  or  D2  must not be given.  The heads may remain unchanged if  D30  is given and
D1  is not given (but still with  D2  = 18 in).  However, if  D2  is not given when  D30
is given as  6 in,  then  D1  must be given a diameter that is larger than  18 in, because
with  D1 = 18 in  the solution of the continuity equations produces a negative flow in pipe
4,  but this is not possible for the heads that are given at the ends of that pipe.

Assigning diameters to pipes that connect to the source pumps fixes the discharge that
these pumps can supply;  therefore the discharge through the pipe from the reservoir must
equal the difference between the sum of the demands on the network and the amount of the
discharge from the two source pumps.  With these restrictions it is difficult to create even
one loop in the reduced network.  Therefore, we must verify that a branched network is ob-
tained when the pipes having specified diameters are removed from the network, and if the
removal of these pipes separates the original network into two or more smaller networks,
then each of these new networks must have a supply source.  Nor can we specify the
diameter of a dead end pipe because, with a specified diameter and a pair of given heads at
the ends of the line, the computed discharge usually will not match the specified demand at
the end of the line.

Less obvious impossible situations can develop.  For example, if the diameter of one or
more pipes that contain source pumps is specified to be too large so that the inflow to the
network from this/these source/s exceeds the sum of the network demands, and if
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furthermore the reservoir water surface elevation were specified to be above  H14,  then no
way exists for the surplus inflow from the source pumps to leave the system.  Since the
specification of the pipe diameter and the head at the ends of this pipe fixes its discharge,
this discharge value may not match the external demand at the end of the pipe.  For
example, if in the 30-pipe network the diameter of pipe 1 were set at  24 in  rather than  18
in, such an impossible situation would be the result.  On the other hand, if  D30  is given
and  D2  is not, then  D1 = 18 in  would cause an impossible situation but  D1 = 24 in
would not.  When more than two pipes meet at a junction, the possibilities of creating
impossible situations are more numerous and more complex.  NETWK  does detect the
existence of impossible situations and then prints a brief message related to the problem.
When this occurs (and it will occur frequently if one is not sufficiently careful and/or
experienced in the specification of diameters and heads),  it is important first to examine
carefully the possible causes of this situation;  then the values of the specified diameters
and/or heads can be adjusted, or an alternate set of pipes can be selected for the specification
of diameters.  In making these adjustments, it may be helpful to sketch the reduced
network after the pipes with specified diameters have been removed, and then to keep in
mind the process that will be followed in obtaining this design.

Example Problem 5.4
Designs are to be obtained for the looped water distribution system below, given the

heads at the nodes listed in the table.  Since three independent loops (two real loops and
one pseudo loop) exist here, the sizes of three pipes must be specified, and the diameters of
the remaining six pipes are to be found.  All specified pipe diameters are to be  6  inches.
Determine whether the assignment of  6-inch diameters to the following combinations of
pipes will allow a solution of the remainder of the branched system;  if an impossible
situation has been created, determine why this is the case.  Otherwise solve the branched
network.

Node E l e v .   H C a s e S p e c .
P i p e

   ft.    ft.

  1  100 197   1 2, 4, 9
  2    98 194   2 4, 6, 9
  3  100 194.

5
  3 4, 8, 9

  4    95 190   4 3, 8, 9
  5    95 191   5 2, 8, 9
  6    90 188   6 2, 6, 9

200'

195'

[1](1)
[4]

[3]

[2]
(5)

(6)

(4)

(2)

(3)

(7)

(8)

(9)
[5]8" - 1000'

0.5 ft3/s 0.5 ft3/s

8"
- 12

00
'0.3 ft3/s

0.4 ft3/s

0.5 ft3/s

0.5 ft3/s

[6]

8" - 1200' 8"
- 12

00

8" - 12008" - 1200'

8" - 1000
10" - 500'

10" - 500'



The first steps are to determine the discharges in the pipes with specified diameters and then
reduce the network to the branched system.  Sketches for these reduced branched systems
will be presented.

Case 1:
This case is not valid since  H3 > H2,  so the flow cannot pass through pipe  3  to meet
downstream demands.

[1](1)
[4]

[3]

[2]
(5)

(6)

(3)

(7)

(8)

[5][6]

Case 2:
This case is not valid for the same reason as Case 1.

[1](1)
[4]

[3]

[2]
(5)

(2)

(3)

(7)

(8)
[5][6]

Case 3:
This case is not valid since  H3 > H2;  thus the flow cannot satisfy the demand at nodes  3
and  4.

[1](1)
[4]

[3]

[2]
(5)

(6)

(2)

(3)

(7)
[5][6]

Case 4:
This configuration is valid.  We first compute the discharges in the 6-inch pipes.



[1](1)
[4]

[3]

[2]
(5)

(6)

(4)

(2)

(7)
[5][6]

P i p e Q  f      Changed  QJ's
 ft3/s                  ft3/s

   3 0.145 0.024 QJ3 = 0.545,  QJ2 = 0.355
   8 0.435 0.020 QJ5 = 0.935,  QJ6 = 0.065
   9 0.214 0.023 QJ5 = 1.149,  QJ4 = 0.286

The solution for the reduced branched system provides the following discharges and pipe
diameters:

P i p e   Q  Dia.
 ft3/s    in.

   1 1.869 9.000
   2 1.504 9.556
   4 0.831 9.592
   5 0.286 4.902
   6 1.149 8.965
   7 0.065 2.446

Case 5:
This case is valid.  A solution can be obtained with  NETWEQST.  (Alternatives are to
use  NETWK  or apply  HYDEQS  to obtain individual discharges and/or diameters.)  The
table of input data, the list of prompts and responses, and two tables of results follow:

[1](1)
[4]

[3]

[2]
(5)

(6)

(4)

(3)

(7)
[5][6]

Input Data 9 5 4 1200 6 .001 .2
Example Problem 5.4 NODES
/* 1 .3 100 197
$SPECIF IUNENT=4 $END 2 .5 98 194
PIPES 3 .4 100 194.5
1 0 1 500 10 .001 2.4 4 .5 95 190
2 1 2 1000 6 .001 1 5 .5 95 191
3 3 2 1200 6 .001 .2 6 .5 90 188
4 0 3 500  6 .001 1 RESER
5 3 4 1200 6 .001 .5 1 200
6 2 5 1200 6 .001 .5 4 195
7 1 6 1200 1 .001 1 RUN
8 5 6 1000 6 .001 .2



Pipes=  9, Nodes=6
15 Unknowns must be given. Give no. of each:
1. HGLs at nodes  0
2. Nodal demands  0
3. Pipe discharges  9
4. Pipe diameters  6
Give 6 pipe diameter numbers  1  3-7

PIPE DATA

PIPE
 NO.

 N O D E S
FROM    TO

  L  DIA.   e
x 1 0 3

  Q HEAD
LOSS

   ft.      in    in ft3/s      ft.
    1      0      1   500   6.539   1.0 0.800   3.00
    2      1      2 1000   6.000   1.0 0.435   3.00
    3      3      2 1200 13.247   1.0 1.214   0.50
    4      0      3   500 13.079   1.0 1.900   0.50
    5      3      4 1200   4.902   1.0 0.286   4.50
    6      2      5 1200   8.965   1.0 1.149   3.00
    7      1      6 1200   2.445   1.0 0.065   9.27
    8      5      6 1000   6.000   1.0 0.435   3.00
    9      5      4 1200   6.000   1.0 0.214   1.00

NODE DATA

NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
      ft3/s      ft.      ft.        lb/in2          ft.

    1     0.300   100   97.0        42.0       197.0
    2     0.500      98   96.0        41.6       194.0
    3     0.400   100   94.5        41.0       194.5
    4     0.500      95   95.0        41.2       190.0
    5     0.500      95   96.0        41.6       191.0
    6     0.500      90   98.0        42.5       188.0

Case 6:
The case is valid.  Using the same input as in case 5, the solution can be found with the
following responses to the prompts from  NETWEQST  (Solution not given):

Pipes = 9, Nodes = 6
15 unknowns must be given. Give no. of each:
1. HGLs at nodes  0
2. Nodal demands  0
3. Pipe discharges  9
4. Pipe diameters  6
Give 6 pipe diameter numbers  1  2-5  7  8

[1](1)
[4]

[3]

[2]
(5)

(4)

(3)

(7)

(8)
[5][6]

*                              *                              *



5.4 DESIGNING SPECIAL COMPONENTS

Section 5.3 defined two types of design problems:  (1) problems in which as many pipe
diameters are sought as there are nodes in the network;  and  (2) problems in which an
individual pipe diameter is sought so that some specified condition (e.g., a pressure) occurs
at a prescribed node.  That section examined the first problem category.  This section
considers the second problem type.  Previously the solution of such problems involved a
trading of known and unknown variables.  For example, if a nodal pressure was specified,
then a nodal demand (or pipe diameter or length, etc.) was placed in the list of unknowns.
Now, however, it will not be necessary to swap a variable from the known to the unknown
list.  Instead a new unknown will be introduced into the network problem, and a new
equation will be added to the list of equations, thus satisfying the requirement that the
number of independent equations and the number of unknowns must match.

How is it possible to obtain another independent equation, one might ask.  As was
stated before, the basic network relations are

NP = NJ + NL    if the network has two or more supply sources
or

NP = (NJ - 1) + NL    if the network has fewer than two supply sources.

These relations apply to both branched and looped networks and cannot be changed.  In a
branched network  NP = NJ - 1  and therefore  NL = 0.  The key in introducing an
additional unknown is also to create another independent equation.  This additional equation
will enforce another condition, usually a nodal  HGL  (or pressure) that is required.  This
unknown will be called a differential head device, and in mathematical equations it will be
given the symbol  ∆H;  it will represent a variety of devices such as a booster pump, a
pressure-reducing station, a valve, a pipe with an unknown diameter, or a wall roughness.
A differential head device will be something that creates a (positive or negative) head
difference, other than the frictional head loss of the original pipe, between the ends of a
pipe.  If the pipe diameter or roughness is to be unknown, then the new pipe will produce
a head loss that is the sum of the frictional head loss of the original pipe and the computed
differential head.  The equation for this additional unknown,  ∆H,  that will be added to the
equation system will be an energy equation that is written between the node where the
pressure (or pressure head, or HGL elevation) is specified and another point of known head
in the network.  This other point of known head will usually be a supply source such as a
reservoir or source pump.  However, if two or more differential head devices are introduced,
then the added equation might be an energy equation between two nodes with specified
pressures.  The additional equation is a special pseudo loop that will generally be
independent of the other loops because it imposes an additional condition on the network
that requires a pipe to have a different head loss than that which is caused by fluid friction
alone.  The phase "generally independent" is used because, as described later, inappropriate
specifications can cause the added equation not to be independent.  This loop is called
special because it consists of a continuous path along pipes from an internal pipe, one end
of which has a specified  HGL,  to a supply source, whereas the usual pseudo loop follows
a sequence of pipes between two supply sources.  Thus this special loop is similar to a
pseudo loop connecting the downstream end of a pressure-reducing valve (PRV) or the
upstream end of a back-pressure valve (BPV) to a supply source or to another PRV or BPV
where the HGL is specified.

To illustrate the concept and implementation of a differential head device, the small
network consisting of 7 pipes and 5 nodes in Fig. 5.18 will be examined.  In this network
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Figure  5.18  Small network with a differential head device.

the amount (magnitude and sign) of the differential head  ∆H  that is needed in pipe  1  is
to be determined so that the pressure at node  5  is  40 lb/in2.  In addition to  ∆H,  the
solution  is to determine the discharges in all  7  pipes and the elevations of the HGL (and
pressures) at the  4  internal nodes.  (The pressure is specified at node  5,  so this pressure
can not be part of the solution.)  In this problem  ∆H  in pipe  1  could be a booster pump
if it is positive, or it could be a valve if it is negative.  If it is negative, the differential
head device may instead be a pressure-reducing valve;  once  ∆H  is known, it is a simple
computation to determine the pressure setting for a  PRV  which would produce this same
additional head loss.  Or if  ∆H  is positive but smaller in magnitude than the frictional
head loss in the pipe containing it, then one could compute an "equivalent" pipe diameter
that would produce the same head loss as the present frictional head loss and  ∆H.  Thus,
depending upon what the solution produces for  ∆H  and what you want the differential
head device to represent, it can be any of a variety of appurtenances.

If the  ∆Q-system of equations is to model this network, the system may be written as

K7 Qo7 + ∆Q1( )n7 − K2 Qo2 − ∆Q1 − ∆Q2( )n2

− K1 Qo1 − ∆Q1( )n1 + ∆H + 20 = 0
(5.26)

K3 Qo3 + ∆Q2( )n3 + K4 Qo4 + ∆Q2( )n4

− K5 Qo5 − ∆Q2( )n5 − K2 Qo2 − ∆Q1 − ∆Q2( )n2 = 0
(5.27)

K6Qo6
n6 + K5 Qo5 − ∆Q2( )n5

+ K7 Qo7 + ∆Q1( )n7 + 40(144) / 62.4 + 180( ) − 280 = 0
(5.28)

in which the vector of initial flows that satisfy all junction continuity equations might be

Q
o{ } =

Qo1

Qo2

Qo3

Qo4

Qo5

Qo6

Qo7

































=

2.5500

−1.3533

3.0033

1.8033

0.0967

0.8000

2.5500













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
















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(5.29)



The three unknowns are  ∆Q1,  ∆Q2,  and  ∆H.  The solution of these three equations
(using Newton's method with the above vector for  {Qo}) yields

∆Q1
∆Q2
∆H
















=

− 4.33

− 0.59

112.62

















(5.30)

To verify that the solution is correct, one must use the correct values for  K  and  n  for
each pipe, which are listed in the following table:

Pipe No.   1   2   3   4   5   6   7
    K  1.70  2.55  7.34  3.70  7.46  31.8  5.51
    n 1.957 1.931 1.932 1.873 1.865 1.905 1.918

Any verification should also employ  ∆Q1,  ∆Q2,  and  ∆H  to compute the  HGL  eleva-
tions and the pressure at each node.

It is much easier to let the computer do the arithmetic.  Below is the input data file for
NETWK  to solve this problem, followed by the output.  The line of input data after
DHEAD  consists of the following items:  (1)  the pipe containing  ∆H;  (2)  an estimate
of this  ∆H;  (3)  the pressure that is being specified (the minus indicates that the   
pressure is in  lb/in2, rather than being specified as a  HGL);  (4)  the designation (pipe
since  NODESP = 0) for a supply source, to use in forming the energy equation loop;  and
(5)  the pressure in  lb/in2  at node  5.  This solution file contains an extra table for
differential head devices;  it reports an  INCREMENTAL HEAD  of  112.62 ft  and also
states  NO EQUIVALENT DIA. POSSIBLE.  Had the value for  HEAD LOSS  minus the
INCREMENTAL HEAD  been negative, then an  EQUIVALENT DIAMETER  would
have been reported in the last column of this extra table, as well as  e  and the head loss in
the equivalent pipe.

Problem for Differential Head Device
/*
$SPECIF NPRINT=-3,COEFRO=.004 $END
PIPE-
1 10. 1500. 1 .9  215.
2 10. 3000. 1 3 1.1 205.
3 8. 2000. 1 2 1.2 200.
4 10. 3000. 2 4 1.1 190.
5 8. 2000. 3 4
6. 2000. 4 5 .8 180.
7 8. 1500. 3
RESER
1 300
7 280
DHEAD
1 40 -5 7 40.
RUN

Figure  5.19  Input data for  NETWK  for the differential head device problem of Fig. 5.18.



 Problem for Differential Head Device
 ALL DEMAND FLOWS ARE MULTIPLIED BY    1.0000
 FLOW FROM PUMPS AND RESERVOIRS EQUALS     5.100

PIPE
 NO.

ORIG.
DIA.

   Q INCR.
HEAD

HEA
D
LOSS

TOTAL
HEAD

  e     EQUIV.
           DIA.

    in  ft3/s      ft.      ft.      ft.            in
    1   10.0  6.88 112.62   74.2   NO  EQUIV. DIA. POSSIBLE

PIPE DATA

PIPE
 NO.

 N O D E S
FROM   TO

L DIA.   e
x 1 0 3

  Q  VEL. HEAD
LOSS

HLOSS
 /1000

ft.   in ft3/s   ft/s     ft.
   1      0    1 1500  10  4.0 6.88 12.62  74.2   49.5
   2      1    3 3000  10  4.0 3.58   6.56  41.6   13.9
   3      1    2 2000     8  4.0 2.41   6.89  40.1   20.0
   4      2    4 3000  10  4.0 1.21   2.21     5.25     1.8
   5      3    4 2000    8  4.0 0.69   1.99     3.77     1.9
   6      4    5 2000    6  4.0 0.80   4.07  20.8   10.4
   7      3    0 1500    8  4.0 1.78   5.11  16.9   11.3

NODE DATA

NODE  D E M A N D ELEV. HEAD PRESSURE HGL. ELEV
 ft3/s gal/min    ft.    ft.      lb/in2        ft.

    1   0.9    404   215 123.4       53.5      338.4
    2   1.2    539   200   98.4       42.6      298.4
    3   1.1    494   205   91.8       39.8      296.9
    4   1.1    494   190 103.1       44.7      293.1
    5   0.8    359   180   92.3       40.0      272.3

Figure  5.20.  Solution using the input data listed in Fig. 5.19.

This problem might also be altered, for example, to specify a pressure of  40 lb/in2  at
node  2.  This could be done by placing a special differential head device in pipe  3.  We
encourage you to modify the input file in Fig. 5.19, compare it with file  FIG19.IN,
obtain a solution and then compare it with file  FIG19.OUT on the  CD.

The foregoing example might cause a person to believe that it is possible to specify a
pressure anywhere within a network and place a differential head device in any pipe.
However, this is not the case;  a problem can be specified for which there is no solution.
An example is the specification of pressures at nodes  4  and 5  in this network without a
differential head device in pipe  6.  The discharge in pipe  6  must be  0.8 ft3/s  to satisfy
the specified downstream demand, and this discharge dictates the head loss in pipe  6.
Therefore the specification of pressures at both ends of pipe  6  without placing a
differential head device in this pipe will result in an insoluble problem.  Similar situations
can be created.

In using the DHEAD command with  NETWK,  one must be relatively familiar with
the performance and nature of the network if the specification of impossible situations is to
be avoided.  Should an impossible situation be specified, then  NETWK  will be unable to
complete a solution.  In some instances the iterative solution process will simply fail to
converge;  this condition becomes apparent when the number of iterations exceed the
allowable maximum and the residual, reported as  SUM  or  SUM OF DIFFERENCE,  is
not becoming smaller.  Or  NETWK  will indicate that a singular matrix exists;  then an
examination of the system of equations should allow one to discover why the singular
matrix exists.  However, often it is easier simply to examine the network and the system
specifications until it becomes apparent how to change the input data to allow a solution.
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Aside from dead-end pipes with pressures specified at both ends, let us look further at
some other conditions that can lead to an improperly posed problem.  If we specify a larger
HGL  downstream from a node with a smaller  HGL,  then we must place a differential
head device in one of the pipes between these two nodes.  Or in a network with all of its
supply sources in one subregion or at one end of the system, the specification of the  HGL
elevations must allow it to decrease continually in the downstream direction through the
network, unless differential head devices have been placed in some of the intermediate
pipes.  And differential head devices that produce negative incremental heads will be needed
in some pipes if  HGL  elevations are specified to decrease more rapidly in the downstream
flow direction than can be caused by pipe friction alone.  Experience shows it is difficult to
avoid the creation of an impossible situation if the differential head devices are all located
near the supply sources.  In general, if  HGL  elevations are to be specified at several
nodes, then the pipes containing differential head devices should also be near these nodes.

A network, diagrammed in Fig. 5.21,  will illustrate some less easily recognized speci-
fications that will cause an impossible situation.  To receive maximum benefit from this
description, the reader is encouraged to prepare input data for this network and actually
obtain solutions etc. as the next few pages are read.  This network is a skeletonized system
for a small city.  The supply for the network comes from a single source outside of town.
A storage tank has been installed near the old main part of town to supply some of the
demand during periods of above-average usage, and to receive water from the pump when
demand is low.  The town has grown, expanding into some areas with slightly higher
elevations, especially to the west of the storage tank.

The present pump is not adequate;  to begin the study we decide to seek a solution that
will tell us the pump head that will meet the demand shown in Fig. 5.21 when the storage
tank neither receives nor supplies any water.  To set up the problem for  NETWK,  the
DHEAD  command  can be used to indicate that pipe  1  contains the differential head
device and that the elevation of the  HGL  at node  3  should be  580 ft., which is
exactlythe elevation of the water surface in the storage tank.
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Figure  5.21  A skeletonized network for a small city.



We might remove the source pump, add up the demands and specify this sum as a
negative demand at the node which replaces the source, i.e.,  10.  This problem might
seem reasonable because the demands would be exactly satisfied by the flow from this new
node, and the elevation of the  HGL  will be established throughout the system by
retention of the connection between the reservoir and the network.  However, we have
created a problem for which there is no solution.  The network has only one supply source.
With a specified differential head device we must have a reservoir whose discharge is
unknown in order to define the additional equation that is needed for a solution.  We have
created problem specifications that cause the flow from the reservoir to be known and equal
to zero.  The unknowns for this problem are the three corrective discharges  ∆Q1, ∆Q2,
and  ∆Q3,  around the three loops of the system, plus the incremental head in pipe  1.
Therefore four independent equations are required.  Three of these are the energy equations
for the three loops of the system.  The fourth equation forces the head loss in pipe  7  to
equal the dif-ference between the water surface elevation in the reservoir and the specified
HGL  at node  3;  this equation is invalid because the flow in pipe  7  is not unknown.
(We might run  NETWK  to attempt to solve this improperly-posed problem, using
NPRINT=1  or larger, so the output could be studied.)  From this problem we see that at
least two supply sources must exist if a differential head device is to be used in a network.

The specification of the impossible might be avoided by treating the pump as a second
supply source.  It may be changed to a reservoir with a suitably chosen water surface eleva-
tion or the original pump could be retained.  If the reservoir option is selected, the
differential head reported by  NETWK  is the head that the pump should supply;  if the
existing pump is kept, the reported head will be the additional head needed by the new
pump over that which is supplied by the existing pump.  Figure 5.22  presents a suitable
input data file for this problem.  (The  CD  contains this file as  FIG22.IN.)

   SIZING A PUMP - RESERVOIR FLOW
   SHOULD BE ZERO FOR DESIGN
   /*
    $SPECIF NPRINT=10,NFLOW=1,NPGPM=1 $END
   PIPES    NODES
   1 0 1 15000 10  .005    1 50 500
   2 1 2 10000 8/    2 150 495
   3 1 4 5000 6/    3 100 480
   4 1 3 10000 8/    4 250 480
   5 3 5 4000 6/    5 200 490
   6 3 6 4000 8/    6 150 520
   7 0 3 2000 8/    7 150 515
   8 3 8 6000 8/    8 200 490
   9 6 7 9000 6/    9 100 510
   10 2 8 7000 6/    RESER
   11 9 7 11000 6/    7 580
   12 2 9 3000 6/    1 400
   13 8 7 2500 6/    DHEAD

   1 250 3 7 580
   RUN

Figure  5.22  NETWK  input data file for the skeletonized network.

In this input data two reservoirs are given, the original storage tank with a water surface
elevation of  580 ft.  and the reservoir where the source pump really exists with a water
surface elevation of  400 ft.  The input line after the DHEAD command  consists of  (1)
pipe 1  that contains the pump,  (2)  an estimate that this pump must supply about  250 ft
of head,  (3)  the HGL is to be specified at node 3,  (4)  the source at the end of pipe  7  is
to be a part of the additional equation containing the differential head, and  (5)  the specified
HGL elevation.
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To gain modeling experience with a differential head device, the following exercises are
recommended:

(a)  Extract from the  CD  the data listed in Fig. 5.22 and obtain a solution.
(b)  Modify this data to designate supply sources as nodes.
(c)  Modify the data from either (a) or (b) so that the original pump is now used in the

problem specification.  The original pump has the following pump characteristics:

Discharge ,  gal/min.  700 1200 1500
Head,  ft.  370   350   280

(d)  Add a second differential head device in pipe 9 that is to produce a  HGL elevation
of  605 ft.  at node 9.  In this analysis retain the requirement, as in (a), that the pump meet
all of the demand.

Some study of the results from these four solutions will show the following:  (a) The
pump must develop a head of  391 ft  to supply all of the flow.  (b)  An additional head of
70.2 ft  above that produced by the present pump is needed, but if the diameter of pipe  1
is 11.64 in  instead of the present  10 in,  then the present pump would meet the
requirements.  (c)  A booster pump that produces a head of  78.5 ft  and a discharge of  
3.01 ft3/s  is needed in pipe  9  to increase the  HGL  elevation at node  9  by  20 ft to
905 ft.  (d)  While the booster pump in pipe  9  does increase the pressure at several nodes
where the pressure was low, it also decreased the pressure at node  6  to just under  16
lb/in2.  From these results the engineer must decide which improvements to propose for
this water distribution system;  proposals can then be examined further with appropriate
analyses.

We turn now to a discussion of the twin questions of  (1)  how to select the pipes in
which the pipe diameters will be specified, and  (2)  how to assign numerical values to
these specified diameters.  We begin by looking at the nine-pipe looped network in Fig.
5.23.  Since this network has six nodes, diameters must be chosen for three pipes if all of
the nodal demands and  HGL  elevations are given.  The design demands are shown in the
figure, and the target  HGL  elevations are listed in the table.

Node
 No.

HGL Elev.
       ft.

P i p e
 No.

  L
   ft.

   1       482    1 2000
   2       463    2 2000
   3       481    3 1200
   4       466    4 1800
   5       470    5 1200
   6       463    6 2000

   7 1300
   8 2000
   9 1300
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Figure  5.23  A nine-node pipe network.

In examining this network we note that the pipes to be deleted must prevent the
existence of loops  I,  II,  and  III.  The reduced network will be branched after three pipe
diameters are specified.  If pipes  5  and  9  are assigned diameters, then clearly loops  I  
and  II  will not exist in the reduced network.  But the effect of specifying the diameter of
pipe  3  in order to eliminate the pseudo loop is not obvious;  actually the network would
be divided into two branched systems, but this step is permissible since each has a supply
source.  Thus pipes  3,  5,  and  9  could be assigned diameters if the values for these
diameters are suitably chosen.  Many other combinations are also acceptable.  If the
diameter of pipe 3  is specified, then loops  I  and  II  can be broken by also specifying
diameters for any of the following pairs of pipes:  6 and 9,  5 and 8,  5 and 7,  or  5 and 6.
And pipe  3  is not the only pipe whose removal would break pseudo loop  III.  Either pipe
1  or pipe  4  could replace the role of pipe  3.  For these last two alternatives the reduced
network would no longer be divided into two branched systems.  Then the specification of
an inflow into node  1  or node  3,  respectively, would be required, because the assignment
of a diameter to a pipe that connects a supply source to the network fixes the discharge
from that source.  Further thought will show for each of pipes  1,  3,  and  4,  that there
exist five pairs of pipe numbers that could be chosen in order to arrive at a properly posed
problem.  For each triple of pipe numbers we can also choose reasonable pipe diameters.
Table 5.7 lists the  15  combinations and reasonable sizes for these pipes.  The reader will
find it instructive to prepare input data and obtain, and study, the solutions from  NETWK
for several, if not all, of these combinations.  File  FIG5_23.IN  contains the input for
NETWK  for the second combination which assigns diameters to pipes  3,  6,  and  9.

Table 5.7  Possible pipe combinations whose diameters could be specified

P i p e
N o s .

S i z e s
   i n

P i p e
N o s .

S i z e s
   i n

P i p e
N o s .

S i z e s
   i n

3, 5, 9 8,   6,   8 1, 5, 9 10,   6,   8 4, 5, 9 10,   6,   8
3, 6, 9 8, 10,   8 1, 6, 9 10, 10,   8 4, 6, 9 10, 10,   8
3, 5, 8 8,   6,   7 1, 5, 8 10,   6,   7 4, 5, 8 10,   6,   7
3, 5, 7 8,   6,   8 1, 5, 7 10,   6,   8 4, 5, 7 10,   6,   8
3, 5, 6 8,   6, 10 1, 5, 6 10,   6, 10 4, 5, 6 10,   6, 10

To investigate the appropriateness of values for diameters, suppose that pipe  6  had
been assigned a diameter of  8 in  instead of  10 in  in the second combination.  Since the
head loss in pipe  6  is prescribed as  15 ft.,  the discharge must be  Q6 = 1.503 ft3/s

instead of a discharge of  2.784 ft3/s  that is obtained for the  10-in diameter.  Since the



diameter of pipe  5  is also specified, its flow is  Q5 = 0.412 ft3/s  from node  4.  Since
the energy line slopes from node  4  to  node 6,  the flow in pipe  9  must also be from
node 4.  The sum of the discharge in pipe  5  and the demand at node  4  is  1.912 ft3/s;
thus the flow into this node through pipe  6  must exceed  1.912 ft3/s.  However, since
this is not the case, the specification  D6 = 8 in  makes it impossible to find a consistent
solution.  To obtain a consistent solution the minimum diameter for pipe  6  can be
computed by setting the discharge at  1.912 ft3/s  with a head loss of  15 ft  in this pipe.
This diameter is  8.765 in.  If in this case the diameter of pipe  5  was a different prescribed
value, it would cause us to compute a different minimum diameter for pipe  6.  The
specification of a diameter for a pipe must allow the junction continuity equations at both
ends of it to be satisfied.  In larger networks the satisfaction of this criterion at the ends of
all pipes whose diameters are specified is often not an easy task.

5.5 DEVELOPING A SOLUTION FOR ANY VARIABLES

This section examines methods to determine any variable associated with a pipe
network.  The unknowns may be selected from the  (1)  hydraulic grade lines at nodes,  (2)
demands at nodes,  (3)  discharges in pipes,  (4)  pipe diameters,  (5)  pipe roughnesses, and
(6)  elevations of water supply surfaces.  There are two restrictions:  (1)  the number of
unknowns must equal the number of independent equations, i.e.,  NJ + NP,  and  (2)  the
knowns are such that an impossible flow situation is not created.  Clearly the second
restriction means that the specified variables must be appropriately configured and assigned
values so that a solution for the unknowns will exist.

In Chapter  4  the computer program  EQUSOL1  was introduced and discussed.  The
subroutine  FUNCT  must be rewritten for each individual network when this program is
used.  (The use of  MathCAD  and  TK-Solver  is similar;  the user supplies the equations
to be solved and then identifies the unknown variables.)  We now consider a computer
program that does not require us to rewrite a subroutine for each different problem.  This
program will be restricted in its use to the solution of network problems, but the variables
that are to be found will be specified in the input data.  The program will accept differing
numbers of each of the six types of unknown and known variables, so long as the total
number of unknowns matches the number of independent equations.  For example, an
"analysis" problem could be specified, in which the discharges in all pipes and the  HGL
elevations at all nodes are determined and all pipe diameters, lengths, roughnesses, and
nodal demands are prescribed.  For analysis problems this program will not be as efficient
as the programs in Chapter 4 that solved the  Q-equations, the  H-equations, or the  ∆Q-
equations because more equations are solved.  The program will first read a description of
the network so it will know how the pipes are connected;  then it will define  NJ  junction
continuity equations and  NP  pipe head loss equations;  and finally it will solve these
equations simultaneously for whichever variables that are identified as unknown.  The
input to this program must describe the network adequately in a manner that is common
for pipe systems, i.e., giving data for each pipe and node in the network.  Before reading
further, print one of the versions of  NETWEQS1  from the CD  so you can study the
listing as you read.

5.5.1. LOGIC AND USE OF  NETWEQS1
Program  NETWEQS1  will solve pipe-system problems for any of six types of

unknowns, or any reasonable combination of them, so long as the number of unknowns
equals the number of independent equations.   The number of equations consists of the sum
of the number of pipes  NP  and number of nodes or junctions  NJ  in the pipe system, or
NEQS = NP + NJ.  If no supply source is identified, then there exist only  NJ - 1
independent equations from application of the continuity principle at the junctions.

The subroutine  FUN  defines these equations.  The continuity equations are first
evaluated in the  DO 10  loop, and then the head loss equations
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Hi − H j = { f (L / D)Q2/ (2gA2 ) }k (5.31)

follow in the remainder of this subroutine.  The friction factor  f  is found by using Gauss-
Seidel iteration if the flow is turbulent  (Re > 2100)  and by using  f = 64/Re  if the flow
is laminar, but if  Re < 160,  then  f = 0.4  to prevent  f  from becoming unbounded
whenever  Q →  0.  (Note RE  in the program is actually  Re/7.34347283.)

The user must provide estimates for the unknowns, as well as values for the knowns, in
the input file for  NETWEQS1.  When  NETWEQS1  is executed, the user is asked to
provide three input/output unit numbers, the acceleration of gravity  g,  and the kinematic
viscosity  VISC  of the fluid.  The default values for these parameters are  IN2 = 2,  IN5 =
5,  IN4 = 4,  g = 32.2 ft/s2  and  VISC = 0.00001417 ft2/s.  To accept all these defaults,
simply give  /  in the Fortran program after the last value that has been entered.  The
meaning of the three input/output units is as follows:  IN2  is the input unit for the
majority of the data that describes the pipe system.  If  IN2 = 0  or  IN2 = 5,  then this data
must be entered from the keyboard in the proper order without any prompts.  When  IN2  
is not  0  or  5,  then a prompt will request the name of the file that contains the input
data.  If the user is using  MS-Fortran, an alternative is to give the input file name on the
"command line" (or after typing  NETWEQS1  to execute the program, leave a space and
list the file name).  If  IN4 = 0  or  6,  then the output will be written to the monitor;
otherwise it will go to a file.

The input data for  NETWEQS1  consists of two types.  The first type describes the
network, and this data is read by using logical unit  IN2.  The second type defines the
unknowns, and it is read by using logical unit  IN5.  If this data is placed in a file (IN5
not equal to  0  or  5), then this file provides the data that defines the unknowns.  The
default  IN5 = 5  indicates that these data are to come from the keyboard.  If  IN5  is  5  or
0,  then  NETWEQS1  will prompt for the input that is needed to define the unknowns.
These data consist of the following  6  values (on separate lines):

1.  The number of  HGL  elevations that are unknown at nodes.
2.  The number of nodal demands that are unknown.
3.  The number of unknown pipe discharges.
4.  The number of pipe diameters that are unknown.
5.  The number of pipe roughnesses that are unknown.
6.  The number of unknown water surface elevations.

After these six lines that give the number of each type of unknown, the next lines give
lists of node or pipe numbers that identify the individual unknowns.  The number of these
lines will match the number of categories (a maximum of six) that are given nonzero
numbers.  These lists of numbers can consist of individual values or a range of values
separated by a minus sign (-).  The subroutine  RLINE  will allow ranges of integers to be
intermixed with single integers.  The argument  NUM  returns the number of integers in
the list in the Fortran program.  For example, if a pipe system consists of  6  pipes and  5
nodes, and the unknowns are to be the discharges in all pipes and the  HGL  elevations at
all nodes, then the input specifications should consist of the following numbers:

5;  0;  6;  0;  0;  0;  1 2 3 4 5;  1 2 3 4 5 6

In these files the semicolon (;) indicates that a new line should be used.  If the keyboard is
used to supply the input data, then a prompt appears in place of each semicolon and
automatically separates the data.  Alternatively this input could be the following:

5;  0;  6;  0;  0;  0;  1-5;  1-6

In place of the  HGL  elevation at node  5,  if it were desirable to determine the demand at
node 5,  then the input file could be the following:



4;  1;  6;  0;  0;  0;  1 2 3 4;  5;  1 2 3 4 5 6

An alternative listing of this input might be this set:

4;  1;  6;  0;  0;  0;  1-4;  5;  1-6

To reiterate, if  IN5 = 5  or  0,  then  NETWEQS1  will prompt the user for the next
expected piece of information.  If  IN2  and  IN5  are given the same value so both types of
data are in the same file, then the data read under  IN5  (the data that defines the unknowns)
is given after the data read by  IN2  which defines the configuration of the pipe system.

The unit defined by  IN4  is the Fortran unit number that will write the problem
solution as output data.  This output will go to the terminal/monitor if  IN4 = 0, 5, or 6.
Otherwise it will be written to a file.  A prompt will request the file name, unless it is
included on the command line.  The program calls subroutine  SOLVEQ  (see Appendix A)
to solve the linear system of equations that is obtained by implementation of the Newton
method.  In this solution the elements of the Jacobian matrix of derivatives are evaluated
numerically, as described in Chapter 4.

5.5.2. DATA TO DESCRIBE THE PIPE SYSTEM
Most of the data that describe the system is normally placed in a file that will be read

on Fortran logical unit  IN2.  These data consist of the following:
Line 1:  Four integers;  number of pipes  NP,  number of nodes  NJ,  number of

reservoirs  NRES,  number of pumps NPUMP.
Line 2:  Pairs of values;  each pair consists of the pipe number that connects a reservoir

to the network and the water surface elevation of this reservoir.  Each pair can be on a
separate line.

Line 3:  If pumps exist (NPUMP>0), then seven values are required for each pump:  the
number of the pipe containing the pump, followed by three pairs of discharge and pump
head which define the pump characteristic curve.  The data for each pump is a separate line.

Next NP lines:  These lines contain the pipe data, six items per pipe.  The pipes must
be numbered consecutively from  1  through  NP.  There is one line per pipe, sequenced by
pipe number, since the pipe number itself is omitted.  Each line contains the following:

1.  The upstream node.
2.  The downstream node.
3.  The pipe length.
4.  The pipe diameter.
5.  The pipe roughness.
6.  The discharge in the pipe.

The pipe diameters and wall roughnesses must have the same units, e.g., feet for ES units
or meters for SI units. These values are only estimates if the variable is an unknown, for
they then become initial values for the Newton method in the solution process.

Next  NJ  lines:  These lines contain the node data, three items per node.  There is one
line per node, sequenced as the nodes are numbered because the node number is not
included.  Each line consists of the following:

1.  The demand at the node.
2.  The  HGL  elevation at the node.
3.  The ground elevation of the node.

All values must be listed in consistent units, e.g.,  ft3/s  and  ft  for ES units or  m3/s
and  m  for SI units.

To see how this input scheme works, consider the small network in Fig. 5.24.  The
input data set would take the form shown in Fig. 5.25.



[1](1)
[4]

[3]

[2]

(5)

(6)

(4)

(2)
(3)

[5]

All e = 0.005"

QJ5 = 0.25 ft3/s

QJ3 = 0.5 ft3/s

QJ2 = 0.35 ft3/s

QJ1 = 0.5 ft3/s QJ4 = 0.5 ft3/s

All elev. = 350'

8" - 1500'

4" - 1000'

WS1 = 500'

6"
- 10

00
'

6" - 1500'

6" - 1200'
6" - 1500'

Figure  5.24  A small network to study with  NETWEQS1.

6 5 1 0
1 500.
0 1 1500. .667 .000417 2.1
1 2 1000. .5  .000417  .82
2 4 1500. .5  .000417  .47
1 3 1500. .5  .000417  .78
3 4 1200. .5  .000417  .28
4 5 1000. .333  .000416667  .25
.5 476.05  350.
.35 464.8 350.
.5 460.7 350.
.5 458.9 350.
.25 452.8 350.

Figure  5.25  The input data set for the small network in Fig. 5.24.

Assume the data in Fig. 5.25 have been placed in a file  FIG1.DAT, which is the file name
for it on the  CD.  Upon execution of  NETWEQS1,  the following three values could be
given from the keyboard in response to the first prompt:    2 5 4/    Next a file name is
requested.  The name  FIG1.DAT  would be given in reply.  Since the second input logical
unit has been given as  5,  the user is then asked to define the number and types of the
unknown variables.  Upon supplying  5 0 6 0 0 0,  the user is requested to give the
numbers associated with items  1  and  3.   The two responses could be  1-5  and  1-6.
Next the output file name is requested.  The solution in this output file consists of the
following two tables:

PIPE DATA

PIPE
 NO.

 N O D E S
FROM    TO

  L  DIA.   e
x 1 0 4

  Q HEAD
LOSS

   ft.      in    in ft3/s      ft.
    1     0     1 1500   0.667 4.17 2.100 23.95
    2     1     2 1000   0.500 4.17 0.824 11.39
    3    2     4 1500   0.500 4.17 0.474   5.98
    4     1     3 1500   0.500 4.17 0.776 15.21
    5     3     4 1200   0.500 4.17 0.276   2.17
    6     4     5 1000   0.333 4.17 0.249 10.94

Figure  5.26  The output from  NETWEQS1.
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NODE DATA

NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
      ft3/s      ft.      ft.        lb/in2          ft.

    1     0.500   350 126.0        54.6       476.0
    2     0.350   350 114.7        49.7       464.7
    3     0.500   350 110.8        48.0       460.8
    4     0.500   350 108.7        47.1       458.7
    5     0.250   350   97.7        42.4       447.7

Figure  5.26, concluded.  The output from  NETWEQS1.

5.5.3. COMBINATIONS THAT CAN NOT BE UNKNOWNS
We have noted that  NP + NJ  independent equations exist, and therefore we might

regard this many variables as unknowns that we may seek to find.  However, there are
combinations of these variables that cannot be selected as unknowns because mathematical
problems then arise, for which there is no solution.  The difficulty is that the equations are
mathematically inconsistent.  If an impossible problem is specified, then either conver-
gence to a solution will not occur or the Jacobian matrix that is used in implementing the
Newton method will be singular.  Let us look further at the elements that create a problem
for which it is impossible to find a solution.  It has become obvious to us for a single  
pipe that it is not possible to specify its diameter and roughness, the discharge in it and the
heads at both ends.  By specifying  D,  e,  Q,  Hi,  and  Hj,  the relation between discharge
and head loss is fully defined, and the need for a frictional head loss equation has been
eliminated.  When these variables are all prescribed, a problem is defined which has no
solution, and the equations are inconsistent.  Therefore, if any pipe in a network problem
has  D,  e,  and  Q  given and the heads at both ends are selected as known values, the
problem has no solution.  One of these variables must be unknown.

There are many less obvious combinations of known and unknown variables that can
cause a problem to be impossible to solve.  To illustrate some of the possibilities,
consider the three-pipe looped network in Fig. 5.27.  For this network there are five basic
equations, two junction continuity equations and three pipe head loss equations.  Assume
all demands are known, and we decide to specify  Q1  in pipe 1.  Now it is no longer
possible to specify the heads at both ends of either pipe  2  or  3  along with their diame-
ters and roughnesses, because the specification of  Q1  has also fixed  Q2  and  Q3,  since
Q2 = Q1 - QJ2  and  Q3 = QJ3 - Q2 = QJ3 + QJ2 - Q1.  We would therefore be deceiving
ourselves if we placed either  Q2  or  Q3  in the list of unknowns.  Regardless of which

Node Demand HGL Elev.
   ft3/s         ft.

   1 -   2.2       200
   2      1.2       198
   3      1.0       195

[1]

(1)

[3]

[2]

(2)

(3)

QJ1 

QJ2 

QJ3 

All e = 0.0012"
All elev. = 0' 

L3 = 3500' 

L 1
= 2000' L

2 = 1500'

Figure  5.27  A three-pipe looped network.



discharge is specified, the other two have also been fixed if any two of the three demands
are specified.

Table  5.8  lists  20  combinations of known and unknown variables and the solution
for each combination that leads to a set of consistent simultaneous equations.  The lengths
of pipes are  L1 = 2000 ft.,  L2 = 1500 ft.  and  L3 = 3500 ft.  To limit the entries in the
table it is assumed that all roughnesses are the same,  e1 = e2 = e3 = 0.0012 in, and that
the elevation of the hydraulic grade line at node  1  is  H1 = 200 ft.  For cases  10, 13,  and
14  no solution is possible, i.e., an impossible problem has been specified.  These three

Table 5.8
Combinations of Variables as Unknowns,
With the Remaining Variables Specified.

C a s e          Unknown Variables         Specified Variables

     1       H2           H3            Q1          Q2         Q3

  196.55   196.43   1.257   0.057   0.943
           D1      D2       D3        QJ2      QJ3

           10        6        10        1.2      1.0
     2      QJ2         H3          Q1           Q2           Q3

  1.636   195.30   1.537   -  0.096   1.097
           D1       D2       D3        H2       QJ3

           10        6        10        195      1.0
     3        H2           QJ3        Q1           Q2         Q3

  195.91    1.315   1.380    0.180   1.135
           D1       D2       D3        QJ2       H3

           10        6        10         1.2     195
     4        H3         QJ3         Q1         Q2          Q3

  192.15   1.797   1.539   0.339   1.792
           D1       D2       D3       QJ2       H2

           10        6        10         1.2     195
     5      QJ2        QJ3        Q1          Q2           Q3

  0.584   1.484   0.933   0.0491   1.135
           D1       D2      D3         H2       H3

           10        6        10        198     195
     6      QJ2         QJ3       D1          Q2          Q3

  0.651    1.135   0.855   0.349    1.135
           Q1        D2       D3        H2       H3

          1.0        6        10        198     195
     7      QJ2        QJ3        Q2          D2           Q3

  0.433    1.635   0.933   6.863    1.135
           D1       Q2       D3         H2       H3

           10       0.5      10        198     195
     8      QJ2        QJ3        Q1          Q2          D3

  1.349    0.584   0.933   0.349    0.795
           D1       D2       Q3          H2       H3

           10        6        1.0        198     195
     9      QJ2        QJ3        D1          D2          Q3

  1.635       0.5     10.26     6.86    1.135
            Q1       Q2       D3         H2       H3

           1.0      0.5      10        198     195
   10      QJ2        QJ3        D1          Q2          D2

         Inconsistent  (no solution)
            Q1       Q3       D3         H2        H3

           1.0      1.0      10        198     195
   11      QJ2        QJ3         D1          Q2          D3

  0.651    1.349    10.26    0.349    9.54
            Q1       Q3       D2         H2        H3

           1.0      1.0        6        198      195
   12      QJ2        QJ3         D1          D2           D3

     1.5         0.5      10.26     6.86      9.54
            Q1       Q2        Q3        H2        H3

           1.0      0.5      1.0      198      195
   13      QJ2        QJ3         D1           D3          Q3

         Inconsistent  (no solution)
            Q1       Q2        D2        H2        H3

           1.0      0.5       10       198     195
   14      QJ2        QJ3         D2           D3           Q3

         Inconsistent  (no solution)
            Q1       Q2        D1        H2        H3

           1.0      0.5       10       198     195
   15       H2             H3            D1        Q2       Q3

  198.45    197.35    12.28    0.2      0.8
            Q1       D2        D3       QJ2      QJ3

           1.4        6         10       1.2       1.0
   16       H2              H3            Q1       D2        Q3

  198.27    197.35       1.4     6.23     0.8
            D1        Q2        D3      QJ2      QJ3

            12       0.2       10       1.2       1.0
   17       H2             H3             Q1       Q2        D3

  198.27    197.17       1.4      0.2     9.87
            D1        D2       Q3        QJ2      QJ3

            12         6        0.8       1.2       1.0
   18        H2             H3             D1       D2       Q3

          Inconsistent  (no solution)
             Q1       Q2        D3       QJ2      QJ3

            1.2      0.2       10       1.2       1.0
   19         H2            H3             Q1        D2      D3

          Inconsistent  (no solution)
             Q2        Q3       D1       QJ2      QJ3

            0.2      1.0       12       1.2       1.0
   20          H2           H3             D1         Q2     D3

          Inconsistent  (no solution)
             Q1       Q3        D2       QJ2      QJ3

            1.2      1.0       10       1.2       1.0
A note on units:  All heads are in  ft;  all discharges are in  ft3/s;  all diameters are in  in.



inconsistent combinations are all created by specifying the head at both ends of one of the
pipes while trying also to specify its diameter and discharge.  In case  13  this over-
specification is obvious.  For pipe  2  Q2, D2  and its head loss  hf2 = H2 - H3  are all
known.  In case  10  this overspecification is not so obvious until it is realized that, since
H1 = 200 ft.  is given, then  Q3, D3  and  hf3 = H1 - H3  are in effect given.  And for case
14  the same type of overspecification for pipe  1  occurs;  the discharge  Q1,  diameter
D1,  and head loss  hf1 = H1 - H2  are all specified.  NETWEQST  detects such inconsist-
encies by finding that the Jacobian matrix in the Newton iteration is singular;  it reports
this and then stops.

Let us examine cases  15,  16,  and  17.  For this particular network the specification of
any one discharge and the demands  QJ2  and  QJ3  is equivalent to a specification of the
other two discharges.  This situation occurs because the continuity equation at node  2
requires, if  Q1  is given, that  Q2 = Q1 - QJ2  (or if  Q2  is given, then  Q1 = Q2 + QJ2).
At node  2  Q2 + Q3 = QJ3,  so with  Q2  found from the continuity equation at node 2,
we find that the continuity equation at node  3  then requires  Q3 = Q2 + QJ3.  However,
the fact that the specification of any one discharge also fixes the other two discharges (with
QJ2  and  QJ3  known) does not in itself result in an inconsistent problem because the
junction continuity equations are part of the system of equations.  It does mean that we are
making the problem more computationally intensive than is necessary.  In case  15  a
mental computation with the continuity equations would give  Q2 = 0.2 ft3/s  and  Q3 =
0.8 ft3/s.  Next the head losses in pipes  2  and  3  could be computed, from these  H2  and
H3  could be determined, and finally  D1  could be found.  Similar steps requiring the
solution of only one equation at a time (and the Colebrook-White equation) can be used for
cases  16  and  17.  For all other cases in the table two simplifications in the solution
process also exist.  Treating each consistent case as a system of  NP + NJ  simultaneous
equations will always be successful, even if it leads to more arithmetic than is necessary.

Another selection of known variables that produces inconsistent equations is the specifi-
cation of all of the pipe discharges that join at a node while simultaneously giving the
demand at this node.  By doing so, that junction continuity equation no longer defines a
relation between the pipe discharges and the demand there.  The inconsistency will occur
whether or not the junction continuity equation is satisfied by the given discharges.  Cases
18,  19,  and  20  are problems for which no solutions exist because a junction continuity
equation can not be used.  In case  18  the overspecification is obvious because  Q1,  Q2,
and  QJ2  are all knowns, and yet these three variables are the only variables in the
continuity equation at node  2:  Q1 - Q2 = QJ2.  (We have actually reduced the network to
a one-pipe network.)  That case  19  gives all variables in the junction continuity equation
at node  3  is now obvious.  However, case  20  is not quite so obvious.  Since the inflow
at node  1  (the magnitude of the negative demand there) must equal  QJ2 + QJ3,  we note
that giving  Q1  and  Q3  along with  QJ2  and  QJ3  results in a specification of all
variables in the junction continuity equation at node  1.

The foregoing situations will always result in a failure to find a solution.  There are
other specifications that will cause  NETWEQS1  (or  NETWEQST)  to seek a solution
but fail.  Here are two more examples:  (a)  a situation requires a reservoir to supply a flow
to the network, but the water surface elevation of the reservoir is given a value that is
lower than the head at the other end of the connecting pipe;  (b)  consider a junction where
two pipes join to meet a positive demand, but at the same time specify the heads at the
opposite ends of the pipes so the flow must leave the junction.  So we see that an
unthinking specification of known values can, and often will, create a problem for which
there is no solution, and the likelihood of this occurring increases with the size of the
network because it then becomes increasingly difficult to identify situations for which there
is no solution. An inconsistent problem will often become evident with  NETWEQS1
when  a message from the linear algebra solver  SOLVEQ  says that the Jacobian matrix is



singular, which usually means that the linear system of equations, consisting of the
Jacobian matrix and the equation vector as the known vector, is not an independent system
of equations.

Example Problem 5.5
The pipe lengths and other data for a  14-pipe network supplied by two reservoirs are

given in the file  EXP5_5.IN  on the  CD.  Obtain a solution from  NETWK  using this
input, and then prepare input data for  NETWEQS1  and obtain solutions therefrom for the
following cases:

1.  The heads at all nine nodes, as well as the discharges in all 14 pipes, will be
regarded as unknown.  (This is the problem solved by  NETWK.)

2.  At node 5 the demand  QJ5  will be considered unknown, and the head  H5  will be
specified as  H5 = 2504.3  ft.

3.  All of the demands are considered unknown, and the heads are as given in the input
data to NETWEQS1.

4.  The heads at all nine nodes and the discharges in all 14 pipes are considered
unknown.

5.  The heads at all nine nodes are unknown, and the diameters of pipes  2,  7,  and  10
are unknown with the discharges in these three pipes specified.

Repeat the five cases with the reservoir attached to pipe  14  having a water surface
elevation of  2450 ft. and with a pump in this pipe that has the following operating
characteristic data pairs:  Q1 = 1 ft3/s,  H1 = 55 ft.;  Q2 = 2 ft3/s,  H2 = 50 ft.;  Q3 = 3

ft3/s,  H3 = 43 ft.

[1]
(1)

[4][3][2]
(5)

(6)(4)(2)
(3)

(7) (8)

(9)

[6][5]

[7] [9][8]

(10)

(11)

(12)

(13)

(14)

2600'

2500'

The input data, to be read on logical unit  IN5,  are shown below for the five cases.  
For case 4  NETWEQS1  reports a "singular matrix," which indicates that at least one
redundant equation was included in the system of equations.  It should be clear that a
solution to case  4  was not possible because we can not specify the heads at both ends of
all pipes while simultaneously specifying all of the demands.  These same cases are solved
by using  NETWEQS1  with a pump in line  14  and the water surface of this reservoir
lowered to  2450 ft.  These solutions follow those from  NETWEQS.

Data       file       for         NETWEQS1        using       input     IN2    ≠     5          
14 9 2 0 8 9 1200 .66666667 .000166667 1.4
1 2600 14 2500 9 6 1200 .66666667 .000166667 1.2
0 1 1500 1. .000166667 9.7 0 9 1500 .66666667 .000166667 1.3
1 2 1000 .66666667 .000166667 2.9 1.3 2548.6 2410
2 3 2000 .66666667 .000166667 1.7 1.2 2522.8 2405
5 3 1000 .66666667 .000166667 0.2 1.0 2504.1 2400
3 4 2000 .5 .000166667 0.9 1.4 2481.1 2340
6 4 1000 .5 .000166667 0.5 0.9 2504.3 2405
1 5 2000 .66666667 .000166667 2.7 1.5 2485.4 2350
5 6 2000 .5 .000166667 0.8 1.2 2518.1 2405
1 7 1200 .66666667 .000166667 2.9 1.0 2491.6 2400
7 8 2000 .66666667 .000166667 1.7 1.5 2491.6 2370
5 8 2000 .66666667 .000166667 0.8
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Case               1                     input,              IN3    ≠     5               Case              2              input,            IN3    ≠    5            Case             3            input,             IN3   ≠     5          
9 8 0
0 1 9
14 14 14
0 0 0
0 0 0
0 0 0
1-9 1 2 3 4 6 7 8 9 1-9
1-14 5 1-14

1-14

Case               4                     input,              IN3    ≠     5               Case              5              input,            IN3    ≠    5        
9 9
0 0
0 11
14 3
0 0
0 0
1-9 1-9
1-14 1 3 4 5 6 8 9 11 12 13 14

2 7 10

To repeat the five cases with a pump inserted in line  14  and a specified reservoir water
surface elevation, the input data file for  NETWEQS1  above is modified by replacing the
first two input lines with the following three input lines:

14 9 2 1
1 2600 14 2450
14 1 55 2 50 3 43

The remainder of the input file is unchanged.
The solutions in file  EXP5_5.OUT  on the  CD  were obtained for the  14-pipe

network by using  NETWEQS1  for the five cases.  The reader should be able to obtain
identical solutions.  The solutions to the five cases which include a pump are in file
EXP5_5.OU1  on the  CD, which can be used to verify that your solutions are correct.  In
these solutions the pump is called device  1  when it is in pipe  14.  The program output
lists the change in head caused by each such device.  In case  1  we find the following
message:

Devices caused the following changes in heads:
Device  1  in pipe  14      Change in head  =  53.45  ft.

*                              *                              *

Example Problem 5.6
For the small network below do the following:
(a) Write the equations that describe the system.
(b) For the specified physical system, find the discharge in each pipe and the head at all

nodes (duplicate this solution by preparing input data for  NETWK).
(c) Determine the diameter of pipe  1  so the discharge through pipe  5  into the

reservoir is  Q5 = 0.5 ft3/s.
(d) Find the head that the pump must produce so that the discharge through pipe  5  into

the downstream reservoir is  Q5 = 1.0 ft3/s.

Q,  ft3/s 4.5 4.0 3.5
hp,  ft.  54  50  44

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806
http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


P [1]
(1)

[3]
[2]

(5)

(4)

(2)

(3)

1.2 ft3/s

All e = 0.002"

8" - 4000'
6" - 3000'

8" - 6000'100'

12" - 4000'

1.5 ft3/s

1.0 ft3/s

6" - 2000'

90'

(a) The equations are the following:

F1 = 100 + hp − H1 − f1(L1 /D1)(Q1 /A1)2 / (2g) = 0

F2 = H1 − H3 − f 2 (L2 / D2 )(Q2 /A2 )2/ (2g) = 0

F3 = H1 − H2 − f3(L3 /D3 )(Q3 /A3 )2 / (2g) = 0

F4 = H2 − H3 − f 4 (L4 /D4 )(Q4 /A4 )2 / (2g) = 0

F5 = H3 − 90 − f 5 (L5 /D5 )(Q5 /A5 )2 / (2g) = 0

F6 = Q1 −Q2 −Q3 −QJ1 = 0

F7 = Q2 +Q4 −Q5 −QJ3 = 0

F8 = Q3 −Q4 −QJ2 = 0

with hp = − 4Q1
2 + 42Q1 − 54

(b)  The  8  unknowns are  Q1,  Q2,  Q3,  Q4,  Q5,  H1,  H2,  and  H3.  Using 
NETWEQS1  to solve this problem would require the following input data:
From keyboard:

2 5 3/
In a file from logical unit 2:

5 3 2 1 Since the second logical unit was given as  5,
1 100 the keyboard data for the unknowns is
5 90 3
1 4.5 54 4 50 3.5 44 0
0 1 4000 1.0 .000167 4.2 5
1 3 6000 .667 .000167 1.3 0
1 2 4000 .667 .000167 1.5 0
2 3 3000 .500 .000167 0.3 and then
0 3 2000 .500 .000167 0.5 1-3
1.5 126 0. 1-5
1.2 98 0
1.0 95 0

The solution from  NETWEQS1  follows.



PIPE DATA

PIPE
 NO.

 N O D E S
FROM    TO

  L  DIA.   e
x 1 0 4

   Q HEAD
LOSS

   ft.      ft.    ft.    ft3/s       ft.
    1   - 1     1 4000 1.000  1.67    4.102   26.44
    2      1     3 6000 0.667  1.67    1.191   29.17
    3      1     2 4000 0.667  1.67    1.411   26.67
    4      2     3 3000 0.500  1.67    0.211     2.49
    5   -  2     3 2000 0.500  1.67 -  0.400 -   5.37

Devices caused the following changes in heads:
Device  1  in pipe    1      Change in head  =  50.98  ft.

NODE DATA

NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
      ft3/s      ft.      ft.        lb/in2          ft.

    1     1.500       0   124.5         54.0        124.5
    2     1.200       0     97.9         42.4          97.9
    3     1.000       0     95.4         41.3          95.4

This can be regarded as the solution to an analysis problem since all of the physical
features of the network are known, and the solution describes the performance of this
existing network in response to the specified demands.  We could verify that this
solution is the solution from  NETWK  by supplying this input file to  NETWK:

Example Problem NODES
/* 1 1.5 0
 $SPECIF OUTPU1=2 $END 2 1.2
PIPES 3 1
1 0 1 4000 12 .002 RESER
2 1 3 6000 8 5 90
3 1 2 4000 8 PUMPS
4 2 3 3000 6 1 4.5 54 4 50 35 44 100
5 3 0 2000 RUN

(c)  The equation set is unchanged from part (a).  However, here the unknowns are
different.  The input data file in part (b) is again supplied to  NETWEQS1.  When we
are asked to identify the unknowns, the following keyboard input will be supplied:

3
0
4
1
0
0

followed by:
1-3
2-5
1

(In parts (b) and (c) we supply a discharge of  0.5 ft3/s  for pipe  5  in the input data
file. This was merely an estimate in part (b), but now this value is the specified
discharge.)

The solution from  NETWEQS1  is the following:



PIPE DATA

PIPE
 NO.

 N O D E S
FROM    TO

  L  DIA.   e
x 1 0 4

   Q HEAD
LOSS

   ft.      ft.    ft.    ft3/s       ft.
    1   - 1     1 4000 1.041  1.67    4.200   22.09
    2      1     3 6000 0.667  1.67    1.246   31.72
    3      1     2 4000 0.667  1.67    1.454   28.23
    4      2     3 3000 0.500  1.67    0.254     3.50
    5   -  2     3 2000 0.500  1.67 -  0.500 -   8.03

Devices caused the following changes in heads:
Device  1  in pipe    1      Change in head  =  51.84  ft.

NODE DATA

NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
      ft3/s      ft.      ft.        lb/in2          ft.

    1     1.500       0   129.8         56.2        129.8
    2     1.200       0   101.5         44.0        101.5
    3     1.000       0     98.0         42.5          98.0

(d)  One way to determine the required pump head so that  Q5 = 1.0 ft3/s  is to replace

the pump and its upstream reservoir with a node having a demand of  - 4.7 ft3/s;  this
change will force the flow into the downstream reservoir to be  1.0 ft3/s.  The input to
NETWEQS1  is as follows:

5 4 1 0 0 3 2000 .5    .000167 1.0
5 90 1.5 126 0.
4 1 4000 1 .000167 4.7 1.2 98 0
1 3 6000 .667 .000167 1.3 1   95 0
1 2 4000 .667 .000167 1.5 - 4.7 130 0
2 3 3000 .5    .000167 0.3

and the solution  from  NETWEQS1  will show that the pump must supply a head of
200.3 -  100 = 100.3 ft.

PIPE DATA

PIPE
 NO.

 N O D E S
FROM    TO

  L  DIA.   e
x 1 0 4

   Q HEAD
LOSS

   ft.      ft.    ft.    ft3/s       ft.
    1     4     1 4000 1.000  1.67    4.700    34.21
    2     1     3 6000 0.667  1.67    1.536    46.90
    3     1     2 4000 0.667  1.67    1.664    36.38
    4     2     3 3000 0.500  1.67    0.464    10.52
    5   - 1     3 2000 0.500  1.67 -  0.995 -  29.22

NODE DATA

NODE DEMAND ELEV. HEAD PRESSURE HGL ELEV.
      ft3/s      ft.      ft.        lb/in2          ft.

    1     1.500       0   166.1         72.0        166.1
    2     1.200       0   129.7         56.2        129.7
    3     1.000       0   119.2         51.7        119.2
    4  -  4.700       0   200.3         86.8        200.3

*                              *                              *



Example Problem 5.7
Obtain solutions to Example Problems  5.5  and  5.6  using program  NETWEQST.

This program is one of the auxiliary programs in the NETWK package.  It was developed
to allow the user to specify the variables which are unknown, and it accepts the same input
data as  NETWK  to define the physical features of the network.  In other words it will
solve the same problems as  NETWEQS1  does, but it uses the same input files as
NETWK.  However, not all commands and options in  NETWK  are acceptable to
NETWEQST.  On the other hand it has additional options that provide the user some
freedom in the way information is provided about the unknowns.  If  NETWEQST  is to
be used, then the following input files could be used, for example, to solve case 2 in
Example Problem 5.5 and Example Problem 5.6, part (c), taking the default of being
prompted for information that defines the unknowns.  The prompts from  NETWEQST  
are in bold type, and the responses are not.

For Example Problem 5.5,  case 2,  the portion of the input which defines the network
is identical to that for  NETWK  in Example Problem 5.5 itself.  Here the bold prompts
from  NETWKST  are followed by the responses that define case 2:

Pipes = 14, Nodes =  9, Sources = 2
23 unknowns must be given.  Give no. of each:
1. HGLs at nodes  8
2. Nodal demands  1
3. Pipe discharges  14
Give 8 HGLs at node numbers  1-4  6-9
Give 1 nodal demand numbers  5
Give number of nodal HGL-elevations provided  1
As pairs give 1 node number and the HGL
5 2504.3
Give number of pipe discharges provided  0

The data for Example Problem 5.6(c) is similar:

Example 5.6(c) using  NETWEQST
/*
$SPECIF $END
PIPES
1 0 1 4000 12 .002
2 1 3 6000 8
3 1 2 4000
4 2 3 3000 6
5 3 0 2000
NODES
1 1.5 0
2 1.3
3 1
RESER
5 90
PUMPS
1 4.5 54 4 50 35 44 100
RUN

Pipes = 5, Nodes = 3, Sources = 2
8 unknowns must be given.  Give no. of each:
1.  HGLs at nodes  3
2.  Nodal demands  0
3.  Pipe discharges  4
4.  Pipe diameters  1
Give  4 pipe discharge numbers  1-4
Give  1 pipe diameter numbers  1



Give number of nodal HGL-elevations provided  0
Give number of pipe discharges provided  1
As pairs give  1 pipe number and the discharge therein
5  -  0.5

*                              *                              *

5.6 HIGHER ORDER REPRESENTATIONS OF PUMP CURVES

The head produced by a pump has heretofore been defined as a function of the discharge
by fitting a single second-order polynomial through three pairs of points.  If the pump
operation occurs within a relatively narrow discharge range, and these are near the normal
capacity of the pump, then such a simple representation is adequate.  When this is not the
case, then more advanced procedures are needed to define well the pump's operating
characteristics.  Various interpolation procedures can be used for the mathematical represen-
tation of a pump curve.  This section discusses how pump curves can be duplicated mathe-
matically when equations are needed to define their operating characteristics.

5.6.1. WITHIN RANGE POLYNOMIAL INTERPOLATION
Any number of values might be used to define a pump characteristic curve, and a

polynomial of any order might be used to interpolate the head corresponding to any given
discharge if the range of the discharge values brackets the given discharge.  A first-order
polynomial is simply a straight line.  To represent the pump head well with a first-order
polynomial interpolation, we should first ensure that the smaller discharge  Qi  is less than
or equal to the given discharge  Q,  and that the larger discharge  Qi+1  is greater than  Q.
The interpolating function for a first-order polynomial is

hp = hpi + hpi+1 − hpi( ) Q −Qi( ) / Qi+1 −Qi( ) (5.32)

in which the quantities with subscripts  i  and  i+1  are known,  hp  is the interpolated head
of the pump and  Qi ≤ Q ≤ Qi+1.  When  Q  becomes larger than  Qi+1,  then the first
point is dropped and the next point is added.  The use of a higher-order polynomial requires
more data.  An nth-order polynomial requires at least  n+1  pairs of data points since an
nth-order polynomial passes through  n+1  points, e.g., a second-order polynomial passes
through three points, a third-order polynomial through four points etc.  The Lagrange
formula is a convenient interpolation formula to use for this purpose because the increment
between consecutive values of the independent variable, the discharge  Q  in this case, need
not be constant.  Other formulas do require a constant increment of the independent
variable.  The Lagrange interpolation formula is

hp = Fi
i=1

n
∑ Hi (5.33)

in which each  Hi  is the pump head at point  i,  and each  Fi  is the quotient of two
products:

Fi = Q −Qj( )
j=1
j≠i

n
∏ Qi −Qj( )

j=1
j≠i

n
∏ (5.34)

in which the two products  Π  include  n - 1  terms, with the term  j = i   omitted.  To
implement the Lagrange interpolation successfully in a computer program, two
requirements must be met:  (1)  the discharge for which the head is wanted must lie within



the range of the discharge data points (otherwise the process is extrapolation), and  (2)  Eqs.
5.33 and 5.34  must be properly written.  The program  LAGRANGE  on the  CD  is
designed to read  n  pairs of points for a pump curve and then provide the pump head for
any specified discharge.  The program can also be converted into a function subprogram
which will pass  (hp, Q)  pairs to the function from the main program,  and an argument
will specify the  Q  for which the head is to be determined.

Example Problem 5.8
A pump curve is shown below.  Enter  10  pairs of points from this curve into a file,

and then use Lagrange's formula with a third-order polynomial interpolation to obtain
values of the pump head corresponding to specified discharges, i.e., find  hp  for discharges
of  850 gal/min,  5800  gal/min,  4200 gal/min, etc.
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We start the solution by selecting  10  discharge values along the abscissa and reading
the corresponding values of pump head to obtain the following:

      Q
gal/min

  800 1600 2400 3200 4000 4500 4800 5200 5600 6000

   hp
    ft.

181.5 170.0 160.0 148.5 138.6 128.0 120.4 109.0   95.0   80.0

These data pairs now must be entered into a file that can be read by program  LAGRANGE.
The input from the keyboard will be  10 2 3,  followed by the filename.  Then provide the
discharges  850, 5800, 4200, etc. in response to the prompt  Give discharge (minus
to terminate).  The heads returned by the program are the following:   Q = 850   gave
hp = 181.51,  Q = 5800  gave  hp = 87.53,  Q = 4200  gave  hp = 135.16.

*                              *                              *
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5.6.2. SPLINE FUNCTION INTERPOLATION
One disadvantage of using Lagrange interpolation is seen when the interpolation

interval shifts to continue to bracket the discharge;  then the first derivative, which is
needed in the Newton method, is not continuous.  An alternative is to use spline
interpolation.  An essential difference between spline and piecewise polynomial
interpolation is that, although a given spline function interpolates only between two
consecutive points, both the spline function and one or more of its derivatives are
continuous across these points.  We will only discuss cubic splines here, since they require
roughly the same computational effort as quadratic splines and have both continuous
second and first derivatives across the data points.

Cubic splines develop a third-order polynomial between each pair of consecutive points
as the interpolating function, or

y(i) = aix
3 + bix

2 + cix + di (5.35)

in which superscript  i  refers to the segment of the curve before point  i,  the dependent
variable  y  plays the role of the pump head  hp,  and  x  replaces  Q.  (For notational
simplicity let  H  represent  hp  in the remainder of this section.)  For example, if we use
four  (Hj, Qj)  pairs, there will be three interpolating equations of the form of Eq. 5.35.  In
this case the total number of unknown (a, b, c, d) coefficients is  4(n - 1),  or for our
example  4x3 = 12  unknowns.  Thus  4(n - 1)  equations are needed.  By substituting the
known  (H, Q)  pairs at points  j  and  j + 1  at the ends of segment  i,  we obtain  2(n - 1)
of these equations.  Another  (n - 2)  equations are developed by equating the first
derivatives of the two interpolating equations that apply at each data point, and an
additional  (n - 2)  equations result from equating second derivatives at these same points.
The last two required equations come from boundary or end conditions.  There are two
commonly used kinds of boundary conditions.  One sets the second derivatives at the

beginning and/or end of the global interval to zero;  that is,  (d2y / dx2)1 = H1
'' = 0   and/or

(d2y / dx2 )n = Hn
'' = 0 .  These are called natural cubic splines.  The other sets  y1

'   and/or

yn
'   to values calculated by assigning values to the first derivatives.

In detail, the equations for the  4-point example are the following:

H1 = a1Q1
3 + b1Q1

2 + c1Q1 + d1 (5.36)

H2 = a1Q2
3 + b1Q2

2 + c1Q2 + d1 (5.37)

H2 = a2Q2
3 + b2Q2

2 + c2Q2 + d2 (5.38)

H3 = a2Q3
3 + b2Q3

2 + c2Q3 + d2 (5.39)

H3 = a3Q3
3 + b3Q3

2 + c3Q3 + d3 (5.40)

H4 = a3Q4
3 + b3Q4

2 + c3Q4 + d3 (5.41)
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⇒ 3a1Q2
2 + 2b1Q2 + c1 = 3a2Q2

2 + 2b2Q2 + c2 (5.42)



dy(2)

dx
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3

⇒ 3a2Q3
2 + 2b2Q3 + c2 = 3a3Q3

2 + 2b3Q3 + c3 (5.43)
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⇒ 6a1Q2 + 2b1 = 6a2Q2 + 2b2 (5.44)
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3

⇒ 6a2Q3 + 2b2 = 6a3Q3 + 2b3 (5.45)

The boundary conditions are either

 
d2y(1)

dx2


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1

= H1
'' = 0 (5.46a)

d2y(3)

dx2
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= H4
'' = 0 (5.46b)

or

dy(1)

dx
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= specified = 3a1Q1
2 + 2b1Q1 + c1 (5.47a)

dy(3)
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
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


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4

= specified = 3a3Q4
2 + 2b3Q4 + c3 (5.47b)

In these equations  y  has been used as the continuous dependent variable.  For use in
interpolating a point from a pump curve, the dependent variable will be called the pump
head  H,  and in subsequent equations it will be used in place of  y.

One obvious continuation is simply to solve the above equations for  ai,  bi,  ci  and
di,  i  = 1, 2, 3  and then use the appropriate equation to compute  H  for a given  Q.
However, an alternative that requires less arithmetric is the following interpolation
equation:

H(i) = aiH j + biH j+1 + ciH j
''+diH j+1

'' (5.48)

The coefficients  a, b, c,  and  d  are now obviously different than before.  The coefficients
a  and  b  are weighting functions that are applied to the dependent variable  H  at points  j
and  j + 1,  and  c  and  d  are weighting functions applied to the second derivatives at these
same points.  In the finite element method  a  and  b  are the shape, basis or interpolation
functions that are associated with a linear one-dimensional element.  It can easily be shown
that  ai = (Qj+1 - Q)/(Qj+1 - Qj)  and  bi = (Q - Qj)/(Qj+1 - Qj)  with  ai + bi = 1.  We see
that  ai  and  bi  are linear functions of  Q.  For simplicity the subscripts and superscripts
will be deleted in many of the following equations;  just keep in mind that the interpola-
ting function provides values of  Q  within the interval  [Qj,  Qj+1].  Since  c  and  d  are
functions of  a  and  b,  the number of additional unknowns that are introduced with each
new segment is two rather than four.  Thus the total number of equations for  n  intervals
will be  2(n - 1)  rather than  4(n - 1).  Since  b = 1 - a,  only one new unknown appears



for each new data point, so the number of required equations is only  n - 1.  The relations
between  c  and  d  and  a  and  b  are

c = (a3 − a)(Qj+1 −Qj )2 / 6 (5.49a)

and

d = (b3 − b)(Qj+1 −Qj )2 / 6 (5.49b)

Thus the dependence of the interpolating equation on  Q  is entirely through the linear  Q-
dependence of  a  and  b.  Since the derivatives are also weighted by  c  and  d  (depending
on a  and  b),  a cubic interpolating polynomial exists over the closed interval  [Qj,  Qj+1].

To verify these statements, we note first that  c  and  d  contain terms involving  Q3  and
Q2  since the definitions of  c  and  d  contain  a3  and  b3.  Thus the interpolating
equation is a third-order polynomial.  And we see also that  da/dQ = - 1/(Qj+1 - Qj) and
db/dQ = 1/(Qj+1 - Qj) = - da/dQ.  Now we compute the derivative of  H  itself to obtain

H' =
dH

dQ
=

H j+1 − H j

Qj+1 −Qj
−

3a2 −1
6

Qj+1 −Qj( )H j
'' +

3b2 −1
6

Qj+1 −Qj( )H j+1
'' (5.50)

and the second derivative is

H" = aH j
'' + bH j+1

'' (5.51)

Since  a = 1  at  Qj  and  a = 0  at  Qj+1, and also  b = 0  at  Qj  and  b = 1  at  Qj+1,  we
have verified that the relations between  c  and  a  and between  d  and  b  are valid.

To apply Eq. 5.48 in practice, we must first determine numerical values for the second-
derivative terms that appear in that equation.  The required equations, ones that allow us to
evaluate those terms, can be obtained by evaluating the first derivative at points  2, 3, ... ,
n - 2  and equating pairs from adjacent segments.  We do not need the original equations or
the equations that are obtained by equating second derivatives, since these are already
satisfied by the interpolating polynomial.  Equating first derivatives at the data points
yields

H j − H j−1

Qj −Qj−1
+

Qj −Qj−1

6
H j−1

'' +
Qj −Qj−1

3
H j

''

=
H j+1 − H j

Qj+1 −Qj
−

Qj+1 −Qj

3
H j

'' −
Qj+1 −Qj

6
H j+1

''
(5.52)

This equation comes directly from Eq. 5.50  with  a = 0,  b  = 1  at  Qj  for the derivative
on the left side, and  a = 1,  b = 0  at  Qj  on the right side of point  j.  This equation (i.e.,
these equations, since  j  is incremented) can be rewritten to display better the linear
relation between  the second derivatives of  H,  with known values on the right side, as

Qj −Qj−1( )H j−1
'' + 2 Qj+1 −Qj−1( )H j

'' − Qj+1 −Qj( )H j+1
''

= 6
H j+1 − H j

Qj+1 −Qj
−

H j − H j−1

Qj −Qj−1













(5.53)

Written in matrix notation, Eq. 5.53  consists of a coefficient matrix  [A]  multiplied by
the vector of unknown second derivatives  {H"},  which equals the known vector {B}, or



[A]{H"} = {B} (5.54)

To make the system complete, boundary conditions must supply the first and last values.

If the natural condition is used, then  H1
''   and  Hn

''   are given zero values, which in effect

starts the system at point  2  and ends the system at point  n - 1.  If first derivatives are
specified, then these values provide the first and last equations in the system of equations.
We note that only three consecutive values of the second derivatives are linked together in
this system of equations, regardless of the choice of boundary conditions.  This tridiagonal
system of equations is very common, and it can be solved readily by decomposition or
elimination methods.  Since only one element exists in front of the diagonal, a single
forward elimination pass through the rows of the matrix can convert the matrix into an
upper triangular matrix with only two nonzero elements.  Then a back substitution can
obtain the solution for the second derivatives.

We have just seen that this alternative to the use of cubic spline interpolation requires
first the solution of a tridiagonal equation system to determine numerical values for the
second derivative of  H  at each of the points where  (Hj, Qj)  pairs are given.  By then

applying the other interpolation relations, the head  H  can be found directly for any  Q   in
the overall range of the interpolation.

The program  SPLINECU  implements this process.  A listing of it can be obtained
from the  CD  for study.  This program is designed to read  N  pairs of values for  (Hj, Qj)

and then determine  H   at  M   uniformly spaced values of  Q ,  starting with  Q1  and

ending with  Qn,  instead of finding  H  for a specified  Q.  That is, it produces a full table

of values for  H .  The third column in this table provides values of  dH/dQ;  when w e
compute elements of the Jacobian matrix in applying the Newton method to the solution
of a network problem, this table of values is useful.  The program could be modified to
function in the same way as the Lagrange interpolation program, or to allow the user to
provide a list of  Q   values for which heads are desired, and this list could be provided
from a file or given individually from the keyboard.  Or it could be converted into a
function subprogram to supply the head for any specified discharge in solving a network
problem involving a pump.  Such a subprogram is on the CD under the name  SPLINESU.
Actually the program first reads  Q  and then  H  for each data pair, then forms and solves
the tridiagonal equation system, and finally develops the new table with  M  entries.

Example Problem 5.9
Use program  SPLINECU  to obtain values of the pump head  H   and the derivative

dH/dQ  with an increment  ∆Q = 100 gal/min.  between  800 gal/min.  and  6000 gal/min.
As input data use the  10 points that are listed in the output table of Example Problem
5.8.

Solution:  The following values should first be entered from the keyboard:  2  3  10  53  0.
The first three and last three lines of output should be the following:

    800.0    181.50   -  0.01508
    900.0    179.99   -  0.01505
  1000.0    178.49   -  0.01495

  5800.0       87.53   -  0.03755
  5900.0       83.77   -  0.03766
  6000.0       80.00   -  0.03770

*                              *                              *
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Example Problem 5.10
A pump having the characteristic curve of head vs. discharge given in Example Problem

5.9  is operated over six hours, as described by the following (assumed smooth) data:

 Time
     hr.

  0   1   1.5   2.0   2.8   3.8   4.9   5.2   6.0

      Q
gal/min

  800 2500 3500 4700 5500 4900 3500 2900 2500

The pump efficiencies corresponding to the discharges in Example Problem  5.9  are

    Q
gal/min

  800 1600 2400 3200 4000 4500 4800 5200 5600 6000

    e   0.40   0.50   0.65   0.75 0.825 0.847 0.845   0.81   0.79   0.74
    H
      ft.

181.5 170.0 160.0 148.5 138.6 128.0 120.4 109.0   95.0   80.0

Use cubic splines to define from the data pairs the relations that are needed, and determine
the energy used by the pump during the six-hour period.

There are three relations that must be established by spline functions:
1.  the discharge  Q  as a function of time  t,
2.  the pump head  H  as a function of the discharge  Q,  and
3.  the efficiency  e  as a function of the discharge  Q.

When these relationships have been determined, the amount of energy that is consumed can
be found by numerically integrating the equation

Energy = γ (QH/e)∫ dt

To complete this solution, it is convenient to convert the program  SPLINECU  into a
subroutine to find the second derivatives for these relations;  then a numerical integration
subroutine will be used to obtain the energy.  A program  ELECECG  to accomplish these
tasks can be listed from the  CD  for further study as the rest of this example is read.  It
calls on  SIMPR  to complete the integration after the newly created subroutine
SPLINESU  has been called three times to determine the second derivatives.  The argu-
ments of  SPLINESU  are as follows:  N = the number of data  pairs,  X = an array of  N
values for the independent variable,  Y = an array of  N  values for the dependent variable,
D2Y = an array of second derivatives returned by  SPLINESU,  D = a work array having  N
values,  ITY = 0  for natural boundary conditions or  ITY = 1  for prescribed first deriva-
tives at the ends of the domain.

The program has three parts:  (1)  the main program that calls  SPLINESU  three times
to obtain three sets of second derivatives and then calls the numerical integration routine
SIMPR;  (2)  a block data subprogram to enter the data pairs rather than reading them from
a file;  and  (3)  the function subprogram  EQUAT  that defines the equation to be inte-
grated.  The second derivatives and sets of three data pairs are passed to  EQUAT  by means
of the block common statements.  EQUAT  contains the logic that will determine, from
the time, which two instants in time are to be used so that cubic spline interpolations can
provide the values of the discharge as  QQ,  pump head as  HH  and efficiency as  EE,  and
then the argument of the numerical integration  QH/e  is returned as  EQUAT.  The main
program supplies the constant for  γ  and converts  gal/min.  to  ft3/s  and energy in  ft-lb
to energy in  kilowatt-hours.

The answer is  Energy = 1.915x109 ft-lb  or  2,600,000  kWh.

*                              *                              *
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5.7 SENSITIVITY ANALYSES

We now turn to a third major type of network design.  So far we have explored two
design categories:  the first sought to determine the size of as many pipes as possible (NJ
of them since the equations would permit no more), and the second sought to determine the
size of individually chosen components by considering each of them as a device that created
a differential head at its location in the network.  The first design category is encountered
when a new network is being designed.  The second type is more relevant to an existing
system, for example, one in which we must determine the capacity and head of a pump to
achieve a desired pressure at some point in response to some specified demands.  The third
design category seeks to identify the components of the network to upgrade, improve, or
replace in order to increase the level of network performance most efficiently.  The actual
determination of unit sizes might be accomplished later, according to procedures used in the
second type of design.  In a sense this section describes methods that can be used to decide
which system elements are most important to the improvement of system performance.
For example, as a city's water use increases, the pressures may become too low during
peak demand periods.  Which of several pumps should be replaced by a larger one?  An
excellent quantitative means for making such a decision is to perform an appropriate
sensitivity analysis and replace the pump with the largest pressure sensitivity.  This
section describes the determination of the magnitude of the sensitivity of one variable with
respect to another variable in the network.

The quantification of sensitivity, which is how much one variable changes in response
to a change in another variable or several variables, provides the designer a deeper under-
standing of network performance.  Here we usually apply sensitivity analysis to identify
the best component to change or replace to overcome a deficiency in the present
performance of a network.  A natural question is how these deficiencies can "best" or "most
economically" be remedied.  The answer may require a change in one or several pipe
diameters, an increase in the head produced by existing pumps, an increase in the elevation
of storage tanks (reservoirs), or the addition of pumps or pressure-reducing valves, etc.
Normally there are a host of possible ways to correct inadequate performance.  Some
possibilities will be discussed in this section, but these should be regarded only as
examples to stimulate thinking about alternatives.  The sensitivity of one variable to
another variable can be expressed by the partial derivative of the first variable with respect
to the second variable.  The variable(s) whose sensitivity is sought is (are) the dependent
variable(s), and the variable that is the candidate for change to improve the network
performance is the independent variable.  There are usually several independent variables
which are candidates for change.  There may also be more than one dependent variable, but
often one variable will be selected.

Generally it is not possible to define algebraically the partial derivative of any particular
dependent variable with respect to another chosen independent variable when dealing with
piping systems (there are exceptions), but these derivatives can be defined approximately
by numerical methods.  The mathematical  definition of a partial derivative is

∂f

∂x
=

h→0
limit

f (x + h, y, z) − f (x, y, z)

h
(5.55)

or, in more practical terms with  h = ∆x,  ∂f / ∂x ≈ ∆f / ∆x   when the other variables are
unchanging.  Thus, as  x  is changed by some small amount  ∆x,  the corresponding
change in the dependent variable (equation, system, or process)  ∆ f  is determined, and this
latter difference, when it is divided by the change in the independent variable, produces an
approximation of the derivative.  Under conditions near those for which  f  is evaluated
(assuming all other parameters remain constant), the sensitivity of the dependent variable is
quantified as this derivative.



As this derivative becomes larger, the dependent variable  f  is more strongly affected by
a change in the independent variable  x,  or the more sensitive  f  is to  x.  A negative
derivative indicates that one variable decreases as the other increases.  In a pipeline system
there are many derivatives, or sensitivities, that can be determined and whose magnitudes
provide useful information about the most effective way to change system performance.  A
few of many examples follow:  (1)  Low pressure can be corrected best by enlarging the
pipe diameter that creates the largest  ∂p/∂D;  (2)  Low pressure can be corrected best by
increasing the head of the pump with the largest  ∂p/∂hp;  (3)  Too small a flow into a
storage tank can be best corrected by increasing the power at the pumping station with the
largest  ∂Qres/∂P;  (4)  A fire demand at a node can best be augmented by the pump that
has the largest  ∂QJ/∂Qp;  (5)  Too large a pressure can best be reduced by a PRV in the
pipe whose downstream head  H  produces the largest negative magnitude of  ∂p/∂H;  etc.

The magnitudes of these sensitivities are generally not constant but change with
problem specifications, such a peaking factors, and the largest may come from a different
component (independent variable) as the total demand or demand pattern changes, or
conditions under which the network is to perform change.  The selection of sensitivities to
compute will depend on the particular focus of each network performance study.  Often
several different sensitivities will provide nearly the same information.

Consider now the network shown in Fig. 5.28 to become acquainted with some of the
possibilities.  All of the water that is consumed in a typical daily operation must come
from the two pumping stations.  The tank (reservoir) at the end of pipe  11  is large and
should receive water during periods of low demand so it can supply water when the
demands are larger.  To simplify the analyses assume the water level in the storage tank is
constant at  200 m.  The demands in the diagram are those that typically occur during the
high de-mand period of a day.  These demands are larger than those which existed when the
system was designed, and now the tank does not fill sufficiently during low demand
periods;  the power to one of the pump stations must be increased.  Which station should
be upgraded (power input increased)?
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Figure  5.28  A network for sensitivity analysis.

To obtain more information on network performance, a series of solutions was obtained
for peaking factors from  0.5  to  1.2.  If  NETWK  is used to obtain these solutions, a
convenient way to do this is to use the  CHANGE  command.  The input data file to
obtain such a series of solutions is presented in Fig. 5.29.  (The option  NETPLT = 3  in
the  $SPECIF  list tells  NETWK  to write a file that can be used by program  SENSITV.)
The discharges in the two pipes from the pumping stations and the pipe that connects the
storage tank to the network have been plotted as a function of the peaking factor and are



Illustration of sensitivities
/*
$SPECIF NFLOW=3,NPGPM=3,NUNIT=4,PEAKF=.5,
 NPRINT=-3,NETPLT=3 $END
PIPES RESER END
1 0 1 2000 305 .15 11 200 CHANGE
2 1 2 2000 255 PUMPS DFRAC
3 1 3 1500 1 .15 50 .25 43 .35 35 180 1.1
4 2 6 5500 205 12 .1 48 .15 43.25 .25 33.0 180 END
5 1 4 2500 RUN CHANGE
6 5 3 2500 255 CHANGE DFRAC
7 5 4 1500 205 DFRAC 1.1
8 4 6 3900 1.1 END
9 5 7 3000 END CHANGE
10 7 6 3500 CHANGE DFRAC
11 0 6 1800 255 DFRAC 1.1
12 0 5 1500 255 1.1 END
NODES END CHANGE
1 .07 150 CHANGE DFRAC
2 .07 145 DFRAC 1.1
3 .06 145 1.1 END
4 .06 140 END CHANGE
5 .05 145 CHANGE DFRAC
6 .05 150 DFRAC 1.1
7 .04 152 1.1 END

Figure  5.29  The input data file for the analysis of flow in the network in Fig. 5.28.

shown in Fig. 5.30.  In this plot a negative flow in pipe  11  indicates a flow into the
tank.  This tank is seen to supply water whenever the peaking factor exceeds  0.58;  the
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Figure  5.30  Discharge as a function of peaking factor for three pipes.



reason for the problem is clear.  To choose which pumping station to upgrade, it would be
useful to determine the sensitivity of the discharge from (into) the reservoir as a function of
the power consumed at each of the two pumping stations, i.e.,  ∂Q11/∂P1  and  
∂Q11/∂P2.  (The cost associated with pumping is linearly related to the power
consumption, so a properly chosen multiplier of each sensitivity will provide the increase
in reservoir discharge per unit cost.)  The pumping station with the larger sensitivity is the
one to upgrade and is the lower cost alternative.  Maximization of the sensitivity of
discharge to power is the same as minimization of the cost of obtaining a desired discharge
or volume of water relative to the cost of energy to pump this water.

The first two solutions from the input in Fig. 5.29 to  NETWK  (which can be obtained
from  NETWK,  or another program in Chapter 4, or from  NETWEQS1,  to verify the
values) provide the data in columns  2,  3,  and  4  in Table 5.9.  The first solution is for a
peaking factor of  0.5  (since  PEAKF = 0.5),  and the second is for  PF = 0.5(1.1) = 0.55
(since  DFRAC  under  CHANGE  is  1.1).  Column  5  is the difference in discharge in
pipe  11  (into the tank) for these two solutions.  The difference in power   P = γQhp
from pump station  1  is given in column  6,  and the difference from station  2  is in
column  7.  The sensitivities of the tank discharge to the power at the pumping stations are
in columns  8  and  9.  When the demands are  0.5  times those that are listed on the
network diagram, it is best to augment the pumping at station 2 because  ∂Q11/∂P2 =
0.0062  is larger than  ∂Q11/∂P1 = 0.0042.

Table 5.9

 PF      Q11

    m3/s
Power1
    kW

Power2
    kW

        ∆∆∆∆Q11 ∆∆∆∆P1 ∆∆∆∆P2 ∆∆∆∆Q11/∆∆∆∆P1 ∆∆∆∆Q11/∆∆∆∆P2

 (1)       (2)     (3)     (4)      (5)   (6)   (7)        (8)        (9)

0 .50  - 0.0154  64.74  42.35
0.0102 2.4

1
1.64    0.0042    0.0062

0.55  - 0.0053  66.65  43.99

The same sensitivities were computed from the other paired consecutive solutions
requested by the  CHANGE  command, with the results shown in Table 5.10.  Over the
entire range of peaking factors the sensitivity  ∆Q11/∆P2 > ∆Q11/∆P1,  and therefore the
clear choice is to increase the input power to pump station  2.

The solutions that were used to obtain the sensitivities of the reservoir discharge  Q11
to  pump power did not directly require any of these variables to be changed from solution
to solution.  Instead the peaking factor was changed, which in turn caused these variables
to change from solution to solution.  An alternative was to obtain one series of solutions

Table 5.10

    P F 0.50-
0.55

0.550-
0.605

0.605-
0.666

0.666-
0.732

0.732-
0.805

0.805-
0.886

0.886-
0.974

0.974-
1.072

1.072-
1.179

∆Q11/∆P1

    x103  4.2   5.7   5.3   4.8   4.1   3.6   3.3   3.1   3.0

∆Q11/∆P2

   x103  6.2   8.6  7.9   6.9   5.8   5.3   4.9   4.5   4.4

in which  P1  was changed, and another in which  P2  was changed, but this would have
required more effort.  The fact that specifying a change in one variable (or parameter) causes
changes in all other variables associated with network performance allows us to obtain
many sensitivities from one series of solutions.  The program  SENSITV  in the  NETWK



package is designed to allow the user to generate tables of sensitivities.  Table 5.11 is the
first portion of the output from  SENSITV,  in which the demand  QJ1  at node  1  (which
is linearly related to the  PF) was selected as the independent variable, and the discharge in
pipe  11, or reservoir discharge  Qr,  was selected as the dependent variable.  In obtaining
this table, the option to place the independent variables in the output table was selected.
Table 5.13 then presents the final results from  10  solutions in a simpler format.

Table 5.11
Sensitivity of Discharge in Reservoir 1 to Changes in Demand at Node 1

 Res.              Independent Variable at  1,  Comparison between Solutions  2  and  1
                            QJ            QJ          Diff.             Qr                 Qr            Diff.       Ratio   
   1                  0.0350   0.0385   0.0035    - 0.0154    - 0.0053    0.0102     2.91

                        Independent Variable at  1,  Comparison between Solutions  3  and  2
                            QJ             QJ          Diff.             Qr                 Qr            Diff.      Ratio
                        0.0385   0.0424   0.0039      - 0.0053     0.0075    0.0128    3.32

Using  SENSITV  to obtain the sensitivities  ∆Q11/∆P1  and  ∆Q11/∆P2,  we obtain
the results that are listed in output Table 5.12.  This time we chose to have only the ratios
written to the output table.  In this output from  SENSITV  the first independent variable
is  P1,  and the second independent variable is  P2.

Table 5.12

Sensitivity Comparison of Flow from Reservoir at Reservoir  1

Solution: 1-2 2-3 3-4 4- 5 5-6 6-7 7-8 8-9 9-10
Reservoir 1 1 1 1 1 1 1 1 1

   1 0.004 0.006 0.005 0.005 0.004 0.004 0.003 0.003 0.003
   2 0.006 0.009 0.008 0.007 0.006 0.005 0.005 0.005 0.004

Table 5.13

S o l .  Indep. Variable   Dep. Variable R a t i o
   QJ1         ∆∆∆∆QJ1

Qr= Q1 1         ∆∆∆∆Qr ∆∆∆∆Qr/∆∆∆∆QJ
1

   1 0.03500 -  0.0154
0.00350  0.0101     2.89

   2 0.03850 -  0.0053
0.00385  0.0128     3.32

   3 0.04235    0.0075
0.00424  0.0135     3.18

   4 0.04659    0.0210
0.00465  0.0139     2.99

   5 0.05124    0.0349
0.00513  0.0139     2.71

   6 0.05637    0.0488
0.00563  0.0141     2.50

   7 0.06200    0.0629
0.00621  0.0144     2.32

   8 0.06821    0.0773
0.00682  0.0145     2.13

   9 0.07503    0.0918
0.00750  0.0150     2.00

 10 0.08253    0.1068



Example Problem 5.11
In the network shown below the pressures at some of the nodes near node  7  are less

than desirable.  Which of the three pumps should be enlarged?  Use additional sensitivities
to understand more completely the performance of this network.
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                Pump  1                                  Pump  2                                  Pump  3
Q1, ft3/s hp1, ft Q2, ft3/s hp2, ft Q3, ft3/s hp3, ft

     3.0    80      3.0    80      3.0    83
     5.0    75      5.0    75      5.0    78
     8.0    65      8.0    65      8.0    68

We want to determine which pump will most increase the pressure at node  7  for a given
increase in the head of that pump.  Since all three pumps are far from the node with the
deficient pressure, it is difficult to guess which pump will most influence the pressure at that
node.  The table below provides a partial summary of several solutions that were obtained by
using the  CHANGE  capability in  NETWK.  The input data for these solu-tions is on the
CD  as file  EXP5_11.IN.  We will find in the input file that the original solution is
obtained with the pump curves that accompany the network diagram;  the sec-ond solution is
obtained by increasing the head of pump  1  by  10 ft;  the third solution has the head of
pump  2  increased by  10 ft  with the head of pump  1  reset to the  original value;  the
fourth solution has the head of pump  3  increased by  10 ft;  and the fifth solu-tion is
obtained by increasing the head of the reservoir by  three feet.  The last solution, in which
the water surface elevation in the reservoir was changed by three feet, is
in a different category than others in which the pumps heads  were changed, since water must

Sol. 1      Solution  2      Solution  3      Solution  4     Solution  5
Node Pump 1, ∆hp=10' Pump 2, ∆hp=10' Pump 3, ∆hp=10'   Res. 1,  ∆H= 3'

  Head
     ft

  Head
     ft

∆H/∆hp
  Head
     ft

∆H/∆hp
  Head
     ft

∆H/∆hp
  Head
     ft

∆H/∆h

  7 360.2 361.4  0.112 361.2  0.096 361.6  0.138 362.1  0.633
10 371.2 372.2  0.104 372.0  0.084 372.3  0.115 373.2  0.680
  4 390.5 392.2  0.168 392.0  0.148 392.7  0.224 391.8  0.447
  5 390.2 391.9  0.168 391.7  0.147 392.4  0.212 391.6  0.460
  6 390.2 391.9  0.167 391.7  0.145 392.3  0.206 391.6  0.467
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be supplied by the pumps to fill the reservoir.  Increasing the head of pump  3  (solution
4) is the most effective way to increase the heads at all of the nodes in the table because the
derivatives  (∆H/∆hp)3  are larger than these derivatives for the other two pumps.
However, since all values of  ∆H/∆hp  are not vastly different, it would be more effective
to increase the head of all three pumps, particularly if the heads are deficient by more than a
small amount.

Other network components have an influence on the sensitivity of dependent variables to
a change in the independent variables.  The table below summarizes a set of sensitivity
analyses that mimic the prior table, with the one exception that pipe  3  was changed in
diameter from  10 in  to  8 in   before obtaining the series of solutions.  Now pump  3,
which previously produced the largest head increments, gives the smallest head increments.

 Sol. 1      Solution  2      Solution  3      Solution  4      Solution  5
Node  Pump 1,  ∆H=10'  Pump 2,  ∆H=10'  Pump 3,  ∆H=10'   Res. 1,  ∆H= 3'

  Head
     ft

  Head
     ft

∆H/∆hp
  Head
     ft

∆H/∆hp
  Head
     ft

∆H/∆hp
  Head
     ft

∆H/∆h

  7 352.1 353.5  0.137 353.3  0.119 353.1  0.099 354.0  0.633
10 364.0 365.3  0.128 365.1  0.110 364.9  0.089 366.0  0.657
  4 378.8 380.6  0.182 380.4  0.159 380.1  0.133 380.3  0.513
  5 378.8 380.6  0.181 380.4  0.159 380.1  0.132 380.4  0.633
  6 379.1 380.8  0.175 380.6  0.152 380.3  0.125 380.7  0.657

The reasons for this change in effectiveness are relatively clear.  The  8-in  pipe that
contains pump  3  is just too small for this pump to cause the greatest increases in head at
the downstream nodes;  to increase the head, the pump must supply a larger portion of the
total flow, and the head loss in the  8-in  pipe increases too much as the discharge in-
creases.  We see that the interactions of network components can be complex and inter-
woven, and the only effective means of determining the sensitivity of selected variables
with respect to others is to develop an appropriate series of solutions so these sensitivities
can be estimated.  These solutions must consider demands etc. that are near those for which
the sensitivities are to be determined.

Consider the use of sensitivities from another perspective.  We might ask which pump
can be enlarged at the least cost in order to increase the head at certain nodes by a specified
amount.  The answer to this question is already embedded in the previous solutions.  But
now the independent variable is not the incremental head added by a pump but rather the
power (which can be substituted for cost when only the magnitudes of the sensitivities are
compared, since the cost will be in dollars per kilowatt-hour) that a pump delivers to the
network.  Tables containing the power consumption of each pump as three independent
variables are given below.  In these tables the sensitivities are in units of head per kilowatt
instead of head/head, as it was in the previous tables.  Each of the previous two tables is
now replaced by two tables for clarity.  The first of each pair of tables lists the power
requirement and the incremental difference in power between a subsequent solution and the
first solution.  The second table of each pair divides the change in head at the listed node by
the incremental power to obtain  ∆H/∆Pi  with subscript  i  being the pump number and
P  being power in kilowatts.  The negative values for these sensitivities occur because the
incremental power between solutions is negative, i.e., the power produced by that pump
(when the head of another pump increases) is less than that of the original solution.  If the
negative derivatives are ignored, then the conclusion is unchanged;  pump  3  will produce
a larger incremental head at these nodes for a given cost than either pump  1  or pump  2
can supply if the line serving pump  3  has a  10-in  diameter.  This situation occurs
because the positive values of  ∆H/∆P3  are larger than either  ∆H/∆P1  or  ∆H/∆P2.
However, if the supply line for pump  3  has an  8-in  diameter, then the most cost-
effective pump for increasing the head at the listed nodes is pump  1,  since the second pair



of tables shows that the positive values of  ∆H/∆P1  are larger than the values of either
∆H/∆P2  or  ∆H/∆P3.

Sensitivity of Nodal Head to Pump Power  (Pipe 3 is 10-in dia.)

Sol. 1   Solution  2  Solution  3  Solution  4
Pump      P      P    ∆P      P   ∆P     P   ∆P

      1   26.84   28.34     1.50  26.49 -  0.35  26.39 -  0.45
      2   25.19   24.83  -  0.36  26.59    1.40  24.75 -  0.44
      3   32.44   32.00  -  0.44  32.03 -  0.41  34.08    1.64

                  Sum                                              0.70                          0.64                            0.75

Solution 1                  Solution 2
Node    Head, ft     ∆∆∆∆H ∆∆∆∆H/∆∆∆∆P1 ∆∆∆∆H/∆∆∆∆P2 ∆∆∆∆H/∆∆∆∆P3

    7      360.23  1.12     0.75  -  3.11  -  2.55
 10      371.15  1.03     0.69  -  2.86  -  2.34
    4      390.48  1.68     1.12  -  4.64  -  3.85
    5      390.24  1.68     1.12  -  4.67  -  3.82
    6      390.22  1.67     1.11  -  4.64  -  3.80

                 Solution 3
    7  0.96  -  2.74      0.69  -  2.34
 10  0.84  -  2.40      0.60  -  2.05
    4  1.48  -  4.23      1.06  -  3.61
    5  1.47  -  4.23      1.05  -  3.59
    6  1.45  -  4.14      1.04  -  3.54

                 Solution 4
    7  1.38  -  3.07  -  3.14      0.84
 10  1.15  -  2.56  -  2.56      0.70
    4  2.24  -  4.98  -  5.09      1.37
    5  2.12  -  4.71  -  4.82      1.29
    6  2.06  -  4.58  -  4.68      1.26

While the negative sensitivities were ignored above, they do present valuable informa-
tion related to the network's performance, particularly if total power (or cost) is considered.
In fact, to neglect negative values is to ignore potential savings.  For example, when pipe
3  has a  10-in  diameter, we find in the first table from the second solution that the incre-
mental sensitivities for pumps  2  and  3  are  - 0.36  and  - 0.44 kW, respectively;  these
values indicate that the power requirements for these two pumps decrease as the power
requirement for pump  1  increases by  1.50 kW.  The net increase in required power is
only  1.50 - 0.36 - 0.44 = 0.70 kW.  Similarly, if the head across Pump  2  (see solution
3)  is increased by  10 ft,  then the net increase in power is slightly less, or  0.64 kW.
Sometimes it is better to examine sums of differences (or just differences) rather than one
difference divided by another difference, which is how we first defined "sensitivity."  In this
example it probably makes most sense to use a difference divided by a difference, but the
difference in the denominator (or the independent variable) should be the sum of power
differences.  This sensitivity represents the change in head that is caused by the change in
the overall or total power consumption  Pt (or cost).  If these are the important sensitiv-
ities, then the values in the following table should be used to decide which alternative will
be the most cost-effective and/or best.



Sensitivity of Nodal Head to Pump Power  (Pipe 3 is 8-in dia.)

Sol. 1  Solution  2   Solution  3   Solution  4
Pump      P     P           ∆∆∆∆P       P             ∆∆∆∆P      P             ∆∆∆∆P

      1   29.23   30.55     1.32   28.90 -  0.33   28.96  -  0.27
      2   27.46   27.12  -  0.34   28.70     1.24   27.22  -  0.24
      3   22.59   22.28  -  0.31   22.31 -  0.28   23.78     1.94

                  Sum                                                0.67                          0.63                            1.43

Solution 1                  Solution 2
Node    Head, ft     ∆∆∆∆H ∆∆∆∆H/∆∆∆∆P1 ∆∆∆∆H/∆∆∆∆P2 ∆∆∆∆H/∆∆∆∆P3

    7      352.14  1.37     1.04  -  4.03  -  4.42
 10      364.00  1.28     0.97  -  3.97  -  4.13
    4      378.80  1.82     1.38  -  5.35  -  5.87
    5      378.81  1.81     1.37  -  5.32  -  3.61
    6      379.08  1.75     1.33  -  5.15  -  5.65

                 Solution 3
    7  1.19  -  3.61     0.96  -  4.25
 10  1.10  -  3.33     0.89  -  3.93
    4  1.59  -  4.82     1.28  -  5.68
    5  1.59  -  4.82     1.28  -  5.68
    6  1.52  -  4.68     1.17  -  5.18

                 Solution 4
    7  0.99  -  3.67  -  4.13     0.83
 10  0.89  -  3.23  -  3.74     0.75
    4  1.33  -  4.93  -  5.59     1.11
    5  1.32  -  4.89  -  5.50     1.11
    6  1.25  -  4.63  -  5.21     1.05

We see there are many possibilities, and which is best depends upon the objective,
coupled with the judgment of the engineer who is responsible for making the decision.
And we must keep in mind that the magnitude of each sensitivity (and difference, or sum of
differences) is not a constant but can take on quite different values as demands and other
conditions change.

  Pipe  3,  Dia. = 10 in   Pipe  3,  Dia. = 8 in

Node Sol. 2 Sol. 3 Sol. 4 Sol. 2 Sol. 3 Sol. 4

∆∆∆∆H/∆∆∆∆Pt ∆∆∆∆H/∆∆∆∆Pt ∆∆∆∆H/∆∆∆∆Pt ∆∆∆∆H/∆∆∆∆Pt ∆∆∆∆H/∆∆∆∆Pt ∆∆∆∆H/∆∆∆∆Pt

     7   1.60   1.50   1.84   2.04   1.89   0.69
   10   1.47   1.31   1.53   1.91   1.75   0.69
     4   1.43   2.31   2.99   2.72   2.52   0.93
     5   2.40   2.30   2.83   2.70   2.52   0.92
     6   2.39   2.26   2.75   2.61   2.30   0.87

Another goal might be the maintenance of as large a volume of water in the storage tank
(reservoir) as possible.  If so, the sensitivities that should be examined are the difference in
discharge in pipe  19  (which connects the reservoir to the network) divided by the sum of
the pump power consumptions;  rather than seek the largest value as we did before, the
smallest sensitivity (the one with the largest negative magnitude) is the one we want.  The
reason is that our desire is to maximize  |∆Q19|  (the numerator) while minimizing the
increase in overall pump power consumption  ∆Pt  (the denominator).  These tables of
sensitivities follow:



                      Item    Pipe 19,
Dia. = 10 in

   Pipe 19,
Dia. = 8 in

Flow  Q19  from  Sol. 1,  original conditions     2.30 ft3/s     3.13 ft3/s

Flow  Q19  from  Sol. 2,  ∆hp = 10 ft at pump 1     2.17 ft3/s     3.00 ft3/s

                     ∆Q 1 9
-  0.13 ft3/s -  0.13 ft3/s

                  ∆Q 19/∆P t
-  0.19 ft3/s/kW -  0.19 ft3/s/kW

Flow  Q19  from  Sol. 3,  ∆hp = 10 ft at pump 2     2.19 ft3/s     3.01 ft3/s

                     ∆Q 1 9
-  0.11 ft3/s -  0.12 ft3/s

                  ∆Q 19/∆P t
-  0.17 ft3/s/kW -  0.19 ft3/s/kW

Flow  Q19  from  Sol. 4,  ∆hp = 10 ft at pump 3     2.15 ft3/s     3.04 ft3/s

                     ∆Q 1 9
-  0.15 ft3/s -  0.09 ft3/s

                  ∆Q 19/∆P t
-  0.20 ft3/s/kW -  0.06 ft3/s/kW

*                              *                              *

To compute sensitivities, we must have two solutions available in which the
independent variable  x  has changed and the change in the dependent variable  f  can be
obtained.  Thus a numerical approximation to  ∂f/∂x  is obtained by dividing the change in
the dependent variable  ∆ f  by the change in the independent variable  ∆x,  or  ∂f/∂x ≈
∆ f/∆x.  These paired solutions were previously obtained from  NETWK  by using the
CHANGE  command.  An alternative, and for some networks a more effective, way to
obtain such a series of solutions is to obtain an "Extended Time Simulation."  This is a
time-varying or quasi-steady solution that ignores most fluid transient effects.  Extended
Time Simulations, as Chapter 6 will describe further, consist of a series of steady-state
solutions with different prescribed demands, water surface elevations at reservoirs, and head-
discharge relations at pumps that depend upon a demand function or flow rule, storage
functions, and pump rules, etc.  The  NETWK  code allows the results from such solutions
to be written in tables with time in the first column and discharges or head losses for
selected pipes, and/or pressure at selected nodes, to be listed in subsequent columns.
Alternative tables giving reservoir water surface elevations as a function of time can also be
obtained.  These tables can be used to obtain most sensitivities that may be wanted,
especially if the specifications for the Extended Time Simulation dictate that some other
variable is linearly related to time.  The time can be used as the independent variable for the
sensitivities.

Example Problem 5.12
Use the Extended Time Simulation capability of  NETWK  to obtain a series of steady

state solutions and from these obtain the sensitivities for the 12 pipe, 7 node network dia-
gramed in Fig. 5.28.  Express the peaking factor as a linear function of time.  After verify-
ing some of the sensitivities that have already been presented, allow the elevation of the
water surface in the tank to vary so its level is  198 m  at time  t = 0  (when  PF = 0.5).
The tank is circular with a diameter of  30 m,  and its bottom elevation is  195 m, i.e., at
this level there is no more water in the tank.  Plot as a function of peaking factor the
discharge from the two pumping stations and the discharge into and out of the reservoir.

The input file to  NETWK  to obtain this solution is listed on the next page.  In it the
linear relationship between  PF  and time is dictated by the  DEMAND FUNCTION
which applies to all nodes.  The output tables are not given here but can be developed by
the reader.  After they are obtained, we could either use  SENSITV  or import the tables
into a spreadsheet and then generate the sensitivities.



Illustration of sensitivities using Ext. Time Simulation
/*
$SPECIF NFLOW=3,NPGPM=3,NUNIT=4,PEAKF=.5,
NPRINT=-3,NODESP=0,ISIML=1,NETPLT=3,COEFRO=.15 $END
PIPE-
1 305. 2000. 1 .07 150. RUN
2 255. 2000. 1 2 .07 145. $TDATA PRINTT=-3,HTIME=24,INCHRP=1
3 255. 1500. 1 3 .06 145. LINEAR=1,ISUNIT=0 $END
4 205 5500. 2 6 .05 150. PIPE TABLE
5 205. 2500. 1 4 .06 140. ALL
6 255. 2500. 5 .05 145. 3 NODE TABLE
7 205. 1500. 5 4 ALL
8 205. 3900. 4 6 RESER. TABLE
9 205. 3000. 5 7 .04 152. 11/
10 205. 3500. 7 6 END TABLES
11 255. 1800. 6 DEMAND FUNCTION
12 255. 1500. 5 1 0 1. 12 1.6789738 24 2.35794769/
RESER 1-7/
11 200 STORAGE FUNCTION
PUMPS 1 195 0 198 2120.6 205 7069/
1 .15 50 .25 43 .35 35 180 11/
12 .1 48 .15 43.25 .25 33.0 180 END SIML

To use an Extended Time Simulation to produce solutions that portray the flow at the
reservoir, the size of the storage tank at the end of pipe 11, and its water surface elevation,
are included in the input file by prescribing a  STORAGE FUNCTION.  Since the tank is
circular with a diameter of  30 m, the area is  A = πD2/4 = 707 m2;  with its base at  195
m  the tank will have a starting water surface elevation of  198 m  when  PF = 0.5.  We
must first change elevation  200  to  198  under the RESER command, and then we add
ISUNIT=0  to the $TDATA list and finally add  STORAGE FUNCTION  and two lines of
data before  END SIML.  The following (partial) tables will then be obtained:

A negative flow in pipe  11  indicates that the storage tank is filling.  From the middle
table of the set it can be seen between hours  2  and  3  (when the peaking factor  PF  is
between  0.5x[1 + 1.358x(2/24)] =  0.557  and  0.585)  that the tank changes from filling
to supplying the network.  Shortly after hour  22,  when the peaking factor  PF  is
slightly larger than  0.5x[1 + 1.358x(22/24)] = 1.122, the tank has emptied.  (The tank
base is at  195 m,  at which its volume becomes  0 m3  in the storage function.)
Thereafter, all of the demand must be met by the pumps, even as the  PF  increases, and
this is shown in the negative pressure in the last two lines of the pressure table.
Obviously these pressures are

PRESSURES (kPa) AT DESIGNATED NODES AS A FUNCTION OF TIME

TIME         NODE NUMBERS
  hrs.      1      2      3      4      5      6      7
  0.0    620.79    599.96    658.84    661.46    662.26    497.17    487.94
  1.0    609.88    587.35    647.43    649.93    651.75    493.83    481.35
  2.0    599.55    575.78    636.57    639.30    641.86    491.76    475.94
  3.0    590.05    565.61    626.55    629.88    632.93    491.03    472.67
  4.0    580.08    554.89    616.02    619.76    623.56    488.25    468.68
    .              .              .              .              .             .              .              .
21.0    311.87    247.25    323.15    328.72    353.57    235.90    178.93
22.0    287.71    217.97    297.98    302.10    330.01    217.86    151.05
23.0 -    56.82 -  287.95 -    47.95 -  175.37 -    20.87 -  442.91 -  453.93
24.0 -    98.43 -  343.07 -    91.34 -  227.28 -    62.87 -  502.91 -  513.54



DISCHARGES IN DESIGNATED PIPES AS A FUNCTION OF TIME

H R .
    PIPE NUMBER

  1   2   3   4   5   6   7   8   9  10  11  12
  0.0 .127 .049 .021 .014 .022 .009 .027 .019 .028 .008 -.015 .088
  1.0 .130 .050 .022 .013 .022 .010 .027 .018 .027 .006 -.010 .090
  2.0 .134 .050 .023 .011 .022 .011 .027 .016 .027 .004 -.004 .093
  3.0 .136 .050 .023 .009 .022 .012 .027 .015 .026 .002 .003 .094
  4.0 .139 .051 .024 .008 .022 .013 .028 .013 .025 .000 .010 .098
     .     .      .      .      .     .      .      .      .       .      .      .     .
21.0 .202 .063 .038 -.013 .025 .028 .033 -.008 .028 -.016 .092 .143
22.0 .207 .065 .039 -.014 .026 .029 .034 -.008 .028 -.017 .095 .147
23.0 .268 .101 .043 .020 .044 .026 .056 .031 .053 .007 .000 .192
24.0 .275 .103 .044 .021 .045 .027 .057 .032 .054 .007 .000 .197

WATER SURFACE ELEVATION IN RESERVOIR 11

TIME ELEVATION
  hrs.             ft.
  0.0       200.00
  1.0       200.08
  2.0       200.13
  3.0       200.15
    .             .
21.0       195.60
22.0       195.13
23.0       195.00
24.0       195.00

not real;  this network cannot meet the demands with an empty tank.  To prepare a plot of
the discharge from the pump stations, the discharge table can be imported into a
spreadsheet.  The first column, which lists the time, can be changed to represent the  PF
by noting that time  0.0  corresponds to  PF = 0.5  and time  24.0  corresponds to  PF =
1.179.  The plot shows the discharges in pipes  1,  12,  and  11  as a function of peaking
factor.  We see the reservoir filling with  PF < 0.58;  when  PF = 1.13  the reservoir has
emptied.  Since it can now supply no flow, the discharge from each pump station must
sharply increase to satisfy the demand.

To obtain the sensitivities  ∆Q11/∆P1  and  ∆Q11/∆P2, columns in the table can be
created for the power at each of the two pump stations with  P1 = 9.806Q1(hp1) =

9.806Q1(58.6 - 50Q1 - 50Q1
2)  and  P2 = 9.806Q12(56.8 - 82.5Q12 - 50Q12

2).  The
difference of  P1  and  P2  between separate entries (rows) is the divisor of the differences
in the discharge  Q11  to obtain the sensitivity of the reservoir flow to the pump power.
These sensitivities are presented in the next plot.  The curves are not smooth largely
because of the limited accuracy in computing the discharge in pipe 11, since the
sensitivities are dependent entirely upon these values.  However, the conclusion is  the
same as when the level of the reservoir was constant at  200 m;  it is better to increase the
power at pump station  2.
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5.8 PROBLEMS

5.1   The table below contains several pipes.  Using the Darcy-Weisbach and the Hazen-
Williams equations, compute the diameters of the pipes that are needed to convey the given
discharge with the given head loss.

P i p e   Q    L  hL ex103 CHW Darcy-Weisbach Hazen-Wil l iams

N o . ft3/s    ft   ft    in     f   D , in         D ,  in
1 1.0    2500   30    0.05 150
2 2.0      400   20 20.0   95
3 3.0 10000 105    5.0 138

5.2   The table below contains several pipes.  Using the Darcy-Weisbach and the Hazen-
Williams equations, compute the diameters of the pipes that are needed to convey the given
discharge with the given head loss.

P i p e   Q    L  hL ex103 CHW Darcy-Weisbach Hazen-Wil l iams

N o . m3/s     m   m    cm     f   D , m         D ,  m
1 0.25    1500   20    0.08 150
2 0.50      600   20 80.0   95
3 1.50    4000   55    9.0 140

5.3  Modify program  DIAPIP  so algebraic derivatives are used to evaluate the elements
of the Jacobian in place of the numerical evaluation in the original listings.

5.4  Modify program  DIAPIP  so the two unknown variables are  f  and  D rather than
SF = 1 / f   and  D.

5.5   The program  SOLBRAN  was used to determine the pipe diameters in a  10-pipe
branched system;  then the nodes and pipes were numbered by starting at the upstream end.
This same branched system is shown below, but now the numbering proceeds from the
downstream end.  Prepare the input data for program  SOLBRAN  (or your own program)
using this numbering, and obtain the solution.  The slope of the energy line for all pipes
is  S = hf/L = 0.002.
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5.6  Retain the node numbers as in Problem 5.5, but begin the pipe numbering with  1  at
the upstream end, prepare the input data for  SOLBRAN  and obtain the solution.

5.7  Use  NETWK  to solve Problem 5.5.



5.8   Develop a computer program that can determine the diameter of a pipe if the dis-
charge, head loss, pipe length, and wall roughness are known.  This program should be
able to use either the Darcy-Weisbach equation (including the Colebrook-White equation)
or the Hazen-Williams equation.

5.9   Modify program  SOLBRAN  to solve a branched system in which laminar flow
exists in all pipes.  Write this program so it reads from the input file for all pipes either
the head losses or the diameters, and it determines either the pipe diameters or the head
losses (i.e., it finds the variable that is not given) and the pipe discharges that will satisfy
the specified demands.

5.10   Using the program from Problem 5.9 (or a slight modification of it), find the
diameters of the tubing for the drip irrigation system shown below if each emitter (solid
circle) is to supply  2 gal/min.  The slope of the  HGL  is  0.008.

Pipe  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
L, ft 25 25 25 42 10 15 25 42 15 25 42 25 15 42 25

Pipe 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
L, ft 40 10 10 40 10 10 40 10 10 40 10 10 20 20 20

Pipe 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
L, ft 20 45 20 20 20 45 10 10 20 45 25 10 45 25 25
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5.11  Determine the pipe diameter that will carry a discharge  Q = 1.8 ft3/s  over a length
of  4000 ft  if the difference in head between the beginning and end of the line is to be  65
feet.  The wall roughness for this pipe is  e = 0.005 in.

5.12  Find the pipe diameter in Problem 5.11 by using the Hazen-Williams equation with
CHW = 145.



5.13   A  3000 ft long pipeline carries a discharge of  2.0 ft3/s  over  2000 ft  of its
length, at which point an unknown amount of water is withdrawn.  The drop in head from
the beginning to the end of the pipe is  30 ft.  The pipe is 8-inch-diameter PVC pipe, and

the kinematic viscosity of the water is  ν  = 1.2x10-5 ft2/s.  Determine the amount of the
demand at the intermediate point in the pipeline.

5.14  Determine all pipe diameters in the branched piping system in the sketch below so
that the slope of the  HGL  is  0.008.  All pipes have a roughness  e = 0.006 inches.  Also
determine the pressure, pressure head, and elevation of the  HGL  at each node of this net-
work, so that the pressure at node  8  is  60 lb/in2.  Then select the closest standard pipe
diameter for each pipe from the list below and again obtain a solution for the pressure,
pressure head, and elevation of the  HGL  at all nodes.  What head should a pump in pipe 1
produce if its supply water surface elevation is  100 ft?  If the combined motor-pump
efficiency is 73 percent, what is the cost per day to pump continuously if electricity costs
$0.10/kWh?  Also determine the cost of the pipe.  The standard pipe sizes and costs per
unit length follow:

   Dia.
    in.

      4       6      8     10     12     15

   Cost
   $/ft

    3.67     5.33     7.67   10.67   16.67   24.00

   Dia.
    in.

    18     20     24     30     42

   Cost
   $/ft

  43.33   56.67   80.00 100.00 145.00
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5.15   Develop a spreadsheet solution for the branched piping system in Problem 5.14.
Use the closest standard pipe diameters that you determined in that problem and give the
pressure and head at every node.  In developing the spread sheet solution use the Hazen-
Williams equation with  CHW = 150.

5.16   Modify program  SOLBRAN  so different HGL slopes can be specified for
individual pipes or groups of pipes, and use it to solve Example Problem 5.3.

5.17   In the pipeline system shown atop the next page the pressure at the downstream
node has been measured as  p2 = 40 lb/in2.  Compute the demand at this node twice by
using the Darcy-Weisbach equation and the Hazen-Williams equation.  Assume  CHW =
145  for the Hazen-Williams roughness coefficient.
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e2 = 0.005"

v = 1.2 x 10-5 ft2/s

e1 = 0.005"
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H = 165'
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QJ2 = ? 

8" - 3000' 6" - 3500'

p2 = 40 lb/in2

H2 = 92.3 ft
or

5.18   In the piping system of Problem 5.17, determine the diameter of pipe  2  so the
discharge to node  2  is  0.6 ft3/s.

5.19  Solve Problem 5.18 using the Hazen-Williams equation with  CHW = 145.

5.20  Analyze the 16-pipe, 9-node network shown in Fig. 5.6 and modified in Fig. 5.13.
In the paragraph which follows Fig. 5.13, a design solution determines a diameter for all
pipes except pipes  1, 3,  and  16;  adjust those diameters to the nearest standard pipe sizes,
and assign a diameter of  150 mm  to pipes  1, 3,  and  16.  To obtain the solution, you
must first select appropriate pump characteristic curves and the number of pumps that
should be in parallel and/or series.  The first analysis should be based on the demands that
were used in determining the pipe sizes, namely twice the average demand.  Also obtain an
analysis based on the average demands, and then obtain a third solution for which the
demands are half of the average demands.  Under this last demand condition, what discharge
will be entering the storage tank when it is half full, i.e., when the water surface elevation
in the tank is 119.5 m?  (For these analyses assume the high-cost water from pipes  1  and

3  is shut off.  Assume a fire flow of  0.08 m3/s  is needed at node  4  during the time of
the largest hourly demand and both pipes  1  and  3  are open.  What pressure will exist at
node  4  to fight the fire, and how much flow will come from the four supply sources
using the pump chosen earlier?

5.21  The 16-pipe, 9-node network was converted into a branched network by omitting the
7 pipes numbered 1, 3, 9, 10, 12, 13, and 16, as shown in Fig. 5.13.  If pipe 16 were
included and pipe 8 were omitted, would a branched system be formed?  Since pipe 16 is
the pipe to the storage tank, it generally would be considered to be part of the main
transmission system.  In fact, if pipes 2, 7, 12, and 16 are retained, the most direct path
between the pump and storage tank exists to fill the tank during periods of low demand.
Delete other pipes so this path exists, and determine the size of each pipe.

5.22   In Fig. 5.15  pipe 1 was given a diameter of  18 in,  and pipe 2 was given a
diameter of  15 in.  For the pump characteristics given with this network, and for
elevations of the  HGL  at nodes 2 and 3 of  H2 = 645 ft  and  H3 = 640 ft,  respectively,
compute the discharges that the two pumps will supply.  What discharge must the reservoir
therefore supply?  Verify your results by comparing them with the  NETWK  solution.

5.23  If the diameter of pipe  1  in the 30-pipe, 16-node network is changed from  18 in
to  24 in,  compute as in Problem  5.22  the discharge supplied by the two pumps.  Why
does this change create an impossible situation?  What specification(s) could be changed to
allow a solution?

5.24  In the 30-pipe, 16-node network assign to pipe  6  a diameter  D6 = 6 in  but find
the diameter  D10  of pipe 10.  To obtain this solution, use  NETWK  by appropriately
modifying the input given in file  FIG5_15.IN.



5.25  In the 30-pipe, 16-node network give pipes  6  and  9  the diameters  D6 = 6 in  and
D9 = 6 in  but compute the diameters  D10  and  D12  of pipes  10  and  12.  To obtain
this solution, use  NETWK  by modifying the input given in file  FIG5_15.IN.

5.26  In the 30-pipe, 16-node network assign a diameter  D30 = 6 in  to pipe  30  that
connects the reservoir to the network but determine the diameter  D1  of pipe  1  through
which source pump  1  supplies the network.

5.27  In the 30-pipe, 16-node network specify a diameter  D30 = 6 in  for pipe  30  that
connects the reservoir to the network but compute the diameter  D2  of pipe  2  through
which source pump  2  supplies the network.  Initially retain  18 in  for the diameter of
pipe  1.  Why is a solution not possible?  Increase the diameter of pipe  1  to  24 in  and
obtain a solution.

5.28   The pressure can not become negative anywhere in a network, even though the
mathematics of solving a network problem can produce negative pressures.  Often  40
lb/ft2  is the lowest pressure that is permitted.  Determine the water surface elevation of the
reservoir that supplies the 30-pipe, 16-node network via pipe  30  so the pressure at node
16  is  40 lb/ft2  if the pipe diameters are determined by solving Problem  5.27  with  D1
= 24 in.  First obtain this solution with  D30 = 6 in,  and then increase the diameter to
D30 = 12 in.  What feature is not realistic in the use of  6 in  for  D30?.  (Hint:  use a
differential head device in pipe  30.)

5.29  In the 9-pipe, 6-node network of Example Problem 5.4, indicate whether a solution
is possible, or why a solution is not possible, for the following combinations of three
pipes with their diameters specified as  6 in.  If a solution is possible, solve the problem
for the remaining six pipe diameters.  Use the heads given in Example Problem 5.4, but in
the last case modify the head at node  1  to  H1 = 97 ft.

C a s e  Pipe Numbers with
Specified Diameters

    1             1,  2,  5
    2             1,  5,  7
    3             3,  8,  9
    4             1,  6,  7

5.30   In this small network you are to determine the head and discharge of the pump in
pipe  1  so no flow will enter or leave the reservoir that is connected to the network by
pipe  4  in response to the nodal demands shown on the diagram.

[1]
(1)

[4]

[3]

[2]

(6)
(4)(5)

(2) (3)

0.4 ft3/s

 0.3 ft3/s

1 ft3/s
1.5 ft3/s

10" - 1000'
8" - 1500'

90'

8" - 2000' 6" - 3000'

6" - 1800'
8" - 2500'

0'

0'
0'

100'
P



5.31  Retaining the head that was determined for the pump in Problem 5.30,  but not the
same discharge, determine the discharge that must be supplied by the reservoir if the
demands are all increased to  1.5  times the values shown on the figure.   In solving this
problem, replace the pump by a  DHEAD  device of type  1,  i.e., one that produces the
specified differential head.

5.32  Rework Problem 5.31 with demands that are  0.8  times those in the diagram;  in
this case determine the discharge into the reservoir.  Are the equations for this problem
different from those of Problem 5.31?  If so, what changes?

5.33  The  8-pipe network shown below was built to supply demands of  1.0 ft3/s  at each
of eight nodes.  Over the years the demands have doubled, and the network is now unable to
supply  2.0 ft3/s  at these nodes.  The  10-in  pipes, numbers  1  and  6,  are to be replaced
by  12-in  pipes, and the network is to be looped by adding the  4  pipes listed in the table:

Pipe Node 1 Node 2
   9     5     3
 10     5     8
 11     6     4
 12     6     9

First analyze the original network for the original demands.  Next analyze the same net-
work again, but with the eight nodal demands each increased to  2.0 ft3/s.  At how many
nodes is the present network unable to supply a pressure of at least 40 lb/in2?  Obtain a
design solution for this network to determine the sizes of the four additional pipes;  since
eight diameters must be found in such a solution, also determine the sizes of pipes  2,  4,
5,  and  7.  The nodal  HGL  elevations that might be specified are listed in this table:

Node   1   2   3   4   5   6   7   8   9
 H , ft. 300 291 276 264 290 280 291 276 264

[1]

(1)

[4][3]
[2]

(5)

(6)

(4)

(2) (3)

(7) (8)

[6][5]

[7] [9][8]

1.0 ft3/s 1.0 ft3/s

1.0 ft3/s

1.0 ft3/s

1.0 ft3/s

1.0 ft3/s

1.0 ft3/s
1.0 ft3/s

8" - 1000'

8" - 1000'

8 - 1000

6" - 1000'

6" - 1000'

6" - 1000'

10
" 

- 
10

00
'

10
" 

- 
10

00
'

HGL 1  =
 300'

All e = 0.005"
All elev. = 100' 

5.34  In the network shown in Fig. 5.23  a total of  15  combinations of three pipes exist
and are candidates to have their diameters specified.  Obtain a solution for each of these
groupings using  NETWK.  In obtaining these solutions, also obtain an analysis solution
for each case by using the nearest standard pipe sizes.  Try specifying an  8-in  diameter for



pipe  6  while prescribing the diameters of pipes  3, 5,  and  6,  and note the message that
the program returns to inform the user that inappropriate specifications have been made.
Rather than increasing the diameter of pipe  6,  adjust the nodal  HGL-elevation specifica-
tions to specify a problem for which a solution is possible.

5.35  In Problem 5.33 each of eight nodal demands was  2 ft3/s.  Solve the same problem
under the assumption that the new nodal demands are each  2.5 ft3/s.  Before you seek a
design solution to this network, select appropriate diameters for pipes  1  and  2  (and all
other pipes having specified diameters).

5.36  Design the looped network shown below.  The target  HGL-elevations at the nodes
should be near those given in the head table for the demands shown on the sketch.  Assume
e = 8.0x10-6 in  for pipes  1, 2, and  3  and  e = 6.0x10-6 in  for the other pipes.

Node
N o .

  1   2   3   4   5   6   Q
ft3/s

Head
    ft.

HGL, ft 832 805 798 815 795 785    6    65
   9    61
 12    55

P
[1]

(1)

[4] [3]

[2]

(5)

(6) (4)

(2)

(3)

(7)
[5]

[6]

v = 1.41 x 10-5 ft2/s

2000'

2500'

2400'2500'

2400'
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00

'

25
00

'

25
00

'

790'

630'

610'

610'

600'

600'

590'

800'
(9)

(8)

3200'

1.5 ft3/s

1.2 ft3/s

1.8 ft3/s

1 ft3/s 1.3 ft3/s

1.4 ft3/s

To complete this design, do the following:  (1)  Assign diameters to pipes  1, 3,  and  6  
as  13 in,  6 in,  and  8.5 in,  respectively, and determine the six diameters  D2, D4, D5,
D7, D8,  and  D9  to produce the specified  HGLs.  Obtain this design solution using
NETWK.  (2)  Verify the results from  NETWK  with hand calculations by first finding
the discharges in the three pipes using the specified diameters.  Then find  Q3  and  Q6
from the Darcy-Weisbach and Colebrook-White equations.  Next fit the given data to
determine the polynomial for the pump curve and solve for the three unknowns  Q1,  f1,
and  hp.  With  Q1, Q3,  and  Q6  known, reduce the network and determine the other
discharges and head losses.  (3)  Identify other pipes that are candidates to have their
diameters specified, and identify specifications that would make a solution impossible.

5.37  Water is pumped from a reservoir with a water surface elevation of  500 ft  over a
hill crest of elevation  600 ft  by means of the piping system shown in the next figure.
The primary questions that need to be answered are:  (a)  what demand  QJ2  can be sup-

plied at the top of the hill with a pressure of  40 lb/in2,  and  (b)  how much power can be



extracted by the turbine in pipe  5  if  1.0 ft3/s  at  20 lb/in2  is to be delivered at node  4?
Write and then solve the system of equations that will provide these answers.

    Pump
   Q
ft3/s

  h p

   ft
  2.0  290
  2.5  285
  3.0  272

600'

450'
490'

200'

500'

QJ3 = 0.5 ft2/s 

p = 20 lb/in2 

QJ2 = ? 

QJ4 = 1.0 ft2/s 

P
[1](1) [4]

[3]

[2]

(5)

(4)

(2)
(3)

All e = 0.002"

T

10" - 3000' 4" - 8000'

8" - 6000'

8" - 4000'

8" - 5000'

p = 40 lb/in2 

5.38  Two pumps, pump  a  and pump  b,  have the operating characteristics given by the
three  (Q, hp)  pairs listed in the two tables below.  At what rotational speed ratios  Nra =
(N2/N1)a  and  Nrb = (N2/N1)b  should each of these pumps be operated if the required

combined discharge is  Qtot = 3.5 ft3/s?  Since the required discharge is well beyond the
values in the tables for either pump, the two pumps must be placed in parallel.  Assume
that the middle point in each table represents the normal operating condition for each
pump, and at their new rotational speeds the pumps should be operating at their maximum
efficiencies.
                               Pump a (Na1 = 800 rev/min)            Pump b (Nb1 = 1000 rev/min)

    Q a
    ft3/s

   h p a

      ft.
   Q b
   ft3/s

   h p b

     ft.

    0.75   43.00     1.5   44.00
    1.10   38.75     2.0   38.25
    1.50   32.20     2.5   30.00

5.39  Modify program  SPLINECU  so that natural boundary condition is always used;  it
is desired not to give the user the option of specifying either natural boundary conditions
(second derivatives set to zero at the ends of the domain) or the end slopes.

5.40  Program  SPLINECU  fits pairs of head vs. discharge data with a cubic spline and
provides  M  interpolated values with equal increments.  Convert this main program into a
subroutine (function) that  (1)  receives one pair of values as arguments from the main
program, and  (2)  provides to the main program the values of the second derivatives so
that the main program can carry out cubic spline interpolations.

5.41   Modify program  SPLINECU  so it acts in the same way as program
LAGRANGE,  i.e.,  it provides the interpolated value for the pump head for any value of
discharge that is supplied to it.

5.42  Modify program  ELECENG  so it computes energy consumption over any period
of time.  The program should perform the following tasks:  (1)  read the number of pairs of
Q  vs. time data, and then read these pairs;  (2)  read the number of pairs of  Q  vs. head  H
and  Q  vs.  efficiency  η;  and then read these two sets of data pairs;  and  (4)  compute the
energy consumed by integrating the pump power over time.



5.43   The operation of a pump with a  7 7/8 in  diameter impeller is described by the
pump characteristic curves given below.  Take  7  pairs of points from this curve, starting
with  0  gal/min  and ending with  600  gal/min  in increments of  100 gal/min,  and use a
second-order polynomial between three consecutive pairs of points to interpolate values.
Using this interpolation, obtain values of pump head for the following discharges, and
compare the interpolated values with the corresponding values that are read from the pump
curve itself:  50 gal/min,  120 gal/min,  190 gal/min,  250 gal/min,  330 gal/min,  410
gal/min,  460 gal/min,  550 gal/min.
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5.44  Repeat Problem 5.43 but use a cubic spline in place of the second-order polynomial
for the interpolation.

5.45   For the pump whose characteristic curve is given in Problem 5.43, obtain the
energy consumed by the motor when the discharge varies over a  24-hour period as the table
describes:

Time
   hr.

 Q
ft3/s

Time
   hr.

 Q
ft3/s

   0.0 0.20  14.0 1.50
   2.0 0.40  16.5 1.30
   4.5 0.70  18.0 1.10
   6.0 1.10  20.1 0.80
   8.2 1.40  21.0 0.60
 10.3 1.50  22.5 0.40
 12.3 1.60  24.0 0.15

5.46   A pump is attached to a pipeline that has a length of  2000 m  and a diameter of
600 mm  (with  e = 0.02 mm).  The downstream reservoir has a water surface elevation
that is  50 m  above the supply reservoir water surface elevation.  The pump characteristic

curves show that the efficiency variation is essentially linear between  Q = 0.0 m3/s  and

Q = 1.2 m3/s.  At Q = 0.0 m3/s  the efficiency is zero, and at  Q = 1.2 m3/s  the

efficiency is  85%.  And as the discharge increases from  1.2 m3/s  to 2.1 m3/s,  the
efficiency varies linearly with discharge from  85%  to  30%.  Plot the power supplied by
the pump to the fluid, and the power required by the pump from its motor, for discharges

from  0.2 m3/s  to  2.1 m3/s.



0 m

e = 0.02 mm

50 m

P
600 mm - 2000 m

5.47   In the network shown below two booster pumps supply all of the water for the
system, and this water must come from the reservoir on the left, which is extremely large.
The reservoir on the right is a storage tank that receives water during periods of low
demand and supplies some water during periods of higher demand.  The pipe sizes, their
lengths, etc., are defined in the input data file for  NETWK.  It has been decided to increase
the head of one of the pumps so that pressures are larger at the downstream end of the
network and larger flows enter the reservoir during periods of low demand.  For the
demands in the diagram, determine the increases in pressure and the discharge into the tank
if the head of pump  1,  or the head of pump  2,  were increased by  5 ft.  Which solution
is more cost effective?  Why is this the case?  List some other options in improving the
cost effectiveness of the system.

[1]
(1)

[4]
[3]

(5)

(6)

(4)

(2)

(3)

(7)

(8)

(9)
[5]

[7]

(11)

(10)

(12)

[9]

[8]

P1

P2
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400'

[6]

[2]

0.8 ft3/s

0.5 ft3/s

1.4 ft3/s

1.2 ft3/s

1.1 ft3/s

0.6 ft3/s
0.9 ft3/s

1.2 ft3/s

0.8 ft3/s

(13)

Chapter 5, Problem 5.47. NODES
/* 1 .5 293
$SPECIF OUTPU1=2,NPSERI=0 $END 2 .8 285
PIPES 3 .8 290
1 0 1 1000 14 .0008 4 1.2 340
2 1 3 700 12 5 .9 345
3 1 2 6 .6 340
4 3 4 1500 8 7 1.3 338
5 2 5 1500 12 8 1.1 335
6 5 4 1600 9 1.2 335
7 4 9 1400 8 RESER
8 5 8 1000 1 400
9 5 6 1200 6 13 425
10 5 7 1000 8 BOOSTER
11 7 8 4 1.5 55 3. 50 4.5 42/
12 8 9 1200 5 3 63 5 60 7 55/
13 0 9 500 RUN



5.48   The network shown below has a pump in pipe  15  that obtains its water supply
from ground water with a constant water surface elevation of  160 ft,  and it pumps into a
circular tank with a diameter of  185 ft.  The bottom of the tank is at elevation  225 ft,
and its top is at elevation  245 ft.  The demands on the sketch are average values.  The
reservoir that is connected to the network by pipe  14  is water that is bought from an out-
side water agency for  $ 0.35  per thousand cubic feet,  and it is received from a conduit
under a constant pressure that produces a  HGL  of  200 ft.  The costs of the pump, well,
tank and the connection to the outside water agency have been fully paid, so they should no
longer be considered in economic analyses.   Do the following:

1.  Obtain a series of solutions in which the peaking factor (demand function) varies for
all nodes from  1.5  to 0.5.  In this series of solutions assume that the water surface
elevation of the tank is at  235 ft  when  PF = 1.5;  start with this  PF  and assume
it decreases linearly over a  24 hr  time period to  0.5.

2.  Plot the discharge variation in pipes  1,  14,  and  15  with the demand function.
3.  Compute the cost of pumping the water from the well.  For these costs assume that

the combined pump-motor efficiency can be defined by a second-order polynomial
function of the discharge, with the efficiencies related to the discharges in the pump
characteristic table as follows:  0.70,  0.75,  and  0.58.  The cost of electrical energy
is  $ 0.08/kWh.  Show how the pumping cost varies as the peaking factor changes,
and how the average cost of pumping compares with the price of water purchased
from the agency.

4.  Show that the cost of water is a constant times the reciprocal of the sensitivity of
the discharge to the pump power, i.e. the cost is equivalent to a constant times the
sensitivity of power to discharge, which is  ∆P/∆Q.

5.  Compute and plot the sensitivities of the pressure at nodes  4,  5,  and  6  to the
discharge in pipes  1  and  14.

   Q
  ft3/s

  hp
   ft

   8.5 105.0
   9.5   95.6
 10.5   85.0
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CHAPTER 6
_________________________________________________________________________

EXTENDED TIME SIMULATIONS AND
ECONOMICAL DESIGN

6.1 INTRODUCTION

This chapter looks primarily at two topics that are important to the design of looped
networks, which includes networks for water distribution to numbers of "on demand" users,
as occur in large cities.  These systems do not operate under steady-state conditions.  First
we introduce and describe "extended time simulations" to simulate the performance of these
systems as they respond to demands which vary with time, and which may have pumps
turned on or off, depending upon those demands.  The chapter will also describe some
useful elements of engineering economic analysis.  Both of these topics will then be
applied to the design of large looped networks.  Thereafter, subsequent chapters explore
methods to analyze unsteady flows, including inertial and/or elastic effects.  For networks
of pipes the analysis of unsteady flow requires the simultaneous solution of combined
systems of ordinary differential equations and algebraic equations.  The reader will be intro-
duced in Chapter 7 to such analyses.  In Chapters 8-11 progressively more comprehensive
systems will be studied.  In Chapter 12 true transients in looped networks will be
examined.

Extended time simulations consist of a series of steady-state solutions based on chang-
ing demands and reservoir water levels, the number of operating pumps etc.  This type of
time-dependent solution is obtained by solving a system of simultaneous nonlinear
algebraic equations, as was done in Chapters 4 and 5.  Another term for this type of
unsteady flow problem is "quasi-steady," since inertia is ignored and the equation of motion
is a steady-state form, even though individual terms in the equation do change with time.
Section 7.2 will offer additional perspective on this class of flows.

Time-dependent analyses that account for inertia require the simultaneous solution of a
combined system of ordinary differential and algebraic equations.  Transient analyses that
also account for elastic effects must use partial differential equations in place of ordinary
differential equations since the pressure and velocity now vary not only with time in each
pipe but also with the position along the pipe.  Not only does this mean that the
computational effort increases dramatically for a solution, but also that the amount of in-
formation (numbers) that is required to describe the network behavior increases correspond-
ingly, since it is necessary to provide pressures and velocities at a number of positions
along each pipe in the network to describe the hydraulic transient after each successive time
increment.  For example, if the flow in a network is described by the HGL and pressure
(two unknowns) at each node and the discharge and velocity (two unknowns) in each pipe
in a 100-pipe, 80-node network, then the description consists of  360  numbers at an in-
stant in time.  A typical extended time simulation would use a one hour time increment,
and therefore the analyst must examine these  360  values for each of  24  time steps if the
simulation were for a 24-hour period.  If inertia were included, then the time increment
must be on the order of seconds (or less if the pipes are relatively short, as in a fire-fighting
sprinkler system in a building).  One would prefer not to have to conduct such an
investigation over a full day.  But if a solution that accounted for inertia were to be
performed for only  100  time increments, then the solution consists of  36,000  values.
For a transient analysis with elastic effects, instead of just two values (discharge and
velocity) for each pipe, there will be two values for each pipe increment (these space



increments must be compatible with the time increment), so if  20  increments are used for
each pipe, the number of values in the network description jumps to  416,000.  As the
comprehensiveness of the network description increases, the amount of data that is needed
to describe the solution adequately expands rapidly, and it becomes clear that compromises
are needed.

When will an extended time simulation that ignores elastic effects be adequate?  The
answer is obviously subjective.  For the operation of most municipal water systems the
changes in demands are normally slow enough to cause the effects of inertia to be relatively
minor, and certainly the elastic effects can be ignored.  Furthermore, in a large network the
effect of a very rapid change in flow in a single pipe, which may have a valve at one end
closed rapidly, will soon be dissipated in the network of pipes.  Thus it is sufficient to rec-
ognize that a high-pressure transient wave may propagate though this pipe and possibly
affect a few pipes near it.  There may be a few times in the operation of many water
distribution systems, and other liquid distribution systems, when the neglect of inertia will
cause a simulation to produce results that are notably different than those that actually
occur.  Such conditions may occur when major flows are changed in seconds, or perhaps
minutes.  For shorter pipes these changes may be more rapid without creating a significant
change in pressures and discharges that is attributable to inertial effects.

6.2 EXTENDED TIME SIMULATIONS

This section describes a type of time-dependent solution that has become known as an
"extended time simulation."  These solutions are for pipe networks rather than single pipes.
Since this type of solution ignores both elastic and inertial effects, the solutions are
actually a series of steady-state solutions in which a past solution is updated over a time
increment in response to changes in time-dependent parameters to the new solution for the
new instant in time.  Thus these time-dependent solutions are quasi-steady solutions.  The
following six items commonly change in extended time simulations:

1.  Demands at nodes.  The nodal demands will change in almost all extended time sim-
ulations, and a typical means of specifying these changes is to provide peaking
factors as functions of time for selected groups of nodes.  Such changes in demand
patterns over time might be thought of as demand schedules.

2.  Storage versus elevation relations for reservoirs.  Some reservoirs may have constant
water surface elevations, but most are storage tanks with a water surface elevation
that varies with time as water is withdrawn from, or added to, the tank.  Typically a
storage versus water surface elevation function is constructed to describe changing
reservoir water surface elevations.  When this function is described by data pairs for
water surface elevation and volume in storage, then the bottom water surface
elevation will be the lowest operating level of the tank, and the largest water surface
elevation will be the top of the tank.

3.  Pump schedules.  A pump schedule states how many pumps must operate in parallel
or in series at a given station at any time.  In other words, a schedule specifies the
number of pumps that are turned on for each time step.  An alternative is to specify
the rotational speed of a pump as a function of time.

4.  Pump rules.  A pump rule relates the number of operating pumps to either the mag-
nitude of the pressure (or HGL) at a selected node, or the water level in a reservoir.
Rules are distinguished from schedules by a condition that dictates the number of
pumps in operation rather than having pumps start or stop at a specified time.
Instead of specifying the number of operating pumps, the rule might give the
rotational speed of a pump.

5.  Flow rules.  The difference between flow rules and demand functions (schedules) is
the same as between pump rules and pump schedules.  That is, the demand at
selected nodes is determined by the pressure at some node or by the water surface



elevation in a reservoir.  Flow rules would typically be given for negative demands,
which are external flows coming into the network.

6.  Discharge rules.  Specify the discharge that must exist in selected internal pipes in
the network.  Internal pipes are distinguished from dead end pipes and pipes that
connect supply sources to the network.

There are many additional items that might be a part of the specifications that describe
the time-dependent solution, such as the following:

7.  Schedules for valves.  These schedules may specify the valve setting (percent open)
as a function of time, which may in turn employ a relation between valve position
and head loss to determine how the valve restricts the flow, or specify the valve loss
coefficient as a function of time.

8.  Rules for valves.  The rules can either prescribe the valve setting (percent open) or
give its loss coefficient as a function of the pressure at a node.  In place of pressure,
the rule may be based on the water surface elevation in a reservoir.

9.  Differential head devices.  These devices may specify the amount of differential head
(positive or negative) in selected pipes as a function of time, i.e., a schedule of head
losses in pipes, or the amount of the differential head may be computed so that a
specified  HGL  (or pressure) is achieved at a selected node, and the  HGL  may vary
with time.

10.  Tank level or pressure control algorithms.  Such algorithms simulate controllers
that may activate valves etc. to maintain the water levels in reservoirs at or between
specified limits, or to maintain a pressure at a designated value, or between specified
limits, by changing the flow into the network or adjusting a valve setting.

It is common to implement these items, which prescribe changes in network behavior
over the next time step, and which are rules based on pressure or water surface elevation, in
terms of values that are taken from the solution for the current time instant.  In other
words, the implementation of the rule lags the solution itself by one time step.  To do
otherwise would require an iterative approach.

We will not describe any implementation details for these rules.  However, as they act
to change the network behavior over each time step, it is generally not necessary to
redefine the equations that govern the mathematical problem as if a new network problem
were being solved.  Instead the existing equations are simply modified to reflect the
conditions that apply to the new time step.  For example, to change nodal demands we
simply change the values of those demands.  But when a pump is turned off or a pressure
reduction valve opens fully, the type and/or number of equations that describes the system
must be altered.

Example Problem 6.1
Obtain an extended time simulation for the 30-pipe, 16-node network described in

Chapter 5 and shown in Fig. 5.15, using the diameters (for all pipes  e = 0.004 in) found
there by using  DESIGN=1  that are listed in the pipe data table.  The following specifica-
tions control this simulation:  (1)  The storage tank attached to the network by pipe 30 is
circular with a diameter of 115 ft, and its bottom is at elevation 590 ft;  at the beginning
of the simulation its water surface elevation is  605 ft.  (2)  Two different demand
functions are described on the graph which follows;  the first applies to the north portion
of the network at nodes 1, 2, 5, 6, 9, 10, 13, and 14, and the second applies to nodes 3, 4,
7, 8, 11, 12, 15, and 16.  (3)  Initially three pumps are in parallel at each pump station,
and the tables give pump characteristics that apply to all three operating pumps.  The
number of operating pumps is given by the pump schedule.

PUMP SCHEDULE
             Pump Station  1              Pump Station  2

Time, hr.    0    8  10  15  17    0    5    8  15  20
Number operating    3    2    1    2    3    3    2    1    2    3



NODE DATA

  No. Demand

   ft3/s

Elevation
       ft

  No. Demand

   ft3/s

Elevation
        ft

  1   1.2      500   9   2.0      493
  2   1.2      490  10   2.0      492
  3   0.8      485  11   3.6      488
  4   1.6      480  12   2.8      484
  5   1.4      495  13   4.0      480
  6   1.2      494  14   2.0      478
  7   1.0      490  15   1.8      475
  8   0.8      483  16   2.0      470

PIPE DATA

No. Length
     ft

Diameter
      in

No. Length
     ft

Diameter
      in

No. Length
     ft

Diameter  
       in

  1   500    18  11   800      6  21 1600      8
  2   500    15  12   800      6  22 1600    10
  3   800    12  13 1600    12  23 1600      6
  4   800      6  14 1600    12  24   800      6
  5   800    12  15 1600    12  25   800      6
  6 1800    12  16 1600    12  26   800      6
  7 1800    12  17   800      6  27 2500      6
  8 1800    12  18   800      6  28 2500      6
  9 1800    10  19   800      6  29 2500      6
 10   800      6  20 1600    12  30 1000    10
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We begin the solution of this problem by reading key demand function data from the
two plots of peaking factor at points where the curves break;  this step allows us to digitize
the demand functions (each function can have a separate set of times), as listed in this table:

Hour:   0   2   3.5   6.5  10 11.5  14  17  19  20  22  24

DF(1) 1.0 0.95 0.875 0.625 0.30 0.25 0.50 1.10 1.23 1.25 1.10 1.0
DF(2) 1.0 1.05 1.06 1.00 0.80 0.68 0.50 0.20 0.30 0.50 0.85 1.0

A solution from  NETWK  can be obtained by first adding the option  ISIML=1  to the
$SPECIF  list of options and supplying input that would describe the network appropriate-
ly, and then adding the additional lines that describe the extended time simulation that is
desired.  The input file follows:

Extended time simulation for example 30 pipe network.
/*
$SPECIF ISIML=1,NODESP=0 $END 27 2 5 2500 6
PIPES 28 2 7 2500 6
1 0 2 500 18 .004 29 3 8 2500 6
2 0 3 500 15 30 0 14 1000 10
3 2 1 800 12 RESER
4 2 3 800 6 30 605
5 3 4 800 12 PUMPS
6 1 5 1800 12 1 2.67 157 5 152 7.33 144 500
7 2 6 1800 12 2 2 152 4 147 6 139 500
8 3 7 1800 12 PARALLEL
9 4 8 1800 10 1 3
10 6 5 800 6 2 3
11 6 7 800 6 NODES
12 7 8 800 6 1 1.2 500
13 5 9 1600 12 2 1.2 490
14 6 10 1600 12 3 0.8 485
15 7 11 1600 12 4 1.6 480
16 8 12 1600 12 5 1.4 495
17 10 9 800 6 6 1.2 494
18 10 11 800 6 7 1.0 490
19 11 12 800 6 8 0.8 483
20 9 13 1600 12 9 2.0 493
21 10 14 1600 8 10 2.0 492
22 11 15 1600 10 11 3.6 488
23 12 16 1600 6 12 2.8 484
24 14 13 800 6 13 4.0 480
25 14 15 800 6 14 2.0 478
26 15 16 800 6 15 1.8 475

16 2.0 470
RUN

$TDATA ALTV=0,HTIME=24,INCHR=1,ISUNIT=0,LINEAR=1,NPUNOD=2,PRINTT=3 $END
PIPE TABLE
ALL
NODE TABLE
ALL
RESER. TABLE
ALL
END TABLES
STORAGE FUNCTION
1 590 0 600 103870 605 155805/
30/



DEMAND FUNCTION
1 0 1 2 .95 3.5 .875 6.5 .625 10 .3 11.5 .25 14 .5 17 1.1 19 1.23 20 1.25 22 1.1 24 1./
1 2 5 6 9 10 13 14/
2 0 1 2 1.05 3.5 1.06 6.5 1 10 .8 11.5 .68 14 .5 17 .2 19 .3 20 .5 22 .85 24 1/
3 4 7 8 11 12 15 16/
PUMP SCHEDULES
1 2 0 3 8 2 10 1 15 2 17 3/
2 2 0 3 5 2 8 1 15 2 20 3/
END SIMULATION
END

The input after the  RUN  command provides specifications for the time-dependent solu-
tion.  A brief explanation of this part of the file (see the  NETWK  manual for more detail)
follows:

1.  The  $TDATA  line sets options associated with the extended time simulation:  (a)
ALTV=0  tells  NETWK  to extrapolate the volume-elevation data that is provided
for the storage tank beyond the given limiting values;  if  ALTV=1,  then the tank
will no long supply water when the elevation falls to the smallest elevation in the
data, nor will it fill further if the water surface elevation reaches the largest elevation
in the data;  (b)  HTIME=24  indicates the simulation is to cover 24 hours, the
default;  (c)  INCHR=1  indicates one-hour increments and is also the default;  (d)
ISUNIT=0  indicates that storage volumes will be given in ft3;  (e)  LINEAR=1
specifies a linear interpolation (or extrapolation if necessary) of given data;  (f)
NPUNOD=2  indicates that source pumps and reservoirs will be referenced by pipe
number;  (g)  NPRINTT=3  tells  NETWK  to write special tables, with time in the
first column, for pressure at designated nodes and discharges in designated pipes.

2. The  ALL  after  PIPE TABLE  and  NODE TABLE  indicates all pipes and nodes
are to be in these special tables;  similarly, all reservoirs are to have their water
surface elevations reported in the tables.

3.  The individual demand functions are described next under the command  DEMAND
FUNCTION.  Each separate demand function consists of two lines;  the first value
on the first line is a number the user chooses to assign to this demand function as
an identifier, which is followed by time and peaking factor data pairs.  The second
line indicates the nodes at which this demand function applies.

4.  After the  PUMP SCHEDULES  command the second value on each line, a  2  after
the number of the pump station has been given, indicates parallel pump operation,
and the times and numbers of operating pumps are given thereafter as pairs.

The special tables follow;  the varying discharges in pipes  1, 2, 4, 18, 25,  and  30  are
plotted in a figure, and the pressures at nodes  1, 2,  and  16,  plus the water surface
elevation in the storage tank, are plotted in the other figure.  From this simulation we note
that the storage tank initially has a water surface elevation of  605 ft  and ends the  24-hour
period with a water surface elevation of  603 ft.  In other words the tank will not be full at
the beginning of the next day;  hence the capacity of either one pump or both pumps
should be increased, or the lengths of time intervals when pumps are in operation should be
increased.  The discharge reverses direction in several pipes over the  24-hour period,
including pipe  30  connecting the storage tank to the network.  For the first  7  hours the
storage tank supplies water to the network;  then it fills until 18 hours, and thereafter it
again supplies water.  If the middle point used to define the pump curves is the normal
capacity, then the discharge at maximum efficiency for station  1  is  15 ft3/s  at the start
of pump operation, and for station  2  the discharge is  12  ft3/s.  When the number of
operating pumps is reduced from  3  to  2  and then to  1  during the period of lower
demand, the pumps are then producing flows that are considerably above their normal
capacities, as seen in the plot of discharges in pipes  1  and  2  in relation to the normal

DEMAND FUNCTION



Pressure (lb/in2) at Nodes as a Function of Time

Hours       Node Number
    1     2     3     4     5     6     7     8     9

    1 57.67 67.26 66.95 65.71 52.12 53.53 54.89 55.53 46.51
    2 57.79 67.29 66.81 65.47 52.31 53.53 54.62 55.09 46.79
    3 57.91 67.33 66.67 65.23 52.49 53.55 54.34 54.63 47.06
    4 58.36 67.54 66.74 65.29 53.21 54.08 54.54 54.75 48.00
    5 58.98 67.85 66.93 65.56 54.17 54.90 55.05 55.25 49.22
    6 59.40 67.97 65.09 63.99 54.85 55.39 54.41 54.56 50.11
    7 60.16 68.37 65.47 64.50 56.02 56.47 55.20 55.40 51.60
    8 61.04 68.84 66.03 65.27 57.40 57.82 56.34 56.66 53.41
    9 59.10 66.38 59.94 59.75 56.19 56.41 52.59 52.92 52.95
  10 60.49 67.32 61.46 61.53 58.21 58.34 54.67 55.25 55.40
  11 55.80 61.76 60.70 60.94 55.04 55.27 53.84 54.97 53.46
  12 57.17 62.97 62.36 62.88 56.65 56.90 56.05 57.46 55.23
  13 57.32 63.16 63.24 63.95 56.79 57.16 57.17 58.85 55.32
  14 56.44 62.49 63.48 64.35 55.71 56.20 57.40 59.47 53.96
  15 55.70 61.99 63.64 64.65 54.75 55.68 57.46 59.97 52.66
  16 60.64 68.04 69.64 70.75 58.12 60.18 62.97 65.93 54.38
  17 59.26 67.45 69.76 71.06 55.91 58.91 63.47 66.61 51.55
  18 59.30 68.68 70.70 72.23 54.48 58.75 64.99 68.40 48.84
  19 58.46 68.27 70.23 71.62 53.12 57.74 63.98 67.31 47.06
  20 57.54 67.82 69.72 70.94 51.61 56.61 62.86 66.13 45.05
  21 56.84 67.40 69.36 69.90 50.48 55.22 60.18 63.20 43.64
  22 57.06 67.29 68.45 68.38 51.03 54.66 57.83 60.34 44.59
  23 57.19 67.17 67.60 66.92 51.29 53.86 56.03 57.71 45.12
  24 57.37 67.18 67.24 66.28 51.61 53.59 55.35 56.55 45.65

Pressure (lb/in2) at Nodes as a Function of Time (cont'd)

Hours       Node Number Reservoir Water
   10    11    12    13    14    15    16 Surface Elev., ft

    1 49.07 48.63 50.56 48.83 52.34 50.69 46.73         605.00
    2 49.06 48.14 50.00 49.17 52.19 50.12 45.80         604.18
    3 49.07 47.62 49.43 49.49 52.05 49.52 44.84         603.40
    4 49.70 47.79 49.57 50.53 52.30 49.67 44.88         602.65
    5 50.66 48.42 50.17 51.77 52.77 50.31 45.61         602.00
    6 51.33 48.19 49.89 52.62 53.15 50.36 45.84         601.53
    7 52.56 49.18 50.88 54.16 53.39 51.30 47.09         601.24
    8 54.09 50.67 52.39 56.16 53.61 52.68 49.06         601.19
    9 53.38 48.18 49.51 56.30 53.64 51.17 47.83         601.41
  10 55.65 50.70 52.12 59.01 54.45 53.60 51.07         601.59
  11 53.69 50.47 52.06 57.75 54.44 53.75 51.83         602.05
  12 55.43 53.13 54.84 59.57 55.41 56.26 55.32         602.45
  13 55.71 54.58 56.39 59.58 56.01 57.40 57.34         603.04
  14 54.63 55.08 57.16 57.92 55.85 57.90 58.55         603.71
  15 53.99 55.45 57.85 56.34 55.65 58.49 59.69         604.28
  16 57.65 60.61 63.90 56.84 56.49 63.40 65.37         604.75
  17 56.11 61.46 64.93 53.95 55.48 64.67 66.83         605.36
  18 55.41 63.44 67.04 50.65 55.30 67.04 69.39         605.61
  19 54.25 62.07 65.76 48.71 55.09 65.51 67.74         605.60
  20 52.93 60.56 64.36 46.47 54.59 63.81 65.98         605.39
  21 51.22 56.41 60.45 44.98 53.65 58.86 60.54         605.02
  22 50.49 53.10 56.71 46.24 53.07 55.19 55.58         604.44
  23 49.25 50.74 53.37 47.03 52.11 52.93 51.14         603.80
  24 48.93 49.62 51.88 47.72 51.79 51.70 48.88         603.03



Discharges (ft3/s) in Pipes as a Function of Time

Hours            Pipe Number
    1     2     3     4     5     6     7     8     9    10

    1 15.71 11.33   6.05   0.66   4.83   4.85   6.10   5.52   3.23   0.40
    2 15.66 11.46   6.00   0.68   4.91   4.83   6.11   5.56   3.27   0.36
    3 15.62 11.59   5.95   0.70   4.99   4.81   6.11   5.60   3.31   0.31
    4 15.33 11.53   5.80   0.72   4.99   4.72   6.03   5.56   3.30   0.26
    5 14.90 11.35   5.61   0.74   4.93   4.61   5.89   5.47   3.25   0.21
    6 14.73 10.52   5.42   0.95   4.73   4.52   5.79   5.11   3.09   0.12
    7 14.15 10.26   5.17   0.96   4.64   4.37   5.60   4.98   3.02   0.04
    8 13.43   9.86   4.88   0.95   4.47   4.19   5.34   4.79   2.92 - 0.04
    9 12.91   8.07   4.49   1.26   3.99   3.90   5.02   3.95   2.53 - 0.18
  10 11.98   7.58   4.12   1.22   3.76   3.65   4.70   3.72   2.39 - 0.21
  11   9.33   7.83   3.29   0.75   3.59   2.93   3.77   3.74   2.31 - 0.17
  12   8.82   7.27   3.12   0.70   3.31   2.80   3.60   3.51   2.16 - 0.16
  13   8.74   6.96   3.16   0.60   3.10   2.80   3.57   3.40   2.07 - 0.09
  14   9.03   6.86   3.39   0.44   2.93   2.91   3.69   3.41   2.01   0.09
  15   9.24   6.81   3.63   0.29   2.75   3.03   3.70   3.45   1.95   0.28
  16 11.21   6.82   4.58   0.30   2.63   3.74   4.31   3.67   1.99   0.52
  17 11.84   6.70   5.16 - 0.14   2.36   4.08   4.55   3.50   1.88   0.67
  18 13.68   5.65   5.93   0.14   2.00   4.61   5.01   3.23   1.68   0.83
  19 14.29   6.20   6.18   0.17   2.23   4.79   5.20   3.49   1.83   0.86
  20 14.94   6.75   6.45   0.20   2.47   4.98   5.40   3.74   1.99   0.91
  21 15.52   8.77   6.61   0.17   3.29   5.11   5.68   4.62   2.49   0.88
  22 15.67   9.82   6.42   0.41   3.88   5.01   5.80   5.09   2.80   0.75
  23 15.82 10.70   6.29   0.54   4.40   4.97   5.99   5.38   3.04   0.61
  24 15.81 11.05   6.18   0.60   4.63   4.92   6.06   5.47   3.15   0.51

Discharges (ft3/s) in Pipes as a Function of Time (cont'd)

Hours            Pipe Number
   11    12    13    14    15    16    17    18    19    20

    1   0.24   0.64   4.72   4.26   4.95   3.91   0.61   0.61 - 0.17   3.32
    2   0.32   0.67   4.68   4.26   5.03   3.97   0.56   0.68 - 0.13   3.29
    3   0.39   0.69   4.65   4.26   5.11   4.02   0.52   0.75 - 0.10   3.26
    4   0.46   0.70   4.56   4.23   5.12   4.01   0.46   0.80 - 0.07   3.22
    5   0.52   0.70   4.46   4.16   5.08   3.97   0.41   0.84 - 0.04   3.20
    6   0.69   0.71   4.37   4.09   4.94   3.78   0.35   0.94   0.06   3.22
    7   0.73   0.70   4.24   4.03   4.86   3.71   0.29   0.96   0.06   3.19
    8   0.75   0.69   4.06   3.94   4.73   3.59   0.19   0.96   0.05   3.09
    9   1.00   0.69   3.72   3.61   4.24   3.14 - 0.01   1.13   0.25   2.73
  10   0.99   0.65   3.51   3.45   4.05   2.98 - 0.16   1.10   0.21   2.56
  11   0.75   0.57   2.83   2.84   3.78   2.85 - 0.17   0.95   0.14   2.06
  12   0.67   0.52   2.74   2.77   3.56   2.67 - 0.18   0.85   0.05   2.02
  13   0.54   0.48   2.77   2.76   3.40   2.57 - 0.08   0.71 - 0.10   2.09
  14   0.29   0.40   2.94   2.83   3.26   2.46   0.18   0.46 - 0.23   2.32
  15 - 0.08   0.29   3.13   2.90   3.08   2.33   0.38   0.20 - 0.33   2.51
  16 - 0.42   0.10   3.95   3.36   3.28   2.26   0.70 - 0.45 - 0.51   3.25
  17 - 0.70 - 0.12   4.22   3.50   3.08   1.98   0.86 - 0.80 - 0.54   3.28
  18 - 0.90 - 0.24   4.72   3.76   2.81   1.69   1.06 - 1.07 - 0.56   3.58
  19 - 0.90 - 0.21   4.88   3.83   3.03   1.87   1.11 - 1.05 - 0.58   3.66
  20 - 0.90 - 0.18   5.06   3.92   3.25   2.06   1.17 - 1.03 - 0.60   3.77
  21 - 0.76   0.04   5.16   4.06   3.96   2.76   1.14 - 0.78 - 0.63   3.80
  22 - 0.49   0.29   5.02   4.13   4.37   3.26   0.99 - 0.38 - 0.57   3.66
  23 - 0.26   0.48   4.92   4.32   4.59   3.62   0.81   0.19 - 0.38   3.53
  24 - 0.05   0.56   4.84   4.34   4.76   3.78   0.71   0.42 - 0.29   3.45



Discharges (ft3/s) in Pipes as a Function of Time (cont'd)

Hours            Pipe Number
   21    22    23    24    25    26    27    28    29    30

    1   1.04   2.14   0.94   0.68   0.72   1.06   0.86   0.84   0.84   2.36
    2   1.07   2.16   0.96   0.61   0.77   1.09   0.86   0.85   0.85   2.26
    3   1.10   2.18   0.98   0.54   0.83   1.12   0.85   0.86   0.86   2.16
    4   1.16   2.19   0.99   0.38   0.84   1.13   0.83   0.86   0.86   1.86
    5   1.25   2.19   0.98   0.13   0.82   1.12   0.81   0.86   0.85   1.37
    6   1.30   2.10   0.96 - 0.22   0.85   1.10   0.79   0.88   0.80   0.83
    7   1.45   2.12   0.94 - 0.53   0.77   1.08   0.76   0.87   0.79   0.13
    8   1.63   2.15   0.92 - 0.78   0.62   1.02   0.72   0.84   0.76 - 0.63
    9   1.53   1.82   0.83 - 0.79   0.82   1.00   0.67   0.89   0.66 - 0.53
  10   1.72   1.85   0.79 - 0.99   0.61   0.92   0.62   0.85   0.63 - 1.32
  11   1.46   1.71   0.75 - 0.86   0.58   0.85   0.50   0.66   0.60 - 1.14
  12   1.57   1.77   0.70 - 0.95   0.26   0.74   0.47   0.62   0.56 - 1.72
  13   1.52   1.89   0.67 - 0.89 - 0.11   0.62   0.47   0.57   0.53 - 1.92
  14   1.39   1.88   0.64 - 0.72 - 0.35   0.51   0.50   0.53   0.51 - 1.66
  15   1.32   1.81   0.60 - 0.51 - 0.51   0.40   0.53   0.49   0.49 - 1.34
  16   1.71   1.90   0.63 - 0.45 - 1.01   0.17   0.66   0.52   0.50 - 1.77
  17   1.65   1.74   0.60   0.32 - 1.20   0.00   0.73   0.46   0.46 - 0.72
  18   1.58   1.59   0.56   0.82 - 1.39 - 0.16   0.83   0.44   0.41   0.05
  19   1.45   1.65   0.59   1.00 - 1.30 - 0.09   0.86   0.48   0.45   0.59
  20   1.32   1.73   0.62   1.15 - 1.21 - 0.02   0.90   0.52   0.49   1.08
  21   1.20   2.01   0.72   1.20 - 0.83   0.28   0.92   0.63   0.62   1.67
  22   1.17   2.13   0.80   1.04 - 0.36   0.55   0.90   0.73   0.71   1.86
  23   1.12   2.10   0.86   0.87   0.27   0.84   0.89   0.80   0.78   2.22
  24   1.12   2.13   0.90   0.75   0.48   0.95   0.88   0.82   0.81   2.21
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capacity lines on the figure, with accompanying reductions in efficiency.  In fact, it would
appear that the pump schedule should never reduce the number of pumps in operation at
either station to one;  then the tank would be full at the end of the 24-hour period.

The simulation can be run again with the following changes to the input data:

PUMP SCHEDULES
1 2 0 3 8 2 17 3/
2 2 0 3 5 2 20 3/

The solution then shows that the tank ends the simulation period with a water surface at
elevation  604.03 ft,  and the discharges in pipes 1 and  2  are more nearly at their normal
capacities, as the graphs below show.  Can the reader develop an operating scenario that
would cause the tank to end the period with a water surface elevation of  605 ft?
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6.3 ELEMENTS OF ENGINEERING ECONOMICS

As with most engineering endeavors, the design process for water distribution systems
explores alternative solutions to a given situation, analyzes these alternatives and then
relies on the designer's engineering experience and judgment to select the best alternative.
An important element of this process is economics, wherein the total cost of the delivery
of water at the pressures and in the quantities that are required is examined.  A brief review
of engineering economics is given here as a base for the consideration of economics in the
selection of pipe and pump sizes.  This review may repeat parts of the reader's first course
in engineering economics or another economics course;  this background is essential in
understanding some of the material that follows.

In engineering economics we seek the least cost solution, that is, the one that calls for
the smallest overall expenditure over its expected life, taking into account the time value of
money.  The costs can be divided into two major categories, those needed now to build the
system and start its operation, and the recurring annual costs to keep the system in opera-
tion.  The first category is commonly called the capital investment, and the second
category contains the operating costs.  An alternative way to view these two categories
(but with yearly income) is to consider the present value of an annuity (a recurring
payment) over some time interval as equivalent to the capital investment, and the amount
of the annual annuity as the operating cost.  If these two categories of costs are to be
combined to provide the total cost, the two must be put on an equivalent basis, considering
that there is interest (value) associated with the use of money.  To develop a fair
comparison, we work with the terms present worth and series payment.  A capital
investment cost adds directly to the present worth, but a recurring cost must be multiplied
by a present worth factor, pwf, before it is added to the capital investment to compute
the overall present worth.  Similarly, recurring costs are added directly to give the series
payment amount, but capital investment amounts must be multiplied by a capital
recovery factor, crf, before being added together to obtain the total series payment
amount.  In other words, the two alternatives are either  (1)  to convert recurring or annual
operating costs to the equivalent of a capital investment by multiplying by the pwf, or  (2)
converting capital investments to series costs by multiplying them by the crf.  We assume
that the individual payments are a constant amount so we are dealing with a uniform series
payment.

The formula for the present worth factor  pwf  is

pwf =
1
i

1 −
1

1+ i( )n











=

1+ i( )n − 1

i 1+ i( )n
(6.1)

and the capital recovery factor  crf  is the reciprocal thereof, or

crf =
1

pwf
=

i

1 −
1

(1+ i)n

=
i(1+ i)n

(1+ i)n −1
(6.2)

in which  i  is the interest rate per time period and  n is the number of recurring payments
or time periods.  Usually the series payment is on an annual basis, i.e., once per year, and
then  n  is the life of the project in years.

To illustrate the use of these factors, assume it will cost 1 million dollars to build a
water distribution system and prepare it to begin operation.  Thus a loan is taken (or a
bond is issued) for  $1,000,000  at a particular interest rate, and this loan is to be repaid by
constant annual payments over the life of the project  n = 15 years.  Table 6.1 reports
payment data for interest rates  i = 0.06  and  i = 0.10 for  n = 15.  The columns headed



"Payment" are obtained by multiplying the capital recovery factor by  $1,000,000, i.e., for

i = 0.06  the capital recovery factor is  crf = 0.06/[1 -  1/(1.0615)] = 0.102963,  and for  i =

0.10  the factor is  crf = 0.1/[1 - 1/(1.1015)] = 0.131474.  The columns headed "Accum."
accumulate or sum these annual payments.  The column headed "Interest" is the amount of
interest accrued during that year, found by multiplying the entry in the row above (in the
next column) by the interest rate, and the column headed "Owing" gives the amount of the
loan still outstanding.  The values in this last column are obtained by subtracting the
payment from, and adding the interest to, the previous entry, i.e.,  $957,037 = 1,000,000 -
102,963 + 60,000.  In both halves of this table the payment at the end of the fifteenth year
exactly equals the amount still owed plus the interest on that amount over the last year
(within  roundoff error), or  $102,296 = 97,135 + 5828,  and  $131,474 = 119,521 +
11,952.  Thus for an interest rate of  6%  a constant annual payment of  $102,963  is
equivalent to a present worth of  $1,000,000,  and for an interest rate of  10%  $131,474
paid at the end of each year for 15 years is equivalent to  $1,000,000.  In other words,
multiplying the  pwf  by this annual payment will reproduce the principal amount, in this
case  $1,000,000.

Table 6.1
A $1,000,000 loan

Interest Rate = 6% Interest Rate = 10 %
Yr Payment Accum. Interest Owing Payment Accum. Interest Owing

1000000 1000000
 1 102963 102962 60000 131474   131473 100000

  957037   968526
 2 102963 205925 57422 131474   262947   96852

  911497   933905
 3 102963 308888 54689 131474   394421   93390

  863224   895822
 4 102963 411851 51793 131474   525895   89582

  812054   853930
 5 102963 514813 48723 131474   657368   85393

  757815   807849
 6 102963 617776 45468 131474   788842   80784

  700321   757161
 7 102963 720739 42019 131474   920316   75716

  639378   701403
 8 102963 823702 38362 131474 1051790   70140

  574777   640069
 9 102963 926664 34486 131474 1183264   64006

  506301   572603
1 0 102963 1029627 30378 131474 1314737   57260

  433717   498389
1 1 102963 1132590 26022 131474 1446211   49838

  356777   416754
1 2 102963 1235553 21406 131474 1577685   41675

  275221   326956
1 3 102963 1338515 16513 131474 1709159   32695

  188771   228178
1 4 102963 1441478 11326 131474 1840632   22817

    97135   119521
1 5 102963 1544441   5828 131474 1972106   11952

       0        0

To carry this illustration further, assume that a solution to the network problem
indicates that the annual cost of electrical energy to operate the pumps is  $120,000,  and



the maintenance department will require an average of  $50,000  per year to operate and
repair the system.  The total annual costs are then obtained as  120,000 + 50,000 =
$170,000.  The two alternative approaches for comparing the capital investment and
operating costs are the following:  1.  Add  pwf x (annual cost)  to the capital investment;
or  2.  Add  crf x (capital investment)  to the annual cost.  These two alternatives are listed
in Table 6.2.  As the interest rate increases, we see in the table that the total cost decreases
if the present worth basis is used, but when a series payment is used to obtain the total
cost we find that the total cost increases with interest rate.  These differences occur because
the  pwf  decreases with interest rate, but the  crf  increases with interest rate.

Table 6.2  Total Costs

As Present Worth As a Series Payment

For  i = 0.06
1.  Capital investment                 = 1,000,000
2.  Operating,  pwfx$170,000   =     1,651,082   
Total                                                   $2,651,082

For  i = 0.06
1.  Cap. invest., crfx$1,000,000 = 102,963
2.  Operating                                      =     170,000   
                                                                $272,963

For  i = 0.10
1.  Capital investment                     1,000,000
2.  Operating,  pwfx$170,000   =     1,293,034   
Total                                                   $2,293,034

For  i = 0.10
1.  Cap. invest., crfx$1,000,000 = 131,474
2.  Operating                                             170,000    
                                                                 $301,474

Example Problem 6.2
Compare the cost of using a  6 in,  8 in,  or  10 in  pipe line (wall roughness  e =

0.005 in) to pump  1.5 ft3/s  of water (ν = 1.217x10-5 ft2/s) for  200  days per year from a
groundwater elevation of  1500 ft  to an elevation of  1550 ft  with a delivery pressure of
50 lb/in2.  The total pipe length is  4000 ft.  Energy costs  $0.11/kWh;  the capital
investment cost of the well and pumps is  $50,000;  the combined efficiency of the pump-
motor is  ε = 0.70,  and the pipe costs are  $30/ft  for  6-in-pipe,  $45/ft  for  8-in-pipe,
and  $55/ft  for 10-in-pipe.  The interest rate is  i = 0.10, and the project life is  30  years.

The solution is summarized in two tables.  We begin the solution by computing the

capital recovery and present worth factors as  crf = 0.1/[1 - 1/1.130] = 0.10608  and  pwf =
1/0.10608 = 9.4268.  The pump must supply a head that is the sum of the frictional head
loss, the elevation difference, and the delivery pressure head, or  hp = hf + 50 +
50(144)/62.4 = 165.38 + hf (ft).  The power is P = Qγhp(0.746)/(550ε) = 0.18137hp  kW.
The Darcy-Weisbach and Colebrook-White equations can be solved for the frictional head
loss that would occur in each of the three pipes.  These head losses are listed in column (2)
in the tables.  Columns (3) and (4) in these tables list the computed pump heads that must
be supplied and the power requirement of the pumps in kW.  The annual operating cost,  in
$/yr  in column (5), is found by multiplying this power requirement by  24  hr/day times
200  days times the  $0.11/kWh  unit cost of energy.  In the first table the total cost is
stated in terms of annual amounts;  hence column (6), which contains the entire capital
investment cost (the cost of the pipe plus  $50,000  for the pumps and well), is multiplied
by the  crf  to obtain an equivalent annual cost which is in column (7),  and this amount is
added to the annual energy cost to find the total annual cost in column (8).  We note that
the use of  8-in  pipe leads to an annual cost of $ 43,411  over the 30-year life of the
project, which is the lowest cost of the three alternatives.  It is the higher energy costs that
cause the total cost with  6-in  pipe to be larger, and the higher cost with  10-in  pipe is
caused by the expense of the pipe itself.  A present worth computation is presented in the
second table.  The total cost is the present worth;  here the cost of energy is converted to a
present value by use of the pwf before it is added to the capital cost.



Cost on an annual payment basis

Pipe
  in
 (1)

   hf

    ft
   (2)

  hp

   ft
  (3)

   P
  kW
   (4)

  $/yr
    (5)

Cap. Cost
       $
      (6)

  x crf
     $
    (7)

  Cost
     $
    (8)

   6 144.46 309.90 56.194 29,670   170,000 18,023 47,703
   8   33.17 198.55 36.009 19,013   230,000 24,398 43,411
 10   10.72 176.10 31.938 16,863   270,000 28,641 45,504

Cost on a present worth basis

Pipe
  in
 (1)

   hf

    ft
   (2)

  hp

   ft
  (3)

   P
  kW
   (4)

  $/yr
    (5)

  x pwf
       $
      (6)

Cap. Cost
       $
      (7)

   Cost
      $
     (8)

   6 144.46 309.89 56.194 29,670 279,695  170,000 449,695
   8   33.17 198.55 36.009 19,013 179,233  230,000 409,233
 10   10.72 176.10 31.938 16,863 158,965  270,000 428,965

*                              *                              *

6.3.1. ECONOMICS APPLIED TO WATER SYSTEMS
To apply economics to the evaluation of piping systems, it is productive to classify

each system according to whether  (1)  the demands are constant or variable,  (2)  it is
gravity feed or pump feed, and  (3)  branched or looped.  When the demands are constant,
the discharge in each pipe is fixed, and an optimal design can be achieved by minimizing
the total cost over the life of the system.  When the demands vary, the changes usually
have one or more random components, so in real life a repeating pattern of change with
time does not occur, and the identification of an optimal design becomes a matter of
interpretation.  Gravity-feed systems have no energy costs that can change with the head
losses and the desired pressures;  if the demands are also fixed, then the optimal design
process will simply select the smallest possible set of pipes that will deliver the required
pressures and discharges.  If the system is branched, then the flow in each pipe is fixed
regardless of its diameter, while in looped systems the discharges are dependent upon all of
the pipe diameters as well as the demands.

Some irrigation systems fall into the classifications that are simplest to analyze, e.g.,
branched systems with constant demands.  Municipal water distribution systems generally
are among the most complex types.  They are looped for redundancy to allow individual
components to be taken out of operation;  they must be able to respond to emergency
flows, they have varying demands, and at least some of the water is pumped.  Even when
the supply enters the network from a reservoir (storage tank), this water often has been
pumped into that tank at a previous time.  For these complex systems the completion of a
formal optimal design cannot be achieved by an application of mathematics and the use of a
computer program.  Sound engineering judgment based on experience and a thorough
understanding of the system's vital components is needed to achieve even a "good," let
alone a "near optimal," design.  The issues that contribute to the complexity of such
systems include the following:

1.  Reliability considerations:  standby power, manual versus automatic control, types
of storage, and the extent and type of monitoring of operations.

2.  Demand:  spatial and temporal variations in use, types of users, costs for failure to
deliver, fire flow requirements, future trends.

3.  Storage requirements:  groundwater storage with pumping versus elevated or ground-
level tanks, tank volumes for reserves and/or peaking, location and variations of
water levels.



4.  Maximum and minimum pressure requirements:  residential areas, high value busi-
ness districts, industrial districts, future areas that will be served.

5.  Population distribution and future trends.
6.  Topographic changes:  pressure controls (PRV's, BPV's, valves) versus separate

systems.
7.  Separate systems for irrigation and/or fire fighting and other uses versus a single

system etc.
There is no attempt to handle all these issues in this Chapter.  Optimization techniques

won't even be used.  But basic cost considerations will be applied to insure that a system is
cost effective.

6.3.2. LEAST COST
In each design we want to select the pipe size which will produce the lowest overall

cost, considering both capital recovery and annual operating costs.  Of course these two
costs must be put on a common basis before they are summed.  One way to do this is to
solve the problem for different pipe sizes, compute the cost for each and plot the costs on a
graph as a function of pipe size.  If the water is pumped, a graph of these costs might look
like Fig. 6.1, in which the annual capital recovery cost for the pipe and other facilities will
increase with the pipe diameter, but the costs associated with pumping will decrease with
pipe size.  These two opposite trends cause the total cost to decrease with pipe diameter to
a minimum and then increase.  The nearest standard pipe diameter to this minimum is the
diameter to select.
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Figure 6.1  System cost as a function of pipe diameter.

For a network of pipes the discharges will usually differ in each pipe, and it would be
nonsense to design a network with all pipes of the same diameter, compute the cost and
make a graph like Fig. 6.1 to select a pipe size that produces the least total cost.  An
alternative that does make sense, however, is to replace the pipe diameter, which is the
independent variable, by the slope of the  HGL.  Since the slope of the HGL is the head
loss divided by the pipe length over which this loss occurs, it also makes sense to rescale
the ordinate to be the cost per unit length of pipe.  Solving the Darcy-Weisbach equation
for the diameter gives



D = { fQ2/(2gS(π /4)2 }0.2 (6.3)

in which  S  is the slope of the  HGL,  and  f  is given by the Colebrook-White equation.
The cost is then computed in the following way:  (1)  for a given  S ,  solve the Darcy-
Weisbach and Colebrook-White equations for the pipe diameter;  (2)  with this pipe diame-
ter determine the cost of pipe per unit length  Cp  from a table of costs for different pipe
diameters (this cost might be obtained by interpolation or by using the standard diameter
that is closest to the computed value);  (3)  compute the energy cost for pumping, per unit
length of pipe, from

Ce = γQRt(S + ∆H/L) / (eC) (6.4)

in which  R  is the unit cost of energy ($/kWh),  ∆H  is difference in total head (elevation
plus pressure) between the ends of the pipe,  t  is the time that the pump operates,  e  is
the combined motor-pump efficiency, and  C  is a unit constant.  It is important for  C
and the energy costs to be on the same time basis.  For example, if  t  is in days, then we
have C = (550/0.746)/24 = 30.72  for ES units, and  C = 1000/24 = 41.7  for SI units.

Example Problem 6.3
Prepare a graph of total cost as a function of the slope of the  HGL  for several different

discharges, and then determine the least cost pipe diameter to convey this water in  2000 ft
of horizontal pipe with a delivery pressure of  40 lb/in2.  The water is pumped from a
reservoir with a water surface elevation that is one foot below the pipe elevation.  A table
provides the cost per unit length for installing different pipe sizes.  Other economic data are
as follows:  energy costs $0.10/kWh;  project life = 30 years; the operating period is  365
days per year;  the pipe wall roughness is  e = 0.005 ft.

Dia., in.      4      6      8      10      12      15      18

$/ft   3.67   5.33   7.67   10.67   16.67   24.00   43.33

Dia., in.    20    24     30     36     42     48     54

$/ft 56.67 80.00 100.00 120.00 145.00 170.00 200.00

We begin the solution by computing the difference in total head between the reservoir
water surface and the end of the pipe as  ∆H = 40(144)/62.4 + 1.0 = 93.3 ft;  upon dividing
this result by the pipe length, we obtain  ∆H/L = 0.0466.  The program  MCOST  will
generate the cost data as a function of  S .  The input consists of the following:  RATE =
energy cost per  kWh,  LIFE = project life in years,  Q = discharge,  DZ = ∆H/L,  DAYS =
number of days per year of system operation,  G = acceleration of gravity,  E = pipe wall
roughness (inches for ES units,  m  for SI units),  EFF = combined pump-motor efficien-
cy,  N = the number of pairs of (pipe diameter,  cost per unit length) to follow.  The next
input line lists these data pairs;  each pipe diameter is in inches for ES units or in  m for
SI units;  the cost is the installation cost per unit length for that diameter.  The  DO 80
loop within the program repeats the computations for the  13  values of  S   in the data
statement.  Within this loop the Darcy-Weisbach and Colebrook-White equations are solved
simultaneously for  D  and  SF = 1/f1/2.  After the diameter is obtained, a second-order
polynomial interpolation, using Lagrange's formula, obtains the capital cost per unit
length associated with this diameter from the table of data pairs  (D, $/L).  This value is
multiplied by the  crf,  the energy cost of pumping is computed, and these costs, and their
sum, are printed to an output file.



C     PROGRAM MCOST.FOR
      REAL D(20),CP(20),S(13)
      DATA S/.0001,.00025,.0005,.001,.002,.003,
     &.004,.005,.006,.007,.008,.009,.01/
      READ(2,*) RATE,LIFE,Q,DZ,DAYS,G,E,EFF,N
      READ(2,*)(D(I),CP(I),I=1,N)
      IF(G.GT.20.) THEN
      POF=2.031290182
      VIS=1.217E-5
      DO 20 I=1,N
   20 D(I)=D(I)/12.
      E=E/12.
      ELSE
      POF=235.344
      VIS=1.31E-6
      ENDIF
      CRF=RATE*(1.+ RATE)**LIFE/((1.+ RATE)**LIFE - 1.)
      SF=8.
      G2=1.23370055*G
      DD=.8
      K2=2
      DO 80 I=1,13
   30 DD1=DD
   40 SF1=SF
      SF=1.14-2.*ALOG10(E/DD1+7.343472826*VIS*
     &DD1*SF/Q)
      IF(ABS(SF-SF1).GT. 1.E-6) GO TO 40
      DD=((Q/SF)**2/(S(I)*G2))**.2
      IF(ABS(DD1-DD) .GT. 1.E-5) GO TO 30
   50 IF(DD.LT.D(K2+1).OR. K2.GT.N-2) GO TO 60
      K2=K2+1
      GO TO 50
   60 IF(DD.GE.D(K2) .OR. K2.EQ.2) GO TO 70
      K2=K2-1
      GO TO 60
   70 K1=K2-1
      K3=K2+1
      C1=CP(K1)/((D(K1)-D(K2))*(D(K1)-D(K3)))
      C2=CP(K2)/((D(K2)-D(K1))*(D(K2)-D(K3)))
      C3=CP(K3)/((D(K3)-D(K1))*(D(K3)-D(K2)))
      AC=C1+C2+C3
      BC=-C1*(D(K2)+D(K3))-C2*(D(K1)+D(K3))-C3*(D(K1)+D(K2))
      CC=C1*D(K2)*D(K3)+C2*D(K1)*D(K3)+C3*D(K1)*D(K2)
      COST=(AC*DD+BC)*DD+CC
      CPIP=CRF*COST
      CENE=POF*DAYS*(S(I)+DZ)*Q*RATE/EFF
   80 WRITE(3,100) S(I),DD,COST,CPIP,CENE,CPIP+CENE
  100 FORMAT(F10.7,5F10.4)
      END

An example of the input data file follows:

.1 30 1 .0466 365 32.2 .005 .7 14
4 3.67 6 5.33 8 7.67 10 10.67 12 16.67 15 24 18 43.33 20 56.67 24 80 30 100
36 120 42 145 48 170 54 200

For  Q = 1.0 ft3/s  the following output table is created:

C.    PROGRAM MCOST.FOR



      S     D, ft     Cp Cpxcrf    Ce Total Cost

 0.0001  1.3869  33.0954 3.5107 4.9463   8.4571
 0.0002  1.1506  21.3257 2.2622 4.9622   7.2244
 0.0005  0.9999  16.6665 1.7680 4.9887   6.7567
 0.0010  0.8697  11.7235 1.2436 5.0417   6.2853
 0.0020  0.7571    9.2161 0.9776 5.1476   6.1252
 0.0030  0.6984    8.1907 0.8689 5.2535   6.1224 *Min. Cost
 0.0040  0.6597    7.5582 0.8018 5.3594   6.1612
 0.0050  0.6312    7.1147 0.7547 5.4653   6.2201
 0.0060  0.6088    6.7811 0.7193 5.5712   6.2906
 0.0070  0.5906    6.5178 0.6914 5.6772   6.3686
 0.0080  0.5753    6.3026 0.6686 5.7831   6.4517
 0.0090  0.5621    6.1223 0.6494 5.8890   6.5384
 0.0100  0.5506    5.9681 0.6331 5.9949   6.6280

Results from these cost calculations for the discharges  Q = 1.0 ft3/s,  2.5 ft3/s  and
5.0 ft3/s  are plotted in the graph on the next page.  The  HGL  slope that led to the lowest
total cost, the costs themselves, and the associated pipe diameters are given in the next
table:

Minimum Total Cost

Q,  ft3/s   1.0   1.5   2.0   2.5   3.0   3.5   4.0   5.0

C o s t   6.12   8.97 11.88 14.84 17.69 20.47 23.31 29.02
  S 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.003
D,  ft 0.698 0.814 0.908 0.988 1.147 1.216 1.279 1.285
D,  in   8.38   9.77 10.89 11.85 13.76 14.59 15.35 15.42

0 0.001
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Capital recovery Q = 5 ft3/s
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Q = 1 ft3/s

*                              *                              *



As  the  discharge increases, the pipe size with the least total cost increases,  as one  would
expect.  However, the slope  S   is nearly constant;  for discharges of  3 to 4 ft3/s   the
slope  S  = 0.002  led to the smallest total cost, but for the other discharges  S  = 0.003
gave the smallest total cost.

Example Problem 6.4
Augment the program  MCOST  so it  (1)  determines the slope  S   of the HGL that

results in minimum total cost, and  (2)  writes this total cost per unit pipe length and the
corresponding pipe diameter to an output file.

In this project there a several approaches that could be taken.  As it is,  MCOST
generates a table that lists in the last column the total cost per unit length as a function of
the HGL-slope  S  (listed in column 1).  As this table is being generated, we monitor the
last column to see if the total cost has increased from the previous line.  If so, we then
pass a second-order polynomial through the last three data pairs of  (S, $)  with the La-

grangian interpolation formula.  The polynomial is of the form  $ = aS2 + bS + c.  The
minimum cost can be found by taking the derivative of this equation with respect to  S ,
setting it to zero, and solving for  S  as  Smin = - b/(2a).  Upon substituting  Smin  into
the polynomial equation, we find  $min.  In a similar way the corresponding pipe diameter

Dmin  can be obtained with a similar polynomial  D = a1S2 + b1S + c1,  with  Smin
substituted for  S .  This procedure is implemented by replacing  80 WRITE ... with the
statements given below.  The arrays  CT(3), SS(3), DS(3)  have also been added to the
REAL declaration, and  I1 = 1  and  CT(1) = 1.E20  initialize these variables.

      IF(CTO.LT.CT(I1).       DR=DS(J)
     &OR.I.LT.3) THEN       DO 74 K=1,3
      IF(START) THEN       IF(K.EQ.J) GO TO 74
      CT(1)=CTO       CR=CR/(SS(J)-SS(K))
      SS(1)=S(I)       DR=DR/(SS(J)-SS(K))
      DS(1)=DD    74 CONTINUE
      START=.FALSE.       AA=AA+CR
      ELSE       DA=DA+DR
      IF(NFIRST) THEN       SUM=0.
      CT(1)=CT(2)       PRO=1.
      SS(1)=SS(2)       DO 75 K=1,3
      DS(1)=DS(2)       IF(K.EQ.J) GO TO 75
      ENDIF       SUM=SUM+SS(K)
      CT(2)=CTO       PRO=PRO*SS(K)
      SS(2)=S(I)    75 CONTINUE
      DS(2)=DD       BB=BB-CR*SUM
      I1=2       DB=DB-DR*SUM
      NFIRST=.TRUE.       DC=DC+DR*PRO
      ENDIF    76 CC=CC+CR*PRO
      ELSE       SHMIN=-0.5*BB/AA
      CT(3)=CTO       CTMIN=(AA*SHMIN+BB)*SHMIN+CC
      SS(3)=S(I)       DMIN=(DA*SHMIN+DB)*SHMIN+DC
      DS(3)=DD       GO TO 90
      AA=0.       ENDIF
      DA=0.    80 CONTINUE
      BB=0.    90 WRITE(6,110) Q,SHMIN,
      DB=0.      &CTMIN,DMIN
      CC=0.   110 FORMAT(' Q =',F8.2,', HGL-S
      DC=0.      &=',F9.6,', $/L =',F8.2,
      DO 76 J=1,3      &', Dmin =',F8.3)
      CR=CT(J)       END

*                              *                              *



6.4 ECONOMIC NETWORK DESIGN

6.4.1. ONE PRINCIPAL SUPPLY SOURCE
The method in Section 6.3 can be used to select a single pipe that will yield the least

cost.  If a network of pipes exists, then the method must be modified.  In a real water
distribution system the capital costs associated with installing pipes might vary widely
from location to location for the same pipe size.  In a new subdivision the only costs in
addition to the purchase of the pipe may be the costs associated with the operation of a
trenching machine or backhoe.  In a highly developed business district there will be costs
associated with replacement of roads, replacement and/or relocation of other utilities,
rerouting traffic, acquisition of right-of-way, etc., and these costs may be enormous in
comparison with the pipe costs, so there is then no significant difference in cost with pipe
size.  Annual costs might also vary considerably, depending upon whether the pipe is fed
by gravity and whether the water comes directly from a pump or from a storage facility that
receives its water via pumps.  For the latter there is the capital recovery cost associated
with the storage facility in addition to the energy cost of pumping.  Obviously the varia-
bility of costs is dependent upon the city and/or location of the water system, and to
describe procedures to follow in the design of a "near least-cost" system we will use only
the simplest case, in which no variability of either capital recovery or operating costs
occurs.  The same principles apply, however, for the more complex real water system, but
they must be applied on an individual basis.

Let us assume that the layout, or a proposed layout, of the system is given. It includes
the supply sources as well as the lengths and locations of pipes, some of which may later
be eliminated.  For design purposes the demands are known and fixed.  Such design
demands may be the maximum demands that are expected, without emergency flows for fire
fighting etc.  From Example Problem 6.3 we have seen that the slope of the HGL that is
related to the least total cost does not vary greatly with the discharge.  Considering the
uncertainty of costs over the life of the network and the variability of discharges, one HGL
slope for all pipes in the network might be used, rather than finding the least cost HGL
slope for each pipe.  A practical approach to the design of an economical pipe network
might in general follow these eight steps:

1.  Remove pipes that will carry the smaller discharges so a branched network is
created.

2.  Determine the demands for which the network is to be designed.  These design
demands normally are the peak hourly demands, but they do not include fire, or other
emergency, flows.

3.  Use the demands from step two to determine the discharge in every pipe.
4.  Compute the pipe diameters, based on a selected HGL slope that is consistent with

the satisfaction of the desired operating pressures for the system.  After finding the
pipe diameters, replace them with the nearest (or with the next larger, depending on
one's judgment) standard pipe size and obtain by analysis a solution for this system.

5.  Compute the costs associated with the pipe sizes that were found in step four, as
well as the pumping cost and other operating costs.

6.  Repeat steps four and five with a set of different HGL slopes, until the minimum
cost can be identified.

7.  Each pipe that was removed in step one can now be re-installed as a pipe having a
minimum diameter or, as judgment dictates, a larger size, especially if the pipe is
located so its flow will be important for fire fighting, or if it will be needed when
another key component of the system is out of operation.  We now analyze this
piping system for several demand levels and/or fire flow requirements and attempt to
identify any deficiencies in the network's performance.  If deficiencies are found, we
must exercise judgment in deciding how they might best be corrected.

8.  Based on a knowledge of network performance that was obtained in step seven,
formulate logical schedules and/or rules for the operation of the network.  Select the



elevation, sizes and heights of storage tanks that will produce a "good" daily
operation that will fully meet the anticipated varying demands, maintain pressures
above the minimum and not create any excessive pressures.  Test these choices by
obtaining an extended time simulation of the proposed network and its operation.
From an examination of results from this time-dependent solution, make appropriate
changes to the network and/or its operation, and repeat the extended time
simulations until the designer concludes that no further significant cost reductions
can be made, especially in view of the uncertainty of the demand data and some of
the other data that are the foundation of the computation.

Example Problem 6.5
A water distribution system is to be designed to serve a new community development.

The land is level where the development is located and has an elevation of 1100 ft.  As a
consulting hydraulic engineer you are responsible for the design of the water system.  The
following requirements exist:  

1.  The entire water supply must come from a well that has recently been drilled.  All
indications, including pumping tests, suggest the well will provide enough water for
the community for the coming  20  years.

2.  The skeletonized pipe layout for design should coincide with the proposed network
of primary streets with locations on a square grid that is one-quarter mile on each
side, so all pipes, with the exception of the supply line from the well, are  1320 ft
long.  (Secondary streets and individual service connections to buildings will exist
in the interior of indi-vidual blocks, but they are omitted in the skeletonization.)
All pipes have  e = 0.005 in.
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3.  A survey of future water consumption indicates that the peak hourly demand will be
240 gal/min  at each node at the street intersections.

4.  For this region of the country it is anticipated that the peak hourly demand is  2.3
times the average daily demand.

5.  For a town of this size and the anticipated industrialization, the National Bureau of
Fire Underwriters recommends that the system be able to supply an emergency fire
flow of  2000 gal/min  at any node at a pressure of at least  20 lb/in2.

In estimating costs for the project, the following information is provided to you by the
firm's economist:  interest rate = 9 percent;  project life = 20 years;  electricity costs
$0.090/kWh;  overall cost for the well, buying the pump and installing it is $180,000;

the cost of construction  C  for a water storage tank is  C = $15000V0.5, in which  V   is
the tank capacity in thousands of cubic feet;  the cost of the pipe is divided into  (a)  the
purchase price of the pipe and  (b)  the costs associated with its installation.  These costs
are given in the following table:

Pipe Costs per Foot of Length

Diameter of Pipe,
             in

  6   8  10  12  15  18  24   36

Purchase price, $ 4.00 6.00 12.00 18.00 25.00 45.00 60.00 100.00
Installation, $ 8.00 8.20   8.40   8.60   9.00   9.20   9.40     9.60

As the hydraulic engineer that is responsible for the design of the water system, you are
to  (1)  specify the size of each pipe in the system,  (2)  specify the pump(s) to be installed
(this includes the characteristics, i.e., the discharge and head that the pump should produce),
(3)  specify where storage tanks should be located, and give their elevations and capacities,
(4)  provide an engineering economic analysis of the proposed water system, and suggest
what price should be charged for the water to recover the costs associated with the
construction and maintenance of the system.

The solution will proceed according to the steps outlined above.
Step 1.  To create a branched system from the proposed layout, the pipes along north-

south streets have been removed, except the one that is nearest to the pump, to create the
network shown atop the next page.  There are many alternative branched networks that
could be used.  This one assumes that the north-south pipes closest to the pump will be
the main transmission lines. An alternative which would assume that the primary north-
south transmission line is nearer the center of the system would remove pipes  2, 3, 16,
and  21,  and put in their place pipes connecting node pairs  14 and 10,  10 and 6,  14 and
19,  and  19 and 24.

Step 2.  The problem statement provides the demands to be used for the design, i.e.,
240 gal/min = 0.535 ft3/s  at each node of the network.  In practice, obtaining these design
demands requires studies of current water demands in the area and projections of future
trends over the life of the network, all tempered with a sound interpretation of these data
and judgment.

Steps 3, 4, 5, and 6 .   These steps will be accomplished together.  In fact, these
steps will be completed via two alternative pathways.  The first alternative will determine
the most economical HGL-slope for each pipe by using  MCOST1,  the modified
computer program from Example Problem 6.4.  The second alternative is to use special
input allowed by  NETWK  to define a branched network.

In the first alternative the program  SOLBRAN,  which was described in Chapter 5,
will be modified by replacing subroutine  DIAPIP,  which finds  f  and  D  when the head
loss for the pipe is given, by  MCOST1  as a subroutine that determines the least cost
HGL-slope, diameter, and cost per unit length of pipe, based on economic data on pipe cost
and the energy cost of pumping.  The program is called  MCBRAN.  The first portion of
MCBRAN,  almost to the  DO 90  loop, is the same as  SOLBRAN  with a COMMON



[1]

[4]

[3]

[5] [7]

[9]

[8]

[10] [11] [12]

[6]

[13] [14] [15] [16]
[2]

[18] [19] [20] [21][17]

[23] [24] [25] [26][22]

240 240240 240240

240 240240 240240

240 240240 240240

240 240240 240240

240 240240 240240

6000 

3000'

All nodal demands in gal/min

N

(1)

(5) (6)

(2)

(3)

(7)

(8) (9) (11)(10)

(13) (14)(12)

(16)

(17) (18)

(15)

(25)(24)

(19) (20)

(21)

(23)(22)

(4)

gal/min

/COSTB/  statement and arrays H (nodal heads), QJJ (nodal demands), NOP (pipe
numbers),  L1  (upstream pipe node)  and  L2  (downstream pipe node), added.  Aftert the
DO 85 loop an added  READ  statement enters, as triples, the pipe number  NOP  and its
upstream and downstream nodes,  L1  and  L2.  The sequence of pipes in this input
establishes the order in which the least cost pipes are to be found with subroutine
MCOSTS.  This sequence must start at the end of one branch and proceed to the point
where another branch departs from a node and then downstream along the next branch, so
an HGL-elevation is known at one end of each new pipe that is processed.  In this example
the order that is selected is  7, 6, 5, 4, 3, 8,  and so on.  The upstream and downstream
node numbers are used to compute the elevations of the HGL at each node.

The next read statement contains  (1)  the node number for which a beginning HGL-
elevation will be given, e.g. the downstream node of the first pipe in the previous list,  (2)
this HGL-elevation, and  (3)  the elevation slopes  DZ  that  MCOSTS  should use.  The
information in group  (3)  contains first the number of pairs that will be given, and then as
pairs the pipe number and the  DZ  that should be used until the next pipe in the list is
given.  Since the slope of the  HGL  is the sum of the frictional slope and  DZ  for our
example problem, we note the elevation difference of  100 ft  between node 8 and the
source and the length of the pipes between these two points is  6x1320 + 3000 = 10920 ft;
hence  DZ = 100/10920 = 0.0091575.  This elevation gradient is constant, so the input
consists of only  3  values:  1 7 0.0091575.  Since this  DZ  will add a constant to the
energy cost for all pipes, it will not change the least cost slope of the  HGL.

The last input set contains the economic data.  The first line consists of the following:
RATE = cost of electricity in  $/kWh;  LIFE = life expectancy of the project in years;
DAYS = the number of days per year that the pump will operate;  EFF = the combined
pump-motor efficiency;  N = the number of data pairs to follow.  This last data, consisting
of pairs of pipe diameter and its cost per unit length, is read in subroutine  MCOSTS
when it is first called.  The input for our network problem follows the program listings.



In determining the least-cost HGL-slope for each pipe in a network, the energy lost
through the demands at the nodes must be included in the overall energy cost.  To account
for this energy, the program must determine the head at each node.  The power loss is the
product of the demand  QJ,  the specific weight  γ   and the difference between the nodal
head  H  and the nodal elevation.  Since the head at the upstream pipe node equals the head
at the downstream node plus the product of HGL-slope and pipe length, the program passes
the demand  QJN  and the difference between the known head and the nodal elevation,
divided by the length of pipe, to subroutine  MCOSTS.  A positive slope  S(I)  is used,
independent of direction, since the pressure at the end will be computed by the process
when we move in the downstream direction, rather than being given.  Program  MCBRAN
follows:

*************************************************************************
*   PROGRAM NO. 6.1, MCBRAN, FORTRAN
*   THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
*   THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
*   USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.
*************************************************************************
*   FINDS THE LEAST-COST HGL-SLOPE FOR ALL PIPES IN A BRANCHED NETWORK
*
      PARAMETER (N4=4)
      REAL L[ALLOCATABLE](:),E[ALLOCATABLE](:),Q[ALLOCATABLE](:),
     &QJ[ALLOCATABLE](:),H[ALLOCATABLE](:),ELEV[ALLOCATABLE](:),
     &QJJ[ALLOCATABLE](:),DHS(10)
      INTEGER*2 IPP(11),NUM[ALLOCATABLE](:),JN[ALLOCATABLE](:,:),
     &NOP[ALLOCATABLE](:),L1[ALLOCATABLE](:),L2[ALLOCATABLE](:)
      LOGICAL*2 LNODE[ALLOCATABLE](:)
      CHARACTER*38  F110
     &/'(I5,F8.1,F8.6,F10.3,F8.3,3F10.3,F10.6)'/
      COMMON CI4,G2,DI4,S,SF,CFDIA
      COMMON /COSTB/CRF,DZ,G,VISC,FK2,POF,N
      WRITE(*,*)' GIVE (1) NO. OF PIPES, (2) INPUT UNIT,'
     &,' (3) OUTPUT UNIT '
      READ(*,*) NP,INPUT,IOUT
      NJ=NP+1
      CONV=12.
      ALLOCATE (L(NP),E(NP),Q(NP),QJ(NJ),NUM(NJ),JN(NJ,N4),
     &LNODE(NJ),H(NJ),ELEV(NJ),QJJ(NJ),NOP(NP),L1(NP),L2(NP))
      READ(INPUT,*) G,VISC
      FK2=1.3757
      CFDIA=(5.01137E-4/0.003)**0.2053
      IF(G.LT.30.) THEN
      CONV=1.
      FK2=1.62613
      CFDIA=(1.13437E-3/0.003)**.2053
      ENDIF
      G2=2.*G
      SF=8.
      CI4=7.3434712828*VISC
      DI4=0.785398163
      DO 8 I=1,NP
    8 L(I)=0.
      READ(INPUT,*) L
      DO 9 I=1,NP
      IF(L(I) .LT. 0.001) L(I)=L(I-1)
    9 CONTINUE
      DO 10 I=1,NP



   10 E(I)=0.
      READ(INPUT,*) E
      DO 20 I=1,NP
      IF(E(I).GT.0.) THEN
      IF(E(I).LT.10.) E(I)=E(I)/CONV
      ELSE
      E(I)=E(I-1)
      ENDIF
   20 CONTINUE
      DO 22 I=1,NJ
   22 ELEV(I)=-10001.
      READ(INPUT,*) ELEV
      DO 25 I=2,NJ
      IF(ELEV(I).LT.-10000.) ELEV(I)=ELEV(I-1)
   25 CONTINUE
      SUM=0.
      DO 40 I=1,NJ
      DO 30 J=1,N4
   30 JN(I,J)=0
      READ(INPUT,*) QJ(I),(JN(I,J),J=1,N4)
      SUM=SUM+QJ(I)
      DO 35 J=N4,1,-1
      IF(JN(I,J).EQ.0) GO TO 35
      NUM(I)=J
      IF(J.EQ.1) THEN
      IF(FLOAT(JN(I,1))*QJ(I).LE. 0.) GO TO 40
      WRITE(*,*)' DIRECTION OF FLOW IN PIPE',JN(I,1),
     &' IS NOT CONSISTENT WITH DEMAND NODE',I,QJ(I)
      GO TO 99
      ENDIF
      GO TO 40
   35 CONTINUE
   40 LNODE(I)=.FALSE.
      DO 41 I=1,NJ
   41 QJJ(I)=QJ(I)
      IF(ABS(SUM).GT. 1.E-4) THEN
      WRITE(*,*)' DEMANDS DO NOT SUM TO ZERO, SUM =', SUM
      GO TO 99
      ENDIF
      NNJ=NJ
   45 DO 65 I=1,NNJ
      IF(NUM(I).GT.1) GO TO 65
      LNODE(I)=.TRUE.
      IJ1=IABS(JN(I,1))
      Q(IJ1)= - FLOAT(JN(I,1)/IJ1)*QJ(I)
      DO 60 J=1,NNJ
      IF(J.EQ.I .OR. NUM(J).LT.2) GO TO 60
      K=1
   48 IF(IABS(JN(J,K)).EQ.IJ1) THEN
      QJ(J)=QJ(J)+Q(IJ1)*FLOAT(JN(J,K)/IJ1)
      DO 50 KK=K+1,NUM(J)
   50 JN(J,KK-1)=JN(J,KK)
      NUM(J)=NUM(J)-1
      GO TO 60
      ENDIF
      K=K+1
      IF(K.LE.NUM(J)) GO TO 48
   60 CONTINUE
   65 CONTINUE



      JJ=0
      DO 80 I=1,NNJ
      IF(LNODE(I)) GO TO 80
      JJ=JJ+1
      QJ(JJ)=QJ(I)
      LNODE(JJ)=.FALSE.
      DO 70 J=1,NUM(I)
   70 JN(JJ,J)=JN(I,J)
      NUM(JJ)=NUM(I)
   80 CONTINUE
      IF(JJ.GE.NNJ) THEN
      WRITE(*,*)' NOT A BRANCHED NETWORK.  NO ADDITIONAL'
     &,' DEAD END PIPES'
      GO TO 99
      ENDIF
      NNJ=JJ
      IF(NNJ.GT.0) GO TO 45
      IF(G.LT.30.) THEN
      D=SQRT(.85*Q(1))/.8
      ELSE
      D=SQRT(.25*Q(1))/.8
      ENDIF
      WRITE(IOUT,100)
  100 FORMAT(' PIPE  LENGTH ROUGHNESS    DIA.    AREA',
     &' DISCHARGE  VELOCITY  HEAD LOSS HGL-SLOPE'
     &,/,1X,78('-'))
      DO 85 J=1,NJ
   85 H(J)=-1001.
      READ(INPUT,*)(NOP(I),L1(NOP(I)),L2(NOP(I)),I=1,NP)
      READ(INPUT,*) K,H(K),NSTART,(IPP(I),DHS(I),I=1,NSTART)
      READ(INPUT,*) RATE,LIFE,DAYS,EFF,N
      IF(G.GT.20.) THEN
      POF=2.03*DAYS*RATE/EFF
      ELSE
      POF=235.344*DAYS*RATE/EFF
      ENDIF
      CRF=RATE*(1.+RATE)**LIFE/((1.+RATE)**LIFE-1.)
      JJ=2
      DZ=DHS(1)
      IPP(NSTART+1)=10000
      COSTE=POF*QJJ(K)*(H(K)-ELEV(K))
      COSTP=0.
      DO 90 J=1,NP
      I=NOP(J)
      IF(I.EQ.IPP(JJ)) THEN
      DZ=DHS(JJ)
      JJ=JJ+1
      ENDIF
      IF(H(L1(I)).LT.-1000.) THEN
      IF(H(L2(I)).LT.-1000.) THEN
      WRITE(*,*)' CANNOT CONTINUE SINCE NO H FOR PIPE',I,
     &' IS KNOWN'
      GO TO 99
      ELSE
      QJN=QJJ(L1(I))
      HDL=(H(L2(I))-ELEV(L2(I)))/L(I)
      ENDIF
      ELSE
      QJN=QJJ(L2(I))



      HDL=(H(L1(I))-ELEV(L1(I)))/L(I)
      ENDIF
      IF(QJN.LT.0.) QJN=0.
      CALL MCOSTS(Q(I),E(I),QJN,HDL,S,D,CL,CEL,CPL)
      IF(H(L1(I)).LT.-1000.) THEN
      H(L1(I))=H(L2(I))+S*L(I)
      ELSE
      H(L2(I))=H(L1(I))-S*L(I)
      ENDIF
      COSTE=COSTE+L(I)*CEL
      COSTP=COSTP+L(I)*CPL
      D12=CONV*D
      COEF=CONV*E(I)
      A=0.7853982*D*D
   90 WRITE(IOUT,F110) I,L(I),COEF,D12,A,Q(I),Q(I)/A,S*L(I),S
      WRITE(IOUT,130) COSTE,COSTP,COSTE+COSTP
  130 FORMAT(/' COST OF ENERGY    =  $',F10.2,/
     &' COST OF PIPE       =   ',F10.2,/
     &' TOTAL COST/YEAR    =   ',F10.2,/)
      WRITE(IOUT,*)' HGL-ELEVATIONS AT NODES, IN FT'
      WRITE(IOUT,120)(J,H(J),J=1,NJ)
  120 FORMAT(6(I4,F9.2))
   99 DEALLOCATE(L,E,Q,QJ,NUM,JN,LNODE,H,NOP,L1,L2)
      STOP
      END
      SUBROUTINE MCOSTS(Q,EE,QJN,HDL,SHMIN,DMIN,CTMIN,CEMIN,CPMIN)
      REAL D(20),CP(20),S(13),CT(3),SS(3),DS(3)
      LOGICAL*2 NFIRST/.FALSE./,START/.TRUE./,SREAD/.TRUE./
      COMMON /COSTB/CRF,DZ,G,VISC,FK2,POF,N
      DATA S/.0001,.00025,.0005,.001,.002,.003,.004,.005,
     &.006,.007,.008,.009,.010/
      IF(SREAD) THEN
      READ(2,*)(D(I),CP(I),I=1,N)
      IF(G .GT. 20.) THEN
      DO 1 I=1,N
    1 D(I)=D(I)/12.
      ENDIF
      SREAD=.FALSE.
      ENDIF
      I1=1
      CT(1)=1.E20
      SF=8.
      G2=1.23370055*G
      DIA=DMIN
      K2=2
      DO 80 I=1,13
      IF(EE.GT.10.) THEN
      DIA=FK2*(Q/(EE*S(I)**.54))**.380228
      ELSE
   30 DIA1=DIA
   40 SF1=SF
      SF=1.14-2.*ALOG10(EE/DIA1+7.343472826*VISC*DIA1*SF/Q)
      IF(ABS(SF-SF1).GT. 1.E-6) GO TO 40
      DIA=((Q/SF)**2/(S(I)*G2))**.2
      IF(ABS(DIA1-DIA) .GT. 1.E-5) GO TO 30
      ENDIF
   50 IF(DIA.LT.D(K2+1).OR. K2.EQ.N-1) GO TO 60
      K2=K2+1
      GO TO 50



   60 IF(DIA.GE.D(K2) .OR. K2.EQ.2) GO TO 70
      K2=K2-1
      GO TO 60
   70 K1=K2-1
      K3=K2+1
      C1=CP(K1)/((D(K1)-D(K2))*(D(K1)-D(K3)))
      C2=CP(K2)/((D(K2)-D(K1))*(D(K2)-D(K3)))
      C3=CP(K3)/((D(K3)-D(K1))*(D(K3)-D(K2)))
      AC=C1+C2+C3
      BC=-C1*(D(K2)+D(K3))-C2*(D(K1)+D(K3))-C3*(D(K1)+D(K2))
      CC=C1*D(K2)*D(K3)+C2*D(K1)*D(K3)+C3*D(K1)*D(K2)
      COST=(AC*DIA+BC)*DIA+CC
      CPIP=CRF*COST
      CENE=POF*((S(I)+DZ)*Q+QJN*(HDL+S(I)))
      CTO=CPIP+CENE
      IF(CTO.LT.CT(I1).OR.I.LT.3) THEN
      IF(START) THEN
      CT(1)=CTO
      SS(1)=S(I)
      DS(1)=DIA
      START=.FALSE.
      ELSE
      IF(NFIRST) THEN
      CT(1)=CT(2)
      SS(1)=SS(2)
      DS(1)=DS(2)
      ENDIF
      CT(2)=CTO
      SS(2)=S(I)
      DS(2)=DIA
      I1=2
      NFIRST=.TRUE.
      ENDIF
      ELSE
      CT(3)=CTO
      SS(3)=S(I)
      DS(3)=DIA
      AA=0.
      DA=0.
      BB=0.
      DB=0.
      CC=0.
      DC=0.
      DO 76 J=1,3
      CR=CT(J)
      DR=DS(J)
      DO 74 K=1,3
      IF(K.EQ.J) GO TO 74
      CR=CR/(SS(J)-SS(K))
      DR=DR/(SS(J)-SS(K))
   74 CONTINUE
      AA=AA+CR
      DA=DA+DR
      SUM=0.
      PRO=1.
      DO 75 K=1,3
      IF(K.EQ.J) GO TO 75
      SUM=SUM+SS(K)
      PRO=PRO*SS(K)



   75 CONTINUE
      BB=BB-CR*SUM
      DB=DB-DR*SUM
      DC=DC+DR*PRO
   76 CC=CC+CR*PRO
      SHMIN=-0.5*BB/AA
      CTMIN=(AA*SHMIN+BB)*SHMIN+CC
      DMIN=(DA*SHMIN+DB)*SHMIN+DC
      CEMIN=CTMIN*CENE/CTO
      CPMIN=CTMIN*CPIP/CTO
      RETURN
      ENDIF
   80 CONTINUE
      END

The input data file  (DESIGMU1.DAT)  for  MCBRAN  for this problem follows:

32.2 1.41E-5
3000 1320/
0.005/
1100./
-13.36809 1/
.5347236 -1 2 12 16/
.5347236 -2 3 8/
.5347236 -3 4/
.5347236 -4 5/
.5347236 -5 6/
.5347236 -6 7/
.5347236 -7/
.5347236 -8 9/
.5347236 -9 10/
.5347236 -10 11/
.5347236 -11/
.5347236 -12 13/
.5347236 -13 14/
.5347236 -14 15/
.5347236 -15/
.5347236 -16 17 21/
.5347236 -17 18/
.5347236 -18 19/
.5347236 -19 20/
.5347236 -20/
.5347236 -21 22/
.5347236 -22 23/
.5347236 -23 24/
.5347236 -24 25/
.5347236 -25/
7 7 8 6 6 7 5 5 6 4 4 5 3 3 4 8 3 9 9 9 10 10 10 11 11 11 12
2 2 3 12 2 13 13 13 14 14 14 15 15 15 16 16 2 17 17 17 18 18 18 19
19 19 20 20 20 21 21 17 22 22 22 23 23 23 24 24 24 25 25 25 26 1 1 2
8 1192.3 1 7 .0091575
.09 20 365 .7 8
6 12 8 14.2 10 20.4 12 26.6 15 31 18 54.2 24 69.4 36 109.6

The table provides part of the solution, and additional information follows:



P i p e Length ex 1 0 3  Dia. Area   Q    V   hL HGL-Slope
      ft    in    in    ft2  ft3/s    ft/s     ft

   7    1320   5.0   7.02 0.268 0.535 1.992 2.966     0.00225
   6    1320   5.0   8.45 0.389 1.069 2.746 4.363     0.00331
   5    1320   5.0   9.57 0.499 1.604 3.214 5.076     0.00385
   4    1320   5.0 11.16 0.680 2.139 3.147 4.028     0.00305
   3    1320   5.0 13.77 1.034 2.674 2.586 1.979     0.00150
   8    1320   5.0 11.16 0.680 2.139 3.147 4.028     0.00305
   9    1320   5.0   9.57 0.499 1.604 3.214 5.076     0.00385
 10    1320   5.0   8.45 0.389 1.069 2.746 4.363     0.00331
 11    1320   5.0   7.02 0.268 0.535 1.992 2.966     0.00225
   2    1320   5.0 15.43 1.298 5.347 4.120 4.523     0.00343
 12    1320   5.0 11.16 0.680 2.139 3.147 4.028     0.00305
 13    1320   5.0   9.57 0.499 1.604 3.214 5.076     0.00385
 14    1320   5.0   8.45 0.389 1.069 2.746 4.363     0.00331
 15    1320   5.0   7.02 0.268 0.535 1.992 2.966     0.00225
 16    1320   5.0 15.43 1.298 5.347 4.120 4.523     0.00343
 17    1320   5.0 11.16 0.680 2.139 3.147 4.028     0.00305
 18    1320   5.0   9.57 0.499 1.604 3.214 5.076     0.00385
 19    1320   5.0   8.45 0.389 1.069 2.746 4.363     0.00331
 20    1320   5.0   7.02 0.268 0.535 1.992 2.966     0.00225
 21    1320   5.0 13.77 1.034 2.674 2.586 1.979     0.00150
 22    1320   5.0 11.16 0.680 2.139 3.147 4.028     0.00305
 23    1320   5.0   9.57 0.499 1.604 3.214 5.076     0.00385
 24    1320   5.0   8.45 0.389 1.069 2.746 4.363     0.00331
 25    1320   5.0   7.02 0.268 0.535 1.992 2.966     0.00225
   1    3000   5.0 25.49 3.544 13.37 3.772 4.386     0.00146

 COST OF ENERGY     =  $ 248,987.70
 COST OF PIPE             =       87,081.89
 TOTAL COST/YEAR  =     336,069.60

The listed energy costs in this output do not include the capital recovery cost for the pump,
which is  crf(180,000)  = 0.10955(180,000) = $19,719.

  HGL-ELEVATIONS AT NODES, IN FT

  1 1219.62   2 1215.23   3 1210.71   4 1208.73
  5 1204.70   6 1199.63   7 1195.27   8 1192.30
  9 1206.68 10 1201.61 11 1197.25 12 1194.28
13 1211.21 14 1206.13 15 1201.77 16 1198.80
17 1210.71 18 1206.68 19 1201.61 20 1197.25
21 1194.28 22 1208.73 23 1204.70 24 1199.63
25 1195.27 26 1192.30

Next the nearest standard pipe diameters are selected to replace the computed diameters,
this network is analyzed, and the costs are computed.  The cost of the tank will be ignored
for now, under the assumption that its size is independent of the pipe sizes and the amount
of energy used by the pumps.  The summary of these costs is given below.

Standard Pipe Diameters used in Analysis Solution

P i p e   1   2   3   4   5   6   7   8   9 10 11 12 13
D , in 24 15 15 15 10   8   8 12 10   8   8 12 10

P i p e 14 15 16 17 18 19 20 21 22 23 24 25
D , in   8   8 15 12 10   8   8 15 12 10   8   8



SUMMARY OF COSTS

ITEM TYPE PRESENT WORTH SERIES AMOUNT

    2 PIPE           832,560.00          75,951.85
    8 PUMP       2,734,285.00       299,531.30

TOTAL       3,566,845.00       375,483.10

From this solution the head at node 1 is  219.2 ft,  which is the head that the pump(s)
must supply.

A second alternative is to use special input that is employed by  NETWK  in defining
branched networks;  the analyst would indicate that the design solution should be followed
by an analysis solution based on nearest standard pipe sizes and then obtain an economic
analysis of this solution.  The input data to request these analyses is given below, in which
the HGL-slope has been specified as  0.002.

SPECIAL INPUT TO SOLVE MUNICIPAL DESIGN BRANCHED NETWORK:
/*
$SPECIF IHGL=-2,DESIGN=1,NFLOW=1,NPGPM=1,NOMSOL=1,ICOST=1 $END
1214.1 -6000 1000 240 .005
ELEV
1100
1 2 .002 3000/
2 8 .002 1320/
3 12/
2 16/
2 21/
17 26/
END
RUN
8 1192.3
INTEREST=.09
LIFE=20
PIPES
UNIT=8
6 12 8 14.2 10 20.4 12 26.6 15 24 18 54.2 24 69.4 36 109.6
EFFIC
.7
PUMPS
UNIT=.09
CAPI=180000.
END

In brief:  (1)  The option  IHGL=-2  tells  NETWK  that special input will be given that
defines a branched pipe system.  The first line of this input contains  (a)  the HGL-eleva-
tion at the beginning node,  (b)  the demand here,  (c)  the elevation to use until it is
changed,  (d)  the demand to apply at subsequent nodes until it is changed,  (e)  the pipe
roughness to use until it is changed.  Subsequent lines define the branched system by
giving  (a)  the initial node,  (b)  the final node,  (c)  the HGL-slope, and  (d)  a list of pipe
diameters, ending with  /  if the last given diameter is to be used for the remaining pipes
along this branch.  (2)  The option  NOMSOL=1  requests, after a solution to find precise-
ly the pipe diameters  (because  DESIGN=1)  that conform to the head differences between
nodes (the heads will be established from the specified slopes of the HGL's), that a regular
analysis be performed, in which the nearest standard pipe sizes are used.  (3)  The option
ICOST=1  requests an engineering economic analysis.  The HGL elevation at node 1 has
been determined as  1192.3  (the HGL elevation at node 8) plus the sum of products of
slope and pipe length between node 8 and node 1, or  1192.3 + 0.002(10920) = 1214.1 ft.
NETWK  must be given an initial HGL so it can compute HGL elevations, pressures, and



heads.  Since the above data does not contain any supply sources, a node and HGL at this
node must be given immediately after the RUN command for the analysis solution.

To obtain solutions for different HGL-slopes, three values in the foregoing input data
must be changed, the two HGL slopes (0.002) and the initial HGL elevation (1214.1 ft).
The cost summary from the economic analysis for this solution is as follows:

SUMMARY OF COSTS

ITEM TYPE PRESENT WORTH SERIES AMOUNT

    2 PIPE           960,072.00       105,172.50
    8 PUMP       2,686,039.00       294,246.10

TOTAL       3,646,111.00       399,418.60

Similar solutions for HGL slopes of  0.0003, 0.0005, 0.00075, 0.001, 0.003, 0.004,
and  0.005  provide the following total series costs:  $430,927 for S  = 0.0003,  $405,135
for S = 0.0005,  $396,590 for S = 0.00075,  $393,539 for S  = 0.001,  $399,418 for S  =
0.002,  $397,424 for S = 0.003,  $410,013 for S = 0.004,  and  $410,014 for S = 0.005.
The least cost is found for  S  = 0.001  (but costs vary little between  S  = 0.00075  and
0.003,  inclusive),  and the nearest standard pipe sizes for this solution are listed in this
table:

P i p e   1   2   3   4   5   6   7   8   9 10 11 12 13
D , in 30 20 15 15 12 10   8 15 12 10   8 15 12

P i p e 14 15 16 17 18 19 20 21 22 23 24 25
D , in 10   8 20 15 12 10   8 15 15 12 10   8

The head that the pump(s) must supply for this latter approach is  203.2 ft,  or  16 ft
less than the result from the first analysis.  Several pipes are now one standard pipe size
larger than was obtained when the best HGL slope was obtained for each individual pipe.
For the second alternative the total annual cost is  $396,971.  The other alternative led to
an annual recovery cost of  $375,483,  a reduction of  $21,489.

Step 7 .   Since pipe 1 is important in providing emergency flows, we will choose a
30-inch diameter for it, as indicated by the second analysis.  A storage tank will be
connected to the system by a  200-ft long  24-in-diameter pipe from node 16,  and the
pipes that were removed will be given  6-in  diameters.  For a preliminary choice of pumps
we choose two parallel pumps, each with characteristics defined by the three  (Q, hp)  pairs
in the table:

Pump Operating Characteristics
Q,   gal/min. 1500 3000 4500
hp,   ft 234.0 219.2 197.0

When the demands are  0.8  times  240 gal/min,  we decide that we want the tank neither
to receive nor supply any of the demand, and both pumps are operating then.  The
following input to  NETWK  will provide a solution that determines the tank's water
surface elevation in this instance:



Analysis based on nearest 35 15 11
standard diameters 36 15 20
/* 37 20 25
$SPECIF NODESP=1,PEAKF=.8, 38 12 8
  NFLOW=1,NPGPM=1 $END 39 16 12
PIPES 40 16 21
1 1 2 3000 24 .005 41 21 26
2 2 3 1320 15 NODES
3 3 4 1320 15 1 0 1000
4 4 5 1320 12 2 240 1100
5 5 6 1320 10 3 240 1100
6 6 7 1320 8 4 240 1100
7 7 8 1320 8 5 240 1100
8 3 9 1320 12 6 240 1100
9 9 10 1320 10 7 240 1100
10 10 11 1320 8 8 240 1100
11 11 12 1320 8 9 240 1100
12 2 13 1320 12 10 240 1100
13 13 14 1320 10 11 240 1100
14 14 15 1320 8 12 240 1100
15 15 16 1320 8 13 240 1100
16 2 17 1320 15 14 240 1100
17 17 18 1320 12 15 240 1100
18 18 19 1320 10 16 240 1100
19 19 20 1320 8 17 240 1100
20 20 21 1320 8 18 240 1100
21 17 22 1320 15 19 240 1100
22 22 23 1320 12 20 240 1100
23 23 24 1320 10 21 240 1100
24 24 25 1320 8 22 240 1100
25 25 26 1320 8 23 240 1100
26 9 5 1320 6 24 240 1100
27 13 9 25 240 1100
28 13 18 26 240 1100
29 18 23 PUMPS
30 10 6 1 1500 234 3000 219.2 4500 197 4000
31 14 10 PARALLEL
32 14 19 1 2/
33 19 24 RUN
34 11 7

The solution indicates that the pumps will supply  0.8(6000) = 4800 gal/min  and
provide a head of  274.2 ft  (which appears to be more than needed), and the head at node 16
is  109.8 ft,  so the middle level of the storage tank should be near this elevation.  As a
preliminary design we shall select the tank so its volume will supply the network for one
day.  The average total demand is  6000/2.3 = 2610 gal/min = 5.81 ft3/s.  Multiplying this

demand by  24x3600 sec/day  yields a volume of  502,000 ft3.  If the tank is  10 ft  high
and circular, then it should have a diameter of  253 ft.  Let us specify the diameter as  250

ft  (Volume = 490,874 ft3) with a mid-level water surface elevation of  1200 ft.  Then the
bottom of the tank will be placed at elevation  1195 ft,  and its top will be at  1205 ft.

Now several steady state solutions must be obtained to verify the adequacy of the
network under a variety of possible operating conditions.  In testing the network for fire
flows, extra demands of  2000 gal/min  will be located at nodes  6, 8, 9,  and  20.  The
next table lists the smallest pressures and the flows from the pumps and the reservoirs for
these analyses under the assumptions that both pumps were operating, that the water
surface elevation in the storage tank is at  1200 ft,  and that the peak daily demands are
occurring at the time of the fires.



Fire Demand Consequences at a Node

Node Min. Pressure     Q,  Pumps  Q,  Reservoir
      lb/in2 gal/min ft3/s gal/min ft3/s

    6       31.4   6420 14.3   1580 3.52
    8          2.5   6290 14.0   1710 3.82
    9       39.3   6470 14.4   1530 3.41
  20       29.5   6250 13.9   1750 3.91

These fire flow analyses indicate that the network can not supply an additional  2000
gal/min  at node 8  (and obviously not at node 26 either) to combat a fire.  This inadequate
performance is caused by the (initially removed) pipes which run in the North-South
direction and were assigned the minimum diameter of 6 inches;  the problem can be
ameliorated and possibly corrected fully by increasing the diameter of some of these pipes
to  8 in.  Let us try increasing the size of pipes  38,  39,  40,  and  41  to  8 in.  The same
fire flow analyses now produce the following results, which shows that all pressures are
now above the required minimum of  20 lb/in2.

Fire Demand Consequences at a Node

Node Min. Pressure     Q,  Pumps  Q,  Reservoir
      lb/in2 gal/min ft3/s gal/min ft3/s

    6       35.0   6070 13.5   1930 4.29
    8       22.0   5860 13.1   2140 4.76
    9       42.0   6150 13.7   1850 4.13
  20       34.5   5870 13.1   2160 4.74

If the water surface elevation in the tank is at its lowest level but still able to supply
water when these fire flows occur, and if both pumps are then operating, another
computation will produce the following pressures and discharges:

Fire Demand Consequences at a Node
Tank Water Surface at  4195 ft, Two Pumps Operating

Node Min. Pressure     Q,  Pumps  Q,  Reservoir
      lb/in2 gal/min ft3/s gal/min ft3/s

    6       31.5   6700 14.9   1300 2.89
    8       17.9   6460 14.4   1540 3.43
    9       38.5   6820 15.2   1180 2.64
  20       30.5   6460 14.4   1540 3.42

The pressure was only slightly above the required minimum when the tank water
surface was at mid-level, and now with the water surface at the base of the tank the pressure
is only  18 lb/in2  at node 8.  The same would apply to node 26.  If only one of the two
parallel pumps were in operation with the tank nearly empty, then the following results
would be found:



Fire Demand Consequences at a Node
Tank Water Surface at  4195 ft, One Pump Operating

Node Min. Pressure     Q,  Pumps  Q,  Reservoir
      lb/in2 gal/min ft3/s gal/min ft3/s

    6       22.8   5130 11.4   2870 6.40
    8       11.2   5020 11.2   2990 6.65
    9       29.4   5170 11.5   2840 6.32
  20       23.5   5030 11.2   2970 6.63

As might have been anticipated, now the pressure at node 8 (and 26) is significantly
deficient for a fire demand at these nodes.  Some means of correcting the problem should be
sought.  From the solution for the fire demand at node 8,  it is observed that the head
losses in pipes  15,  34,  and  35  are  15.1 ft,  15.1 ft,  and  15.3 ft,  respectively.  Thus
one possible solution might be the use of a 10-in diameter for pipe 15 and an 8-in diameter
for pipes  34,  35,  36,  and  37.  With these additional pipes enlarged, the following
pressures and discharges are obtained with the reservoir empty and only one pump in
operation:

Fire Demand Consequences at a Node
Tank Water Surface at  4195 ft, One Pump Operating

Node Min. Pressure     Q,  Pumps  Q,  Reservoir
      lb/in2 gal/min ft3/s gal/min ft3/s

    6       25.9   4930 11.0   3070 6.84
    8       15.5   4820 10.7   3180 7.09
    9       31.5   4970 11.1   3030 6.76
  20       28.8   4830 10.8   3170 7.06

Although the  15.5 lb/in2  pressure at node 8 is deficient, it is notably better than in
the previous case and not markedly less than  20 lb/in2.  Since the joint probability of
finding the tank empty with only one pump in operation should be very low, we will
tentatively accept these pipe sizes, move to step 8 and investigate this network further with
an extended time simulation.

Step 8.  A primary purpose of the use of an extended time simulation for this network
is to examine the adequacy of the storage tank.  Will it empty or overflow, and will the
water depth be approximately unchanged after a 24-hour simulation?  We begin this
simulation at a moment when the average demands occur.  We assume a demand function
that is described by the following table, and that this function applies at all nodes.

Demand Function

  Hour Peaking Factor

     0          1.00
     2          1.13
     4          1.70
     5          2.20
     6          2.30
     8          2.30
   12          0.80
   15          0.30
   17          0.10
   20          0.10
   22          0.30
   24          1.00



Assume the operation of the pumps will be determined by a level switch in the tank;  
when the water surface elevation reaches  1201 ft,  a pump is turned off so only one pump
is in operation, and when the level drops below elevation  1201,  the second pump is
turned on again.  The additional input data for  NETWK  for the simulation,  after the
input that defines the network, is then as follows:

$TDATA ALTV=1,INCHR=1,ISUNIT=0,LINEAR=1,PRINTT=3,NPUNOD=0,NPNRES=1 $END
PIPE TABLE
ALL
NODE TABLE
ALL
RESER. TABLE
1/
END TABLES
DEMAND FUNCTION
1 0 1 2 1.13 4 1.7 5 2.2 6 2.3 8 2.3 9 2.15 12 .8 15 .3 17 .1 20 .1 22 .3
24 1/
2-26/
STORAGE FUNCTION
1 1195 0 1200 245437 1205 490874/
1/
PUMP RULES
1 2 1 1 1201 1 1199 2 1201 1/
END SIMULATION

The results of this simulation are summarized in the following two plots.  From the
first plot we see that the tank's water level rises to within  0.7 ft  of the top of the tank at
14 hours, and in satisfying the peak demands the water surface drops to elevation  1202.5,
2.5 ft  above its initial mid-level elevation.  The results indicate we have more pump
capacity than is needed;  if this operation were to continue for several days, the tank clearly
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would overflow.  We would not be using the tank storage effectively.  We should consider
reducing the diameter of the tank.

In the next simulation the tank diameter was reduced to  150 ft  but the base remained at

1195 ft  and the top at  1205 ft,  so its new volume was 176,700 ft3.  The results of this
simulation are shown in the following two graphs.  Now the tank fills after  6 hours  of
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the simulation, and the demands must be met exactly by the pumps until the demand
exceeds their capability to do so at  16 hours.  Clearly this is not a good tank-pump
configuration and operation.  The simulation results thus force us to two conclusions:  (1)
the pumping capacity can be reduced so the water surface elevation in the tank returns
nearly to mid-level at the end of the  24  hour simulation, and  (2)  the elevation of the top
of the tank should be increased.

The third simulation will therefore employ three pumps in parallel, each with a normal
capacity of  1000 gal/min  and a normal head of  214.5 ft (5 ft less than the head of the
previous two pumps).  The tank will be given a diameter of 150 feet, but we shall raise the
top of the tank by  5 ft  to elevation  1210,  so the tank is now  15 ft high rather than  10

ft,  and it has a volume of  265,100 ft3.  The new pump rule is to start the simulation
with two pumps operating but to utilize only one pump when the water surface in the tank
equals or exceeds  1204 ft.  When the water surface drops below  1197 ft,  all three pumps
will be placed in operation.  The results from this simulation are shown below.  At the end
of the  24-hour  simulation the water surface elevation in the tank is just over  2 feet
above its initial level, and at  13 hours  the water level is within  2 feet  of the top.
Considering the possibility of occurrence of an emergency demand, this operation is quite
satisfactory.  The input data to  NETWK  for this last simulation is given below.  What
improvements might you suggest?  (The final cost analysis is left as an exercise.)
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Input to  NETWK  for the third extended time simulation:

Analysis solution based on 20 20 21 1320 8 2 240 1100
nearest standard diameters 21 17 22 1320 15 3 240 1100
/* 22 22 23 1320 12 4 240 1100
$SPECIF ISIML=1,PEAKF=.4347826 23 23 24 1320 10 5 240 1100
,NODESP=1,NFLOW=1,NPGPM=1 $END 24 24 25 1320 8 6 240 1100
PIPES 25 25 26 1320 8 7 240 1100
1 1 2 3000 24 .005 26 9 5 1320 6 8 240 1100
2 2 3 1320 15 27 13 9 9 240 1100
3 3 4 1320 15 28 13 18 10 240 1100
4 4 5 1320 12 29 18 23 11 240 1100
5 5 6 1320 10 30 10 6 12 240 1100
6 6 7 1320 8 31 14 10 13 240 1100
7 7 8 1320 8 32 14 19 14 240 1100
8 3 9 1320 12 33 19 24 15 240 1100
9 9 10 1320 10 34 11 7 1320 8 16 240 1100
10 10 11 1320 8 35 15 11 17 240 1100
11 11 12 1320 8 36 15 20 18 240 1100
12 2 13 1320 12 37 20 25 19 240 1100
13 13 14 1320 10 38 12 8 1320 8 20 240 1100
14 14 15 1320 8 39 16 12 21 240 1100
15 15 16 1320 10 40 16 21 22 240 1100
16 2 17 1320 15 41 21 26 23 240 1100
17 17 18 1320 12 42 27 16 200 24 24 240 1100
18 18 19 1320 10 NODES 25 240 1100
19 19 20 1320 8 1 0 1000 26 240 1100

27 0 1100
PUMPS
1 1000 229 2000
214.2 3000 192 4000
RESER
27 1200.
RUN

$TDATA ALTV=1,INCHR=1,ISUNIT=0,LINEAR=1,PRINTT=3,NPUNOD=0,NPNRES=1 $END
PIPE TABLE
ALL
NODE TABLE
ALL
RESER. TABLE
1/
END TABLES
DEMAND FUNCTION
1 0 1 2 .3 4 .1 7 .1 9 .3 12 .8 15 2.15 16 2.3 18 2.3 19 2.2 20 1.7 22 1.13
  24 1/
2-26/
STORAGE FUNCTION
1 1195 0 1200 88357 1205 176715 1210 265072/
1 /
PUMP RULES
1 2 1 2 1197. 3 1200. 2 1204 1/
END SIMULATION

*                              *                              *



6.4.2. DESIGN GUIDELINES FOR COMPLEX NETWORKS

The design procedure, outlined in eight steps, works well if there is one major supply
source so the branched network can be used to start the design process.  If several major
supply sources exist, the same basic procedure can be followed, with each supply at the
head of separate branched systems that are later connected.  However, this approach presup-
poses a knowledge of which portion of the network is supplied by each source.  A more
general procedure may use the following steps as guideline in the design:

1.  Identify the two dominant supply sources for the system.  A criterion for selecting
these sources is to seek the sources with potentially the largest total heads.  Connect
these sources by the shortest path of pipes between them.  In this methodology this
path will be called the dominant path.  In the branched system to be defined, all
other paths will ultimately terminate at one of the nodes along this dominant path.
If only one supply source exists, this dominant path is not defined.

2.  Connect each other supply source to one of the nodes on the dominant path via the
shortest available path of pipes.  These additional paths will be called primary paths.
In selecting the node of the dominant path at which a primary path terminates,
preference is given to nodes closer to the dominant source with the largest total
head.  However, all primary paths can be sequenced in descending magnitude of the
total head available at the primary path.  If only two supply sources exist, they are
the dominant sources and this step is omitted.

3.  Connect the remaining nodes of the network, ones that are not included in the
dominant path or any primary path, by the shortest path of pipes to one of the nodes
of the dominant path.  Whenever this path intersects a node in a previous path, it is
terminated.  These paths of pipes will be called secondary paths.  The sequence in
which these secondary paths are formed is first from nodes of degree one, i.e., dead
end pipes, next from nodes of degree two, i.e., that have only two connecting pipes,
and so on.  The order in which nodes are selected within a given degree is by
descending elevation.

Upon completing these three steps, a branched system of pipes has been formed.  It
includes all nodes of the network and presumably contains the pipes that will convey the
majority of the flow from the supply sources to the various demand points throughout the
network.  The pipes that are not included in this branched network are called additional
loop-forming pipes.  Their diameters can be arbitrarily specified and, if not based on other
criteria, will be the minimum diameter that is permitted.

4.  Establish an appropriate head at each node of the network.  We do this by working
through the paths in the reverse order of their formation.  By ignoring the carrying
capacity of the additional loop-forming pipes, the discharge in each pipe of the
branched system is determined.  At the beginning node of each path, the total head is
equated to the minimum allowable pressure head plus the elevation of the node.
Proceeding from this node to succeeding nodes on the path, the total heads are
established by utilizing the optimum  S   associated with this discharge, as
established above.  If the head at this node was previously assigned, then the
currently computed head is compared with the previous head, and the larger of the
two is retained.  If any pressure head is computed to be less than the minimum
acceptable pressure head, then all previously assigned HGL values along that path
are raised.  If the pressure head exceeds a maximum specified value that requires the
inclusion of a booster pump, then consider putting a booster pipe in this pipe.  The
total head at nodes that are upstream from the pipe in which a booster pump is
placed should then be reduced by the amount of head supplied by the pump.

When this procedure for establishing HGL elevations has progressed to the primary
paths, it is necessary to know the discharges that the reservoirs supply, or receive, in order
to determine the discharges in the pipes on these primary paths.  Rules might be used to
assign a fraction of the total demand (positive or negative) for each source to supply.  



Aside from this discharge requirement, the total heads are computed at nodes along primary
paths in the same manner as along secondary paths.

5.  The total heads at nodes on the dominant path, which have not been assigned
previously, are determined last by a process that is designed not only to allow an
optimal, or near optimal, choice of the size of the pipes, but also to assist the
designer in determining the minimum heads that the two dominant sources of
supply should have.

To understand how these heads are determined, it will be helpful to assume that  Nd
nodes exist along the dominant path, excluding the two dominant supply sources
themselves.  The sketch in Fig. 6.2 has  Nd = 3.  A total of  Nd  different cases will be
examined, which each assume the flow is directed to one of the  Nd  nodes from both sides.  

(1) (2)

(3) (4)

(1) (2) (3) (4)

(1) (2)
(3)

(4)

(1) (2) (3) (4)

Profile view - case 3 head at node 3 minimum

Profile view - case 2 head at node 2 minimum

Profile view - case 1 head at node 1 minimum

Plan view of dominant path

Source

Source

Pipe Pipe

Pipe
Pipe

1

2

3

Hmin or H1

Hmin or H2
Hmin or H3

 H21

 H11

 H12

 H13

 H22

 H23

Hmin or H1

Hmin or H2 Hmin or H3

Hmin or H1
Hmin or H2 Hmin or H3

1

2
3

1

2
3

1
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Figure 6.2  Dominant path cases.

For case  1  the HGL must slope from both directions toward node  1,  which is nearest to
one of the dominant sources;  for case  2  the HGL slopes from both directions toward node
2,  etc. until for the  Nd-th  case the HGL slopes toward the node which is nearest to the
other dominant source.  The elevation of the HGL for each case starts at the node at either
the minimum head,  Hmin,  above the elevation of the node, or at the head,  H,  that may
have been established during step  4.  The slope, or gradient, of the HGL is the optimum
slope corresponding to the discharge carried by the pipe.  These discharges can be
determined since the discharges, or demands, leaving each of the nodes of the dominant path
are known when step 4 has been completed.  At the starting node for each case, the demand
at this node is directed away from the dominant source, from which it receives its supply,
and toward node  Nd + 1.  If the HGL should fall below the minimum head,  Hmin,  or the
total head,  H,  required from step 4, whichever is larger, then the entire HGL must be
raised so it will not fall below any required head.  The raising of the HGL is illustrated in
cases  2  and  3  in Fig. 6.2.  For each case,  i,  the required total heads,  H1i  and  H2i,



for the two dominant supply sources are computed.  The case that produces the smallest
sum of these source heads is selected, i.e. the case which produces the minimum value of
(H1i + H2i)  is used to establish the total head for all nodes along the dominant path
unless judgment suggests that some other heads should be assigned to these supply
sources.  If the dominant source is a reservoir, then this sets the mid-level water surface
elevation, or if this source is a pump, then this determines the head that the pump is to
supply.

This procedure not only establishes the heads of the dominant sources, but it also deter-
mines the water surface elevations or heads at the other sources at the beginning of the
primary paths.

6. With the total heads and discharges now known for each pipe in the branched system
from steps 1 through 5, the diameters of all pipes can be computed.  These
diameters may be computed from the Darcy-Weisbach or Hazen-Williams equation,
or even from some other equivalent equation.



6.5 PROBLEMS

6.1  Decide whether  (a)  an extended time simulation,  (b)  an unsteady solution that ac-
counts for inertial but not elastic effects, or  (c)  a full transient analysis might be most
appropriate for each of the following situations:

(1)  The overall performance of a city water system is to be analyzed to evaluate its
ability to accommodate an proposed new subdivision.

(2)  A pipe supplies a lumber mill that uses a large jet of water to debark tree stumps,
and the valves that control the jet are able to respond quickly so the jet can be shut
down rapidly if needed.

(3)  A network of pipes is used in a manufacturing plant to supply large amounts of
water to numerous locations, and the usage at these locations varies rapidly.

(4)  A pipe network in a large building is to be installed for fire protection.
(5)  An automatic sprinkler system for a golf course has a timer that controls the irriga-

tion of different portions of the course on a regular schedule.

6.2   Obtain an extended time simulation for the  30-pipe,  16-node network in Example
Problem 6.1 if the nodes at which the two demand functions apply are interchanged, that
is, the first demand function now applies to nodes  3,  4,  7,  8,  11,  12,  15,  and  16,
and the second demand function now applies to the other set of nodes.

6.3  Obtain an extended time simulation for the network of Example Problem 6.1 so you
can examine the operational consequences of using "pump rules" that you create, based on
the water level in the tank that is connected to the network by pipe  30.

6.4  Obtain an extended time simulation of the network in Example Problem 6.1.  Start
the simulation with two pumps on.  Reverse in time the application of the two demand
functions so, for example, the demand functions in this problem at  2  hours correspond to
those at  23  hours in the original Example Problem 6.1, the demand functions at  3  hours
correspond to those at  22  hours etc.

6.5   Obtain an extended time simulation for the network shown below if all of the de-
mands change according to the peaking factor schedule in the table.  In the diagram the
ground elevation is listed at each node and below the base of the storage tank.  The
demands on the diagram are  1.5  times the average demands.  The peaking factor is
expressed as a multiple of the average demands.

Peaking factor  PF  as a function of time
Time , hrs.    0    2    4    6    8    9  10  11  12
     PF 1.0 1.2 1.5 2.1 2.5 2.5 2.0 1.4 1.0

Time , hrs.  14  16  18  20  21  22  23  24
     PF 0.8 0.4 0.3 0.25 0.25 0.4 0.8 1.0

Pipe
 No.

Dia.
mm

Length
    m

Pipe
 No.

Dia.
mm

Length
    m

Pipe
 No.

Dia.
mm

Length
    m

   1 380   1000    9 205   1100  17 205   1000
   2 305   1200  10 255   1200  18 150     800
   3 305     800  11 205   1100  19 205   1100
   4 255   1200  12 205   2000  20 205   1000
   5 255   1000  13 255   1200  21 205   2200
   6 255   1200  14 255   2000  22 305     800
   7 305   1200  15 255   2000
   8 205   1000  16 150     800



Pump Table,  Two Parallel Pumps

Q, m3/s 0.40 0.45 0.50
hp,  m 48 45 38

P[1]
(1)

[4]
[3]

[2]
(5)

(6)

(4)

(2)

(3)

(7)

(8)

[6]

[5]

0.05 m3/s

0.015 m3/s

0.03 m3/s

350 m

0.025 m3/s

0.02 m3/s

(13)

(14)

(15)

(16)

[8]

(9)

(10)

(11)

(12)

[10]

[9]

(21)

(22)

[14]

(17)

(18)

(19)

(20)
[12]

[11]

300m

300m

0.03 m3/s
290m

290m

290m

290m

310m

310m

310m310m

300m

300m

[7]

Supply source
[13]

WSE = 410m

WSE = 400m

390m

0.03 m3/s

0.01 m3/s

0.015 m3/s

0.03 m3/s

There are three parallel pumps that can be operated to increase the head in pipe  1,  with the
pairs of values given in the pump table actually representing two parallel pumps in opera-
tion.  The pressure at node  9  is used to control the operation of these pumps as follows:
if  p < 1000 kPa,  then  3  pumps are on;  if  p = 1120 kPa,  then  2  pumps are on;  if   
p > 1200 kPa,  then 1 pump is on.  The tank  [14]  at the end of pipe  22  has a diameter
of  60 m;  its bottom is at elevation  405 m,  and it is  15 m  high.  At node  10  there is
a supply source of water that can be purchased (at a relatively high price), and so it is only
used when the water level in the storage tank  [14]  is below 403 m, and then the source

will be turned on to supply  0.40 m3/s.

6.6   From the extended time simulation of Problem 6.5 decide what components of the
network should be altered to improve its performance.  This may also include rules for the
operation of the pumps and/or the purchase of water from the source at node 10.

6.7   Obtain an extended time simulation in hourly increments over a 24 hour period for
the operation of the 20-pipe network shown below that is supplied by mountain reservoirs
on pipes  1,  2  and  3,  and has a storage reservoir on pipe  15.  The water surface
elevations of the reservoirs are shown on the sketch at time  0, and data in the table below
provides the storage vs. water surface elevation relationship for the reservoirs.  The de-
mands for the  24-hour period begin with those shown on the diagram, and they then
increase to  1.5 times  these values in 3 hours and remain constant thereafter according to
(t = 1 hr,  PF = 1.1),  (t =2 hr,  PF = 1.2),  (t = 3 hr,  PF = 1.5).  Two butterfly valves are
used to control the discharges in pipes  14  and  16,  with loss coefficients  K  given by the

equation  K = 244e- 0.0567x,  in which  x  is the number of degrees of opening  (0o  is

closed and  90o  is open).  The amount of opening of the valve in pipe  14  is controlled as
a schedule:

Time,  hr     0     1     2     3
x,  degrees 8.57 15.71 56.29 90.00



The opening of this valve at  t = 0  produces a loss coefficient  K14 = 150.  The valve in
pipe  16  operates on the following rule that depends on the pressure head at node  9:

Head at node 9    70    80    90   100
x,  degrees 15.71 40.15 56.29 15.71

Its opening at  t = 0  produces a loss coefficient  K16 = 24.6.

Reservoir Storage Function:

   For pipes  1,  2,  and  3           For pipe  15
Water surface
        ft

    Volume
    acre feet

Water surface
        ft

    Volume
    acre feet

         490               0          420               0
         510            40          440            15
         530            80          460            30

[1](1)

[4]

[3][2]

(5) (6)(4)

(2) (3)

(7) (8)
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All demands in gal/min

6.8  Water at a rate  Q = 0.045 m3/s  is to be pumped continuously from a well that has a
water table that is  30  feet below the pump to a reservoir that has an average water surface
elevation that is  100 ft  higher than the pump.  The capital investment for the pump and
well is  $150,000;  electrical energy costs  $0.09/kWh,  and the life of the system is
estimated to be  50  years.  The length of pipe between the well and reservoir is  1200 m,
and the cost of pipe for a selection of sizes is as follows:  150 mm  pipe costs  $60/m;
205 mm  pipe costs  $80/m;  255 mm  pipe costs  $110/m;  305 mm  pipe costs
$150/m;  375 mm  pipe costs  $200/m.  The interest rate is  10  percent.  Select the most
economical pipe size to use.  Assume  e = 0.15 mm.



6.9  The pumps which supply water to the reservoir of the Colorado Springs system are
shown below during a period when no demands occur.  For this operation determine the
amount of energy dissipated by fluid friction, and how much energy is supplied by the
pumps per hour of operation.  If the motor-pump's combined efficiency, on average, is  70
percent, and energy costs  $0.12/kWh,  what is the daily electric bill for each of these
units?  What is the cost per acre foot of water supplied to the reservoir?  If the life of the
system is  35  years and the interest rate is  10  percent, what is the equivalent capital re-
covery cost of each of these items?

All pumps are identical with
the following characteristics:

     Q
 gal/min

   h p

     ft
   400   351
   600   285
   700   234

[1]

(1)

[4]

[3]

[2]

(5)

(6)

(4)

(2)

(3)

(7)

(8)

[6]

[5]
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"

-1
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0'
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[7]
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6.10  A  13,100 ft  long  12-inch  diameter pipe line is anticipated to have a life of  60
years.  If the pipe will cost  $200  per foot to install, what annual benefit must the pipe
produce to be economically viable?  The interest rate for money is  10  percent.

6.11  Assume that the combined  motor-pump efficiencies in Problem 6.9 vary with the
discharge through the pumps according to the values in this table:

Q,  gal/min   400   600   700
Efficiency  0.68  0.77  0.60

Recompute all the costs that were requested in  Problem 6.9 by using linear interpolation
and the data in this table.

6.12  Rework Problem 6.9 with  (a)  all pipes reduced in size by one inch, and  (b)  all
pipes enlarged by one inch.  Then compare these costs with the costs that were determined
in Problem 6.9.

6.13   In Problem 6.9 all pipes were assumed to be steel with a Hazen-Williams coeffi-
cient CHW = 120.  If all pipes were made of  PVC  with an equivalent sand grain rough-
ness  e = 0.000008 in (with unchanged inside diameters that are the standard pipe sizes),
again determine all of the quantities that were requested in Problem 6.9.

6.14   For the Colorado Springs network of Problem 6.9 assume there is a demand of
1000 gal/min  at each of the tee intersections of the pipes, i.e. nodes  3,  5,  7,  9,  and
11.  Now what are the quantities requested in Problem 6.9?

6.15  A set of pump curves (not shown) describes the operating characteristics of a pump
which is to supply a discharge  Q  (in gal/min) that varies in time according to

Q = 140 + 400 sin(π t / 24)

in which the time  t  is in hours.  Accounting for the temporal variation in efficiency and
head with discharge, determine the energy consumed by the pump during one day's opera-
tion.  Either a cubic spline function or a second-order polynomial may be used to
interpolate the variables.  The tables below provide data which has been extracted from the
original pump curves.  If the efficiency of the electric motor that drives the pump is
constant at  85  percent and electrical energy costs  $0.10/kWh,  what is the cost per year
for electrical power to operate the pump, assuming it operates  365  days per year?  The
pump's life expectancy is  30  years, and interest is  8  percent.  What is the equivalent
capital recovery cost for this electrical energy?

Q,  gal/min   140   152   188   224   260   280   308
Efficiency  0.58  0.60  0.65  0.70  0.73  0.75  0.78

Q,  gal/min   352   400   428   456   480   505   534
Efficiency  0.80  0.78  0.75  0.73  0.70  0.65  0.60

Q,  gal/min   140   260   340   420   540
hp,  ft  38.5  35.5  30.5  24.5  12.0



CHAPTER 7
_________________________________________________________________________

INTRODUCTION TO TRANSIENT FLOW

7.1 CAUSES OF TRANSIENTS

To this point we have emphasized steady flows, flows that do not change with time at
any location in the pipeline system.  In this brief chapter we will introduce two general
categories of unsteady flow that we call transient flow.  All transient flows are transitions,
of long or short duration, from one steady flow state to another.  Either of these end states
may be the rest state.  Each transient flow is a response of the fluid to some change in the
hydraulic facilities that control and convey the fluid, or in the surrounding environment,
that influences the flow.

The first type of transient, which we will refer to as quasi-steady flow, is characterized
by the absence of inertial or elastic effects on the flow behavior.  In such a flow the
variation of discharges and pressures with time is gradual, and over short time intervals the
flow appears to be steady.  Typical examples are the drawdown of a reservoir, the draining
of a large tank, or the variation in demand in a water distribution system over a 24-hour
period.  This type of transient was considered briefly in Chapter 6 and will be examined in
more detail in Section 7.2.

The second kind of transient is known as true transient flow, in which the effect of the
fluid inertia and/or the elasticity of the fluid and pipe is an essential factor in the flow
behavior and must be considered.  If inertial effects are significant but pipe and fluid
compressibility effects are relatively minor or negligible, then we have a true transient
flow which we will refer to as a rigid-column flow.  If in addition we must retain the
elastic effects of the fluid and pipe in order to obtain an accurate characterization of the
transient, we will call this a water hammer condition.  The distinction between rigid-
column flow and water hammer is not easily categorized and depends, in a general way, on
how rapidly events change in a system.  For example, the oscillation of the water level in
the surge chamber of a hydroelectric facility can be analyzed accurately as a rigid-column
flow.  In this case inertial effects must be considered, but elastic or compressibility effects
clearly are minor.  On the other hand, the sudden closure of a valve in a pipeline is a water
hammer situation;  to simulate accurately the resulting behavior would require the
inclusion of the elasticity of both the pipe and the liquid in the analysis.  When the valve
is closed more slowly, however, uncertainty arises.  If the closure time is sufficiently long,
then a rigid-column flow analysis may represent the physics of the problem well and
produce good results.  If the analyst is in doubt, then a water hammer analysis should be
used because it is a more complete and general characterization of the flow.  The
groundwork for the study of true transients will be laid in Section 7.3 where both rigid-
column flow and water hammer will receive attention.  The study of water hammer
problems will build on this foundation with extensive coverage in Chapters 8 through 13.
Chapter 12 will treat both rigid-column flow and water hammer analyses in pipe networks.

7.2 QUASI-STEADY FLOW

We begin by considering a large tank, or even a small reservoir, that is full of water.
By large we mean that the depth of the water from the base to the top of the tank is large,
and the area of the water surface at any particular level within the tank is also large in
comparison with the dimensions of the discharge opening.  We wish to drain the water



from the tank, a task that can be accomplished in many ways.  At one extreme the tank
could be emptied by attaching to the base of the tank at point  A  a long pipe of small but
constant cross-sectional area or diameter, with a control valve at the downstream end of the
pipe at point  B,  as shown in Fig. 7.1.  Almost irrespective of how fast the valve is
opened at  B,  the fluid will drain relatively slowly from the tank if the tank dimensions are
sufficiently larger than the pipe cross-sectional area.  At any instant there will be almost
no perceptible motion in the tank itself, and there will be only a gradual temporal
acceleration (positive or negative) of the fluid in the pipe;  thus inertial effects are
insignificant.  A very small region of local convective acceleration will be found at the
pipe entrance.  At any instant the flow processes largely appear to be no different than a
truly steady flow.  After some time has elapsed, it will be found that the water level in the
tank is indeed dropping, and the tank will eventually be empty.  This flow is a good
example of a quasi-steady flow.

A

B

Figure 7.1  The draining of a large tank via a quasi-steady flow process.

Turning briefly to Fig. 7.2, which shows the same tank with a drain line of much
different dimensions, it is immediately apparent that the tank will now empty very quickly,
with all the fluid undergoing a significant acceleration during the process.  This particular
illustration is a deliberate caricature to emphasize the role that fluid acceleration plays in
fluid transients.  In true fluid transients at least one of two kinds of fluid acceleration, tem-
poral or convective, will be a significant factor in any energy principle that is utilized in an
analysis.

A B

Figure 7.2  A change in dimensions leads to a flow which is not quasi-steady.

We turn now to a quasi-steady analysis of the flow from a generalization of the tank or
reservoir in Fig. 7.1 to allow the cross-sectional area  A  of the tank to vary with elevation,
as Fig. 7.3 depicts.  A pipe with properties described by the Darcy friction factor  f, length
L, diameter D, and cross-sectional flow area Ap conveys a discharge  Q
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Figure 7.3  Quasi-steady flow from a tank of arbitrary cross-section.

from the tank.  In the figure the  EL  is drawn for the time instant  t.  In passing from the
tank to the atmosphere through the pipe, the fluid undergoes a local entrance loss  hLE,  a

Darcy pipe friction loss  hf,  and exits with a mean velocity head  V2/2g.  The sum of
these terms is the instantaneous head  h  recorded in Eq. 7.1.  The loss coefficient  KE  for
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L
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
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
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V 2

2g
(7.1)

the entrance loss is representative of any local loss, or sum of local losses, encountered by
the flow between the tank and the exit;  all such losses are treated identically.  From Eq.
7.1 the exit velocity is

V =
2gh

1 + KE + f
L

D






1/2 (7.2)

and the discharge is

Q = VAp =
Ap 2gh

1 + KE + f
L

D






1/2 (7.3)

If we apply the continuity principle between the tank water surface and the pipe exit, we
equate the fluid volume that exits from the pipe over the small time interval  dt  to the
amount of fluid that is removed from the tank over that interval, and

Qdt = A(− dh) (7.4)

The minus sign is needed because the quantity on the left side is intrinsically positive, but
dh  is itself negative as the water surface elevation drops with time.  Thus we find the time
interval  t2 -  t1  for the water surface elevation to change from  h1  to  h2  is

t2 − t1 = dt
t1

t2

∫ = −
Adh

Qh1

h2

∫ (7.5)

in which the area  A  = A(h)  is in general a function of the tank configuration, and the
discharge  Q = Q(h)  from the steady-flow work-energy principle, Eqs. 7.1-7.3.  One
common additional notational simplification is to let
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C

= 1 + KE + f
L

D






1/2
(7.6)

so the discharge can be written in the form of the standard orifice equation

Q = CAp 2gh (7.7)

Now we apply these equations to determine the time that is required to drain partially a
tank of constant cross-sectional area  A = Ao.  This situation includes the common case of
a cylindrical tank of fixed diameter with a vertical centerline, and it also includes tanks
having square and other cross-sectional shapes.  In this case the time to drain the tank from
level  h1  to level  h2  is

∆t = t2 − t1 = −
Adh

CAp 2ghh1

h2

∫ =
− Ao

CAp 2g
h−1/2dh

h1

h2

∫ =
− 2Ao

CAp 2g
h2 − h1[ ] (7.8)

in which the removal of  C  from within the integral is only permissible when  f  is
constant.  If the top and bottom of this fraction are multiplied by the common factor

h2 + h1[ ] ,  an interesting practical interpretation of this result is obtained:

∆t =
Ao h1 − h2( )

1
2

CAp 2g h1 + h2[ ]
=

Volume

Average Q
(7.9)

In words, the elapsed time is the ratio of the tank volume that is emptied to the average of
the discharges that occur at the beginning and end of the time period, a result that can aid
computations and is intuitively appealing.  For this result to be valid, however, the cross-
sectional area and also the friction factor that is a part of  C  must remain constant
throughout the draining process.

If either of the foregoing restrictions does not hold, the integral in Eqs. 7.5 and 7.8 will
not simplify as it did in Eq. 7.8.  For example, if the cylindrical tank is laid on its side,
then  A(h)  no longer is constant.  It is then possible (but not very practical) to evaluate
the resulting expression as an elliptic integral (Byrd and Friedman, 1971), but it is
normally more convenient just to evaluate Eq. 7.5 by use of some numerical integration
procedure;  the Trapezoidal rule or the more accurate Simpson's rule (Press et al., 1992) are
just two of many possibilities.  Closed-form solutions are also known to exist for certain
area variations  A(h)  with a vertical centerline, specifically the cone, pyramid and parabo-
loid, but the form of these solutions is algebraically more complex and of limited utility.

The flow defined in Fig. 7.3 can be made more general by allowing a nonzero constant
inflow  Qo  at the top of the tank.  We will again write the outflow from the pipe in the
form of Eq. 7.7.  At first glance there appear to be two inflow cases, one with  Qo > Q
and the water surface in the tank rises, and the other with  Qo < Q  and the water surface
falls.  Such turns out not to be the case, for an individual consideration of each case leads
to the restatement of Eq. 7.4 for both possibilities as

Adh = (Qo − Q)dt (7.10)

If we again assume that  A = Ao  and  f  are constants, then Eqs. 7.7 and 7.10 lead to



dt =
A

Ca 2g
⋅

dh
Qo

Ca 2g
− h

(7.11)

With integration between the same limits as in Eq. 7.8, we obtain

∆t =
2A

Ca 2g( )2 Q1 − Q2 − Qo ln
Qo − Q2

Qo − Q1




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



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
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(7.12)

after some care in integration and several lines of algebra.  This result, however, is only
valid if  Qo  is outside the discharge interval  (Q2, Q1);  otherwise Eq. 7.12 will lead to
the logarithm of a negative number.  The cause of this behavior is not difficult to
understand.  During the outflow process the discharge  Q  takes on all values between  Q1
and  Q2.  If  Qo  were one of these intermediate values, then an equilibrium between
inflow and outflow in the tank would occur at that discharge, the unbalanced driving force
for the transient would cease, and the process would not continue on to state  2.  Moreover,
if the inflow were to match either  Q1  or  Q2,  then Eq. 7.12 predicts that the time
interval that is required to reach the end state is infinite (i.e., a steady equilibrium is never
quite reached, according to this representation of the flow).

One additional generalization that can be useful is to allow the inflow to be  Qo(t),  a
time-varying inflow.  A re-organization of Eq. 7.10 yields

dh

dt
=

Qo (t) − Q(h)

A(h)
= F(t, h) (7.13)

in which  F(t, h)  is simply a shorthand, functional representation of the formula that
precedes it.  Only a little effort is needed to convince oneself that this equation can not be
integrated directly as a quadrature.  Press et al. (1992) present a chapter on various
alternatives in integrating ordinary differential equations, and others have written entire
books;  Appendix A on numerical methods presents the fourth-order Runge-Kutta formula
(Section A.4.2) as one reliable way to solve this kind of problem.  The formula in the
appendix is described in terms of the variables  y(x)  which replace the variables  h(t)  here.

The concept of quasi-steady flow can be applied to a variety of system configurations,
including some which are much more extensive than the cases discussed here, so long as it
is correct to assume that no large accelerations are present in the transient.  In fact, the
extended-time simulations in Chapter 6 to determine long-term variations in network
demand are quasi-steady flow applications.  In such cases the time dependency will only
enter the problem through the mass conservation statement.

Example Problem 7.1
A spherical tank of internal radius  R1 = 20 ft  supplies water to a horizontal cylindrical

tank of internal radius  R2 = 15 ft  and length  L = 20 ft  through an  8-in-diameter pipe

that is  500 ft  long (e = 0.004 in  and  ν = 1.217x10- 5 ft2/s).  The base of the cylindrical
tank is  25 ft  lower than the bottom of the spherical tank.  A constant inflow  Q1 = 0.5

ft3/s  enters the spherical tank, which has a small opening to admit atmospheric pressure
(14.7 lb/in2 absolute) to the top of the tank.  The cylindrical tank is closed;  at time  t = 0
the pressure of the air over the water is  13  lb/in2.  In this problem assume air behaves
isothermally with a temperature of  60oF.  The external discharge  Q2  leaving the
cylindrical tank is described by data in the following table, which should be converted into
a continuous function by using a cubic spline function.



Time, s        0   500 1000 1600 2000 2400 3000 3600
Q2, ft3/s  0.00  3.27  3.85  4.68  5.00  4.80  4.00  0.00

If at time  t = 0 the water depth in the spherical tank is  Y10  = 30 ft  and in the
cylindrical tank is  Y20  = 8 ft,  determine the discharge between the tanks and the water
depths and volumes in each tank over one hour  (3600 s)  in increments of  30 seconds.

Cylindrical tank

Y1

∆z

∆H

Y2

Q1
R1

R2
Q2

β1

β2

Spherical tank

D L

First we must establish some relationships between the volume and depth in each tank.
In the spherical tank the differential volume element  dV   is a thin circular slice which can

be written as  dV = π r2dY = πR2 sin2 β1 dY   with  cosβ1 = 1 − Y/R ,  from which we
find  dY = R sinβ1 dβ1, and the differential volume becomes

dV = πR3 sin3β1 dβ1

If this expression is integrated over the range of  β1  from  0 to  π ,  we obtain the entire

spherical volume  V = 4πR3/ 3.  Partly full volumes can than be expressed as a function
of  β1  by integrating from  0  to  β1  to obtain

V = (πR3/ 3)[2 − cosβ1 (sin2β1 + 2)]

With the aid of the identity  sin2β + cos2β = 1 we find the relation  β1(Y)  between angle

and depth is  sin2β1 = 2 (Y/R) − (Y/R)2, which allows us to write the volume of water
in the spherical tank directly as a function of depth:

V = (πR3/ 3)[3(Y/R)2 − (Y/R)3 ] = πY 2 (R − Y/3)

In a similar way the volume as a function of the angle  β2  can be shown to be

V = LR2 (β2 − cosβ2 sinβ2 )

with  L  being the length of the tank and  Y2 = R2(1 - cos β2).
Since  dV /dt   represents the net discharge from a tank,  the following two ODEs each

describe the rate of change of water surface elevation in a tank:



dY1
dt

=
Q1 − Q

πY1 2R1 − Y1( )
dY2
dt

=
Q − Q2

2LR2
2 1 − cos2 β2( )

Here  Q1  and  Q2  are respectively the prescribed inflow and outflow from tanks  1  and  
2.  The discharge  Q  in the pipe must also satisfy the hydraulic equation

F =
fL

D
+ KL∑





Q Q

2gA2 − Y1 + ∆z + Y2 +
M po

γρoVair
= 0

The last term is the pressure head created by the air pressure above the water surface in the
tank (more on this topic can be found in Secs. 12.5 and 13.2), in which  M   is the air
mass in the tank,  γ   is the specific weight of water,  po  is the initial absolute air
pressure, and  ρo  is the corresponding air density, found from the perfect gas law.

Program  SHPTANK solves this problem.  To review the details of its structure, the
reader should obtain a listing of it from the  CD.  Principally it calls two subroutines,
SPLINESU  to accomplish the cubic spline interpolation, and  RUKUST  to solve the two
ODEs  simultaneously.  Within subroutine  SLOPE  that supplies the two derivatives
dY1/dt  and  dY2/dt   to  RUKUST  we will find that the hydraulic equation is solved there
for the values of  Y1  and  Y2  by use of the Newton method.  The input file to solve this
problem is

20 15 20 30 8 500 0.6666667 0.00033333 1.217E-5 1.5 30 120 32.2 25 420
3556 0.5 8 0 0 500 3.27 1000 3.85 1600 4.68 2000 5 2400 4.8 3000 4 3600 0

A portion of the solution is listed in the following table:

 Time  Y1    β2
 Y2     V1   V2   Q

  sec    ft radians    ft      ft3     ft3 ft3/s

     30 29.91  1.086   8.01 28186.7 3032.6 3.414
     60 29.82  1.088   8.03 28099.5 3042.2 3.401
     90 29.73  1.089   8.06 28012.7 3055.0 3.386
     .
     .
     .
1530 26.18  1.048   7.51 24274.7 2771.1 3.261
1560 26.11  1.045   7.48 24191.8 2752.3 3.266
1590 26.04  1.043   7.44 24108.7 2734.4 3.271
1620 25.96  1.037   7.37 24025.5 2697.0 3.286
1650 25.89  1.030   7.27 23941.5 2646.0 3.309
     .
     .
     .
3480 21.23  0.908   5.77 18294.4 1902.3 3.334
3510 21.16  0.907   5.76 18209.5 1896.6 3.332
3540 21.09  0.905   5.73 18124.5 1886.4 3.332
3570 21.02  0.902   5.70 18039.5 1872.0 3.334
3600 20.96  0.899   5.67 17954.5 1853.9 3.338

*                              *                              *

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


7.3 TRUE TRANSIENTS

The study of true transient flows must include fluid inertia and may also include, in
addition, the elasticity or compressibility of the fluid and the conduit.  The analysis of
transient flows in either case requires the application of Newton's second law which leads
to the Euler equation.  In Section 7.3.1 the Euler equation is developed;  in Section 7.3.2
it is employed to study several rigid-column flow problems where the fluid inertia must be
considered but where elasticity is unimportant and can be omitted.  In Section 7.3.3 we
briefly investigate the effects of elasticity to demonstrate this additional factor requires a
different approach to the solution of such problems.

7.3.1. THE EULER EQUATION
The Euler equation is derived by applying Newton's second law to a small cylindrical

control volume of fluid at the pipe centerline, as shown in Fig. 7.4.  The resulting
equation will apply to one-dimensional flow along the pipeline when we disregard
variations in fluid or flow properties across the cross section.  Further, the equation will
apply to flows of both constant and variable density, so it is valid for both rigid-column
and water hammer flows.

τ  π
 d ds

.

v
d

dW

θ

( p + ∂p/∂s ds) dA

streamline

ds

p dA

s

Figure 7.4  A cylindrical fluid element with all forces shown.

Along the streamline direction  s,  Newton's second law gives

Fs∑ = mas = m
dv

dt
(7.14)

where  m  is the fluid mass in the cylindrical fluid parcel.  The term  dv/dt  is in general the
total or substantial derivative of the fluid velocity.  Substituting the applied forces into
this equation and writing the mass in terms of density and volume results in

pdA − p +
∂p

∂s
ds






 dA − dW sinθ − τ πd ds( ) =

dW

g

dv

dt
(7.15)

If we divide by  dW  to produce a non-dimensional equation that is written per unit weight,
and the local pipe slope is expressed in terms of distance and elevation along the pipe, we
arrive at the one-dimensional Euler equation

−
1
γ

∂p

∂s
−

∂z

∂s
−

4τ
γd

=
1
g

dv

dt
(7.16)



If we now expand the cross-sectional area of the parcel to fill the pipe cross section and
introduce the average velocity  V,  we obtain a more useful equation:

−
1
γ

∂p

∂s
−

∂z

∂s
−

4τo

γD
=

1
g

dV

dt
(7.17)

Here  τo  is the shear stress at the wall.  Because the wall shear stress is usually not of
primary interest and because we will be working almost entirely with cylindrical pipes, we
prefer to express the shear stress in terms of the Darcy-Weisbach friction factor  f  as

τo =
1
8

f ρV V (7.18)

The form of the velocity representation in this equation is desirable because it preserves the
proper direction of the shear force whenever the flow reverses direction.

With the substitution of Eq. 7.18 into Eq. 7.17 and the assumption that the local
elevation of the pipe can be described solely as a function of location  s,  we obtain the
Euler equation of motion

1
g

dV

dt
+

1
γ

∂p

∂s
+

dz

ds
+

f

D

V V

2g
= 0 (7.19)

If we also introduce the piezometric head  H  via  p = ρg(H - z)  and expand the total
derivative in the form

dV

dt
=

∂V

∂t
+ V

∂V

∂s
(7.20)

then the Euler equation can be written in the alternative form

1
g

∂V

∂t
+

∂
∂s

H +
V 2

2g









 +

f

D

V V

2g
= 0 (7.21)

since  V∂V/∂s  =  ∂(V2/2)/∂s.  The sum of piezometric head and velocity head that appears
in the middle term is the sum that is usually displayed in diagrams as the Energy Line.

7.3.2. RIGID-COLUMN FLOW IN CONSTANT-DIAMETER PIPES
The neglect of the elasticity of the pipe and fluid in a pipe of constant diameter forces

any change in velocity, in theory, to occur instantaneously throughout the entire pipe.  In
addition, the steady form of the mass conservation equation applies throughout the pipe so
that the velocity everywhere in the pipe is the same at any given time.  This section will
only examine such flow in single pipes in order to emphasize basic principles;  similar
transient flows in pipe networks are studied in Chapter 12.

There are relatively few closed-form solutions of Eqs. 7.19 or 7.21, even with these
restrictions.  One of these solutions describes the development or establishment of flow
from rest through a horizontal pipe from a constant-head reservoir, as shown in Fig. 7.5.

In the simpler version of the flow establishment problem we assume that the fluid is
inviscid, i.e. without friction, so the last term in Eq. 7.21 is dropped and only the inertia
of the fluid is important.  First we must choose the limits of integration, with respect to
the distance  s,  to begin the solution of Eq. 7.21;  we select section  1  at the upstream
end of the pipe (even though the pressure is changing rapidly and the velocity is indeed
nonuniform over this section;  see Street et al., 1996, pp. 362, 367) and section  2  to be
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Figure 7.5  Constant-head reservoir with valve at downstream end of horizontal pipe.

just upstream from the valve.  Now we formally integrate with respect to the distance  s
from the reservoir, point  1,  to the valve, point  2:

1
g

∂V

∂t1−2∫ ds = −
∂
∂s

H +
V 2

2g









1−2∫ ds (7.22)

Since continuity assures us that all of the fluid in the pipe must undergo the same
acceleration, this leads to

L
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= − H +

V 2
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
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
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1

(7.23)

From Eq. 7.23 we see that the acceleration term is the difference in fluid energy per unit
weight, which is also the difference in energy grade line values, between the two end points
of the integration.  The valve is instantaneously opened fully at  t = 0,  and flow develops
thereafter.  When  t = 0+  at section  2,  H2  drops to zero and remains so, and  V2 = V
will grow with time from  0  to the steady state velocity  V0.  If a separate Bernoulli
equation is now written between the reservoir and section  1,  assuming no energy loss,
then the sum of the two terms at section  1  is simply the reservoir energy per unit weight
or head  HR, a constant.  Thus

L

g

dV

dt
= HR −

V 2

2g
(7.24)

in which the remaining derivative is a function of time only, an ordinary derivative.  After
the flow has become established, i.e. steady, the left term becomes zero, and the steady
velocity  V0  can be found from the remainder of Eq. 7.24 to be

V0 = 2gHR( )1/2 (7.25)

To determine the discharge behavior as a function of time during the establishment time
interval, we solve Eq. 7.24 for  dt  and integrate the resulting expression as
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0

t

∫ =
L

g

dV

HR −
V 2

2g
0

V

∫ (7.26)

or

t = 2L
dV

V0
2 − V 20

V

∫ (7.27)

We can either use partial fractions or a table of integrals to evaluate this expression.  Upon
some additional algebra, we find the final result as

t =
L

V0
ln

V0 + V

V0 − V









 (7.28)

From Eq. 7.28 we learn that, strictly speaking, the flow-establishment time is infinite,
since the logarithm does not remain bounded as  V   approaches  V0.  Since this result is
not a practical one, it is usual to declare the flow to be steady when  V = 0.99V0.

It is more realistic to consider the establishment of flow in the presence of fluid friction
and local losses, so we now re-examine this problem.  We assume for simplicity that the
friction factor remains constant.  In this case the integration of Eq. 7.21 with the inclusion
of pipe friction yields
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so long as  V  is always positive.  The result is similar to Eq. 7.24, but the evaluation of
the energy at sections  1  and  2  now changes to account for the local losses at the
entrance and through the valve, respectively.  Writing an energy equation between section
1  and the reservoir now produces  HR - KEV2/2g  as the sum of terms at section  1;  in
other words, the energy level in the reservoir is now reduced by the local head loss of the
entrance as the flow moves to section  1.  Between the downstream exit and section  2  a
local energy loss occurs at the valve, causing the head to be  H2 = KVV2/2g  above the
datum.  With these substitutions and some algebraic rearrangement, we find

L

g

dV

dt
= HR − 1 + KE + KV +

f L

D

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
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V 2

2g
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V 2
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(7.30)

defining  C1  in Eq. 7.30 to shorten subsequent algebra.  The steady-state velocity  V0  is
in this case found to be

V0 = 2gHR / C1( )1/2 (7.31)

The integration of Eq. 7.30 closely follows the procedure for integrating Eqs. 7.26 and
7.27, but with  2L/C1  replacing  2L  in Eq. 7.27, assuming Cl is constant.  The  
solution is

t =
L

V0C1
ln

V0 + V

V0 − V
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We see that the time to reach steady flow remains infinite, but the steady-state velocity
itself has been reduced by the effects of pipe friction and the local losses.  We also see that
the deletion of these real-fluid effects leads to  C1 = 1  and the previous solution.

Example Problem 7.2
A horizontal pipe 24 inches in diameter and 10,000 ft long leaves a reservoir 100 ft

below its surface and ends at a valve.  The steady-state friction factor is  0.018  and is
assumed to remain constant during the acceleration process.

(a)  If the valve is suddenly opened completely, what is the time that is required to attain
99%  of the steady-state velocity?  Neglect the frictional loss and local losses in
this part.

(b)  Solve the problem again, including pipe friction but omitting local losses.
(c)  Solve the problem again, including pipe friction and using loss coefficients of  0.5

and  5.0  for the entrance and valve, respectively.
(d)  Plot the results of (c) to show how the velocity approaches the steady state.
(e)  Repeat (c) but allow  f  to vary, selecting  e  to produce  f = 0.018  at steady state.

For part (a) we first use Eq. 7.25 to find the steady-state velocity:

V0 = 2gHR( )1/2 = [2(32.2)(100)]1/2 = 80.2 ft /s

From Eq. 7.28 the time to reach  99%  of this velocity is

t =
L

V0
ln

V0 + V

V0 − V
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ln
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80.2

ln 199[ ] = 660 s

For part (b) we begin by computing  V0  from Eqs. 7.30 and 7.31 with  KE = KV = 0:

C1 = 1 + KE + KV +
f L

D
= 1 + 0 + 0 +

0.018(10,000)

24 /12
= 91.0

V0 = 2(32.2)(100.0) / 91.0[ ]1/2 = 8.41 ft /s

From Eq. 7.32 we find

t =
L

V0C1
ln
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V0 − V
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(8.41)(91.0)

ln(199) = 69.2 s

In part (c) we repeat the part (b) calculation with  KE = 0.5  and  KV = 5.0,  leading to
C1 = 96.5,  V0 = 8.17 ft/s,  and a time  t = 67.2 s  for the flow to become established.

A short computer program should be written to solve part (e) with  f  varying.  To
determine the correct pipe roughness  e  for the simulation,  Eq. 7.30 with  dV/dt = 0  is
solved simultaneously with the Colebrook-White equation;  the results are  e = 0.00129 ft
and  V0 = 8.169 ft/s.  Then Eq. 7.30 is re-arranged to separate the variables, and a program
is written to perform the numerical integration.  A program to accomplish the integration
is listed below;  for the integration the program calls  SIMPR,  a subroutine that uses
Simpson's rule (see Appendix A).  The friction factor will be determined by equations in
Table 2.2 with a few small changes:  if  Re < 100, then  f = 0.64;  the transitional
Colebrook-White formula will be used whenever  Re > 2100 rather than 4000.  Some care
must be taken to assure that the right side of Eq. 7.30 never becomes zero or negative;



hence the range of integration for  V  is from  0  to  0.99V0 = 8.087 ft/s.  In this instance
the time to steady flow is  66.4 s.

      EXTERNAL EQUAT
COMMON SF
SF=7.5
CALL SIMPR(EQUAT, 0.0, 8.09, TIME, 1.0E-04, 30)
WRITE(*,*)  ' Time = ', TIME
END

C
FUNCTION EQUAT(V)
COMMON SF
RE = 1.6433854E5*V
IF (RE.LT.100.) THEN
FR = 0.64
ELSEIF (RE.LT.2100) THEN
FR = 64.0/RE
ELSE

    1 SF1 = SF
SF = 1.14-2.0*ALOG10(6.3625E-4 + 9.35*SF1/RE)
IF(ABS(SF-SF1) .GT. 1.0E-06) GO TO 1
FR = 1.0/SF/SF
ENDIF
DEM = 100.0 - (6.5 + 5000.0*FR)*V**2/64.4
IF(DEM .LT. 0.01) THEN
EQUAT = 31055.9
ELSE
EQUAT = 310.559/DEM
ENDIF
RETURN
END

The plot of the results from part (c), requested as part (d), shows the velocity increases
rather rapidly until it reaches 80 to 90% of the steady-state value.  By that time the
acceleration has decreased noticeably, and steady state is approached asymptotically.  As
part (e) shows, only a short program is needed to add more accuracy to the computation,
but in this particular example the difference in time to steady state is only four percent.
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From these computations we see that pipe friction is the dominant factor in the flow
establishment process when the pipe is sufficiently long.  Overlooking this factor would
be a severe error, part (a), but for very long pipes the effect of local losses is truly a minor
effect, with the the steady-state velocities and flow-establishment times only differing by a
few percent in this problem.

*                              *                              *

The simulation of flow shutdown by use of Eq. 7.30 for the physical problem depicted
in Fig. 7.5 is actually a more difficult problem than the startup problem.  The principal
difficulty is in representing correctly the loss coefficient  KV  for the valve, because it is
incorrect to model this coefficient as a constant in this problem.  Instead we now have a
continually increasing head loss, and loss coefficient, across the valve which with pipe
friction (and, to a minor extent, local losses) causes the flow to decelerate and eventually
stop.  We assume that all loss coefficients under unsteady-flow conditions are unchanged
from steady-flow conditions at the same velocity.  The head loss in the system will be the
pipe friction loss described by the Darcy-Weisbach equation, the local entrance loss, and the
valve head loss, as the governing equation, Eq. 7.30, shows.  Since  KV  varies with the
valve setting, which in turn changes in some predetermined manner with time, a closed-
form solution of this  ODE  is not possible.  Thus we must solve this nonlinear equation
by numerical methods.

Here we choose the fourth-order Runge-Kutta method, described in Appendix A.4.2, as
the numerical solution technique for this problem.  Equation 7.30 is rewritten in the form

L

g

dV

dt
= HR − 1 + KE + KV +

f L

D






V 2

2g
= F(t,V ) (7.33)

Now the Runge-Kutta method can be applied directly, once the details of computing  KV
and  F(t, V)  are set.  To complete the setup, we must know the valve operating schedule
(percent open  P  vs. time) and the relation between  KV  and percent open  P.

If in addition we wish to know the maximum pressure head to occur (probably at the
valve) as time progresses, we can insert the computed velocity in  hL = KVV2/2g  to find
this head.  However, one complicating factor occurs at the instant of closure;  this loss
coefficient becomes infinite as the velocity approaches zero, creating an indeterminate
pressure head.  Even under the best of circumstances, any numerical procedure will produce
unreliable results at this point.  Fortunately, the maximum pressure usually occurs
somewhat before complete valve closure, so the numerical analysis will be terminated a
fraction of a second before complete closure.  Example Problem 7.3 presents the solution
process for the reservoir-pipe system of Fig. 7.5.

Example Problem 7.3
The reservoir head on the pipeline in Fig. 7.5 is 60 ft.  The  12 in-diameter line is

3000 ft  long with an equivalent roughness  e = 0.012 in.  Since the valve has been fully
open for a long time, the flow of water is steady.

(a)  Calculate the steady-state velocity in the line assuming there is no loss at the valve.
Then compute the maximum pressure in the line if the valve closes so that the rate
of decrease in velocity is linear in time from its steady-state value to zero in 20 sec.

(b)  Now assume the valve at the downstream end is a GA Industries  12-in  globe valve
whose loss characteristics are given in Appendix C.1 as a function of valve opening.
Compute again the steady-state velocity with the valve fully open.  Assuming the
valve closes in  20 sec  at a rate that is linear in time, find the maximum pressure in
the line.

(c)  Repeat part (b) but employ a cubic spline interpolation to represent the valve data.



To begin part (a) and find the steady-state velocity, we can apply Eq. 7.30 directly with
dV/dt = 0  and  KV = 0:

HR = 1 + KE + KV +
f L

D






V0
2

2g

60 = 1 + 0.5 + 0 +
f (3000)

1.0






V0
2

64.4

If we solve this equation with the Colebrook-White equation, we obtain  V0 = 7.91 ft/s
and  f = 0.0201.  The linearly decreasing velocity creates a constant deceleration so that

L

g

dV

dt
=

3000
32.2

(− 7.91)

20
= − 36.8 ft

Now we can apply Eq. 7.29 from section  1  to  2.  Since (H + V2/2g)1 = HR - KEV2/2g
and  H2 = z2 + p2/γ  = 0.0 + p2/γ,  we have

L

g

dV

dt
= −

p2
γ

+
V 2

2g









 + HR − KE

V 2

2g









 −

f L

D

V 2

2g

L

g

dV
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= −

p2
γ









 + HR − 1 + KE +

f L

D






V 2

2g

− 36.8 = −
p2
γ









 + 60 − 1 + 0.5 +

f (3000)

1.0






V 2

64.4

or
p2
γ

= 96.8 − 1.5 + 3000 f( ) V 2

64.4

From this equation we see clearly that the pressure head at the valve increases as the
velocity decreases, reaching a maximum at the instant of closure.  We conclude that

p2
γ











max
= 96.8 ft or p2( )max = 96.8

62.4
144







= 42.0 lb / in2

In part (b) we repeat the sequence of computations in part (a) but represent the hydraulic
behavior of the valve more accurately.  We start by again computing the steady-state
velocity, but this time we include the actual valve loss in the computation. Following
Appendix C.1, we write

KL = KV = 890
D4

CV
2

and for the  12-inch globe valve we find in the second table of this appendix  CV = 1750,
leading to



KV = 890
124

17502 = 6.0

We return to the first two equations of the solution for part (a) and replace  KV = 0  with
KV = 6.0  there to obtain the steady velocity as  V0 = 7.55 ft/s  and  f = 0.0201.

Before we can apply the Runge-Kutta method, we must devise a way to determine the
value of  KV  as a function of time.  The valve opening will be prescribed at any time by
the closure schedule;  in this case we assume a linear behavior.  It only remains to find 
KV  for any given opening.  Because the data for the GA Industries valve are given in
terms of  CV,  we will  determine  CV  at a given opening and convert to the
corresponding  KV   by using the formula from Appendix C.1.  The data pairs of  P =
percent open  vs.  CV/CV0  in the following table (CV0  is the fully open value) are read
from Appendix Fig. C.1:

      P    0    10   20   30   40   50   60   70   80   90 100
CV/CV0 0.00 0.055 0.13 0.26 0.42 0.60 0.74 0.83 0.92 0.97 1.00

From line two in this table we clearly see at the instant of valve closure that  CV = 0.0,
with  KV → ∞ .  We will avoid this problem by halting the numerical analysis two time
increments before the valve closure is complete.  If the maximum pressure head occurs
before complete closure, little will be lost when the analysis is terminated then.

To develop an equation to fit the tabular data, we first replot the data.  The fitting
equation must capture the point of inflection that is seen in the plot.  Hence we select a
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cubic polynomial as the simplest function which will satisfy this requirement.  The
equation is

CV = CV 0 aP3 + bP2 + cP + d[ ]
where  P  is the measure of the valve position and  a, b, c, d  are the fitting coefficients.

The conditions we will impose on the polynomial to find the four coefficients are

CV/CV0  =    0 when  P  =    0
CV/CV0  =  1.0 when  P  = 100
Slope      =  0.003 when  P  =    0
CV/CV0  =  0.42 when  P  =   40

The third condition seems at first glance to be an odd requirement.  However,  a valve only
generates enough head loss to decelerate the flow significantly when it is very close to
complete closure.  Hence, it is important to represent the empirical curve as accurately as
possible near the closure point.  One good way to assure that the shape of the curve near
closure is accurate is to measure the slope of the plot at closure and then specify this slope.

Application of these four conditions results in the following equation, which is also
plotted on the graph as a dashed curve:

CV = CV 0 − 1.96 ×10−6 P3 + 2.66 ×10−4 P2 + 3.00 ×10−3 P[ ]
The creation of this equation to represent the flow coefficient over the full range of valve
motion suggests that Eq. 7.33 could be integrated to yield a closed form solution.
However, the variables in the equation do not separate.  Further, if the valve closure
schedule is more complex than the motion of this example, the relation between  CV  and
time will become progressively more complex.  Hence we will proceed with a numerical
solution as the most broadly applicable approach.

Program  VALCLO1,  to be found on the  CD,  generates a solution for this example
problem for the specified conditions;  in it the valve coefficient is modeled by the third-
order polynomial.  This data file will generate the solution:

EXAMPLE PROBLEM 7.3 RIGID COLUMN THEORY VALVE CLOSURE
&SPECS HR=60.,VZERO=7.57,D=12.,L=3000.,E=0.012,KE=0.5,TCLOSE=20.,
       DELT=1.0,A=-0.00000196,B=0.000266,C=0.00300,CVZERO=1750./

An increment  ∆t = 0.10 sec  ought to produce accurate numerical results.  To check this
assumption, additional runs with  ∆t =  0.50,  0.25,  and  0.05 sec. were made, and  ∆ t =
0.10 sec does produce a solution that is independent of  ∆ t.  The solutions confirmed a
maximum pressure head of  228 ft  occurring about  18 sec  after beginning the  20-sec
valve closure.  Some output from the computer analysis follows, using a print interval of
1.00 sec  to conserve space:

      ***************
      * INPUT DATA  *
      ***************

  EXAMPLE PROBLEM 7.3 - RIGID COLUMN THEORY VALVE CLOSURE
        HR =   60.0 FT
     VZERO =   7.57 FT/S
         D =  12.00 IN
         L = 3000.0 FT
         e =  0.012 IN

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


        KE =  0.50

    TCLOSE =   20.0 SEC
      DELT =  1.000 SEC

         A = - 0.196E-05
         B =   0.266E-03
         C =   0.300E-02
    CVZERO =  1750.0

        ***********
        * RESULTS *
        ***********

  TIME,SEC  V,FT/S  PRESSH,FT
  --------  ------  ---------
     0.00     7.57       5.4
     1.00     7.57       5.3
     2.00     7.56       5.4
     3.00     7.56       5.6
     4.00     7.55       6.1
     5.00     7.54       6.6
     6.00     7.52       7.5
     7.00     7.50       8.6
     8.00     7.46      10.2
     9.00     7.42      12.4
    10.00     7.35      15.6
    11.00     7.25      20.1
    12.00     7.11      26.8
    13.00     6.91      37.1
    14.00     6.60      53.3
    15.00     6.12      79.1
    16.00     5.37     118.9
    17.00     4.22     172.3
    18.00     2.62     215.0
    19.00     0.98     194.6

An alternate approach to the construction of the cubic-polynomial to represent the valve
coefficient is to apply a spline fit to the coefficient data and otherwise proceed as before.
Program  VALCLO,  also on the  CD, implements this approach.  The input and output
data files for this alternative follow.  The input file is

EXAMPLE PROBLEM 7.3 RIGID COLUMN THEORY VALVE CLOSURE
&SPECS HR=60.,VZERO=7.57,D=12.,L=3000.,E=0.012,KE=0.5,TCLOSE=20.,
       DELT=1.,CVZERO=1750./
0 0 10 0.055 20 0.13 30 0.26 40 0.42 50 0.6 60 0.74 70 0.83 80 0.92 90
0.97 100 1.0

The output file is

      ***************
      * INPUT DATA  *
      ***************

  EXAMPLE PROBLEM 7.3 - RIGID COLUMN THEORY VALVE CLOSURE

        HR =   60.0 FT
     VZERO =   7.57 FT/S
         D =  12.00 IN

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


         L = 3000.0 FT
         e =  0.012 IN
        KE =  0.50

    TCLOSE =   20.0 SEC
      DELT =  1.000 SEC

    CVZERO =  1750.0

        ***********
        * RESULTS *
        ***********

  TIME,SEC  V,FT/S  PRESSH,FT
  --------  ------  ---------
      .00     7.57       5.4
     1.00     7.57       5.5
     2.00     7.56       5.7
     3.00     7.55       5.9
     4.00     7.54       6.3
     5.00     7.53       6.9
     6.00     7.51       7.7
     7.00     7.49       8.5
     8.00     7.46       9.5
     9.00     7.42      11.2
    10.00     7.37      14.1
    11.00     7.28      19.0
    12.00     7.14      27.1
    13.00     6.92      39.6
    14.00     6.57      59.8
    15.00     5.99      93.8
    16.00     5.06     141.6
    17.00     3.77     175.0
    18.00     2.40     177.4
    19.00     1.14     169.8

The differences in pressures between the two solutions are clearly a consequence of the
differences in the numerical representation of the valve coefficient toward the end of the
closure schedule.  As the valve approaches its closed position, the loss coefficient  KV,
which varies inversely with  CV,  increases very rapidly.  The functional relationship
chosen to represent  CV  can have a significant effect on the value of  KV  and thus on the
pressure.  Since the maximum value of the pressure is usually an important part of an
analysis, it is imperative to try to define  CV  as accurately as possible near closure.  Valve
closure data from manufacturers is generally provided in a table or graph, which works very
well for steady-state analyses.  But the precise nature of the change in  CV  near closure,
which is needed for an accurate analysis of unsteady flow behavior, is rarely available.  As
a consequence, practitioners must use their judgment and experience in modeling the valve
closure and appraising in a conservative way the results of the analysis.

7.3.3. WATER HAMMER*

When velocities in a pipe system change so rapidly that the elastic properties of the pipe
and liquid must be considered in an analysis, we have a hydraulic transient commonly
known as water hammer.  While this type of analysis is more complex than a rigid-column
                                                
* Material in this section on pp. 295-299 is adapted from Elementary Fluid Mechanics, by
R. L. Street, G. Z. Watters, and J. K. Vennard, Ed. 7, Copyright 1996 by John Wiley &
Sons, Inc.  Reprinted by permission.



analysis, it more accurately represents the actual behavior of the flow.  Before we embark
on an extensive investigation of this type of phenomenon in the next chapter, we will look
at a simple water hammer situation.  The problem will help us to see what happens in a
pipe when velocities change rapidly, and it will introduce fundamental concepts that are
important in understanding the phenomenon.

With the aid of the simple pipeline and valve that is attached to the reservoir in Fig.
7.6, we can now observe how water hammer waves evolve in time, according to our
simplified equation set.  We assume that steady flow occurs in the pipe at velocity  V .  
The piezometric head everywhere in the pipe is  H  in the absence of friction.  If the valve
setting is changed in any way, a transient will be caused in the pipe, both upstream and
downstream of the valve;  we will concentrate only on the pipe section that is upstream. 

Now assume we can completely close the valve rapidly, indeed instantaneously.  At the
valve the water velocity is suddenly forced to zero.  As a consequence the head at the valve
abruptly increases by an amount  ∆H = aV/g,  as Chapter 8 will show.  The amount of
this increase is just sufficient to reduce the momentum of the moving water to zero.

V

EL-HGL

H

L

Figure 7.6  Steady flow from a reservoir in the absence of friction.

The increased head immediately creates two other changes at the valve;  the pressure
increase slightly enlarges the pipe and also increases the density of the fluid.  The amount
of the stretching of the pipe depends on the diameter and thickness of the pipe and on the
compressibility of the pipe material and the liquid, but it normally changes by less than
one-half percent.  In Fig. 7.7 the amount of the deformation is exaggerated.

The rise in pressure head causes a sharp-fronted pressure wave to propagate upstream at
speed  a,  the magnitude of which is a function of properties of the conduit and the fluid.
This wave speed remains constant until the conduit properties or the fluid properties
change.  The wave front reaches the reservoir  L/a  seconds after valve closure.  At that
instant the velocity is zero throughout the pipe, the pressure head is everywhere  H + ∆H,
the pipe is enlarged and the fluid is compressed.

Under these conditions the fluid in the pipe near the reservoir connection is locally not
in equilibrium since the reservoir pressure head is only  H.  Hence fluid begins to flow
toward the region of lower head (the reservoir) as the distended pipeline forces flow in that
direction.  In the absence of friction this left-ward velocity is equal in magnitude to the
original steady velocity as it is driven by the same head increment  ∆H;  and the source of
the liquid for this flow is the compressed liquid that is stored in the enlarged pipe cross
section under the increased pressure head.

The process continues to evolve with time.  At time  2L/a  after the beginning, the
pressure throughout the pipe has returned to its original value, but with the velocity
reversed from its original direction.  At this instant the store of compressed liquid is
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Figure 7.7  Evolution of a transient pressure wave in the pipe in Fig. 7.6.

exhausted, and the pressure wave appears to undergo a reflection.  That is, the pressure head
drops an amount  ∆H  below the original steady head, and this pressure drop and the closed
valve cause the velocity behind the wave front to return to zero.  Behind this negative wave
the pipe cross section shrinks and the liquid expands.

By time  3L/a  this negative wave has reached the reservoir, and the velocity is every-
where zero.  However, the pressure head at the reservoir is again not in equilibrium with
the reservoir head, so fluid is drawn from the reservoir into the pipe at velocity  V .  Behind
the new, advancing wave the head is in equilibrium with the reservoir head.

At time  4L/a  the wave has reached the valve;  at this instant all variables have returned
to the original steady state that existed before the valve was closed.  This time interval that
has just been described is one full cycle in a hydraulic transient that would, in the absence
of friction, continue without abating.  The simple fact that this sequence of events is
unending, unless friction is present, points out the necessity of retaining the otherwise
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Figure 7.8  Head vs. time at three locations.

small friction term if we are to achieve realistic, practical results in our simulations of such
events.

If the variation of piezometric head is plotted as a function of time for selected locations
along the pipe, as is done in Fig. 7.8, we can use these results to infer several additional
fundamental features.  For example, these plots make clear that it is not time alone, but
time in units of  L/a,  that describes the head variation at a point in the most meaningful
way.  In Fig. 7.8a we see that  the head  takes on  only  the  values  H + ∆H  and  H - ∆H 



with abrupt transitions, but intermediate points such as the midpoint of the line (see Fig.
7.8b) also have intervals when the head is  H  itself.

From Figs. 7.8b and 7.8c we see that the disturbance is not initially noticed every-
where;  instead the fact that the valve is suddenly closed travels at the finite wave
propagation speed  a  to the other locations and arrives at the midpoint in the pipe in half
the time that is needed to traverse the entire pipe.  The sudden increase in head at the valve,
shown in Fig. 7.8a, remains in place at the valve until one round-trip wave travel time has
elapsed, and only then is the returning wave from the reservoir able to reduce the head
there.  In fact the head increment  ∆H  need not be created instantaneously for the full  
incremental head to be present at the valve;  it is only necessary for a set of incremental
increases in head, which sum to  ∆H,  to be developed at the valve in a time interval that
is less than this round-trip travel time  2L/a  for the full increment in head  ∆H  to be
present at the valve for a while.  We shall later see that, owing to the manner in which a
valve decreases the discharge in a pipeline by creating large head losses, it may be
necessary to close a valve in a time that is much greater that  2L/a  if we are to avoid the
creation of large transient pressures.



7.4 PROBLEMS

7.1  The water storage tank shown below is square with a side length of  4 m.  Initially it
is filled to a depth of  6 m.  The exit pipe is  20 m  long;  its diameter is  5 cm,  and the
pipe entrance is sharp-edged.  Assume quasi-steady flow.

(a)  If the friction factor is  0.02,  how much time is required for the water surface to
fall  2.0 m?  Plot the water surface elevation as a function of time during this fall.

(b)  Repeat part (a), but now assume that the pipe is smooth, new PCV pipe.  How
much do the results change?

6 m

7.2   A cylindrical tank  10 ft.  long with an outlet pipe is shown below.  The tank is
filled with water through an opening at the top.  Find the time  ∆ t,  to within
approximately 15 sec, to empty the tank completely.  Also plot the water surface elevation
vs. time to a reasonable scale.

Fill

D = 5'

Ke = 0.5

KB = 0.8
L = 20'

D = 2"ƒ = 0.02

15'

7.3  The two tanks shown atop the next page in cross section are connected by  50  feet of
18-inch-diameter cast iron pipe with a sharp-edged entrance and exit.  The initial difference
in water surface elevation is  3 ft.  Assuming quasi-steady flow and a friction factor of
0.017,  find the time for the water surfaces to reach equilibrium.



3'

A2 = 500 ft2
A1 = 1000 ft2

7.4  You are asked to assist in the design of a tank for a client;  when this tank is drained
(through a bottom orifice of area  a  and discharge coefficient  C), the fall of the water
surface is to be linearly proportional to the elapsed time.  (That is, if the surface drops one
foot in 30 minutes, then it drops another one foot in another 30 minutes.)  What should be
the shape of this tank?

7.5   A two-tank cascade is shown below.  Both tanks initially have their outlets closed,
and no flow occurs; each water surface elevation is at level  1.  At  t = 0+  both outlets are
opened.  When the water level in the upper tank has fallen  5 ft to level  2, the upper outlet
is closed.  Determine, and plot to a reasonable scale, the water surface elevation  η(t)  so
long as  η  is  1 ft  or more.

6'

1'

Dia = 3'

C = 0.8
2" dia x 8" long

Qo = 0

1

2

1'

Dia = 4'

C = 0.8
1" dia x 4" long

1

Q(t)

Q(t)

η(t)

7.6  Repeat the computations in Example Problem 7.1, assuming now that  R1 = 15 ft
and  R2 = 10 ft.

7.7  A horizontal pipe that is  12,000 ft  long and has a  3 ft diameter leaves a reservoir
under a head of  125 ft  and ends with a valve.  Assume a Darcy-Weisbach friction factor of
0.022.  If the valve is completely opened and causes no loss, what is the steady state
velocity?  After sudden opening of the valve, what time interval is required for the fluid
velocity to attain  (a)  50 %,  (b)  99 %,  of the steady state velocity?



7.8*  The pipe shown is initially full of water with the valve completely closed.
Compute the time for the velocity to reach  99% of its steady-flow value after the valve is
opened suddenly.  When the valve is fully open, its head loss is negligible.  Neglect the
entrance loss.

30°

Valve

100' -

200' - 6"

ƒ = 0.020

A

220' 

7.9   For the physical system shown with Problem 7.8, assume an equivalent sand grain
roughness for the pipe of  e = 0.006 in.,  allow  f  to vary and repeat the computation
requested in that problem.

7.10  For the same conditions, solve Problem 7.8 with the valve located at section A.

7.11  The pressure head in this horizontal pipeline is  H2  before the valve is opened.

Valve

L

H1
H2

(a)  If the valve is opened suddenly, find an equation for the time that is needed for the
velocity to reach  99%  of its final value.  Neglect the head loss across the valve and
the entrance loss.

(b)  In shutting off flow in the pipeline, the valve is operated so that the fluid velocity
decreases linearly with time.  The steady-state velocity  is  9.92 ft/s,  and the time
of closure is  100 sec.  Find the minimum pressure head in the system, where it
occurs, and the time it occurs.  Use the following values for this calculation:

L = 3220 ft,  H2 = 100 ft,  H1 = 200 ft,  D = 1.0 ft,  f = 0.020.

                                                
* Material in Problems 7.8 and 7.10-7.16 is adapted from Elementary Fluid Mechanics, by
R. L. Street, G. Z. Watters, and J. K. Vennard, Ed. 7, Copyright 1996 by John Wiley &
Sons, Inc.  Reprinted by permission.



7.12   The globe valve in the pipeline shown is opened instantaneously.  If the loss
coefficient for the wide-open valve is  3.0,  how many seconds are required for the velocity
to reach  99%  of its final value?  Neglect the entrance loss.

El. 1000'

   El. 980' - 2000' - 12"
ƒ = 0.018

Valve
- El. 970'

7.13  The globe valve in Problem 7.12 is opened instantaneously to establish flow in the
pipeline.  If the valve's fully-open loss coefficient is  6.3,  what is the elapsed time for the
velocity to reach  99.9%  of its final value?  Neglect the entrance loss.

7.14  When the valve in the pipeline shown below is fully open, the steady-state velocity
is 9.88 ft/s. Under these conditions the local losses and the valve loss are negligible. The
valve is closed in a manner which causes the velocity to decrease linearly with time to  5
ft/s  in  10 sec.  Find the maximum and minimum pressure heads in the system and where
and when they occur.  Finally, determine the loss coefficient for the partially-open valve
after valve movement has ceased and a steady flow has been re-established.

Valve

El. 1150'

3200' - 18"
El. 1000' -

El. 1200'

-El. 1000'
ƒ = 0.015

7.15  The valve in the pipeline shown below is closed in such a manner that the velocity
follows the quadratic relation

V = V0 1 −
t

T






2

in which the initial velocity is  V0 = 5 ft/s, and the time of valve closure is  T = 30 sec.
Find the minimum pressure head in the system and when and where it occurs.  Neglect
local losses.



Steady state EL-HGL

Valve

5152' - 12"

100'

Horizontal

60'

7.16   At time zero the valve in the pipeline below is in the closed position.  It is
proposed to open the valve in such a manner that the velocity will increase linearly with
time to its steady-state value of  10 ft/s  in  100 sec.  Find the maximum and minimum
pressure heads occurring in the pipeline for the proposed program of valve movement.  Can
this operating program work?  Explain.

Valve

El. 100'

3200' - 12"
El. 0' -

El. 200'

-El. 0'
ƒ = 0.020

7.17   In the pipeline of Problem 7.8 the valve at the downstream end, which is a GA
Industries 6-inch globe valve (see App. C), will be closed linearly in time over  10 sec.
Using a time increment of  0.05 sec,  compute the maximum pressure which will occur at
the valve.  Refer to Example Problem 7.3 for numerical procedures and computer
programs.

7.18   The valve in the pipeline in Problem 7.12 is a  12-inch Pratt butterfly valve (see
App. C).  If the valve is closed in  30 sec  at an angular rate that is linear in time, calculate
the maximum pressure head at the valve.  The entrance loss coefficient is  0.50.  Use a
time increment of  0.10 sec,  and refer to Example Problem 7.3 regarding numerical
procedures and computer programs.

7.19  Solve Problem 7.18 if the valve in the pipeline is a Pratt  12-inch ball valve (see
App. C).



APPENDIX  C
_________________________________________________________________________

VALVE LOSS COEFFICIENTS

C.1 GLOBE AND ANGLE VALVES

Flow coefficients  Cν  and loss coefficients  KL  for fully open Cla-Val globe and

angle valves are presented in the following table:

Size, in     4     6     8    10    12    14    16   24

Cν    Globe  200  460  770 1245 1725 2300 2940 7655
  Angle  240  541  990 1575 2500* 3060* 4200* ---

KL   Globe   5.8   5.7   6.1   5.8    6.1    5.0    5.2    4.0
  Angle   4.1   4.1   3.7   3.6    2.9    2.8    2.6 ---

    *Estimated

The factor  Cν  is the discharge, in U.S. gallons per minute, across a pressure differen-

tial of  1  lb/in2  when water at  60 oF  is flowing.  The formula that relates  Cν,  the

discharge  Q,  and the pressure drop  ∆p,  may be written in three forms, which are

Cν =
Q

∆p
Q = Cν ∆p ∆p =

Q

Cν











2

(C.1)

in which  Cν is the fresh water discharge rate in gal/min for a  1 lb/in2  pressure difference,

Q  is the fresh water discharge in gal/min, and  ∆p  is the pressure drop in lb/in2.
Values of the resistance coefficient  KL  for the valve are calculated from

h = KL
V 2

2g
(C.2)

in which  h  = frictional resistance,  V  = average velocity in ft/s, and  g  = 32.2 ft/s2.  The
relation between  Cν and  KL  is

KL = 890
D4

Cν
@

in which  D  = pipe diameter in inches.

Condensed from Cla-Val Automatic Control Valve Product Data Catalog, courtesy of 
CLA-VAL, Newport Beach, CA



The next table provides data on flow coefficients  Cν  for fully open valves for GA

Industries globe and angle valves.  The coefficient  Cν  is defined in Eq. C.1.

Size, in     6     8   10   12   14   16   18   20

Globe   447   831 1175 1750 2500 3260 4130 5100
Angle   600 1060 1800 2385 3245 4240 5365 6620

Figure C.1  illustrates how the flow coefficient varies with valve stroke.  The graph applies
to both globe and angle valves.

Percent of fully open Cν
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Figure C.1  The flow coefficient  Cν  as a function of percent of stroke.

Table and graph courtesy of GA Industries, Inc., Cranberry township, PA.



C.2 BUTTERFLY VALVES

This table presents the loss coefficient  KL,  as defined in Eq. C.2, as a function of percent
open for Pratt butterfly  valves.

Degrees Open 3-in to 8-in Valves 10-in to 20-in Valves
          KL             KL

            5        15625          15625
          10          3860            3860
          15            935              935
          20            337              337
          25            145              145
          30              71.8                71.8
          35              39.6                39.6
          40              21.6                21.6
          45              12.7                12.7
          50                6.61                  7.42
          55                4.00                  4.41
          60                2.62                  2.64
          65                1.79                  1.59
          70                1.25                  0.952
          75                0.948                  0.620
          80                0.800                  0.496
          85                0.718                  0.460
          90                0.689                  0.447

C.3 BALL VALVES

For Pratt ball valves the following two tables provide (1) values of  Cν  for fully open

valves and (2) percent of fully open  Cν  as a function of number of degrees that the valve

is open.  The coefficient  Cν  is defined in Eq. C.1.

Valve Size,
        in.

        Cν Degrees Open Percentage of
fully open  Cν

          6        5250              5           0.16
          8        9330            10           0.88
       10      14600            15           1.4
       12      21000            20           1.8
       14      28600            25           2.4
       16      37300            30           3.1
       18      47300            35           3.7
       20      58300            40           4.7
       24      84000            45           5.9
       30    131300            50           7.2
       36    189000            55           9.0
       42    257300            60         11.2
       48    336000            65         14.1
       54    425300            70         18.0
       60    525100            75         24.5

           80         41.5
           85         73.0
           90       100.0

The tables in sections C.2 and C.3 are courtesy of Henry Pratt Co., Aurora, IL.



CHAPTER 8
_________________________________________________________________________

ELASTIC THEORY OF HYDRAULIC TRANSIENTS
(WATER HAMMER)*

In situations where the velocity can change suddenly and the pipeline is relatively long,
the elastic properties of the pipe and liquid become significant factors.  In Chapter 7 we
saw how a pipeline responded to the sudden closure of a valve.  This valve motion caused
an increase in pressure head  ∆H  to occur, which propagated at a speed  a.  In this chapter
governing relations for  ∆H  and  a  will be developed, thereby broadening the range of
applications from that of the simple example in Chapter 7.

8.1 THE EQUATION FOR PRESSURE HEAD CHANGE  ∆∆∆∆H

The linear momentum equation will be used to develop an equation for  ∆H.  We know
that a change in velocity  ∆V  will cause a pressure head change  ∆H  to propagate at some
speed  a.  In Fig. 8.1a  ∆V   is actually negative, leading to an increase in head  ∆H.  We
begin with a section of pipe of incremental length  δL,  where  δL  is arbitrarily small but
not differentially small as would be  dL.  The pressure wave and the pipe bulge (which is
caused by the pressure head change  ∆H) propagate at speed  a.  The wave speed is the
speed relative to an observer at rest with respect to the pipe rather than the speed relative to
the water velocity.  For relatively rigid pipes either choice for a reference would give
essential-ly the same results.  Because this is an unsteady flow situation, the linear
momentum

V a

δL

V + ∆V

Figure 8.1a  The unsteady flow control volume for a momentum analysis.

equation for steady flow does not apply.  However, here it is possible to use a translating
coordinate system so that the unsteady flow appears to be steady, as shown in Fig. 8.1b:

V + a a

δL

V + ∆V + a

Figure 8.1b  The steady flow control volume for a momentum analysis.

                                                
* Pages 305-315 are adapted from Elementary Fluid Mechanics, by R. L. Street, G. Z.
Watters, and J. K. Vennard, Ed. 7, Copyright 1996 by John Wiley & Sons, Inc.  Reprinted
by permission.



If we move our reference system to the left at a speed  a,  we have for all appearances a
steady flow.  From basic fluid mechanics we may then apply the steady one-dimensional
linear momentum equation

Fext∑ = QρV∑( )out − QρV∑( )in (8.1)

where  Q  is the discharge,  ρ  is the fluid density, and  ΣFext  is the sum of the external
forces acting.  The momentum correction factor for nonuniform velocity profiles is
assumed to be 1.00 in this case.

Considering only the component of this vector equation parallel to the pipe and noting
that the momentum flux enters and leaves the pipe section of length δL at only one cross
section each, we can write

Fext∑( )x = Qρ Vout − Vin( ) (8.2)

To apply the momentum equation, we must specify a control volume and account for all
forces acting on the fluid in the control volume at a particular instant and at that same
instant evaluate the momentum fluxes into and out of the control volume.  We choose the
control volume to coincide with the inside of the pipe walls over the length δL and include
the flow cross section at each end of this pipe section.  This control volume, the fluid in
it, and the external forces acting are shown in Fig. 8.2:

Area = A
Density = ρ 

F1
V + a

(1) (2)

Fn

Fs

F2

F3

V + ∆V + a

Area = A + δA
Density = ρ + δρ 

w

+ x

δL

Figure 8.2  The steady-flow control volume with all forces shown.

The side shear force  Fs   caused by friction will be neglected because its size is
proportional to  δL.  Also, because we consider only relatively strong pipe materials (steel,
concrete, etc.), the pipe bulge is very small and so  F3  is also negligible.

Application of Eq. 8.2 gives

F1 − F2 = Qρ[(V + ∆V + a) − (V + a)] = Qρ[∆V ] (8.3)

in which  Qρ = (V + a)Aρ.
If the pressure at (1) were  po,  then the pressure at (2) would be  po + ∆p,  and

poA − po + ∆p( ) A + δA( ) = V + a( )Aρ ∆V( ) (8.4)

Expanding this equation and recognizing that  ∆p = γ∆H  and  δA   is very small
compared to ∆H,  A,  and  γ,   we can neglect the small terms with the result

− ∆Hγ A = V + a( )Aρ ∆V( ) (8.5)

This equation can also be written as



∆H = −
ρ
γ

∆V V + a( ) (8.6)

or

∆H = −
a∆V

g
1 +

V

a






(8.7)

In most rigid pipe situations (even PVC with a wave speed of only 1200 ft/s), the value
of  V/a  is less than  0.01.  Accordingly, Eq. 8.7 is generally (and always in this work)
applied as

∆H = −
a

g
∆V (8.8)

From Eq. 8.8 we see that a decrease in velocity  ∆V  causes an increase in head  ∆H.
Further,  ∆H  depends on the wave speed  a  and cannot be determined until a value of  a  is
established.

8.2 WAVE SPEED FOR THIN-WALLED PIPES

To develop an equation for the wave speed, we will consider conservation of mass in the
pipe section  δL  long that was used to develop Eq. 8.4.  We examine the mass flow into
and out of the pipe section over the time period required for the wave to pass through that
portion of the pipe.  The net inflow of mass will be equated to the increase in mass storage
in  δL  to produce an equation for wave speed  a.  Again we assume that a decrease in
velocity occurs, hence mass accumulates.

To begin we note the situation when the wave has first reached the control volume and
then at the time the wave has just passed through the section at a time δt later.

V a

δL

V + ∆V

Time = t

V a

δL

V + ∆V

Time = t + δt

Figure 8.3  Propagation of the pressure wave at two instants.

It is clear that  δL  and  δt  are related via the wave speed as  δL = aδt.

8.2.1. NET MASS INFLOW
During the time interval required for the wave to pass through the control volume, mass

has accumulated in the section in the amount

δM = VAρδt − V + ∆V( ) ρ + δρ( ) A + δA( )δt (8.9)

Expanding the parentheses and neglecting small terms gives

δM = − Aρ∆Vδt (8.10)

or, in terms of wave speed and  δL,



δM = − Aρ∆V
δL

a
(8.11)

This extra liquid is stored in the control volume partly by being compressed slightly to a
larger density and partly by occupying additional space provided by stretching the pipe
cross section a small amount.

We now proceed to quantify the volume changes for the liquid and the pipe.

8.2.2. CHANGE IN LIQUID VOLUME DUE TO COMPRESSIBILITY
Because the pressure has increased during the passage of a positive pressure wave caused

by a decrease in velocity, the volume of liquid in the section is compressed to a slightly
higher density.  The equation relating the increase in pressure and decrease in volume is the
equation defining the bulk modulus of elasticity for a liquid, as can be found in any
elementary fluid mechanics text:

K = −
dp

dV / V
(8.12)

Here  K  is the bulk modulus of elasticity of the liquid and  p  and  V   are the pressure and
volume of the liquid, respectively.  Since  K  is relatively constant over a wide pressure
range (assuming no entrained gases in the liquid), we can let  dp = ∆p  and write Eq. 8.6 as

δV = − ∆p
V

K
(8.13)

where  δV    is the change in liquid volume in the control volume resulting from the
pressure change  ∆p.

8.2.3. CHANGE IN PIPE VOLUME DUE TO ELASTICITY
When the increased pressure stretches the pipe, more space is available to store the

accumulated net inflow of liquid.  The pipe may stretch both circumferentially and long-
itudinally, so we must consider both contributions to the change in pipe volume.

Developments that are basic to the mechanics of solid materials show the relation
between the pipe wall strains in the two perpendicular directions.  If a material is strained
in one direction by an amount ε1, then a strain ε2 will occur in the perpendicular direction
(provided the material is free to strain without developing a stress in that direction)
according to  ε2 = µε1,  where  µ   is Poisson's ratio.  If there is a restriction to free strain
in either direction caused either by restraint or applied stress, the relation is more
complicated.  A text on the mechanics of materials will provide the following equations for
two-dimensional stress which can be applied to thin-walled pipes:

σ1 =
ε1 + µε2

1 − µ2 E or        ε1 =
σ1 − µσ2

E
(8.14a)

σ2 =
ε2 + µε1

1 − µ 2 E or        ε2 =
σ2 − µσ1

E
(8.14b)

Here  σ1  and  ε1  are the stress and strain, respectively, in the direction along the pipe
axis,   σ2  and  ε2  are the values in the circumferential direction, and  E  is the modulus
of elasticity of the pipe wall material.  Of course, if the wall material is not homogeneous
and isotropic, then a more complex analysis is required.



For water hammer pressure waves there is usually a stress and strain already resident in
the pipe caused by the steady state flow.  Hence we write the preceding equations in
incremental form

∆σ1 =
∆ε1 + µ∆ε2

1 − µ2 E or        ∆ε1 =
∆σ1 − µ∆σ2

E
(8.15a)

∆σ2 =
∆ε2 + µ∆ε1

1 − µ2 E or        ∆ε2 =
∆σ2 − µ∆σ1

E
(8.15b)

The change in volume caused by circumferential stretching is

δVc = πD
δD

2
δL (8.16)

where  πδD = πD∆ε2.  Combining the two equations gives

δVc =
1
2

πD2δL∆ε2 (8.17)

The change in volume caused by longitudinal stretching is

δVl =
π
4

D2δL∆ε1 (8.18)

Combining Eqs. 8.17 and 8.18 gives the total volume change due to pipe stretching as

δV =
π
4

D2δL ∆ε1 + 2∆ε2( ) (8.19)

We now begin the process of replacing the expressions for strain with those for the
stress and pressure which cause the strain.  The change in circumferential stress in the pipe
wall under static conditions is

∆σ2 =
∆pD

2e
(8.20)

where  e  is the pipe wall thickness.  However, the transient conditions of water hammer
would in general cause the pipe to respond dynamically in a manner which can only be
analyzed accurately by carefully considering the mass of the pipe and fitting materials as
well as pipe restraints.  That is, any valves, fittings, and other attachments in addition to
the weight of the pipe must be displaced by pressure changes.  These displacements are in
turn affected by the type and elastic behavior of the pipe restraints.  This type of analysis
would be entirely too complex to accomplish in general, so we assume that the static
conditions adequately approximate the dynamic behavior.  Experimental results over the
years have generally validated this approach.  Substituting the above equation into the first
of Eqs. 8.15b gives

∆pD

2e
=

∆ε2 + µ∆ε1

1 − µ2 E (8.21)

While the relation between circumferential stress and pressure is valid for all types of
restraint, the relation between longitudinal stress and strain varies with restraint type.  For



example, if the pipe were anchored at one end and free to stretch longitudinally (much like
a long slender pressure vessel), the longitudinal stress would be

∆σ1 =
∆pD

4e
(8.22)

under static conditions.  On the other hand, if the pipe were rigidly anchored to prevent any
axial strain, then  ∆σ1 = µ∆σ2  because  ∆ε1 = 0.  However, if the pipe contained
functioning expansion joints throughout its length, then  ∆σ1 = 0  and  ∆ε1  is of no
interest.  Following the nomenclature of Wylie and Streeter (1993), we identify the above
cases as the following:

Case (a)  pipe anchorage only at the upstream end;
Case (b)  full pipe restraint from axial movement.
Case (c)  longitudinal expansion joints along the pipeline.

In a practical sense the actual pipe restraint situation probably will not conform precisely
to any of these cases but lies somewhere in this range of possibilities.

Here we will now choose one restraint case to develop relatively fully as an example of
how the analysis of each case should proceed.  Because buried pipelines are relatively
common and might be expected to be fully restrained axially by soil friction and anchor
blocks, we will examine Case (b) restraint next as we move ahead to compute a wave
speed.

Wave Speed Solution for Case (b) Restraint
For this restraint choice  ∆ε1 = 0  and Eqs. 8.15a become

∆σ1 =
µ∆ε2

1 − µ2 E   or   ∆σ1 = µ∆σ2 (8.23)

and Eq. 8.21 becomes
∆pD

2e
=

∆ε2

1 − µ2 E (8.24)

Substituting this equation into Eq. 8.19 in place of  ∆ε2  gives the total volume change as

δV =
π
4

D2δL
1 − µ2

E











∆pD

e






(8.25)

Now recall that Eq. 8.11, based on conservation of mass, computes the incremental mass
which has accumulated in the pipe control volume in  δt  seconds.  If we subtract the mass
in the pipe before the passage of the wave from the amount existing after the passage of the
wave, we obtain

δM = ρ + δρ( ) AδL + δV( ) − ρAδL (8.26)

Equating this expression for  δM  with that of Eq. 8.11, expanding, and dropping small
terms gives

δρAδL + ρδV = Aρ∆V
δL

a
(8.27)



To arrange this equation into a more usable form, note for a given mass of material that an
increase in pressure causes a decrease in volume and an increase in density.  That is,
ρV =  constant  so  Vδρ + ρδV = 0  and

δρ = −
δV

V
ρ (8.28)

Substituting this result into Eq. 8.13 gives

δρ = ρ
∆p

K






(8.29)

Replacing  ∆p  with  γ∆H  in the preceding equation, substituting it and Eq. 8.25 into Eq.
8.27 leads to

γ ∆H
1
K

+
1 − µ2

E











D

e













=
∆V

a
(8.30)

Combining this equation with Eq. 8.8 results in

a2ρ
1
K

+
D

e

1 − µ2

E























= 1 (8.31)

or, in the conventional form for wave speed,

a =
K / ρ

1 +
K

E

D

e
1 − µ2( )

         Case (b) (8.32)

It is now possible to compute the wave speed and pressure increase directly in simple
situations where Eq. 8.8 applies.

Wylie and Streeter (1993) show that the equation for wave speed can be conveniently
expressed in the general form

a =
K / ρ

1 +
K

E

D

e
C( )

(8.33)

where

for Case (a) restraint C = 5 / 4 − µ  (8.34a)

for Case (b) restraint C = 1 − µ2 (8.34b)

and

for Case (c) restraint C = 1.0 (8.34c)



Keep in mind that this set of equations for wave speed applies only to thin-walled pipes.  If
the pipe walls are sufficiently thick, the above equations must be modified (see Section 8.3
for a discussion of what constitutes a thin-walled pipe).

The following table of values for  E  and  µ  should be useful in calculating wave speeds
in pipes made of common materials.  The bulk modulus  K  for water is approx-imately
300,000 lb/in2,  although some references cite  K's  as high as  320,000 lb/in2.

Table 8.1  Moduli of Elasticity and Poisson Ratios for Common Pipe Materials

       M a t e r i a l            E (lb/in2 )      Poisson ratio  µµµµ

Steel                 30 x 106                   0.30

Ductile cast iron                 24 x 106                   0.28

Copper                 16 x 106                   0.36

Brass                 15 x 106                   0.34

Aluminum                 10.5 x 106                   0.33

PVC                   4 x 105                   0.45

Fiberglass-reinforced plastic       E2  =   4 x 106    µ2  =  0.27-0.30

      E1  =  1.3 x 106    µ1  =  0.20-0.24

Asbestos Cement                 3.4 x 106                   0.30

Concrete            57,000 fc
' dynamic value     0.24

            fc
'  = 28-day strength

However, even a small amount of free air or gas suspended in the liquid can drastically
reduce the value of  K  and the resultant wave speed (see Section 8.4).  Unfortunately,
evaluating the amount of air, its distribution, its pervasiveness, and its effect on wave
speed is most difficult.  Consequently, in design situations it is common practice to take a
conservative approach and assume there is no air present.  This generally leads to a
prediction of higher water hammer pressures.  Any presence of entrained air or gas in the
system would be a fortuitous circumstance, at least in the sense of reducing the wave
speed.

One should note that a pipe can become infinitely strong ( E → ∞) without the wave
speed also becoming infinite.  From Eq. 8.33 it is clear that this situation causes the
denominator of the equation to go to  1.0,  resulting in a wave speed  a = K / ρ   which

for water is about  4720 ft/s.  This number has no practical significance in design because
it is far too high to serve as even an approximate wave speed value for preliminary design.
With even a limited amount of experience, a designer can make a far better estimate of the
wave speed in the pipe under consideration.

Example Problem 8.1
To get a "feel" for the pressure head changes and the resultant elastic deformations of

pipe and liquid caused by a typical water hammer situation and to demonstrate the effects of
different pipe restraints, the following problem is analyzed.



200'

EL - HGL

Water flows in this  24-inch steel pipeline at a velocity of  6 ft/s.  The pipeline has a
wall thickness of  0.25 inches.  First we will calculate the wave speed for the three types of
restraint by using Eqs. 8.33 and 8.34:

Case (a)   a =
K / ρ

1 +
K

E

D

e
C( )

=
4720

1 +
3 ×105

3 ×107
24

0.25
5 / 4 − 0.30( )

= 3410  ft/s

Case (b) a =
4720

1 +
3 ×105

3 ×107
24

0.25
1 − 0.302( )

= 3450  ft/s

Case (c) a =
4720

1 +
3 ×105

3 ×107
24

0.25
1.00( )

= 3370  ft/s

As one can see clearly here, the differences are for all practical purposes insignificant for
this pipe.

Now we will compute with Eq. 8.8 the pressure head changes resulting from sudden
valve closure for all three cases of restraint:

Case (a) ∆H = −
a

g
∆V = −

3410
32.2

− 6( ) = 635 ft

Case (b) ∆H = −
3450
32.2

− 6( ) = 643 ft

Case (c) ∆H = −
3370
32.2

− 6( ) = 628  ft

Because the head increase depends directly on the wave speed, the negligible difference in
wave speed translates into a head difference of no more than 2%, which is usually a
negligible difference.

We now calculate the change in pipe wall stress caused by these head increases for all
three types of restraint:

Case (a) ∆σ2 =
∆pD

2e
=

635 ×
62.4
144







× 24

2 × 0.25
= 13,210 lb / in2



∆σ1 =
∆pD

4e
=

1
2

∆σ2 = 6600 lb / in2

Case (b) ∆σ2 =
∆pD

2e
=

643 ×
62.4
144







× 24

2 × 0.25
= 13,370 lb / in2

∆σ1 = µ∆σ2 = 0.30 ×13,370 = 4010 lb / in2

Case (c) ∆σ2 =
∆pD

2e
=

628 ×
62.4
144







× 24

2 × 0.25
= 13,060 lb / in2

∆σ1 = 0

Next we calculate the percentage increase in the pipe diameter caused by the pressure head
increase for all three cases of restraint.  Using Eq. 8.15b,

Percent change in D = 100
δD

D
= 100 × ∆ε2 =

100
E

∆σ2 − µ∆σ1( )

Case (a) Percent change =
100

30 ×106 13,210 − 0.30 × 6600( ) = 0.037%

Case (b) Percent change =
100

30 ×106 13,370 − 0.30 × 4010( ) = 0.041%

Case (c) Percent change =
100

30 ×106 13,060 − 0.30 × 0( ) = 0.044%

These results, showing the relatively small elastic deformation of the pipe, substantiate
many of the previous assumptions that were used in neglecting small terms in equations.

Finally, we will look at the water entering the pipe section during the passage of the
pressure wave and determine what percentage is accommodated by pipe stretching and what
portion is relegated to water compression.  The fraction of liquid directed to liquid
compression is given by the first term in Eq. 8.31.

Percent change in water volume = 100ρa2 1
K







= 100
ρa2

K
The remainder is due to pipe stretching.

Case (a)
Percent change in water volume = 100

1.94 × 34102

300,000 ×144
= 52%

Percent accommodated by pipe stretching = 48%

Case (b)
Percent change in water volume = 100

1.94 × 34502

300,000 ×144
= 53%

Percent accommodated by pipe stretching = 47%



Case (c)
Percent change in water volume = 100

1.94 × 33702

300,000 ×144
= 51%

Percent accommodated by pipe stretching = 49%

*                              *                              *

8.3 WAVE SPEEDS IN OTHER TYPES OF CONDUITS

The case of thin-walled pipes has been used previously to derive equations for wave
speed which are essential to the computation of water hammer pressures.  However, it is
common practice to fabricate pipe of materials which result in the pipe having thick walls,
e.g., concrete, asbestos cement, or ductile iron.  Also, pipe can be manufactured of more
than one material, the most common of which is reinforced concrete.  Conduits may also
be carved in rock and possibly lined with steel or concrete.  We need to be able to calculate
wave speed in all these cases.

8.3.1. THICK-WALLED PIPES
The analysis for thick-walled pipes proceeds along the same lines as for thin-walled

pipes.  However, for thick-walled pipes the variation in stress and strain across the pipe
wall is taken into consideration.  The analysis leads to the same equation for wave speed as
for thin-walled pipes so long as we redefine the coefficients  C  for each case:

Case (a) C =
1

1 +
e

D

5
4

− µ





+ 2
e

D
1 + µ( ) 1 +

e

D












(8.35a)

Case (b) C =
1

1 +
e

D

1 − µ2( ) + 2
e

D
1 + µ( ) 1 +

e

D












(8.35b)

Case (c) C =
1

1 +
e

D

1.0( ) + 2
e

D
1 + µ( ) 1 +

e

D












(8.35c)

As  e/D   becomes vanishingly small, in every case the equation simplifies to the thin-
walled equation.  So when is it appropriate to use the thick-walled equations?  In answering
this question, remember that the wave speed is the key quantity, and it is affected not only
by the  e/D  ratio but also by the other factors in Eq. 8.33.  Watters (1984) concluded that
the use of the thick-walled equations for  D/e > 40  generally produces no significant
improvement in the accuracy of the wave speed, except in cases where softer pipes such as
PVC are in use.  One could attempt to remove as much imprecision as possible by always
using the thick-walled equations;  the extra computation required is negligible.  This
approach will succeed whenever an application is represented well by one of the restraint
cases, but the precision may otherwise be bogus when no one restraint case truly represents
the application. Note also that the thin-walled equations lead to higher wave speeds and
thus generally more conservative results.

Example Problem 8.2
To investigate the effect of wall thickness on wave speed, we will compute the wave

speed for a steel pipe with an inside diameter of  9.522 in  and a wall thickness of  0.239 in
(D/e = 40)  using both the thin-walled and thick-walled formulas.  The results are shown in
a table for all three restraint cases.



Wave Speed,  ft/s

   Restraint    Thin-walled    Thick-walled     Error  %
       Case (a)           4020            4000            0.5
       Case (b)           4050            4020            0.7
       Case (c)           4000            3970            0.7

*                              *                              *

8.3.2. CIRCULAR TUNNELS
The wave speed equations for circular tunnels can be derived from the thick-walled

equations by letting the wall thickness go to infinity.  When  C  for case (a) is inserted
into the wave speed equation  8.33  and the  D/e  ratio is allowed to go to zero, the result is

a =
K / ρ

1 +
2K

E
1 + µ( )

(8.36)

For tunnels which are concrete-lined or steel-lined with concrete backing, the analysis is a
good deal more complex.  Refer to Halliwell (1963) for the rather lengthy equations
required for computing wave speed in this situation.

8.3.3. REINFORCED CONCRETE PIPE
For reinforced concrete pipe the transformed-section method can be used to convert the

pipe into an equivalent homogeneous pipe.  Then the computation of the wave speed can
be accomplished by using the homogeneous pipe equations.  To be assured of an accurate
wave speed, it is necessary to know exactly how the pipe was fabricated.  Only that
concrete which can sustain load under pressure should be used in the computation.  This
type of concrete pipe is generally prestressed to assure this capability.

The transformed-section method replaces the concrete cross-sectional area with an
equivalent cross-sectional area of steel using the formula

Ast =
Econ
Est

Acon (8.37)

neglecting any variation in stress over the thickness of the concrete.  We always convert
the concrete to steel;  doing the reverse would create an exceedingly thick-walled pipe.

In working with reinforced concrete pipe that is not prestressed, the concrete is assumed
to carry no load.  The reinforcing steel is regarded as a thin-walled steel pipe having the
same cross-sectional area as the circumferential reinforcement has, and the wave speed is
computed with the thin-walled equations.

If the reinforced concrete pipe is pretensioned or post-tensioned, the area of concrete
placed in compression by the pre- or post-tensioning process must be included in the
transformed section.  This prestressing makes the pipe much stronger, but it also results in
higher wave speeds which generally lead to higher water hammer pressures.  The following
illustrative problem demonstrates the transformed-section technique.



Example Problem 8.3
A  30-in. inside diameter reinforced concrete pipe is pretensioned using  3/8-in  diameter

wrapping wire placed  1.25 in  on center.  The pipe was manufactured by first fabricating a
thin steel cylinder  0.105 in  thick and then centrifugally placing a dense cement mortar
lining  0.75 in  thick inside the steel cylinder.  After curing the liner, the pretensioning is
accomplished by stressing the wire as it is wrapped around the steel cylinder.  This process
places the cement liner in compression.  The ends of the wrapping wire are welded to the
steel cylinder to maintain the pretensioning.  A one-inch-thick concrete cover is placed over
the wrapping wire as a protective coating.  This cover carries no load.  A longitudinal pipe
section is shown below.  Assume the 28-day strength of the concrete is  6000 lb/in2.

CL30"

3/8" wire wrap 1.25" o.c.

0.75"
1.375"

0.105"

Using the formula in Table 8.1 for concrete,  E  is

Econ = 57,000 f c
' = 57,000 6000 = 4.4 ×106  lb / in2

The area of steel wire per inch of pipe is  
π
4

× 0.3752/ 1.25 = 0.0884 in2/ in .

The equivalent area of steel that is required to replace the cement lining which was
prestressed during the wrapping process is

Ast =
Econ
Est

Acon =
4.4 ×106

30 ×106 × 0.75 = 0.110 in2/ in

Now the thickness of the equivalent steel pipe is

eeq = 0.0884 + 0.110 + 0.105 = 0.303 in

We compute the diameter of the equivalent pipe by locating the centroid of the section as
follows:



r =
0.0884 15+0.75+0.105+0.375/2( )+0.110 15+0.75/2( )+0.105 15+0.75+0.105/2( )

0.303

r = 15.74 in. D = 31.5 in.

Now the wave speed is computed using Case (b) restraint because that seems the most
conservative:

a =
4720

1 +
3 ×105

3 ×107
31.5

0.303
1 − 0.302( )

= 3380  ft/s

If the effect of the cement mortar lining is neglected, the wave speed drops to  2990 ft/s.  It
is the responsibility of the designer to make the judgment as to the proper wave speed to
use or, as an alternative, analyze the system under both conditions to determine the more
extreme behavior.

*                              *                              *

8.4 EFFECT OF AIR ENTRAINMENT ON WAVE SPEED*

When free air (or any other gas) is present in a pipeline, either as small bubbles or in
larger volumes, the wave speed in the pipeline is decreased dramatically.  As a consequence,
the wave propagation patterns and the resulting pressures are substantially changed.  We
will demonstrate the effect by using the simplest model of air entrainment.

If the air-water mixture is assumed to be uniformly distributed throughout a portion of
the pipeline, the wave speed in that portion of the pipeline can be computed by using Eq.
8.33.  However, care must be taken to insure that the air-water mixture is used in
determining the values of  K  and  ρ.  The bulk modulus  K  for the mixture is developed
from Eq. 8.12 by replacing the relative change in overall volume by the sum of the relative
changes in volume of the air and water.  The result is

Kmix =
Kliq

1 + α
Kliq

Kair
− 1











(8.38)

where Kliq  and  Kair  are the bulk moduli of elasticity for liquid and air, respectively, and

α  is the void fraction (volume of air ÷ total volume of mixture).  For misture density is
found by the same approach to be

ρmix = (1 − α)ρliq (8.39)

Substituting Eqs. 8.38 and 8.39 into Eq. 8.33 and recognizing that Kliq /Kair >> 1, we
find the wave speed to be

a =
Kliq / ρmix

1 +
Kliq

E

D

e
C + α

Kliq

Kair

(8.40)

                                                
* This Section is adapted from Elementary Fluid Mechanics, by R. L. Street, G. Z.
Watters, and J. K. Vennard, Ed. 7, Copyright 1996 by John Wiley & Sons, Inc.  Reprinted
by permission.



This same equation and a detailed description of the difficulties encountered in the solution
of water hammer problems which have entrained air is given by Tullis et al. (1976).

It is clear from Eq. 8.40 that the wave speed in the pipeline depends on the pressure in
the pipeline because the values of  α  and  Kair  depend on pressure.  As a consequence, the
wave speed varies with the passage of a pressure wave.  This factor greatly complicates an
analysis and makes the accurate prediction of water hammer pressures most difficult.

An example is presented below to demonstrate the dramatic effect that small fractions of
entrained air can have on the wave speed.  The first step which must be taken is to
establish a method of determining  Kair .  As elementary fluid mechanics texts show,  Kair
depends on the thermodynamic process followed by the air as it compresses or expands.
Wylie and Streeter (1993) suggest using an isothermal process with  Kair = p.  The other
extreme is to use an isentropic process where  Kair = kp = 1.4p.  If some provision for
heat transfer is made, then a polytropic process with  Kair = np = 1.2p  (as used later with
surge tanks) may be appropriate.  The effects of these various alternatives are shown
below.

Example Problem 8.4
Consider the pipeline of Example Problem 8.1  and consider air entrainment percentages

of  0.10,  0.50,  1.0,  and  2.0%.  We assume the atmospheric pressure to be  14.7 lb/in2

and use Case (b) restraint.  For a polytropic process and an entrained air percentage of
0.10%,  the wave speed from Eq. 8.40 is

a =

300,000 ×144
1.94 1 − 0.001( )

1 +
3 ×105

3 ×107
24

0.25
1 − 0.302( ) + 0.001 ×

3 ×105

1.2 ×
200 × 62.4

144
+ 14.7





= 2270 ft / s

The following table summarizes the wave speeds for the three separate thermodynamic
processes:

% Air Entrainment Isothermal Process Polytropic Process Isentropic Process
                0.1       2150  ft/s      2270  ft/s     2360  ft/s
                0.5       1160  ft/s      1260  ft/s     1340  ft/s
                1.0         845  ft/s        920  ft/s       988  ft/s
                2.0         610  ft/s        666  ft/s       777  ft/s

Regardless of the process, the differences in results among the assumed processes are not
great in view of the other uncertainties.

*                              *                              *

8.5 DIFFERENTIAL EQUATIONS OF UNSTEADY FLOW

Up to this point we have seen for a given impulsive change in velocity  ∆V   at a
pipeline section that we can compute the pressure head change  ∆H  which will result.
This ability will now be extended so the velocity and pressure head at any pipe section at
any time can be determined as the result of boundary and initial conditions imposed at any
section of the system.  To accomplish this, we will use Euler's equation from Chapter 7
and develop another equation based on conservation of mass.



8.5.1. CONSERVATION OF MASS
We apply conservation of mass to a control volume that coincides with the interior of

the pipe and is of length ds:

ds

ρ AV

ρ AV ρ AV ds) (s+ ∂/∂ 

Figure 8.4  Control volume coinciding with the interior surface of the pipe.

The result of this application is

ρAV − ρAV +
∂
∂s

ρAV( )ds





=

∂
∂t

ρAds( ) (8.41)

or

−
∂
∂s

ρAV( )ds =
∂
∂t

ρAds( ) (8.42)

At this point we employ a rather unconventional form of the control volume concept in
that we require the sides of the control volume to be attached to the pipe wall.  Thus the
control volume will elongate as the pipe stretches longitudinally.  The only exception is in
Case (c) where we keep the control volume at a constant length even though the pipe
elongates (the total length of the pipeline remains constant even as the pipe slips in its
expansion joints).  This technique is used because the pipe stretching affects the volume of
storage, and the relation between pipe elasticity and the available volume for the liquid is
identical to that in Section 8.2.

Expanding the parentheses of Eq. 8.42 yields

− ρA
∂V

∂s
ds + ρV

∂A

∂s
ds + AV

∂ρ
∂s

ds





 = ρA

∂
∂t

ds( ) + ρds
∂A

∂t
+ Ads

∂ρ
∂t

(8.43)

Regrouping and dividing by the control volume mass  ρAds,

1
ρ

∂ρ
∂t

+ V
∂ρ
∂s







 +

1
A

∂A

∂t
+ V

∂A

∂s






 +

1
ds

∂
∂t

ds( ) +
∂V

∂s
= 0 (8.44)

Recognizing that  
∂ρ
∂t

+ V
∂ρ
∂s

=
dρ
dt

   and   
∂A

∂t
+ V

∂A

∂s
=

dA

dt
,  Eq. 8.44 becomes

1
ρ

dρ
dt

+
1
A

dA

dt
+

∂V

∂s
+

1
ds

d

dt
ds( ) = 0 (8.45)

From Section 8.2,  K = −
dp

dV / V
=

dp

dρ / ρ
  so that

1
ρ

dρ
dt

=
1
K

dp

dt
(8.46)



To develop a useful expression for  dA/dt  in terms of  p,  the elastic pipe deformations
must be considered.  For the change in cross-sectional area, Eq. 8.17 shows that

dA =
dVc
dL

=
1
2

πD2dε2 =
1
2

π
D2

E
dσ2 − µdσ1( ) (8.47)

1
A

dA =
2
E

dσ2 − µdσ1( ) (8.48)

In evaluating these stresses we will again examine Case (b) restraint;  hence

dσ2 =
D

2e
dp   and   dσ1 = µdσ2 (8.49)

so

dσ2 − µdσ1 = 1 − µ2( )dσ2 = 1 − µ2( ) D

2e

dp

dt
(8.50)

Finally,
1
A

dA

dt
= 1 − µ2( ) D

eE

dp

dt
(8.51)

Considering longitudinal expansion,
d ds( ) = dε1ds (8.52)

which is zero for Case (b).  Thus
1
ds

d

dt
ds( ) = 0 (8.53)

Combining all these results in Eq. 8.45 gives

1
K

dp

dt
+ 1 − µ2( ) D

eE

dp

dt
+

∂V

∂s
= 0 (8.54)

dp

dt

1
K

+ 1 − µ2( ) D

eE






+
∂V

∂s
= 0 (8.55)

From Eq. 8.31 it is clear that the term in the brackets is  
1

a2ρ
.  This statement is also

correct for Case (a) and Case (c) pipe restraint.  Making this substitution for the terms in
brackets leads to

1
ρ

dp

dt
+ a2 ∂V

∂s
= 0 (8.56)

When we combine this result with the Euler equation of motion, Eq. 7.19, we have two
independent partial differential equations for  p(s,t) and V(s,t):

dV

dt
+

1
ρ

∂p

∂s
+ g

dz

ds
+

f

2D
V V = 0 (8.57)

a2 ∂V

∂s
+

1
ρ

dp

dt
= 0 (8.58)



8.5.2. INTERPRETATION OF THE DIFFERENTIAL EQUATIONS
Before moving to the solution of these equations in Chapter 9, we can learn about the

nature of these solutions by looking at a linearized subset of the full equations.  If we first
express the pressure  p  in terms of the piezometric head  H  via the relation  p = ρg(H - z),
then Eqs. 8.57 and 8.58 become

dV

dt
+ g

∂H

∂s
+

f

2D
V V = 0 (8.59)

and

a2 ∂V

∂s
+ g

dH

dt
= 0 (8.60)

in which the variation of the density  ρ  is presently assumed to be negligible.  The deriva-
tive  d/dt  actually represents both the temporal and convective partial derivative terms.  
For example,

dV

dt
=

∂V

∂t
+ V

∂V

∂s
(8.61)

and similarly for  dH/dt.  Thus Eqs. 8.59 and 8.60 actually contain two nonlinear
convective terms in addition to the nonlinear friction term.

Let us assume for the moment that the linear terms in Eqs. 8.59 and 8.60 are larger
than the nonlinear terms and discard the nonlinear terms;  we can evaluate later the
consequences of this simplification.  Then these equations become

∂V

∂t
+ g

∂H

∂s
= 0 (8.62)

and

a2 ∂V

∂s
+ g

∂H

∂t
= 0 (8.63)

Since the equations are now linear, cross-differentiation and some algebra will allow us to
eliminate either one of the two dependent variables  V   and  H  in favor of the other one.
Thus, if we take the partial derivative of Eq. 8.62 with respect to  s  and the partial
derivative of Eq. 8.63 with respect to  t,  the algebra leads to

∂2H

∂t2 = a2 ∂2H

∂s2 (8.64)

By interchanging the differentiation roles of  s  and  t,  we can demonstrate that  V   is also
governed by this equation.

Equation 8.64 is a basic equation of mathematical physics called the wave equation.
The parameter  a  in Eq. 8.64 is known as the wave propagation speed.  Hence we expect
the solutions of Eq. 8.64 for either  H  or  V  to display the behavior of waves.  By means
of a change in the independent variables, we can deduce the general solution of Eq. 8.64 for
H;  the procedure is identical for  V.  We begin with  H = H(s, t)  and  V  = V(s, t), and we
choose as new independent variables  u = t + s/a  and  v = t - s/a.  Application of the chain
rule of differentiation to compute the new partial derivatives of  H   then leads to

4
∂2H

∂u∂v
= 0 (8.65)

as the new form of the governing equation.  The general solution immediately follows as



H − H0 = F1 t +
s

a






+ F2 t −
s

a






(8.66)

in which  F1  and  F2  are each an entirely general function of their one argument, and  H0
is an additive constant of integration which fixes the reference level for the head  H.

We turn now to the interpretation of the result expressed in Eq. 8.66.  Functions  F1
and  F2  are each wave forms; either or both may exist in a particular problem, depending
on the particular initial and boundary conditions.  We focus first on  F1:  at any instant  t1
the wave form  H  described by the function  F1  can be any function of the distance
variable  s,

F1(s, t1 + δt)
F1(s, t1)

s

Pipe

Figure 8.5  Motion of the wave form  F1.

as we see on the right side of Fig. 8.5.  So long as the argument  t + s/a  is unchanged,
the
wave form is unchanged.  But as the time  t  advances, the argument  t + s/a  can only re-
main constant if  s/a  decreases by  δt  as  t  increases by  δt;  thus the constant wave form
moves in the negative  s-direction (to the left), as Fig. 8.5 also shows.  We conclude that
F1  describes a left-moving wave.  By similar reasoning we find that  F2  describes a right-
moving wave form.  The general solution to Eq. 8.66 is then a superposition of any
number, one or many, of left- and/or right-moving waves.

Is the neglect of the nonlinear convective acceleration terms justified?  These are the
terms

V
∂V

∂s
and V

∂H

∂s
(8.67)

If we apply the scaling  s ~ at  to the terms in Eq. 8.67, we quickly find

V
∂V

∂s
~

V

a

∂V

∂t

V
∂H

∂s
~

V

a

∂H

∂t

(8.68)

Since it is almost always true that  V/a << 1,  the convective terms, initially dropped, are
nearly always much smaller than the linear terms that were retained.  In later solutions the
neglect of these terms will often be an acceptable approximation, although in some ways
the quality of the resulting solution is less precise.  Only in rare problems where  V/a  is
not much smaller than unity is it essential to retain these terms.



8.6 PROBLEMS*

8.1  A high-pressure water system is being designed for use in a lumber mill to remove
bark from logs.  The main portion of the pipe system is 6-inch steel pipe with walls
0.219 inches thick.  The inside diameter of the pipe is  6.187 inches, and the working
water pressure in the pipe is  1094 lb/in2.  The allowable stress in the steel pipe walls is
15,000 lb/in2.  Under steady flow conditions the water pressure in the pipe is about  750
lb/in2  with a flow velocity of  10 ft/s.  Because of the nature of the process, there is a
need for a very rapid valve closure.

(a)  Compute the wave speed for all three types of restraint using the thin-walled pipe
formulas.

(b)  Make a recommendation as to whether the water hammer pressures developed under
sudden valve closure could overstress the pipe.

8.2  A 12-inch PVC line is laid above ground using bell-and-spigot joints.  It is restrained
laterally to prevent buckling but is free to strain longitudinally.  However, concrete
anchors at each bend prevent the pipe from blowing apart.  The inside diameter of the pipe
is  12.09  inches  and the wall thickness is  0.311 inches.

(a)  Choose the proper restraint case, and compute the wave speed using the thin-walled
pipe formula.

(b)  Also calculate the percent increase in pipe volume that is caused when a water
velocity of  10 ft/s  is brought suddenly to rest.

(c)  What change in diameter does this represent?

8.3  A long water line is to be constructed of  T-30  Transite pipe (asbestos cement).  The
pipe is rated for a maximum pressure of  300 lb/in2.  The inside diameter of the pipe is  18
inches, and the outside diameter is  19.70 inches.  Lengths of pipe are joined with
couplings and ring gaskets.  

(a)  Compute the wave speed for all three types of restraint, assuming the thin-walled
pipe formulas apply.

(b)  Which wave speed would you recommend using?  Why?

8.4  When water hammer occurs in the pipe of Problem 8.3, the water is compressed and
the pipe is stretched.  What percentage of the volume change can be attributed to water
compression and what percentage to pipe expansion?  Assume Case (b) restraint applies.

8.5  Calculate the wave speed in the following situations for Case (b) restraint using the
thin-walled pipe formulas:

(a)  Steel pipe, 36-inch inside diameter, 0.375-inch wall thickness
(b)  Ductile cast iron pipe, 18-inch inside diameter, 0.50-inch wall thickness
(c)  Aluminum pipe, 4-inch inside diameter, 0.10-inch wall thickness
(d)  Asbestos cement, 11.56-inch inside diameter, 1.26-inch wall thickness
(e)  Class 125 PVC, 6.22-inch inside diameter, 0.20-inch wall thickness

Note the variation in  a  for this wide range of pipe sizes and materials.

8.6  For the PVC pipe of Problem 8.5, compute the percent change in cross-sectional area
caused by a sudden velocity change of  10 ft/s.

                                                
* Problems 8.1, 8.5, and 8.7-8.11 are adapted from Elementary Fluid Mechanics, by R. L.
Street, G. Z. Watters, and J. K. Vennard, Ed. 7, Copyright 1996 by John Wiley & Sons,
Inc.  Reprinted by permission.



8.7   The wall of a steel pipe  8000 ft long, with a  6 ft inside diameter and a wall
thickness of  0.50 inches, is stressed at  7000 lb/in2.  Water is flowing at  5 ft/s.  

(a)  For Case (a) restraint and sudden valve closure, what amount of water enters the pipe
after valve closure?

(b)  How is this volume distributed among radial stretching, longitudinal stretching, and
water compression?

8.8   Calculate the wave speed in a water-filled copper tube that is installed without
longitudinal restraint.  The tube has a  0.375 inch inside diameter, is  75 ft long and has a
wall thickness of  0.03 inches.  The steady state pressure in the tube is  73 lb/in2.

8.9   A Class 51 ductile iron pipe conveys water between two reservoirs.  The outside
diameter is  15.30 inches and, for this class of pipe, the wall thickness is  0.36 inches.
Assuming the pipe can be considered to be thin-walled, compute the wave speed for all
three types of restraint.

8.10   For the pipe of Problem 8.9, compute the percent change in pipe volume that
occurs as the result of a sudden stoppage of a  10 ft/s  flow of water.  Use Case (b)
restraint.

What is the percent change in the density of the water?

8.11  A plastic supply pipe in a building water system is anchored at both ends and has
expansion joints along its entire length.  The line is  800 ft  long,  6.00 inches inside
diameter with a  0.200 inch wall thickness.  The modulus of elasticity for this material is
500,000 lb/in2.  Water in the pipe normally flows at  10 ft/s,  and the system valves are
designed to close very quickly.  

(a)  If  µ = 0.5  for this material, what is the wave speed?
(b)  If the steady state pressure in the pipe is about  100 lb/in2,  estimate the maximum

pressure that could occur in the system under the worst water hammer conditions?  
(c)  What would be the stresses in the pipe walls under these conditions?

8.12  An aluminum irrigation pipeline laid on level ground consists of a series of  20-ft
pieces connected rigidly together.  The two ends of the pipeline are anchored solidly to the
ground.  If the pipe is  8  inches in inside diameter with  0.10-inch walls, calculate the
wave speed in the pipe.

8.13   Class 100 PVC pipe has a nominal diameter of  8 in  but has an actual inside
diameter of  8.205 in  and a wall thickness of  0.210 in.

(a)  Calculate the wave speed in this pipe for all three types of restraint using the thin-
walled pipe formulas.

(b)  Also calculate the percent change in cross-sectional area of this pipe for Case (b)
restraint when a flow of velocity of  8 ft/s  is suddenly brought to rest.

8.14  For the pipe of Problem 8.13, calculate the wave speed for Case (b) restraint using
the thick-walled pipe formulas.
8.15   In Problem 8.1  the wave speeds for the three restraint conditions were computed,
assuming thin-walled pipe, as 4190 ft/s, 4210 ft/s, and 4170 ft/s for Cases (a), (b), and (c),
respectively.

(a)  Use the thick-walled pipe formulas to recompute the wave speeds, and compute the
percent error caused by using the thin-walled pipe formulas.

(b)  For sudden stoppage of a  10 ft/s  flow, what is the error in pressure head increase
when the thin-walled pipe formulas are used?

(c)  Is the more accurate figure conservative?



8.16  In Problem  8.3  the wave speeds were computed with the thin-walled pipe formulas
for T-30 Transite pipe as  2830 ft/s, 2870 ft/s,  and  2790 ft/s  for Cases (a), (b), and (c),
respectively.  Recompute the three wave speeds using the thick-walled pipe formulas and
find the percent change.  Will the use of more accurate wave speeds result in more
conservative pressure head changes?

8.17   A Class 200 PVC pipe has an inside diameter of  3.146 inches and an outside
diameter of  3.500 inches.  The pipe sections are to be connected by the bell-and-spigot
method using ring gaskets.  When placed in a trench, the pipeline will be anchored at the
ends and at all bends by concrete anchor blocks.  Compute the wave speed for the pipeline.

8.18  An unlined power tunnel is to be excavated through limestone between a diversion
dam and hydroelectric power plant penstocks.  If the tunnel is approximately circular in
cross section and  14.5 ft in diameter, what wave speed is appropriate for use in water
hammer calculations?

8.19  A  12-inch-diameter hydraulic conduit is drilled through a massive part of a concrete
gravity dam.  Estimate the wave speed in this situation for concrete with a 28-day strength
of  4000 lb/in2.

8.20  A circular tunnel which is  18 ft in diameter is being cut through Sierra granite as
part of a hydroelectric power development.  For purposes of a water hammer study,
compute the wave speed that would apply in this circumstance.

8.21   The power tunnel for a hydroelectric power plant is unlined and cut through
quartzite.  The tunnel has the dimensions shown below.  Estimate the wave speed to be
used for water hammer analysis.

14'

16'

8.22  Pretensioned concrete cylinder pipe is used in a long water-supply transmission line.
The pipe shown below has  24-in inside diameter, and the steel cylinder is 14 gage  
(0.0747 in).  The steel wrapping wire is  0.25 in  in diameter and spaced on  1.25-in
centers.  The cement-mortar liner is  0.75 in  thick and has a  28-day strength of 4500
lb/in2.  The exterior coating is  0.75 in  thick over the wire and is for the protection of the
wire only.  Calculate the wave speed in the pipe.
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Steel cylinder

Cement mortar liner

Wire wrap 0.25"

0.75"

24"

Exterior coating 1.25" dia.

8.23  A  36-in  inside diameter reinforced concrete pipe has steel reinforcing rod wrapped
around the pipe midway within a  4-in  wall.  The steel rod has an average area of  0.80 in2

per lineal foot of pipe, and each wrap is spaced  3 in  on center.  Assuming the gasket
joints act as expansion joints, estimate the wave speed in the pipe, both including and
excluding the concrete.  The  28-day strength of the concrete is  6000 lb/in2.

8.24   A water project under design will be using embedded-cylinder, prestressed concrete
pipe.  The cylinder is to be fabricated from  10 gage (0.1345 in) steel, and the  7/16-in
wire will be wrapped on  1.00-in  centers.  A sketch of a longitudinal section of the pipe is
shown below.  All of the concrete in the pipe will have a  28-day strength of  5000 lb/in2.
Recommend a wave speed to be used in a water hammer analysis.

��������yyyy����yyyy����yyyy��yy
Reinforcing wire Shot-coated concrete

protective cover for wire

Steel
cylinder

0.75"

2.500"

8.25   A pretensioned  48-inch inside diameter reinforced concrete pipe similar in con-
figuration to that of Problem 8.22 is manufactured using a 10 gage (0.1345 inch) steel
cylinder wrapped with  0.244-inch diameter steel wire on  1.00-inch centers.  The total wall
thickness of the pipe is  5.0 inches with a  3.00-inch cement-mortar lining.  The cement
liner has a  28-day strength of  6000 lb/in2.  Assuming the gasket joints act as expansion
joints, calculate the wave speed for the pipe.



CHAPTER 9
_________________________________________________________________________

SOLUTION BY THE METHOD OF CHARACTERISTICS

The history of water hammer analysis is marked by various clever and practical
techniques for solving the Euler and conservation of mass equations derived in Chapters 7
and 8.  Those methods were a reflection of the level of sophistication of the numerical
analysis capabilities of their time as well as the ingenuity of the practitioners.  In recent
years the availability of low-cost, high-performance desktop computers has led to the
creation of solution methods for these equations which are numerically very accurate and are
capable of incorporating a wide range of boundary and initial conditions.

At this time the most general and widely-used technique for solving these equations is
the method of characteristics.  It is no coincidence that this method is very compatible with
numerical solution by digital computer.  For this reason we consider only the method of
characteristics approach to problem solving in this and following chapters.

9.1 METHOD OF CHARACTERISTICS,
 APPROXIMATE GOVERNING EQUATIONS

9.1.1. DEVELOPMENT OF THE CHARACTERISTIC EQUATIONS
Anticipating that many engineers are even today unfamiliar with the method of

characteristics as a solution technique, we first introduce the method using approximate
versions of Eqs. 8.57 and 8.58.  These approximate equations are obtained by neglecting
the spatial variation of  V  and  p  whenever both space- and time-varying terms appear in
the same equation.  We do this because, in general, the spatial variations are much less
significant in determining the solution behavior than are the time-varying terms.

Following this approach, Eq. 8.57 becomes
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and Eq. 8.58 becomes
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The essence of the method of characteristics is the successful replacement of a pair of
partial differential equations by an equivalent set of ordinary differential equations.  The
development of the method begins by presuming that the pair of Eqs. 9.1 and 9.2 may be
replaced by some linear combination of themselves.  Using  l  as a constant linear scale
factor, sometimes called a Lagrange multiplier, one possible combination is
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Regrouping terms,
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We note that if  λ ∂
∂

∂
∂

V

t
a

V

s
+ 2    is to be replaced by  λ dV

dt
,  then  λ ds

dt
= a2 .  Further, if

1
ρ

∂
∂

λ
ρ

∂
∂

p

t

p

s
+   is to be replaced  by

1
ρ

dp

dt
,  then  

λ
ρ

= 1
ρ

ds

dt
.  To satisfy these two

requirements for  
ds

dt
,  we discover that  λ2 = a2   or

λ = ± a (9.5)

The scale factor  l  is linear and constant, as required, so long as  a  is constant, and we
have succeeded in combining Eqs. 9.1 and 9.2.  We first rewrite Eq. 9.3 with  l = +a  as a
replacement for the first equation.  Then we rewrite Eq. 9.3 with  l = –a  as a replacement
for the second equation.  Upon dividing the resulting equations by the wave speed  a,  we
have a pair of ordinary differential equations rather than partial differential equations:
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However, there are now special restrictive conditions on the independent variables in each

equation.  Equation 9.6 is subject to the requirement that  λ ds

dt
a= 2 ,  so  
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λ
.

Therefore, Eq. 9.6 is valid only when 
ds

dt
a= + .  Similarly, Eq. 9.7 is valid only when

ds

dt
a= − .  Thus we have replaced two partial differential equations by two pairs of ordinary

differential equations, and we must follow these rules which relate the independent variables
s  and  t.  As we believe it is easier to visualize the propagation of pressure waves in terms
of the piezometric head  p = g(H - z)  the height of the  EL-HGL  above a horizontal datum
(commonly sea level), we convert from  p  to  H.

The new form of Eqs. 9.6 and 9.7 is now
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From the fact that special relations must be maintained between  s  and  t  in Eqs. 9.8 and

9.9, the equations  
ds

dt
a= +   and  

ds

dt
a= −   have come to be called the characteristics of

Eqs. 9.8 and 9.9, hence the name of the analysis procedure.



To see how we use these characteristic equations in a solution, we work with a graph
having  s  as the abscissa and  t  as the ordinate, referred to as the  s-t  plane.  Figure 9.1
shows how the  s-t  plane is related to the physical problem.  Here the s-coordinate is the

L

H0

Physical configuration s - t plane

t

0 s = L
s

C+

a
11

a

C-

Figure 9.1  The  s-t  plane for the simple flow of Chapter  7.

distance along the pipe from the upstream end.  With  a  as a constant, the characteristic

equation for Eq. 9.8,  
ds

dt
a= + ,  can easily be integrated (after inverting to get into proper

form) to yield  t = s / a + constant .  This equation describes a family of straight lines of
slope  1/a  on the  s-t  plane; the position of any one line depends on the constant of
integration.  Because these lines are associated with the characteristic equation having the  +

sign for  a,  they are referred to as  C+ characteristics.  Figure 9.1 depicts a C+

characteristic passing through the origin.  Similarly, the characteristic equation for Eq. 9.9
describes a family of straight lines on the  s-t  plane with a slope  –1/a.  The characteristics

of Eq. 9.9 are referred to as C– characteristics; one is plotted in Fig. 9.1 passing through
the point  s = L.

Let us revisit the simple water hammer illustration of Chapter 7 to understand further
the concept of characteristics.  In that example a valve at the downstream end of a pipeline
was suddenly closed, causing a pressure wave to propagate upstream at speed  a.  Friction
was neglected.  For this situation Eqs. 9.8 and 9.9, with negligible friction, can be written

dV

dt

g

a

dH

dt
± = 0 (9.10)

Multiplying by  dt  and rearranging,

dV = ± g

a
dH   or   dH = ± a

g
dV (9.11)

This equation has the same form (replacing  dV  and  dH  with  DV  and  DH)  as the

equation for pressure head increment that was derived earlier as Eq. 8.8.  Tracing the  C–

characteristic which has a slope of  1/a  from right to left, we note from Fig. 9.1 that the
wave reaches the origin (upstream end of the pipe) at  t = L/a.  Both of these results validate
the simple water hammer analysis of Chapter 7 and show that pressure waves propagate
along the characteristic lines.  As we will see later, this important physical fact is crucial in
obtaining reliable results from the numerical analysis.



With a physical grasp of Eqs. 9.8 and 9.9 now in hand, we will proceed to formalize the
solution process more carefully.  To compute values of  H  and  V   at various locations
along the pipe as functions of time, we must begin with a knowledge of  initial  conditions
along the s-axis of the  s-t  plane and boundary conditions for all time at the pipe ends  s =
0  and  s = L.  Then a solution for values of  H  and  V   can "march" forward (upward) in
the  s-t  plane.

To see how this marching process works, refer to Fig. 9.2, which is an  s-t  plane for
some as yet undefined problem.  At any point on the  s-t  plane, say point  P,  the values

∆t
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C- C+

S
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s
SRi

Ri

∆s ∆s

Le

Figure  9.2  The  s-t  plane showing characteristics for Eqs. 9.8  and  9.9.

of the continuous variables  H  and  V   are unique (i.e., the  H   and  V   values are

independent of the characteristic with which they are associated).  We next draw the  C+

and  C– characteristic lines through point  P  and extend them to intersect the  s-axis at
points on the left and right sides of  P, here called  Le  and  Ri, respectively.  Note that
these two points are in this approximate case each the same distance  Ds  from  P.

Equation 9.8 applies along the C+ characteristic, and Eq. 9.9 applies along the C–

characteristic.  The information which determines  H  and  V   will propagate forward in
time along these two characteristics from  Le  and  Ri.

9.1.2. THE FINITE DIFFERENCE REPRESENTATION
In seeking a numerical solution to our problem, we write Eqs. 9.8 and 9.9 in finite

difference form.  Equation 9.8 becomes
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and Eq. 9.9 becomes

VP − VRi
tP − 0

− g

a

HP − HRi
tP − 0

+ f

2D
VRi VRi = 0 (9.13)

We have made two significant assumptions in developing these equations.  First we
assume that the velocity at the beginning of the time interval, rather than an average
velocity over the interval, adequately represents the frictional effect.  The computational
implications are significant.  If we were to include the unknown value  VP  in the friction



term, the difference equations would become nonlinear and require an iterative solution.  In
view of the tremendous number of times that we will solve these equations and the
sometimes troublesome nature of nonlinear solution techniques, we choose not to employ
that approach.  With the generally small time increments in the solution of transient
problems, we intuitively expect that this simplification will not cause significant
inaccuracies in our results.

We also assume that the steady-state friction coefficient can adequately represent friction
losses in a transient flow.  The assumption of a non-transient constant friction coefficient
in transient analyses has always been an approximation.  The use of the steady-state Darcy-
Weisbach  f  implies that the flow in the pipe is behaving as a wholly rough flow.  That
is, the  f  which would normally be changing with Reynolds number as the transient
velocity changes, is kept constant.  Use of the Hazen-Williams  C  partially compensates
for this problem by letting an equivalent  "f"  adjust somewhat with the transient velocity
change.  However, neither method is based on the fundamental behavior of transient flow.

As the velocity changes relatively rapidly, even reversing direction, the velocity profile
becomes quite complex.  The calculation of the shear stress and energy dissipation is
difficult.  Silva-Araya and Chaudhry (1997) provide a state-of-the-art assessment of this
problem;  they retain the friction coefficient (the Darcy-Weisbach  f)  but multiply it by an
energy dissipation factor to account for the additional friction loss in a transient flow.  The
method employs a dissipation function for axisymmetric flow which includes the effects of
both viscous and turbulent stresses.  While this approach shows promise, the extra
computational effort currently appears excessive for practical use.  Consequently we
continue to use the traditional approach of employing steady-state friction coefficients.

We now replace  tP - 0  with  Dt  in the above equations so the analysis will apply to
more than the first time interval.  Multiplying these equations by  Dt  gives
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and
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These equations will be referred to as the  C+  and  C–  equations, respectively.
The characteristic equations can also be written in finite difference form as

∆s = ± a ∆t (9.16)

Now, proceeding with the finite difference numerical solution, we must select a spatial
interval in the  s-direction, i.e., the number of sections into which the pipe will be divided.
If we decide to divide the pipe into  N  sections, then each section will be of length  Ds =
L/N.  This decision fixes  Ds,  and Eq. 9.16 is then used to compute  Dt.  We can now
construct the grid of characteristics  shown in Fig. 9.3  atop the next page.

Grid points along the  s-axis represent points spaced  Ds  apart along the pipe axis, and
the values of  H  and  V   at these points are initial conditions.  Usually these initial
conditions are a set of values of  H  and  V  which describe a steady flow in the pipeline at
the moment a transient begins.  With the known values from points  Le  and  Ri  we can
now solve Eqs. 9.14 and 9.15 simultaneously to obtain the values  HP  and  VP  at points
2  through  N  at time  t = Dt.  The boundary conditions at  s = 0  and  s = L  must be used

in conjunction with the appropriate  C+  or  C–  equation to compute the values of
H HP PN1 1

  and  
+

.  This completes the solution for all the values of  H  and V   at time  t =

Dt.  We next compute the values of  H  and  V  at time  t = 2Dt  using the just-computed



values at  t = Dt  as the known values in Eqs. 9.14 and 9.15.  This process is repeated
continuously as we march ahead in the  s-t  plane.
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Figure  9.3  The characteristic grid for a single pipe.

Finally, we should emphasize an important conceptual point arising from our analysis.
Any change in the velocity or head at a point in the pipeline cannot be sensed at another
point in the pipeline until the pressure wave has had time to propagate at the wave speed to
that section.  This effect is illustrated in Fig. 9.4 showing where and when a disturbance at
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C+

C+

P

t

S
s

Figure  9.4  Disturbance propagation in the  s-t  plane.

S   can be sensed at subsequent times.  A corollary to this concept is also illustrated in Fig.
9.4;  the values of  H  and  V   at a point  P  can only be affected by events contained

within the zone formed by the subtended  C+  and  C–  characteristics.

9.1.3. SETTING UP THE NUMERICAL PROCEDURE
In the previous section we have developed finite difference equations which permi t us to

calculate  H  and  V   at predetermined intersections of the  C+  and  C–  characteristics.
The values of  H  and V   at the ends of the pipe were determined by using boundary
conditions.  Now we will arrange the solution procedure so it can be conveniently
implemented on a computer.

First we develop a pair of equations to find  H  and  V   at the interior points (points 2
through N).  We do this by solving Eqs. 9.14 and 9.15 simultaneously to obtain
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The boundary conditions at each end of the pipe describe externally-imposed conditions
on velocity and/or pressure head.  To aid the reader in understanding how boundary
conditions are applied, we will examine a few common ones now.

Reservoir boundary condition (upstream end of pipe)
Where a pipe exits from a reservoir, the head  H  assumes the value corresponding to the

head of the reservoir water surface.  If the water surface elevation is constant in time, then
H  is constant.  If the reservoir water surface elevation changes with time, so too does  H,
if the local pipe entrance loss is neglected.  This is represented in equation form as

HP1
= H0 (9.19)

This value for HP1
 is substituted (R = 2) into Eq. 9.15 to yield an expression for velocity:
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If the reservoir were at the downstream end of the pipe, the same approach using the  C+

equation would give a similar expression for VPN+1
.

Velocity boundary condition (downstream end of pipe)
When the velocity is known at the downstream end of a pipe, this information can be

combined with the  C+  characteristic equation to develop an equation for HPN+1
.  For

example, suppose a valve is closed so that the velocity decreased linearly from V0  to zero
in  Tc seconds.  The velocity behavior is
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The equation for HPN+1
 can be found by substituting Eqs. 9.21 into Eq. 9.14 to give
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for any value of VPN+1
,  including zero.

Constant speed pump boundary condition (upstream end of pipe)
This boundary condition offers the added complexity of having both HP1

  and VP1
  in

the boundary equation.  Consequently the boundary equation must be solved simul-
taneously with Eq. 9.15 to produce equations for HP1

 and VP1
.



We now choose a way to represent the pump boundary condition.  The simplest
approach that is reasonably general is to represent the pump discharge characteristics by a
quadratic equation of the form

h A Q B Q Cp p p p= + +' ' '2 (9.23)

in which  Q  is the pump discharge and  hp  is the head increase across the pump.  These

variables are not identical to those in the  C–  equation, so we make some adjustments.
We replace  Q  with V AP1

  and  hp  with H HP sump1
− .  Incorporating  Hsump   into  Cp'

and  A  into Ap'   and Bp'   leads to

H A V B V CP p P p P p1 1 1

2= + + (9.24)

We note for future use that if this curve is to be concave down and always sloping
downward for increasing  Q  (generally it should do this), then  Ap<0,  Bp<0,  and  Cp>0.
This information is needed in computerizing this boundary condition.

When Eq. 9.24 is solved simultaneously with the  C– characteristic equation, Eq. 9.15,
the elimination of HP1

  leads to the following equation for  VP1
;
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Rearranging, we get
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This quadratic equation can now be solved for VP1
.  Then a back substitution into Eq. 9.24

will yield HP1
.

Incidentally, if a (loss-free) check valve were installed downstream of the pump, we
could model it mathematically by first computing VP1

  from Eq. 9.26 and then checking

the sign of the velocity;  if it were negative, we would set VP1
  to zero before calculating

HP1
  from the  C– characteristic equation, Eq. 9.15.

9.1.4. COMPUTERIZING THE NUMERICAL PROCEDURE
The problem-solving approach we have developed is relatively easy to program for the

computer.  Since we divided the pipe into  N  sections, the node points between sections
can be numbered sequentially from  1  to  N+1,  beginning at the upstream end of the pipe.
Keeping in mind the connection between the subscripts in our equations and the indices of
the subscripted variables in computer programs, we rewrite Eqs. 9.14 and 9.15 as

C V V
g

a
H H

f t

D
V VP i P i i ii i

+
− − − −−( ) + −( ) + =: 1 1 1 12

0
∆

(9.27)

C V V
g

a
H H

f t

D
V VP i P i i ii i

−
+ + + +−( ) − −( ) + =: 1 1 1 12

0
∆

(9.28)



The solutions for the interior values of  HP  and  VP  (Eqs. 9.17 and 9.18) are now

V V V
g

a
H H

f t

D
V V V VP i i i i i i i ii

= +( ) + −( ) − +( )
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1
2 21 1 1 1 1 1 1 1

∆
(9.29)

H
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g
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





− + − + − − + +

1
2 21 1 1 1 1 1 1 1

∆
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for  2 ≤ ≤i N .
All boundary conditions must also be written in a form that is consistent with the

subscripted-variable approach.  The boundary conditions for the reservoir and the linearly-
varying velocity are already in the proper form; however, the constant-speed pump boundary
condition, which requires the solution of two simultaneous equations, needs further work.
The practitioner must perform the algebra and then program the computer.  We will now
examine this process in detail because boundary conditions which lead to pairs of equations
which must be solved are very common in transient problems.  This example also employs

a technique for handling the bulky  C+  and  C–  equations in an efficient way which can be
directly transported to the computer code.

Constant-speed pump revisited
For subsequent algebraic manipulation it is convenient to simplify the equations by

representing a collection of known terms by a single symbol.  Here we can write Eq. 9.28,
applicable to the upstream end of the pipe, as

V C C HP P1 11 2= + (9.31)

where

C V
g

a
H

f t

D
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2
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=

∆

(9.32)

In the computer  C1  and  C2  will just be numbers because they were calculated by using
known values from the previous time.

Combining Eq. 9.31 with Eq. 9.24 to eliminate HP1
 gives

V C

C
A V B V C

P

p P p P p
1

1 1

1

2

2
−

= + + (9.33)

Preparing the equation in standard quadratic form,

V
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Letting C
B C

A
p

p
3

21
=

− /
 and C
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, this equation becomes
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The solution is

VP1
= C3

2
− 1 ± 1 − 4C4

C3
2















(9.36)

It only remains to determine which of the  ±   signs to use.
This sign decision must be made many more times, so we examine the process in detail

now.  We begin by determining the sign (where possible) of the C-terms.  From Eq. 9.32
one can see that

C1 =  unknown sign C2 = +( ) (9.37)

Assuming the usual behavior for the coefficients of the pump model, Eq. 9.23, one has

Ap = −( ) Bp = −( ) Cp = +( ) (9.38)

From the definition equations for C3 and C4,

C3 = −( ) − +( )
−( )

= +( ) C4 = +( ) + unknown( )
−( )

= unknown( ) (9.39)

We conclude that  C3  is always positive, and we are not sure of the sign of  C4.  Equation
9.36 can be written in terms of signs as

sign VP1( ) = +( ) −1 ± 1 − ?( )
+( )













(9.40)

At the beginning of a steady flow process  VP1
  is positive;  thus we must be able to

obtain some positive values from this equation.  This can only happen if the term in the
brackets is positive.  Because there must also be the possibility of negative velocities (see
Chapter 7), the term in the brackets must also take on negative values.  Because the square
root must be positive, the only possibility that could lead to  [  ]  being either positive or
negative would occur when a  +  sign is selected from the  ±   option.  We are left with the
equation for VP1

 as

VP1
= C3

2
− 1 + 1 − 4C4

C3
2















(9.41)

and

H
V C

CP
P

1

1 1

2

=
−

(9.42)

Revisiting the issue of backflow, we might assume a check valve is installed.  To
simulate the check valve, we would test  VP1

  and, if it were negative, set  VP1
 = 0.  We

then go ahead and calculate  HP1
  from Eq. 9.42.  As before, we could not use Eq. 9.24 to

compute  HP1
  because the check valve has isolated the pump from the pipeline.



9.1.5. ELEMENTARY COMPUTER PROGRAMS
The first elementary computer program is presented in Fig. 9.5 to demonstrate the

structure of a water hammer analysis computer code.  The program is written in
FORTRAN and provided in dynamic array dimensional form both as source code and
executable elements on the enclosed CD ROM.  The source listing here will enable the
reader to study the various blocks of code comprising the analysis.

The program has NAMELIST input which makes the input data file easier to read.  The
input parameters are identified in the program under the NAMELIST /SPECS/ statement.
Each input parameter is defined in the COMMENT statements at the beginning of the
program listing.

In this basic program the user must perform the steady-state hydraulic calculations
required to provide some of the input data to the program.  These steady-state values are the
initial conditions which are entered into a data file created by the user;  it is to be read by
the program at execution time.  The boundary conditions in this program are written into
the source code and consist of a constant-head reservoir at the upstream end and a linearly-
decreasing velocity at the downstream end.  To use the program for any other boundary
conditions would require the user to modify the code itself and then recompile it, as will be
explained further with the second program in this section.

The program will simulate the water hammer process until the time of simulation
reaches TMAX.  At that time the program will cease execution; it will then also determine
and print the maximum and minimum values of pressure head,  H,  and  V  that occurred at
each node.  The output from the analysis will be printed in an output file designated by the
user in response to a prompt during execution.

    PROGRAM PROG1
*************************************************************************
*   PROGRAM NO. 1
*   APPROXIMATE-METHOD WATER HAMMER PROGRAM FOR A SINGLE STRAIGHT PIPE.
*
*   THIS PROGRAM HAS BEEN INCLUDED FOR THE CONVENIENCE OF THE READER.
*   THE AUTHOR ACCEPTS NO RESPONSIBILITY FOR ITS CORRECTNESS.
*   USERS OF THIS PROGRAM DO SO AT THEIR OWN RISK.
*************************************************************************
*                CONSTANT-HEAD RESERVOIR AT UPSTREAM END
*   VELOCITY DECREASES LINEARLY WITH TIME TO ZERO AT DOWNSTREAM VALVE
*
*                 *****  DATA DESCRIPTION  *****
*   TITLE1 =  FIRST JOB DESCRIPTION.  ANY INFORMATION, 80 COLUMNS MAXIMUM
*   TITLE2 = SECOND JOB DESCRIPTION.  ANY INFORMATION, 80 COLUMNS MAXIMUM
*   IOUT = PRINT OUTPUT INDEX. GIVES PRINTED OUTPUT EVERY IOUT-TH TIME
*          STEP. FOR EXAMPLE, IF IOUT = 3, THEN OUTPUT IS PRINTED EVERY
*          THIRD TIME STEP.
*   NPARTS = NUMBER OF PIPE SEGMENTS INTO WHICH PIPE IS DIVIDED
*   D = PIPE DIAM, IN        L = PIPE LENGTH, FT
*   F = DARCY-WEISBACH  F-VALUE OR HAZEN-WILLIAMS  C-VALUE
*   A = WAVE SPEED, FT/S     VZERO = INITIAL STEADY STATE VELOCITY, FT/S
*   HZERO = UPSTEAM RESERVOIR ELEVATION, FT
*   ELEVUP = ELEVATION OF UPSTREAM END OF PIPE, FT
*   ELEVDN = ELEVATION OF DOWNSTREAM END OF PIPE, FT
*   TMAX = MAXIMUM REAL TIME OF SIMULATION, SEC
*   TCLOSE = TIME REQUIRED FOR VALVE CLOSURE, SEC
      DIMENSION X[ALLOCATABLE](:),V[ALLOCATABLE](:),H[ALLOCATABLE](:),
     $HLOW[ALLOCATABLE](:),HHIGH[ALLOCATABLE](:),HEAD[ALLOCATABLE](:),
     $VNEW[ALLOCATABLE](:),HNEW[ALLOCATABLE](:),PIPEZ[ALLOCATABLE](:)
      REAL L,NEXP

Figure 9.5  An elementary computer program for the approximate method.
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      CHARACTER TITLE1*80,TITLE2*80,ROUGH*3,CH,CH12,CH78,CH79,CHN
      CHARACTER FNAME*12
      NAMELIST /SPECS/ IOUT,NPARTS,D,L,F,A,VZERO,HZERO,ELEVUP,
     $ELEVDN,TMAX,TCLOSE
*------------------------------------------------------------------------
      WRITE(*,791)
      READ(*,100) FNAME
      OPEN(5,FILE=FNAME)
      READ(5,100) TITLE1
      READ(5,100) TITLE2
      READ(5,SPECS)
      WRITE(*,792)
      READ(*,100) FNAME
      OPEN(6,FILE=FNAME,STATUS='NEW')
*------------------------------------------------------------------------
      CH=CHAR(27)
      CH12=CHAR(12)
      CH78=CHAR(78)
      CH79=CHAR(79)
      CHN=CHAR(3)
      NP=NPARTS+1
      ALLOCATE (X(NP),V(NP),H(NP),HLOW(NP),HHIGH(NP),HEAD(NP),
     $VNEW(NP),HNEW(NP),PIPEZ(NP))
      WTT=L/A
      DELL=L/NPARTS
      T=0.
      NEXP=1.0
      ROUGH='F ='
      IF(F.GT.10.) NEXP=0.85
      IF(F.GT.10.) ROUGH='C ='
      DELT=DELL/A
      C=32.2/A
      INDEX=TMAX/DELT + 1
      DELEL=(ELEVDN-ELEVUP)/NPARTS
      NODES=NPARTS+1
      WRITE(6,101) CH,CH78,CHN
      WRITE(6,200)
      WRITE(6,203) TITLE1
      WRITE(6,203) TITLE2
      WRITE(6,201) IOUT,NPARTS,L,A,D,ROUGH,F,VZERO,HZERO,ELEVUP,
     $ELEVDN,WTT,TCLOSE,TMAX,DELT
      AK=12.*F*DELT/(2.0*D)
      IF(F.GT.10.) AK=12.*DELT*195./(2.0*D*(F**1.85)*(D/12.)**.17)
      IF(F.GT.10.) F=195./((F**1.85)*(VZERO**.15)*((D/12.)**.17))
      DELHF=12.*F*DELL*VZERO**2/(64.4*D)
*
      DO 300 I=1,NODES
      V(I)=VZERO
      H(I)=HZERO-(I-1)*DELHF
      HLOW(I)=H(I)
      HHIGH(I)=H(I)
      X(I)=(I-1)*DELL/L
      PIPEZ(I)=ELEVUP+(I-1)*DELEL
      HEAD(I)=H(I)-PIPEZ(I)
  300 CONTINUE
      WRITE(6,101) CH12
      WRITE(6,202)
      WRITE(6,204) T,(X(I),HEAD(I),H(I),V(I),I=1,NODES)

Figure 9.5, cont'd.  An elementary computer program for the approximate method.



      DO 99 II=1,INDEX
      T=T+DELT
*  ** COMPUTE H AND V AT INTERIOR NODES **
      DO 20 I=2,NPARTS
      VNEW(I)=0.5*(V(I-1)+V(I+1)+C*(H(I-1)-H(I+1))-AK*(V(I-1)*ABS(V(I-1)
     $)**NEXP+V(I+1)*ABS(V(I+1))**NEXP))
   20 HNEW(I)=0.5*(H(I-1)+H(I+1)+(V(I-1)-V(I+1))/C-AK*(V(I-1)*ABS(V(I-1)
     $)**NEXP-V(I+1)*ABS(V(I+1))**NEXP)/C)
*  ** COMPUTE H AND V AT UPSTREAM END **
*     THIS BOUNDARY CONDITION IS FOR A CONSTANT-HEAD RESERVOIR
      HNEW(1)=HZERO
      VNEW(1)=V(2)+C*(HNEW(1)-H(2))-AK*V(2)*ABS(V(2))**NEXP
*  ** COMPUTE H AND V AT DOWNSTREAM END **
*     THIS BOUNDARY CONDITION IS FOR LINEARLY DECREASING VELOCITY
      IF(T.GT.TCLOSE) GO TO 30
      VNEW(NODES)=VZERO*(1.-T/TCLOSE)
      GO TO 31
   30 VNEW(NODES)=0.0
   31 HNEW(NODES)=H(NPARTS)+(V(NPARTS)-VNEW(NODES)-AK*V(NPARTS)*
     $ABS(V(NPARTS))**NEXP)/C
      DO 50 I=1,NODES
      IF(HNEW(I).LT.HLOW(I)) HLOW(I)=HNEW(I)
      IF(HNEW(I).GT.HHIGH(I)) HHIGH(I)=HNEW(I)
   50 HEAD(I)=HNEW(I)-PIPEZ(I)
      IF(MOD(II,IOUT).EQ.0) WRITE(6,204) T,(X(I),HEAD(I),HNEW(I),VNEW(I)
     $,I=1,NODES)
      IF(T.GT.TMAX) GO TO 400
      DO 40 I=1,NODES
      V(I)=VNEW(I)
   40 H(I)=HNEW(I)
   99 CONTINUE
*
  400 WRITE(6,101) CH12
      WRITE(6,205)
      DO 401 I=1,NODES
      HEADMX=HHIGH(I)-PIPEZ(I)
      HEADMN=HLOW(I)-PIPEZ(I)
  401 WRITE(6,206) X(I),HEADMX,HEADMN,HHIGH(I),HLOW(I)
      WRITE(6,101) CH,CH79
  100 FORMAT(A)
  101 FORMAT(3A)
  200 FORMAT(///20X,33('*')/20X,'* WATER HAMMER IN A SINGLE PIPE *'/
     $20X,33('*')//)
  201 FORMAT(//29X,'INPUT DATA'/29X,10('-')//28X,'IOUT =',I4/26X,
     $'NPARTS =',I4//31X,'L =',F7.1,' FT'/31X,'A =',F7.1,' FT/S'/
     $31X,'D =',F7.2,' IN'/31X,A,F9.4//
     $27X,'VZERO =',F7.2,' FT/S'/27X,'HZERO =',F7.1,' FT'/
     $26X,'ELEVUP =',F7.1,' FT'/26X,'ELEVDN =',F7.1,' FT'//
     $29X,'L/A =',F7.3,' SEC'//26X,'TCLOSE =',F7.2,' SEC'/
     $28X,'TMAX =',F7.2,' SEC'/28X,'DELT =',F7.3,' SEC')
  202 FORMAT(//5X,'PRESSURE HEADS, H-VALUES AND VELOCITIES AS FUNCTIONS
     $OF TIME'/5X,60('-'))
  203 FORMAT(10X,A)
  204 FORMAT(//11X,2(4X,'  X   HEAD,FT  H,FT  V,FT/S ')/'T =',F6.3,
     $' SEC',2(2X,'----- ------- -----  ------  ')/(10X,2(5X,F5.3,2F6.0,
     $F7.2)))
  205 FORMAT(///18X,27('*')/18X,'* TABLE OF EXTREME VALUES *'/18X,27('*
     $')//13X,'X    MAX HEAD  MIN HEAD   MAX H   MIN H'/11X,5('-'),2X,8(

Figure 9.5, cont'd.  An elementary computer program for the approximate method.



     $'-'),2X,8('-'),2X,6('-'),2X,6('-'))
  206 FORMAT(11X,F5.3,2X,F7.0,3X,F7.0,3X,F6.0,2X,F6.0)
  791 FORMAT(/' ENTER THE NAME OF YOUR INPUT DATA FILE:  '\)
  792 FORMAT(/' ENTER THE NAME OF THE FILE ON WHICH THE OUTPUT IS TO BE
     $WRITTEN: '\)
      END

Figure 9.5, concluded.  An elementary computer program for the approximate method.

The following example problem demonstrates the input data file and the output of the
program.

Example Problem 9.1
The  30-in  steel pipeline is  5000 ft  long with a wave speed of  2500 ft/s.  The steady-

state velocity is  5 ft/s.  The valve at the downstream end is closed in such a manner that
the velocity at the valve decreases linearly to zero in  10 sec.  There is initially a negligible
head loss in the valve.  Find the maximum and minimum pressure heads in the system
during this transient, and state their location.

Valve

ƒ = 0.020

5000' - 30"

- El. 50'

El. 715.5'

El. 100' -

Using  PROG1  to solve the problem, we will divide the pipe into  8  sections and set
up the following data file via the text editor:

DEMONSTRATION OF PROGRAM NO. 1 - INPUT DATA FILE "EP91.DAT"
CONSTANT-HEAD RESERVOIR UPSTREAM & LINEARLY DECREASING VELOCITY
DOWNSTREAM
&SPECS IOUT=4,NPARTS=8,D=30.,L=5000.,F=.020,A=2500.,VZERO=5.00,
       HZERO=715.5,ELEVUP=100.,ELEVDN=50.,TMAX=20.00,TCLOSE=10.00/

The output from the analysis is shown below.  To save space only the beginning and end
of the output data file are printed.  A scan of the Table of Extreme Values shows that a
maximum pressure head of  810 ft  occurs at the valve, and the minimum pressure head of
569 ft  occurs at the midpoint of the line.

                    *********************************
                    * WATER HAMMER IN A SINGLE PIPE *
                    *********************************

DEMONSTRATION OF PROGRAM NO. 1 - INPUT DATA FILE "EP91.DAT" 
CONSTANT-HEAD RESERVOIR UPSTREAM & LINEARLY DECREASING VELOCITY DOWNSTREAM

                           



INPUT DATA
                               ----------

                            IOUT =   4
                          NPARTS =   8

                               L = 5000.0 FT
                               A = 2500.0 FT/S
                               D =  30.00 IN
                               F =    .0200
                           VZERO =   5.00 FT/S
                           HZERO =  715.5 FT
                          ELEVUP =  100.0 FT
                          ELEVDN =   50.0 FT
                             L/A =  2.000 SEC
                          TCLOSE =  10.00 SEC
                            TMAX =  20.00 SEC
                            DELT =   .250 SEC

     PRESSURE HEADS, H-VALUES AND VELOCITIES AS FUNCTIONS OF TIME
     ------------------------------------------------------------

                 X   HEAD,FT  H,FT  V,FT/S     X   HEAD,FT  H,FT   V,FT/S
T =  .000 SEC  ----- ------- -----  ------    ----- ------- -----  ------  
                .000   616.   716.   5.00      .125   620.   714.   5.00
                .250   624.   712.   5.00      .375   628.   710.   5.00
                .500   633.   708.   5.00      .625   637.   706.   5.00
                .750   641.   704.   5.00      .875   646.   702.   5.00
               1.000   650.   700.   5.00

                 X   HEAD,FT  H,FT  V,FT/S     X   HEAD,FT  H,FT   V,FT/S
T = 1.000 SEC  ----- ------- -----  ------    ----- ------- -----  ------  
                .000   616.   716.   5.00      .125   620.   714.   5.00
                .250   624.   712.   5.00      .375   628.   710.   5.00
                .500   633.   708.   5.00      .625   647.   715.   4.88
                .750   661.   723.   4.75      .875   675.   731.   4.63
               1.000   689.   739.   4.50

                  .     .      .      .          .     .      .       .

                  .     .      .      .          .     .      .       .

                  .     .      .      .          .     .      .       .

                 X   HEAD,FT  H,FT  V,FT/S     X   HEAD,FT  H,FT   V,FT/S
T =20.000 SEC  ----- ------- -----  ------    ----- ------- -----  ------  
                .000   616.   716.   -.95      .125   630.   724.   -.82
                .250   645.   733.   -.70      .375   660.   742.   -.58
                .500   675.   750.   -.46      .625   690.   759.   -.34
                .750   705.   767.   -.23      .875   720.   776.   -.11
               1.000   735.   785.    .00

                  ***************************
                  * TABLE OF EXTREME VALUES *
                  ***************************



             X    MAX HEAD  MIN HEAD   MAX H   MIN H
           -----  --------  --------  ------  ------
            .000     616.      616.     716.    716.
            .125     641.      603.     735.    697.
            .250     666.      592.     753.    679.
            .375     691.      580.     772.    661.
            .500     715.      569.     790.    644.
            .625     740.      575.     808.    644.
            .750     763.      581.     826.    643.
            .875     787.      586.     843.    642.
           1.000     810.      592.     860.    642.

*                              *                              *

The second elementary program PROG1P is a modification of the first program which
contains the boundary conditions for a constant-speed pump at the upstream end of the line.
In addition, the valve at the downstream end has been altered to permit the velocity to
change linearly from the initial steady-state value to a prescribed final steady-state value
(including zero).  To accommodate the pump at the upstream end, the constant-head
reservoir boundary conditions are replaced with those of Eqs. 9.41 and 9.42.  The down-
stream boundary conditions are adjusted to permit the velocity to decrease to any lower
constant value.  The input data file must be expanded to provide the three pump curve

coefficients  Ap
' ,  Bp

' ,  and  Cp
'   and the final velocity at the downstream valve.  Shown

below are selected portions of the new code that are required in PROG1 to implement these
changes.

. . . . . . . .

. . . . . . . .

*   HSUMP = PUMP SUMP ELEVATION, FT

*   ELEVUP = ELEVATION OF UPSTREAM END OF PIPE, FT

*   ELEVDN = ELEVATION OF DOWNSTREAM END OF PIPE, FT

*   TMAX = MAXIMUM REAL TIME OF SIMULATION, SEC

*   TCLOSE = TIME REQUIRED FOR VALVE CLOSURE, SEC

*   VFINAL = FINAL VELOCITY, FT/S

*   THE VALUES OF APRIME, BPRIME, AND CPRIME ARE COMPUTED WITH THE

*      DISCHARGE IN GAL/MIN AND TOTAL HEAD FOR ALL STAGES IN FT

*      APRIME = FIRST COEFFICIENT IN PUMP CHARACTERISTIC EQUATION

*      BPRIME = SECOND COEFFICIENT IN PUMP CHARACTERISTIC EQUATION

*      CPRIME = THIRD COEFFICIENT IN PUMP CHARACTERISTIC EQUATION

. . . . . . . .

. . . . . . . .

. . . . . . . .

      NAMELIST /SPECS/ IOUT,NPARTS,D,L,F,A,VZERO,HSUMP,ELEVUP,

     $ELEVDN,TMAX,TCLOSE,VFINAL,APRIME,BPRIME,CPRIME

. . . . . . . .

. . . . . . . .

. . . . . . . .

      AREA=0.7854*D*D/144.

      APRIME=APRIME*(AREA*449.)**2

      BPRIME=BPRIME*AREA*449.

      CPRIME=CPRIME+HSUMP

      HPUMP=APRIME*VZERO*VZERO+BPRIME*VZERO+CPRIME



. . . . . . . .

. . . . . . . .

. . . . . . . .

*  ** COMPUTE H AND V AT UPSTREAM END **

*     THIS BOUNDARY CONDITION IS FOR A CONSTANT-HEAD PUMP

      C1=V(2)-C*H(2)-AK*V(2)*ABS(V(2))

      C3=(BPRIME-1.0/C)/APRIME

      C4=(CPRIME+C1/C)/APRIME

      CHEK=4.*C4/(C3*C3)

      IF(CHEK.GT.0.) GO TO 25

      VNEW(1)=0.5*C3*(-1.+SQRT(1.0-CHEK))

      GO TO 26

   25 VNEW(1)=0.

   26 HNEW(1)=(VNEW(1)-C1)/C

*  ** COMPUTE H AND V AT DOWNSTREAM END **

*     THIS BOUNDARY CONDITION IS FOR LINEARLY DECREASING VELOCITY

      IF(T.GT.TCLOSE) GO TO 30

      VNEW(NODES)=VZERO-(T/TCLOSE)*(VZERO-VFINAL)

      GO TO 31

   30 VNEW(NODES)=VFINAL

   31 HNEW(NODES)=H(NPARTS)+(V(NPARTS)-VNEW(NODES)-AK*V(NPARTS)*

     $ABS(V(NPARTS))**NEXP)/C

. . . . . . . .

. . . . . . . .

Example Problem 9.2
A four-stage Johnston 20 CC turbine pump (the pump characteristic diagram is in

Appendix B) with  15 3/4 in  impellers is used to pump water from a river to an elevated
storage reservoir.  The welded-steel pipeline is  9600 ft  long,  24 in  inside diameter, with
a wall thickness of  0.1875 in  and a friction factor of  0.014.  A special valve is located at
the downstream end of the line to cause the velocity at the valve to vary linearly with time.

The design engineer would like to close the valve in  30 sec  before shutting down the
pump.  Determine the maximum and minimum pressure heads which would occur under
this plan.

El. 234'

Check valve

- El. 250'
ƒ = 0.014

9,600' - 24"

Valve

- El. 750'

El. 875'

We will use  PROG1P  and divide the pipeline into  10  parts to solve the problem.
But first we must calculate the wave speed and the coefficients of the parabolic equation
which will model the pump characteristics.



The pipe has a  D/e  ratio of  128,  so we can use Eq. 8.33 for thin-walled pipes to
compute the wave speed.  Using Case (b) restraint because it gives the highest wave speed,
we find

a = 4720

1 + 3 ×105

30 ×106
24

0.1875
1 − 0.32( )

= 3200  ft/s

To determine the parabolic equation coefficients, we select three points on the pump
characteristic diagram, write three equations with the unknown coefficients in them, and
then solve the equations.  We will use the following points:

Q  =  0,  4000,  and  7000  gal/min    and    h  =  254,  200,  and  137  ft/stage

The coefficients  Ap
' = − 1.071 ×10−6 , Bp

' = − 9.215 ×10−3, and Cp
' = 254   are the

result.  However, this is a four-stage pump, so each of the coefficients must be multiplied
by four before they are inserted into the program.  The data file created by the text editor
follows:

SOLUTION FOR EXAMPLE PROBLEM 9.2 - INPUT DATA FILE "EP92.DAT"
JOHNSTON 20 CC PUMP UPSTREAM, VALVE DOWNSTREAM CLOSING IN 30 SEC
&SPECS IOUT=1000, NPARTS=10, D=24.00, L=9600., F=0.014, A=3200.,
  VZERO=4.11, HSUMP=234., ELEVUP=250., ELEVDN=750., TCLOSE=30.,
  TMAX=60., VFINAL=0., APRIME=-4.28E-6, BPRIME=-0.03686, CPRIME=1016./

The results of the analysis are shown below;  they reveal that the maximum pressure head
of  1029 ft  occurs at the pump, while the minimum pressure head of  125 ft  occurs at the
valve.

                    *********************************
                    * WATER HAMMER IN A SINGLE PIPE *
                    *********************************

SOLUTION FOR EXAMPLE PROBLEM 9.2 - INPUT DATA FILE "EP92.DAT"
JOHNSTON 20 CC PUMP UPSTREAM, VALVE DOWNSTREAM CLOSING IN 30 SEC

                             INPUT DATA
                             ----------

                            IOUT =1000
                          NPARTS =  10

                               L = 9600.0 FT
                               A = 3200.0 FT/S
                               D =  24.00 IN
                               F =    .0140

                          VFINAL =    .00 FT/S
                           VZERO =   4.11 FT/S
                           HSUMP =  234.0 FT
                          ELEVUP =  250.0 FT
                          ELEVDN =  750.0 FT



                             L/A =  3.000 SEC

                          TCLOSE =  30.00 SEC
                            TMAX =  60.00 SEC
                            DELT =   .300 SEC
                          APRIME =-.4280E-05
                          BPRIME =-.3686E-01
                          CPRIME = .1016E+04

     PRESSURE HEADS, H-VALUES AND VELOCITIES AS FUNCTIONS OF TIME
     ------------------------------------------------------------

                 X   HEAD,FT  H,FT  V,FT/S      X   HEAD,FT  H,FT  V,FT/S
T =  .000 SEC  ----- ------- -----  ------    ----- ------- -----  ------  
                .000   642.   892.   4.11      .100   591.   891.   4.11
                .200   539.   889.   4.11      .300   487.   887.   4.11
                .400   435.   885.   4.11      .500   384.   884.   4.11
                .600   332.   882.   4.11      .700   280.   880.   4.11
                .800   228.   878.   4.11      .900   177.   877.   4.11
               1.000   125.   875.   4.11

                  ***************************
                  * TABLE OF EXTREME VALUES *
                  ***************************

             X    MAX HEAD  MIN HEAD   MAX H   MIN H
           -----  --------  --------  ------  ------
            .000    1029.      642.    1279.    892.
            .100     977.      591.    1277.    891.
            .200     926.      539.    1276.    889.
            .300     874.      487.    1274.    887.
            .400     822.      435.    1272.    885.
            .500     770.      384.    1270.    884.
            .600     722.      332.    1272.    882.
            .700     674.      280.    1274.    880.
            .800     626.      228.    1276.    878.
            .900     577.      177.    1277.    877.
           1.000     529.      125.    1279.    875.

*                              *                              *

9.2 COMPLETE METHOD OF CHARACTERISTICS

In solving the complete equations we can proceed in a manner similar to that for the
approximate method.  However, in this case, we will use the original Eqs. 8.57 and 8.58.

9.2.1. THE COMPLETE EQUATIONS
We once again use the linear constant multiplier l to combine the Euler and

conservation of mass equations.  Multiplying Eq. 8.57 by l and adding the result to Eq.
8.58 gives

λ dV

dt
+ λ

ρ
∂p

∂s
+ λg

dz

ds
+ λ f

2D
V V + a2 ∂V

∂s
+ 1

ρ
dp

dt
= 0 (9.43)

To repeat the same procedure, we must separate  dV / dt   and  dp / dt   into their
component parts.  The result is



λ ∂V

∂t
+ λV

∂V

∂s






+ λ
ρ

∂p

∂s
+ λg

dz

ds
+ λ f

2D
V V + a2 ∂V

∂s
+ 1

ρ
∂p

∂t
+ V

ρ
∂p

∂s







= 0 (9.44)

Regrouping the terms in the equation gives

λ ∂V
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As before,
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= λ dV
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Thus we require for  ds/dt  that

ds

dt
V

a ds

dt
V= + = +

2

λ
λ   and   (9.48)

Equating these two expressions to eliminate  ds/dt  and then solving for l  leads to

λ = ± a (9.49)

With  l  again equal to the wave speed, we find that the equations for the characteristics are

ds

dt
= V + a   and   

ds

dt
= V − a (9.50)

Finally we replace the pressure in favor of total head using  p = γ (H − z).  
The final set of equations, which are the analogs of Eqs. 9.8 and 9.9, is

C+:
dV

dt
+ g

a

dH

dt
− g

a
V

dz

ds
+ f

2D
V V = 0   only when   

ds

dt
= V + a (9.51)

C−:
dV

dt
− g

a

dH

dt
+ g

a
V

dz

ds
+ f

2D
V V = 0   only when   

ds

dt
= V − a (9.52)

These ordinary differential equations are quite similar to those for the approximate case.
However, the characteristic lines in the  s-t  plane, which were of constant slope for the
approximate method, are now curved, their slope a function of  V(s,t).  This is an
important distinction because it introduces some complications into the numerical solution
procedure which we must address.

9.2.2. THE NUMERICAL SOLUTION
We first assume that the characteristic curves can be approximated as straight lines over

each single  Dt  interval.  This assumption is attractive because (1)  Dt may be made as
small as one wishes, and (2) usually  a>>V,  causing  ds/dt to be nearly constant.  But the
slopes of the  C+  and  C-  characteristic lines are no longer the same in magnitude.



The problem this creates in the finite difference approximations to the differential
equations can be seen in Fig. 9.6.  Assume now that the grid intervals  Ds  and  Dt  have
been chosen (we will see shortly how this is done), and once again we seek to find the
values of  H  and  V  at  P.  The curved characteristics intersecting at  P  are approximated
by straight lines, whose slopes have been determined by the known values of velocity at
the earlier time.  We now see in Fig. 9.6 that the characteristics intersecting at  P  no
longer pass through the grid points  Le  and  Ri,  but instead they pass through the  t =

∆t

Le

P

Ri
RCL

∆s ∆s

t

s

Figure  9.6  Interpolation of  H  and  V  values on the  Ds-Dt  grid.

constant  line at points identified as  L  and  R  somewhere between  Le  and  Ri.
For this situation the finite difference approximations to Eqs. 9.51 and 9.52 become
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The new difficulty here is that the values of  VL,  HL,  VR,  and  HR  are not known,
thereby causing Eqs. 9.53 and 9.54 to include six unknowns rather than the two unknowns
which occurred in the approximate method.  We overcome this problem by choosing  Dt
so that point  L  is near  Le  and  R   is near Ri;  now linear interpolation becomes an
accurate way to evaluate the values of  H  and  V  at points  L  and  R.  Figure 9.7  defines
the parameters needed in the interpolation procedure.

∆x
∆s

∆t

Le L C

C+ C-

1

a + V
1

a - V

R Ri

P

Figure 9.7  Parameters in the interpolation procedure.



Along the  C+  characteristic,
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t

a VL= +
1

(9.56)

Solving these two equations for  VL  and  HL  yields

V V V
x

s
VL Le C C= −( ) +∆

∆
     and     H H H

x

s
HL Le C C= −( ) +∆

∆
(9.57)

Replacing  Dx  in these equations using the same relation for  Dx/Dt  now produces

VL =
VC + a

∆t

∆s
VLe − VC( )

1 − ∆t

∆s
VLe − VC( )

(9.58)

and

H H
t

s
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A similar analysis along the  C–  characteristic gives

VR =
VC + a

∆t
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(9.60)

and
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Because  
∆
∆

t

s
V VLe C−( )  is on the order of  

V

a V+
,  which is very small compared to  1,  it

is a good approximation to neglect the second terms in the denominators of Eqs. 9.58 and
9.60.  The results are

V V a
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and

V V a
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∆
(9.63)

Since we now have known values for  VL,  HL,  VR,  and  HR,  we can solve Eqs. 9.53 and
9.54 simultaneously for VP and HP.  The solutions are
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in which  sin θ = dz / ds   is positive for pipes sloping upward in the downstream direction.
Our next step is to determine how the  Ds-Dt  grid is established.

9.2.3. THE  D s -D t   GRID
The non-constant slope of the curving characteristics and the decision to approximate

each as a straight line over a small time interval now force us to face the problem of
finding appropriate values of  Ds  and  Dt  which will yield accurate and numerically stable
solutions.  Actually it is always possible to find a pair of values for  Ds  and  Dt  which
will require no interpolations for a given section of the characteristic lines.  However,
seeking these values would lead to a confusing array of  Ds's  and  Dt's  which would make
it impossible to keep track of where and when things are happening.

One solution for this problem is to select a uniform rectangular grid on the  s-t  plane
where  Ds  and  Dt  are fixed for all time at values which minimize the interpolation and
simplify the programming.  This method is called the rectangular grid method.  To
establish the grid dimensions, we proceed in the same manner as with the approximate
method.  We decide how many parts in which to divide the pipeline, thereby fixing  Ds.
Then the integrated characteristic equations are used to select  Dt.  The resulting integrated
characteristic equations (assuming constant V) are

∆t = ∆s

V + a
   for the C+ characteristic

∆t = ∆s

V − a
   for the C−  characteristic

(9.66)

Because this interpolation procedure implies that the points  L  and  R   are between points
Le  and  Ri,  we must limit  Dt  to assure this is always so.  The preceding equations
suggest the criterion

∆t ≤ ∆s

max a + V
(9.67)

in which  max a V+   is the maximum expected absolute value of the sum of the wave
speed and velocity.  If the location of points  L  and  R   fall "outside" the grid points  Le
and  Ri,  numerical stability and accuracy problems will develop, as we demonstrate later.
These problems are related to the earlier discussion of how "messages" are transmitted along
the pipeline.  When points  L  and  R   are outside the grid points, the procedure uses
information in computing  HP  and  VP  which hasn't physically had enough time to reach
point  P.  This is improper numerical procedure which will lead at best to inaccurate results
and at worst to numerical instability.  We must guard against this happening in our
computer programs.

A computer program (not included) which would incorporate the complete method of
characteristics would be very similar to PROG1 for the approximate method.  It is only
necessary to add a few lines of code to compute the proper  Dt  and sin θ  and a few more
lines to compute  VL,  HL,  VR,  and  HR   from Eqs. 9.59, 9.61, 9.62, and 9.63.

A comparison of results from the two methods when  a >> V   shows for typical
situations that the two methods produce essentially the same answers.  This indicates that
the basic assumption behind the approximate method is sound, namely that the time
variation in  V  and  H  is more significant that the spatial variation.  So one might wonder
why the complete method would ever be used.  It turns out that the matching of internal
boundary conditions in more complex pipe systems between pipes of different sizes and



wave speeds requires the interpolation procedure we have just derived.  In these more
complex problems we will use the complete equations because they already include the
interpolation procedure.

9.3 SOME PARAMETER EFFECTS ON SOLUTION RESULTS

It is both informative and useful to examine some effects of the parameters of the
problems on solution results.  The results here include the effects of friction, the number of
parts into which the pipe is divided, the slope of the pipe, and the effect of rate of velocity
change.  An example of numerical instability and inaccuracy is presented.  The pipeline in
Fig. 9.8 is used to demonstrate these effects.

DATUM

H0

hfEL - HGL

2000'

8000' - 24"

ƒ = 0.020    a = 4000 ft/s
Figure  9.8  Model system for the investigation of sensitivity to system parameters.

9.3.1. THE EFFECT OF FRICTION
The effect of friction on solutions is studied by introducing initial velocities of  2.5 ft/s,

5.0 ft/s,  and  10.0 ft/s  into the pipeline of Fig. 9.8.  We will do this for sudden valve
closure.  The results are listed in Table 9.1.  The increase in pressure at the valve seems to

Table 9.1
The Effects of Friction on the Maximum Water Hammer Pressure

at the Valve for Sudden Valve Closure (N  = 6)

   Steady
 Velocity
      ft/s

 Computed
   H m a x
       f t

      hf  
    ft

    H0  
     ft

∆H = − a ∆V / g

           ft

h f + H0 + ∆H

        ft
       2.5      2311       8   1992         311      2311
       5.0      2621     31   1969         621      2621
     10.0      3242   124   1876       1242      3242

be the sum of the friction loss in the pipe and  DH  from Eq. 8.8.  In fact it appears that
the maximum pressure occurring at the valve may be estimated by the formula

Hmax ≈ H0 + h f + ∆H (9.68)

Keep in mind this is an approximation which seems to work in this case but should be
applied with caution to other situations.

To develop a grasp of how friction affects the results in a water hammer situation, we
show in Fig. 9.9 the position of the  EL-HGL  at successive times as the wave propagates
through the pipe.  The pipeline of Fig. 9.8 will be used with an initial steady velocity of
10 ft/s  and sudden valve closure.  The increase in head  DH  propagates upstream at
approximately the wave velocity, increasing the steady state head at each point by an



amount  DH.  It might seem after a time  L/a  that the  EL-HGL  would be a line parallel
to the original steady state  EL-HGL  but positioned  DH  above it.  However, a chain of
events occurs, beginning at the first time step, which causes the pressure head at each point
in the pipeline to continue to creep upward even though the pressure wave has already
passed.  This happens because the fluid in the pipe is not in equilibrium.  Even though the
velocity is zero, there is a pressure gradient caused by the sloping  EL-HGL.  As a
consequence, there is a small downstream velocity which develops to eliminate the pressure
gradient and bring the system into equilibrium.  This process of upward adjustment
continues until it is interrupted by the returning pressure wave.  At the valve the

1.00.670.330
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t = 2.0 sec

t = 2.67 sec

t = 1.33 sec

t = 3.33 sec

t = 0.67 sec

t = 4.0 sec

t = 4.67 sec

x/L
Figure  9.9  The progression of frictional effects in a single pipe with sudden valve closure.

cumulative upward pressure adjustment is equal in amount to the original steady state
friction loss in the pipeline.  This adjustment explains why Eq. 9.68 works in this case.
Keep in mind that the purpose of this example is to create for the reader a physical feeling
for the process; it is not intended to be a substitute for an analysis.  It does, however,
illustrate the value of a computer program in determining accurately the effects of friction.

9.3.2. THE EFFECT OF THE SIZE OF N
It seems reasonable to expect the accuracy of results to increase as the number of

pipeline segments  N  increases since  Ds = L/N.  It is surprising then to discover that the
choice of  N  has relatively little effect on the solution.  For example, for sudden valve
closure with an initial velocity of  5 ft/s  in Fig. 9.8, the maximum and minimum values
of  H  differ by less than  10 ft between solutions for  N = 3  and  N =  18, as shown in
Table 9.2.  For lower initial velocities, the difference is even less significant.

There are two points to be made here.  First, except in the case of a rapidly-varying
velocity, there is little to be gained by using a larger  N  than is necessary.  Second, for a



given simulation time the number of grid points and the subsequent computer execution
time varies as N2.  However, we must also select  Dt  sufficiently small to capture
accurately such time-varying boundary conditions as the movement of a valve, and smaller
values for  Dt  are directly linked to larger values of  N.

Table 9.2
Effects of N -value on Pressure Head (ft) at the Valve
for Rapid and Slow Velocity Change  (D V   = 5 ft/s)

                             Sudden Valve Closure           Valve Closure in 4L/a   sec

    N   Hm a x    Hm i n   Hm a x    Hm i n

       3    2611     1417    2288     1969
       6    2616     1412    2290     1969
     18    2619     1409    2292     1969

9.3.3. THE EFFECT OF PIPE SLOPE
Flows in pipelines ranging in slope over  ± 25%  were simulated to determine the effect

of slope.  Results were nearly identical for both extremes of slope.  While the slope of the
pipe should not be ignored (it is needed in computing the pressure head, anyway), the reader
should be comfortable when "smoothing" a pipeline system profile to reduce the number of
series pipes to a manageable number of constant-slope pipes.  By this means we can use
the series pipe program of Chapter 10 to obtain accurate estimates of pressure head along
the pipeline while still exercising control over  Ds  and  Dt.

9.3.4. NUMERICAL INSTABILITY AND ACCURACY
Earlier it was stated that  Dt  should be limited in size to insure that points  L  and  R

in Fig. 9.6 remain between the grid points  Le  and  Ri  at all times.  If not, numerical
instability was presumed to occur as well as inaccuracy in the computed results.

To demonstrate these two problems, we again use the pipeline of Fig. 9.8 with sudden
valve closure.  While  Ds  was computed and held constant,  Dt  was assigned four different
values to illustrate the two problems.  The first  Dt  was chosen so that  L  and  Le
coincide, a case requiring minimum interpolation and leading to maximum accuracy.  We
will refer to this value as  ∆t0 .  Higher values of  Dt  would cause  L  to move outside
Le,  leading to numerical instability.  Lower values of  Dt  would lead to poorer linear
interpolations, resulting in inaccurate results.  The four computer simulations are identified
in the legend in Fig. 9.10.
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Figure  9.10  Numerical instability and inaccuracy in a single pipe with sudden valve closure.

For the normal value of  Dt,  the plot shows the typical nearly-square wave from
Chapter 7.  When  Dt  is reduced to 90% of normal, the effect is to round off the sharp
corners and distort the timing of events, a diffusive process.  At  102%  of the normal  Dt,
we see a gradual deterioration of the simulation with time.  Finally, at 110% of the normal
Dt,  the resulting numerical stability is strikingly evident.

In summary, it is important to locate the points  L  and  R  inside of and as close to the
grid intersections as possible.  This minimizes interpolation errors and retains the
numerical accuracy of the simulation.  It is even more important to insure that the points
L  and  R  never are outside the grid points.  This care will prevent inaccuracies associated
with numerical instability which could be insidiously present in calculations, especially
where the duration of the simulation is not so long that the more dramatic effects of
instability can become obvious.



9.4 PROBLEMS

9.1  The ductile iron pipeline shown below is  6440 ft long,  18 inches inside diameter,
with a wave speed of  3220 ft/s.  It carries  3970 gal/min  of water with  f  =  0.016.  The
valve at the downstream end can cause the velocity to vary linearly with time.

Calculate the maximum and minimum pressure heads and their locations for closure
times of  0,  4,  8, and  12 sec.  Use  PROG1  with  NPARTS = 10  in your analysis.

El. 850'  -
Valve

- El. 950'6440' - 18"

ƒ = 0.016

El. 1385'

9.2  A  12-inch PVC pipeline with an inside diameter of  12.091 in,  a wall thickness of
0.311 in,  and an  f  of  0.010  carries  2150 gal/min  of irrigation water from a supply
reservoir to an irrigation network.  A valve which can vary the velocity linearly with time
is at the downstream end of the pipeline.

Find the    minimum    time of valve closure that can be used if no negative pressure can be
permitted in the line.  Neglect any effect of the system downstream of the valve.  Use
PROG1  with Case (c) restraint for the pipeline, and divide it into 10 parts for the analysis.

El. 4200'

   El. 4175' - 2000' - 12"

ƒ = 0.010

Valve

- El. 4150'

9.3  The pipeline of Problem 8.7 has  f = 0.015  and carries water between two reservoirs,
as shown below.  The valve at the downstream end of the pipe is capable of varying the
velocity linearly with time.

(a)  Can the valve be closed suddenly without causing a negative pressure in the
pipeline?

(b)  What would the maximum and minimum pressure heads in the line be if the valve
were closed in  4L/a  seconds?

Use  PROG1  with  NPARTS = 10 in your analysis.



El. 2670'

El. 2200' -
8000' - 72"

ƒ= 0.015
- El. 2200'

9.4   The characteristics of the pump below can be approximated by  h A Q Bp p p= + .

Using the  C–  equation in the form  H C C VP P= +1 2 , write the boundary conditions for
the pump, using a datum of sea level, so that you provide the equations needed to determine
HP  and  VP.

Check valve

1 2
El. 1300'

30'

El. 1270' Pipe area = A ft 2 

9.5   The lateral line extending from the main pipeline in the sketch below ends in a
pressure relief valve which will open if the pressure exceeds a maximum value  pmax.
When the valve is open, the discharge from the valve into the atmosphere is

Q ft3/ s( ) = K pressure head (ft) in pipe just upstream of valve

A water hammer analysis requires that the boundary condition at the valve be found.  Your

task is to combine the above equation with the  C+  equation VP = C1 − C2HP   to develop
an equation for  VP  at the upstream side of the valve.

Area = A ft2

DATUMPressure relief
valve

9.6  An eight-stage Johnston  14 BC turbine pump (the pump characteristic diagram is in
Appendix  B) with  11-inch impellers pumps  850 gal/min  through the pipeline below.
The welded steel pipeline is one mile long,  6 in  inside diameter with a wall thickness of
0.135 in.  Case (b) restraint applies and  f = 0.016  may be used.  A special valve at the
downstream end of the line reduces the discharge from  850 gal/min  to  250  gal/min
linearly with time.



- El. 1080'

Steady state EL-HGL

El. 1000'

Check valve

- El. 1010'

Special valve

The engineer in charge is considering four separate closure times of  3,  6,  9, and  12
seconds and wants to know the maximum and minimum pressures occurring in each case.
You are to complete the following tasks:

(a)  Develop with program  PUMPC  a parabolic equation for the pump characteristics
of the form

hp = Ap
' Q2 + Bp

' Q + Cp
'

(b)  Plot this equation on the pump characteristic diagram to demonstrate how well it
fits over the range from  0  to  1200 gal/min.

(c)  Calculate the wave speed in the pipe.
(d)  For the four closure times, find the maximum and minimum pressures at the valve

and the check valve and the times they occur.
(e)  Plot pressure head as a function of time at both locations for a time at least  4L/a

seconds past the last valve movement.  Use  PROG1P  with  NPARTS = 5  in
your analysis.

9.7   The  T-30  Transite pipe of Problem 8.3 is installed in a pumping system.  To
determine  f  for the pipe, assume it is hydraulically smooth.  The pipeline configuration is
shown below.  The pump is a Johnston  20 CC single-stage turbine pump (see Appendix
B) with a  15 3/4-in  impeller.  The pump runs at constant speed while the downstream
valve is closed to decrease the velocity at the valve linearly with time to  2 ft/s  in  15 sec.

P

El. 4780'

- El. 4750'
Valve

Steady state EL-HGL
El. 4800' 

El. 4750' -
Check valve

14,500'

Complete the following tasks:
(a)  Develop with program  PUMPC  a parabolic equation for the pump characteristic of

the form
h A Q B Q Cp p p p= + +' ' '2



(b)  Plot this equation on the pump characteristic diagram to demonstrate how well it
fits over the range from  0  to  7000  gal/min.

(c)  Calculate the wave speed in the pipe.
(d)  Find the maximum and minimum pressures at the valve and the check valve and the

times they occur.
(e)  Plot pressure head as a function of time at both locations for a time at least  4L/a

seconds after the last valve movement.  Use  PROG1P  with NPARTS = 5.

9.8   A single-stage Johnston  18 DC turbine pump (see Appendix  B) with a  13 3

16
-in

impeller is used to increase the discharge in the gravity flow pipeline below.  The welded
steel line is 12 in  inside diameter and three miles long with  f = 0.014.  The wall

thickness is  0.179 in  and Case (b) restraint applies.  While the pump runs at constant
speed, the downstream valve closes in a manner that causes the discharge in the pipe to
decrease linearly with time to zero in  30 sec.  If the pressure head at the pump exceeds the
shutoff head during the shutdown procedure, flow backward through the pump will occur
according to the relation

Q gal/min( ) = 6.0 HP1
− Hshutoff( )

Your tasks:

(a)  Calculate the steady state discharge and velocity in the pipeline.
(b)  Develop with program  PUMPC  a parabolic equation for the pump characteristics

of the form

hp = Ap
' Q2 + Bp

' Q + Cp
'

(c)  Plot this equation on the pump characteristic diagram to demonstrate how well it
fits over the range from  0  to  6000 gal/min.

(d)  Calculate the wave speed in the pipe.
(e)  Formulate the new boundary conditions at the pump.
(f)  Modify and recompile  PROG1P  with the revised boundary conditions.
(g)  Find the maximum and minimum pressures at the valve and the pump and the

times they occur.
(f)  Plot pressure head versus time at both locations for a time extending at least  4L/a

seconds after the last valve movement.  Use  PROG1PR with  NPARTS = 5  in
your analysis.

9.9  The pump in the horizontal pipeline below is a two-stage Johnston 18 DC pump (see
Appendix B) with  13 3

4
-in  impellers that provides a flow of  4600 gal/min  in the line.

The valve at the downstream end is closed rapidly so that the velocity decreases linearly



with time to  20%  of its steady state value in  2  sec.  The pipe is  24 in  inside diameter
with  f = 0.022  and a wave speed of  3500 ft/s.

2000'     Horizontal

Check valve ValveEl. 990'

El. 1000'

Your tasks:

(a)  Develop with program  PUMPC  a parabolic equation for the pump characteristics
of the form

hp = Ap
' Q2 + Bp

' Q + Cp
'

(b)  Plot this equation on the pump characteristic diagram to how it fits over the range
from  0  to  6000  gal/min.

(c)  Find the maximum and minimum pressures at the valve and the check valve and the
times they occur.

(d)  Plot pressure head as a function of time at both locations for at least  4L/a  seconds
past the end of valve movement.  Use  program PROG1P  with  NPARTS = 4  in
your analysis.

9.10  The pump in this pipeline is a four-stage Johnston  14 BC pump (see Appendix  B)

Check valve ƒ = 0.018    a = 3520 ft/s  Valve

3000' - 6"     Horizontal
El. 4000'

El. 3995'

with an  11-in  impeller.  Under steady flow conditions with the valve open, the discharge
is  850 gal/min.  The valve will be closed so that the velocity at the valve decreases
linearly with time to zero.

The engineer in charge is considering three separate closure times of  3,  5,  and  7
seconds and wants to know the maximum and minimum pressures occurring in each case.
Your assignment is to complete these tasks:

(a)  Develop with program  PUMPC  a parabolic equation for the pump characteristics
of the form

hp = Ap
' Q2 + Bp

' Q + Cp
'

(b)  Plot this equation on the pump characteristic diagram to see how it fits over the
range from  0  to  1200 gal/min.

(c)  For the three closure times find the maximum and minimum pressures at the valve
and the check valve and the times they occur.

(d)  Plot pressure head as a function of time at both locations at least  4L/a  seconds past
the ending of valve movement.  Use  PROG1P  with NPARTS = 5.

9.11   The pump in the pipeline below is a five-stage Johnston  14 BC pump (see
Appendix B) with an 11-inch diameter impeller.  The steady state discharge in the system

Check valve ƒ = 0.018    a = 3450 ft/s  Valve

3000' - 6"     Horizontal
El. 6000'

El. 5980'



is  850 gal/min.  The valve at the downstream end of the line moves so the velocity at the
valve decreases linearly to  4.0 ft/s  in  4  sec.

Your tasks:
(a)  Develop with program  PUMPC  a parabolic equation for the pump characteristics

of the form

hp = Ap
' Q2 + Bp

' Q + Cp
'

(b)  Plot this equation on the pump characteristic diagram to show how it fits over the
range from  0  to  1200  gal/min.

(c)  Find the maximum and minimum pressures at the valve and the check valve and the
times they occur.

(d)  Plot pressure head as a function of time at both locations for at least  4L/a  seconds
after the ending of valve movement.  Use  program  PROG1P  with NPARTS = 5.

9.12  Solve Problem 9.11 but
(a)  only reduce the velocity to  5.0 ft/s;
(b)  use a wave speed of  3750 ft/s.

9.13   A five-stage Johnston  12 ES  turbine pump  (see Appendix  B)  with  7 13

16
-in

impellers pumps water through this pipeline:

ValveCheck valve

Horizontal
-El. 1500'

El. 1490'

With steady flow and the valve open, the flow is  1600 gal/min.  The welded steel line has
f = 0.017,  is  5000 ft long and has a  10-in outside diameter with a wall thickness of
0.135 in.  The pipe is installed so that Case (b) restraint most nearly applies.  The special
valve at the downstream end permits the velocity to be varied linearly with time.  Now the
engineer wishes to reduce the steady state flow from  1600 gal/min  to  250 gal/min.  Two
closure times of  3 sec  and  6 sec  are under consideration.  To choose between the two, it
is desired to know the extreme pressures developed under each closure time.  

Your tasks are as follows:
(a)  Develop with program  PUMPC  a parabolic equation for the pump characteristics

of the form

hp = Ap
' Q2 + Bp

' Q + Cp
'

(b)  Plot this equation on the pump characteristic diagram to see how it fits over the
range from  0  to  2000 gal/min.

(c)  Calculate the wave speed in the pipe.
(d)  Find the maximum and minimum pressures at the valve and the check valve and the

times they occur for both closure times.
(e)  Plot pressure head as a function of time at both locations for at least  4L/a  seconds

past the last valve movement.  Use program  PROG1P  with  NPARTS = 5.



9.14  Answer the first three questions neglecting friction in the pipeline shown below.
(a)  What is the maximum pressure head which will result from sudden valve closure?
(b)  What is the minimum pressure head which will result from sudden valve closure?
(c)  Sketch pressure head vs. time at the center of the 3220-ft pipeline for the first  4L/a  

seconds.
(d)  If there is a  100-ft  friction loss in the pipeline, what would be the maximum pres-

sure head resulting from sudden valve closure?

El. 4400'
(d)

El. 4500'
(a, b, c)

Valve

3200'    Horizontal
El. 4200' -

El. 4500'

V0 = 5 ft/s
a = 3220 ft/s

9.15  The booster pump in the pipeline below provides a head increase  hp  which can be
described by

hp = Ap
' Q2 + Bp

' Q + Cp
'

Develop a set of boundary condition equations which can be solved for
VPA

, VPB
, HPA

, and HPB
  under all water hammer conditions.  Then solve this set of

equations to give individual formulas for the calculation of each of these variables under any
condition.  Assume no negative pressures will occur.

C V C C H C V C C HP P P PA A B B

+ −= − = +: :1 2 3 4

Pump

Check valve Pipe BPipe A

Area = AA Area = ABVPB
HPB

VPA
HPA

9.16  The surge relief valve in the pipeline shown atop the next page is designed to open
when the pressure at the valve exceeds a specified value.  When this occurs, the valve opens
suddenly and discharges water into the atmosphere according to the equation

Q ft3/ s( ) = C Pressure head at x

Using the centerline of the horizontal pipe as the datum, develop an equation for

H H H H HP P P P Px
= = =( )1 2

  when the surge valve is open.  The  C+  and C–  equations

are
C V C C H C V C C HP P P P

+ −= − = +: :3 4 1 2



x

Area = A 1 2

DATUM

Area = A

Q

9.17   The pipeline shown below discharges into the atmosphere just downstream of the
gate valve.  The surge relief valve just upstream of the gate valve will open when the
pressure head in the pipe exceeds  Hmax.  When this occurs, the relief valve opens suddenly,
and the discharge is then given by

Q ft3/ s( ) = K Pressure head in pipe at surge valve

Your tasks:
(a)  Write a set of equations which can be used to solve for all the variables if

(1)  the surge valve is not open,
(2)  both the surge valve and the gate valve are open,
(3)  the surge valve is open and the gate valve is closed.

(b)  Arrange the equations for each condition so they involve  HP  only.
(c)  For condition (2) above, solve the equation for  HP.
(d)  Explain how you would decide which of the conditions would apply.

The  C+  equations is  C+ : VP = C3 − C4HP

Q

Area = A

DATUMV

Surge relief
valveVP, HP

Gate valve
Loss coefficient = KL

9.18  The large reservoir is a one-way surge tank connected to the pipeline through a very
short pipe  I  with a check valve.  The check valve in the short pipe prevents flow from the
pipeline into the reservoir.  When  H  in the pipeline at the junction drops below the value
of  H0  in the reservoir, the check valve opens and flow enters the pipeline from the
reservoir.  The equation for discharge from the reservoir into the pipeline is

Q = KA 2g H0 − HPI( )

DATUM

H = Ho = Constant

Check valve

J K

I

Large reservoir



(a)  How many unknowns exist at the junction?  List them.
(b)  Write down the independent equations that contain these unknowns.
(c)  From these equations develop an equation containing only  HP  as an unknown.
(d)  Solve the equation for  HP,  explaining how you would select the proper sign in the

quadratic solution.  Also explain how you would know whether the check valve is
open.

All pipes have the same area A.  All pipes have the same wave speed  a.  The  C+  and

C–  equations are  C+ : VP = C3 − C4HP C− : VP = C1 + C2HP .



CHAPTER 10
_________________________________________________________________________

PIPE SYSTEM TRANSIENTS

A natural extension of the analysis of single-pipe systems is to more elaborate pipe
systems.  In practice, design situations almost always confront systems that are larger and
more complex than single, straight pipelines.  We now have already been introduced to
most of the analysis techniques that are needed for these systems, so we can immediately
begin with the simplest type, series pipe systems.  We will then move on to branching
pipe systems and also examine how to represent actual valve behavior in a realistic way, as
opposed to the artificial linear-varying-velocity approach used in Chapter 9.  This chapter
will prepare us to analyze gravity-flow pipeline transient situations successfully.

10.1 SERIES PIPES

In a series pipe system each pipe (pipeline segment) in the series carries the same
steady-flow discharge, but each pipe may have its own velocity, diameter, wave speed, and
so on.  Each segment must be straight and have constant properties and geometry.  These
restrictions include the very important case of a single, constant-diameter pipe which can
be divided into segments, thereby creating a series pipe system, in order to analyze a
pipeline with a profile containing changes in grade.

10.1.1. INTERNAL BOUNDARY CONDITIONS
The method of characteristics solution for each pipe in series proceeds as in Chapter 9.

The interior nodes are treated with equations similar to Eqs. 9.64 and 9.65.  Boundary
conditions at the upstream and downstream ends are again represented by a suitable

combination of the  C+  and  C–  equations along with a reservoir, valve, or other special
condition.  The principal difference is the need now for internal boundary conditions at the
series pipe junctions.

Figure 10.1 portrays a typical series pipe internal boundary condition.  There are two
points,  P1  and  P2,  one on each side of the junction, which are very close together and

C+ C-

Pipe 1 Pipe 2
P2P1

R2L1

Figure 10.1  Boundary conditions at a typical series pipe junction.

represent the location of four unknown quantities, HP1
, HP2

, VP1
,  and VP2

, which

must be calculated.  Therefore, we must find four equations to solve for these unknowns.

For the upstream pipe  the  C+  equation can be written, from Eq. 9.53, as



VP1
= VL1

+
g

a1
HL1

−
f1∆t

2D1
VL1

VL1
+

g

a1
∆tVL1

sinθ1 −
g

a1
HP1

(10.1)

or in short form
VP1

= C3 − C4HP1
(10.2)

Similarly, for the downstream pipe the  C–  equation, Eq. 9.54, yields

VP2
= VR2

−
g

a2
HR2

−
f 2∆t

2D2
VR2

VR2
−

g

a2
∆tVR2

sinθ2 +
g

a2
HP2

(10.3)

or in short form
VP2

= C1 + C2HP2
(10.4)

It is clear from Eqs. 10.2 and 10.4 that we have four unknowns in the two equations.
The two additional required equations are obtained from the conservation of mass and work-
energy principles.  Assuming there is a negligible mass of fluid between points  1  and  2,
conservation of mass gives

VP1
A1 = VP2

A2 (10.5)

Applying the work-energy equation between these same two points  1  and  2,  again with
negligible mass between the points, and neglecting the difference in velocity heads and any
local loss of head across the junction,

HP1
= HP2

(10.6)

If the head loss at the junction were significant (for example, a closing valve or a pressure
reducing valve), then the head loss across the valve must be included in Eq. 10.6.

Solving Eqs. 10.2, 10.4, 10.5, and 10.6 simultaneously leads to the following
equations for the heads  H  at the junction:

HP1
= HP2

=
C3A1 − C1A2
C2A2 + C4A1

(10.7)

Once these heads have been computed, the velocities can be found by back-substitution
into Eqs. 10.2 and 10.4.

10.1.2. SELECTION OF ∆∆∆∆ t
In the previous section we presumed that our chosen  C+  and  C–  characteristics

intersected at the pipe junction, as Fig. 10.1 shows.  This is rarely true because the slope
of each characteristic line depends on the wave speed and fluid velocity in the pipe and the
horizontal location of the node depends on the number of sections into which the pipe is

divided.  That is to say, if we extend the  C+  and  C–  characteristics from adjacent nodes
at a particular instant in time, they usually will not intersect at the junction.  So we need a
strategy to overcome this problem.  If we are successful, then Eqs. 10.2, 10.4, and 10.7
will apply, as before.

We begin by rewriting Eq. 9.67 for deriving the value of  ∆t:



∆t =
∆s

max V + a
=

∆s

V + a( )
=

L

N V + a( )
(10.8)

For a given  N  it is clear from Eq. 10.8 that we will usually find a different  ∆ t  for each
pipe in a series.  Figure 10.2 illustrates this situation for two typical pipes in series.  At a

Pipe 1 Pipe 2

N = 4

∆t1
∆t2

Figure 10.2  The  s-t  plane for a two-pipe system with equal  N's.

pipe junction the result is a pair of characteristic lines that do not meet at the common end
of the two pipes.  However, we can bring the two characteristics closer to meeting at the
junction by choosing a different  N  for each pipe;  however, because  N  must be an
integer, we cannot guarantee this will work.  In fact, the chance of success is so small that
we must discard this approach.

Another approach which shows more promise is demonstrated in Fig. 10.3.  We reduce
∆t   for all pipes to that value for the pipe with the smallest  ∆t,  called the "controlling"

Le L C R Ri

P

Pipe 1 Pipe 2

N = 4N = 4
(Same ∆t)

∆t

Figure 10.3  The  s-t  plane with equal  ∆t's  and large interpolations.

pipe.  This will force the characteristics to meet at the pipe junction.  However, the other
end of each characteristic line will no longer intersect at the rectangular grid points.  To
overcome this problem, we adopt the interpolation procedures developed in Chapter 9.
Unfortunately, as can be seen from Fig. 10.3, we may then need some very large interpola-
tions, far too large to assure the accuracy of the numerical analysis.



A technique does exist to reduce this interpolation error while still causing the
characteristics to meet at the junction.  Here we increase  N  in all pipes which initially
had  ∆t's  larger than that of the "controlling" pipe.  As we increase each  N ,  the
interpolation gets successively smaller.  Eventually, as shown in Fig. 10.4, we obtain a
situation in each pipe where a further increase in  N  will cause the characteristic lines to
intersect

Pipe 1 Pipe 2

N = 4Try N = 6

∆t

Figure 10.4  The  s-t  plane with variable  N  values and minimal interpolation.

outside the rectangular grid point.  We stop increasing  N  just before this happens because
this represents the optimum interpolation situation.  We now have each of the series pipes
divided into a different number of sections with minimum interpolation, but all pipes now
have a common  ∆t.

These values  Ni  for each pipe  i  are computed by the recipe

Ni =
Li

∆tmin Vi + ai( )
(10.9)

where  ∆tmin  is associated with the controlling pipe.  Integer truncation in the computer
will give the proper maximum  Ni   for each of the pipes in series.  For the controlling
pipe the original  N  is retained.

Because the minimization of interpolation error is so significant in the preservation of
accuracy, we actually compute the amount of interpolation in the computer program for
each series pipe.  If the amount of interpolation remains too large, there are ways to reduce
it.  The easiest way is to increase the base value of  N  because this will cause all pipes to
be divided into more parts and may lead to less interpolation.  The only disadvantage is a
substantial increase in the amount of computation, which is caused by the larger number of
grid points.

Probably it is best to pursue some preliminary computations to determine which pipes
in the series system produce the most trouble.  Then move a few internal junctions (change
the length of individual pipe sections without changing the total length of the system) to
generate segment lengths which cause less interpolation error.  Another popular technique
is to adjust the wave speed to reduce interpolation error.  The rationale behind this approach
is that the wave speed cannot be determined very precisely anyway, so why not use this
uncertainty to improve the numerical simulation accuracy?  Karney and Ghidaoui (1997)
recently reviewed the interpolation issue and propose a new, more flexible technique.
However, they also state that no one method is best in all cases.  Whichever technique
minimizes interpolation error in a particular application should be used.



Another "trick" which may work well in conjunction with the previous technique is to
"simplify" the pipeline profile.  Often a pipeline has literally dozens of changes in grade,
and following these grades precisely would require a series pipe analysis with dozens of
pipe segments.  This problem formulation, along with the minimization of interpolation
error, could lead to prohibitive computation times.  However, since experience has shown
that pipeline slope has little effect on water hammer pressures, the actual pipeline profile
can be replaced with a model containing only a few segments and a simplified profile
without seriously affecting the results of the analysis.  This feature permits short pipe
segments to be combined with longer segments and/or several short segments to be
combined into a single long segment.  This can be done with concurrent attention to
opportunities to minimize interpolation error.  Care should be taken, however, to attempt
to include the high and low points along the pipeline as junctions, since they tend to be the
critical pressure points.  With some experience and care in approximating a pipeline
profile, the user will be able to analyze a system accurately with a minimum of
computation.

10.1.3. THE COMPUTER PROGRAM
The computer program  PROG2  for the solution of series pipe problems is included on

the CD.  It is an extension of PROG1 which accounts for the differing properties in the
series pipes.  The input parameters are again defined with COMMENT statements in the
program listing, and the user must develop the steady-state input conditions outside the
program.

In this program a double subscripting of variables is required since parameters now vary
from pipe to pipe.  Some caution is appropriate in choosing a base value for N .  If a
relatively short pipe occurs in the system, it will probably be the controlling pipe and
produce the minimum  ∆t.  If other considerably longer pipe segments exist in the system,
they will have a large number of sections.  A short preliminary computer run (TMAX =
2∆t) with a small  N  will permit you to examine the effect of parameters on the analysis
and see how much interpolation, which is displayed, is required.

This program assumes a reservoir at the upstream end and a closing valve and reservoir
at the downstream end.  Head loss coefficients must be entered for the valve which can be
closed at two different rates.  The program also provides a printer plot of maximum and
minimum pressure heads along the pipeline, a printer plot of pressure head vs. time for up
to four points along the pipeline, a table of pressure head and velocity vs. time for the
same four points, and a data file which can be read by an external graphing program to
make traditional graphs of pressure head vs. time.  The subroutines PGRAPH and
PROFILE are used to accomplish these tasks;  input data requirements and input parameter
descriptions are included as COMMENT statements in the subroutine source listings.

To demonstrate the use of this program and its various features, we now look at a
simple example.  Though we have not yet discussed how real valve input data is developed,
we include such a valve treatment in this example;  the details of modeling the valve head
loss are included later in this chapter.

Example Problem 10.1
The series pipe system shown on the next page conveys  800 gal/min  and has a valve

at the downstream end which closes at a uniform rate until it is fully closed after  5 sec.
Find the maximum and minimum pressures in the system and their points and times of
occurrence.  Also provide printer plots of the extreme pressure heads along the pipeline and
pressure head vs. time at the valve and at the pipe junction, tables of pressure head vs. time
at these two points, and a traditional plot of pressure head vs. time at the two points.

The input data file to accomplish these tasks follows:

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


DEMONSTRATION OF PROGRAM NO. 2 - INPUT DATA FILE "EP101.DAT"
RESERVOIR UPSTREAM, VALVE CLOSING LINEARLY IN 5 SEC DOWNSTREAM
&SPECS NPIPES=2,NPARTS=5,IOUT=10,QZERO=800.,HZERO=1780.,ZEND=1260.,
       HATM=32.,TMAX=15.00,DTNEW=0.,TC1=0.,TC2=5.00,PC1=100.,
       PFILE=T,HVPRNT=T,PPLOT=T,GRAPH=T,RERUN=F/
0.  .0167  .0313  .0556  .100  .1787  .3333  .625  1.25  2.50  5.27
12.00  3000.  .015  3000.  1280.
 8.00  2000.  .018  2800.  1210.
&GRAF NSAVE=2,IOUTSA=2,PIPE=2,2,0,0,NODE=1,999,0,0/

El. 1780'

El. 1280' - 3000' - 12"

ƒ = 0.015
a = 3000 ft/s

ƒ = 0.018

a = 2800 ft/s

2000' - 8"

El. 1210'

Valve

- El. 1260'

The initial portion of the output file follows.  The printout is too lengthy to reproduce
in its entirety but is contained on the  CD  as  OUT101  and may be reviewed with the text
editor.  The page accompanying the abbreviated printout shows the traditional graph of
pressure head vs. time as produced by Axum software from Trimetrix.  This software reads
the plot file created at the end of execution when  GRAPH=T  is in the input data (see
above data file).

DEMONSTRATION OF PROGRAM NO. 2 - INPUT DATA FILE "IP101.DAT"
RESERVOIR UPSTREAM, VALVE CLOSING LINEARLY IN 5 SEC DOWNSTREAM

                          INPUT DATA
                          ----------

                         IOUT =  10
                       NPARTS =   5
                       NPIPES =   2

                        QZERO =  800.0 GPM
                        HZERO = 1780.0 FT

                         ZEND = 1260.0 FT
                         HATM =   32.0 FT

                         TMAX =  15.00 SEC
                         DELT =   .143 SEC
                          TC1 =    .00 SEC
                          PC1 = 100.00 PERCENT OPEN
                          TC2 =   5.00 SEC, VALVE IS CLOSED

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


                   VALVE LOSS COEFFICIENTS
                   -----------------------
                      % OPEN   1.0/KL
                      ------  --------
                         0.   .000E+00
                        10.   .167E-01
                        20.   .313E-01
                        30.   .556E-01
                        40.   .100E+00
                        50.   .179E+00
                        60.   .333E+00
                        70.   .625E+00
                        80.   .125E+01
                        90.   .250E+01
                       100.   .527E+01

                      PIPE INPUT DATA
                      ---------------

  PIPE  DIAM,IN  LENGTH,FT  WAVE SPD,FT/S  PIPEZ,FT   F     VEL,FT/S
  ----  -------  ---------  ------------  --------  ------  -------
    1    12.00     3000.0        3000.      1280.   .0150     2.27
    2     8.00     2000.0        2800.      1210.   .0180     5.10

  PIPE  DELT,SEC  PARTS    SINE   L/A,SEC  INTERPOLATION
  ----  --------  -----  -------  -------  -------------
    1     .200      7    -.02333    1.00       .002
    2     .143      5     .02500     .71       .002

     PRESSURE HEADS, H-VALUES AND VELOCITIES AS FUNCTIONS OF TIME
     ------------------------------------------------------------

                 X   HEAD,FT  H,FT  V,FT/S      X   HEAD,FT  H,FT  V,FT/S
T =  .000 SEC  ----- ------- -----  ------    ----- ------- -----  ------

      PIPE 1   .000    500.   1780.  2.27      .143   509.   1779.   2.27
               .286    519.   1779.  2.27      .429   528.   1778.   2.27
               .571    538.   1778.  2.27      .714   547.   1777.   2.27
               .857    557.   1777.  2.27     1.000   566.   1776.   2.27

      PIPE 2   .000    566.   1776.  5.10      .200   552.   1772.   5.10
               .400    538.   1768.  5.10      .600   523.   1763.   5.10
               .800    509.   1759   5.10     1.000   495.   1755.   5.10

                 X   HEAD,FT  H,FT  V,FT/S      X   HEAD,FT  H,FT  V,FT/S
T = 1.426 SEC  ----- ------- -----  ------    ----- ------- -----  ------

      PIPE 1   .000    500.   1780.  2.27      .143   509.   1779.   2.27
               .286    519.   1779.  2.27      .429   528.   1778.   2.27
               .571    538.   1778.  2.27      .714   547.   1777.   2.27
               .857    557.   1777.  2.27     1.000   566.   1776.   2.27

      PIPE 2   .000    566.   1776.  5.10      .200   552.   1772.   5.10
               .400    538.   1768.  5.10      .600   524.   1764.   5.10
               .800    509.   1759.  5.10     1.000   495.   1755.   5.10



                            ***************************
                            * TABLE OF EXTREME VALUES *
                            ***************************

             X    MAX HEAD  TIME    MIN HEAD  TIME    MAX H    MIN H
           -----  --------  ----    --------  ----   ------   ------
  PIPE 1
            .000    500.0   15.1      500.0   15.1    1780.    1780.
            .143    746.9    6.7      346.4   10.1    2017.    1616.
            .286    777.7    6.6      341.1   10.1    2038.    1601.
            .429    794.1   11.8      332.1   15.1    2044.    1582.
            .571    820.4   11.8      280.1   15.1    2060.    1520.
            .714    834.2   11.8      289.1   15.1    2064.    1519.
            .857    858.7   11.4      256.7   14.8    2079.    1477.
           1.000    878.4   11.4      248.0   14.8    2088.    1458.
             X    MAX HEAD  TIME    MIN HEAD  TIME    MAX H    MIN H
           -----  --------  ----    --------  ----   ------   ------
  PIPE 2
            .000    878.4   11.4      248.0   14.8    2088.    1458.
            .200    961.5    5.7       92.7    9.1    2182.    1313.
            .400    962.4    5.6       60.4    9.1    2192.    1290.
            .600    955.5    5.6       47.3    9.1    2196.    1287.
            .800    946.0    5.7       34.2    9.4    2196.    1284.
           1.000    936.3    5.6       15.6    9.4    2196.    1276.

 MAX HEAD = 962.4 FT (416.6 PSI) IN PIPE 2 AT X = .400 AT T = 5.56 SEC

 MIN HEAD =  15.6 FT (  6.7 PSI) IN PIPE 2 AT X =1.000 AT T = 9.41 SEC

*                              *                              *

10.2 BRANCHING PIPES

A new feature, not occurring in direct series pipes, is found when three or more pipes
join at a junction.  We will call these branching pipe systems.  As a practical measure, we
will consider only three-pipe and four-pipe junctions.

10.2.1. THREE-PIPE JUNCTIONS
The typical three-pipe junction is shown in Fig. 10.5, with the initial flow directions

indicated by arrows whose directions are established by the steady state conditions.  That is,
the signs of terms in the equations to be written and the characteristic lines to be followed
will be determined by the steady flow behavior (Since the direction of flow was readily
apparent in our earlier problems, there was no previous need to emphasize its
determination).

Pipe 1 Pipe 2

Pipe 3

P2P1

P3

Figure 10.5  The one-in, two-out, three-pipe junction.
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For the pipe junction with one inflow and two outflows, the following equations
describe the relations between the six unknowns

Pipe 1,  C+ VP1
= C1 − C2HP1

(10.10)

Pipe 2,  C- VP 2
= C3 + C4HP 2

(10.11)

Pipe 3,  C- VP 3
= C5 + C6HP 3

(10.12)

Conservation of mass VP1
A1 = VP2

A2 + VP3
A3 (10.13)

Work-energy, neglecting local loss HP1
= HP2

= HP3
 (10.14)

Here the subscripts indicate the unknown velocities and heads at the pipe junction.
Equation 10.14 is actually two independent equations.

Solving this linear set of equations leads to

HP1
= HP2

= HP3
=

C1A1 − C3A2 − C5A3
C2A1 + C4A2 + C6A3

(10.15)

Back substitution of these heads into Eqs. 10.10, 10.11, and 10.12 yields the velocities.

Pipe 2

Pipe 3

Pipe 1

P1 P2

P3

Figure 10.6  The two-in, one-out, three-pipe junction.

If instead we have a three-pipe junction with two inflows and one outflow, as shown in
Fig. 10.6, an similar analysis would lead to the following equations for finding the
unknown velocities and heads:

HP1
= HP2

= HP3
=

C1A1 + C3A2 − C5A3
C2A1 + C4A2 + C6A3

(10.16)

VP1
= C1 − C2HP1

(10.17)

VP 2
= C3 − C4HP 2

(10.18)

VP 3
= C5 + C6HP 3

(10.19)



All three-pipe junctions fit into one of the two categories above unless there is an external
demand at the junction.  Figure 10.7 shows such a situation.  The only effect of this

external demand is to modify the mass conservation relation.  The energy and  C+  and  C–

equations remain the same.  The modified mass conservation equation is

VP1
A1 = VP2

A2 + VP3
A3 +Q (10.20)

The impact on the solution is the addition of one term in the head equations:

H H H
C A C A C A Q

C A C A C AP P P1 2 3

1 1 3 2 5 3

2 1 4 2 6 3

= = =
− − −

+ +
(10.21)

Pipe 1
P1 P2

Q

P3

Pipe 3

Pipe 2

Figure 10.7  The three-pipe junction with a constant demand outflow.

Examination of the above sets of equations for  HP  for the various junctions reveals a
consistency in form which would allow the reader, with some experience, to write directly
the equation sets for  HP  by inspection.

10.2.2. FOUR-PIPE JUNCTIONS
Four-pipe junctions are analyzed with the same techniques as were the three-pipe

junctions.  We will examine only one application and let the reader practice on others.
Figure 10.8 shows a one-in, three-out, four-pipe junction with, in addition, a constant

Pipe 1 P1

P4
P3

Pipe 3
P2

Pipe 2

Q
Pipe 4

Figure 10.8  The one-in, three-out, four-pipe junction.



demand  Q  at the junction.  The equations of the four characteristic lines are

Pipe 1,  C+ VP1
= C1 − C2HP1

(10.22)

Pipe 2,  C- VP 2
= C3 + C4HP 2

(10.23)

Pipe 3,  C- VP 3
= C5 + C6HP 3

(10.24)

Pipe 4,  C- VP4
= C7 + C8HP4

(10.25)

Conservation of mass VP1
A1 = VP2

A2 + VP3
A3 + VP4

A4 +Q (10.26)

Work-energy, neglecting local loss   HP1
= HP2

= HP3
= HP4

 (10.27)

Solving these equations for the head values at the junction,

HP1
= HP2

= HP3
= HP4

=
C1A1 − C3A2 − C5A3 − C7A4 −Q

C2A1 + C4A2 + C6A3 + C8A4
(10.28)

As before, back substitution into the  C+  and  C–  equations will give the velocities.
As we will see when pipe networks are discussed, a computer program can be written

which will examine the pipes at each junction and automatically classify them according to
number of pipes and junction configuration.  The approach to the analysis is to employ the
pattern we have observed in the previous examples.

10.3 INTERIOR MAJOR LOSSES

Occasionally a device is located in the interior of a pipeline which causes a significant
loss in the system, either by choice (a pressure-reducing valve) or by necessity (e.g., a
constriction, a meter, a partially-closed valve).  Whatever the cause, if the loss is signifi-
cant in comparison with other frictional losses, it must be included in the analysis.

Possible approaches to the treatment of this loss are to distribute it uniformly along the
pipe by increasing the roughness of the pipe, to lump it into the boundary condition at one
of the junctions, or to analyze it at its actual pipe location.  Because the latter approach
most resembles the true physical situation, we will approach the problem in this way.

We assume the pipe on each side of the loss has a different size, wave speed, and length;
we further assume the energy loss across the device is proportional to the square of the
velocity in the downstream pipe.  The approach is similar to that used for the series pipe
junction (see Fig. 10.9):

Pipe 2

P2P1

Pipe 1

Figure 10.9  A model for interior major losses.

The first three equations apply directly and are rewritten below:

Pipe  1,  C+ VP1
= C1 − C2HP1

(10.29)



Pipe  2,  C- VP2
= C3 + C4HP2

(10.30)

Conservation of mass V A V AP P1 21 2= (10.31)

Application of the work-energy equation across the device assumes the loss would be the
same as for steady flow at the instantaneous unsteady velocity:

Work-energy  HP1
= HP2

+ KL

VP2

2

2g
(10.32)

Combining Eqs. 10.29 through 10.32 provides the following equation for  VP2
:

VP2

2 +
2g

KL

1
C4

+
A2
A1

1
C2









VP2

−
2g

KL

C3
C4

+
C1
C2









 = 0 (10.33)

To solve the quadratic equation, we define

C5 =
2g

KL

1
C4

+
A2
A1

1
C2









 C6 =

2g

KL

C3
C4

+
C1
C2









 (10.34)

so that Eq. 10.33 can be written as

VP2

2 + C5VP2
− C6 = 0 (10.35)

The quadratic formula solution is

VP2
=

1
2

−C5 ± C5
2 + 4C6







(10.36)

Because  C2  and  C4  are always positive,  C5  must be positive.  Therefore, the (+) sign
in front of the radical must be retained, for the velocity would otherwise always be
negative.  The final equation is

VP2
=

C5
2

−1+ 1+
4C6

C5
2















(10.37)

The upstream velocity and the two heads can be found by back-substitution into Eqs. 10.29
through 10.31.

One additional problem is created by this type of loss.  If  VP2
  should become

negative, the work-energy equation would not be valid in its present form.  For reverse
flow the proper work-energy equation would be

HP1
+ KLrev

VP1

2

2g
= HP2

(10.38)



We must then reconstitute Eq. 10.33, revise the constants  C5  and  C6  and develop anew
the equation for  VP2

.

10.4 REAL VALVES

Of all unsteady flow situations in pipes, it is likely that those caused by valve
movement will be the most common.  By constricting the flow, the closing valve creates
an increasing head loss in the pipe system which causes the flow to decelerate.  Different
types of valves create head loss in different ways which are determined by not only the
structure of the valve but also the details of the closure sequence.

For steady-state hydraulics the equation for head loss through a valve has traditionally
been based on a form that has its roots in dimensional analysis:

hL = KL
V 2

2g
(10.39)

Here  hL  is the head loss,  V  is the velocity in the pipe (not in the valve), and  KL  is the
valve loss coefficient (see Chapter 2).  Again we assume the steady-flow equation can be
used in the unsteady situation to predict the head loss at the instantaneous velocity.

In many instances the user may have information which quantifies the valve loss
coefficient for only two or three valve settings.  It is then important to create a continuous
variation in  KL  with valve position so a transient analysis can be performed with some
confidence that the results will be reasonably accurate.

Loss coefficients for a given valve at different actuator positions are determined by direct
laboratory measurements.  That is,  KL  is a function of actuator position.  If we know
how the valve actuator moves with time, then we can determine a numerical value for  KL
at that time.  We then insert that value into Eq. 10.32 and solve for the values of the other
variables.  We will now demonstrate the application of this technique for valves at the
interior of a pipeline and at the downstream end.

10.4.1. VALVE IN THE INTERIOR OF A PIPELINE
We presume the valve in the interior of the pipeline is scheduled to close (or open)

according to some prescribed timetable.  The equations describing this internal boundary
condition are given by Eqs. 10.29 through 10.32 with equal pipe areas on both sides of the
valve.  Figure 10.10 illustrates the situation:

Pipe 1 Pipe 2

C+

EL - HGL

EL - HGL

C-

P1 P2

hL

Figure 10.10  Valve in a pipeline of constant diameter.

We assemble the applicable equations in their modified form as



Pipe  1,  C+ VP1
= C3 − C4HP1

(10.40)

Pipe  2,  C- VP2
= C1 + C2HP2

(10.41)

Conservation of mass VP1
= VP2

(10.42)

Work-energy HP1
= HP2

+ KL

VP2

2

2g
(10.43)

The equation obtained by combining Eqs. 10.40 through 10.43 is

VP2

2 +
2g

KL

1
C4

+
1

C2









VP2

−
2g

KL

C3
C4

+
C1
C2









 = 0 (10.44)

While keeping  KL  separate, definition of the coefficients

C5 = 2g
1

C4
+

1
C2









 C6 = 2g

C3
C4

+
C1
C2









 (10.45)

leads to the velocity expression

VP1
= VP2

=
C5

2KL
−1 + 1+

4C6KL

C5
2















(10.46)

This equation is correct so long as the flow is in the original downstream direction.  If the
flow reverses, then we must modify Eq. 10.43 and re-solve the set of equations to obtain

VP1
= VP2

=
C5

2KLrev

1 − 1 −
4C6KLrev

C5
2















(10.47)

We should recall here that the  C+  and  C–  characteristics and the equations associated
with them are determined by the original flow direction and need not be redefined as the
result of a temporary flow reversal.  However, the reverse-flow head loss characteristics of
valves are generally different from those for forward flow and are often not available.  Under
these circumstances the analyst may be forced to use the forward-flow characteristics for
flow in both directions.  While this assumption may well be acceptable for gate, ball,
cone, and plug valves, it is questionable for globe, angle, and butterfly valves.

10.4.2. VALVE AT DOWNSTREAM END OF PIPE AT RESERVOIR
Valves quite often are located at the downstream ends of pipelines, so we will consider

this common case to see what modifications of the previous equations are needed to effect a
solution.  Now we are no longer talking about an interior boundary condition, but the
approach is the same.  We consider the valve to be positioned just before a reservoir so the
pressure head downstream of the valve is fixed at the reservoir elevation (see Fig. 10.11).
Other downstream conditions may occur;  e.g., a free discharge from the valve into the
atmosphere would fix the pressure downstream of the valve at zero gage.



DATUM

H0

Valve

P1

Figure 10.11  Valve and reservoir at the downstream end of a pipeline.

In Fig. 10.11 we now see only two unknowns at the valve, so the required equations are

C+  VP1
= C3 − C4HP1

(10.48)

Work-energy HP1
= H0 + KL

VP1

2

2g
(10.49)

Combining these two equations to form the quadratic equation for  VP1
  yields

VP1

2 +
2g

KLC4
VP1

+
2g

KL
H0 −

C3
C4









 = 0 (10.50)

With the coefficients

C5 =
2g

C4
C6 = 2g H0 −

C3
C4









 (10.51)

the solution to the quadratic equation is

VP1
=

C5
2KL

− 1+ 1 −
4C6KL

C5
2















(10.52)

or, for reverse flow,

VP1
=

C5
2KLrev

1 − 1 +
4C6KL

C5
2















(10.53)

It is now clear that we can determine the impact of valve movement on pressures and
velocities in the pipe system whenever we are able to express the valve loss coefficient as a
function of time for the given closure (or opening) schedule.  We will now see how to
achieve this objective.

10.4.3. EXPRESSING  KL   AS A FUNCTION OF TIME
To solve transient problems with closing or opening valves, we must learn how to enter

the valve position schedule into the computer program so that the value of  KL  can be
found at any time.  We begin by assuming that values of  KL  for more than one valve
position or setting are available from the manufacturer.  We find it convenient to arrange



the computer program so it accepts values of  KL  at 11 evenly spaced positions ranging
from 100% open to 0% open (closed).  In other words, we wish to synthesize a  KL  vs.
percent-open table from available data.  Soon we will see how to do this.  Consequently, if
the percent-open is known at a particular time from the closure schedule, then the computer
program can interpolate the correct value of  KL  from the percent-open table.  And this
value can next be entered into Eq. 10.52 or Eq. 10.53, and the solution can be completed
for this time step.  Next we examine the details of a technique to generate a table of  KL
vs. percent-open.

Usually head loss characteristics of valves are expressed in one of three ways.  Two of
these employ the  KL  or  Cv  coefficients discussed in Chapter 2.  The third method relies
on the nondimensional valve-closure function  τ,  defined as

τ =
KL0

KL
(10.54)

in which  KL0
  is the loss coefficient when the valve is fully open.  This nondimensional

form of the loss coefficient has the advantage of varying between  0  and  1  and is preferred
by some.  Because head loss coefficients are generally provided as  KL's,  we will use this
form here.  Several attempts have been made to present the transient pressures developed by
valve closure in graphical form.  A typical work by Wood and Jones (1973) briefly reviews
these methods and then presents their own comprehensive graphs.  As they point out, it is
impossible to include all of the effects of friction and system configuration in simple
graphical form.  For this reason we will bypass the graphical approaches and concentrate
on computerizing the representation of any valve in any pipeline configuration.

We will begin by determining the values of  KL  needed to complete the  KL  vs.
percent-open table.  In this example we will work with a gate valve (see Street et al.,
1996),  for which  KL  values are provided for only four positions (see Table 10.1).  Loss
coefficients and other data for different valves are provided in Appendix C.  The next step is

Table  10.1
 Loss Coefficients for a Gate Valve (Street et al., 1996)

    % Open         KL       1 / KL

        100           0.19          5.27
          75           1.15          0.87
          50           5.6          0.18
          25         24.0          0.04

to construct a graph of  KL  and  1/KL  as a function of percent-open by plotting the values
from Table 10.1, constructing a smooth curve through the data, and extending it over the
full range of percent-open from 100% to 0%.  The result is shown in Fig. 10.12.

Clearly a problem exists in the plot of  KL  vs. percent-open near valve closure where
KL  approaches infinity as velocity goes to zero.  To avoid this problem, we will develop
the full-range curve only for  1/KL.  Note in our solution for velocity that it is  1/KL  that
appears in the equations rather than  KL.

Next we construct a table of  1/KL  values for uniform increments of percent-open by
reading the values from Fig. 10.12.  The results are listed in Table 10.2.  Now, if the
valve-closure schedule is known (percent-open vs. time), then we will know the percent-
open at any given time.  We can then interpolate the proper value of  KL  from Table  
10.2 and proceed with our solution.  This requires the computer program to be capable of
performing the interpolation process.  This is accomplished by fitting a straight line (or



curve) between two (or more) data points in the table and interpolating.  In such problems
linear (straight-line) interpolation is often adequate, and parabolic interpolation is usually
sufficient to cover the remaining situations.
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Figure 10.12  KL  and  1/KL  as functions of percent-open.

10.4.4. LINEAR INTERPOLATION
Because linear or straight-line interpolation is easiest to understand, we examine it first.

For example, if the valve-closure schedule required, at a particular time, the determination
of  1/KL  at 72.4% open, we may compute it from Table 10.2 with the following
interpolation:

1 /KL = 0.625 +
72.4 − 70
80 − 70

1.25 − 0.625( ) = 0.775 (10.55)



Now let us see how to program this step.  The  1/KL  values for each percent-open are read
into the program as data.  The percent-open values are stored in an array called  PCT()
while the values of  1/KL  are stored in an array called  KI().  The instantaneous value of

Table 10.2
Values of  1/KL   for Uniform Increments of Percent-open

  Percent open       1 / K L

         100          5.27
           90          2.50
           80          1.25
           70          0.625
           60          0.333
           50          0.179
           40          0.100
           30          0.0556
           20          0.0313
           10          0.0167
            0          0.0

percent-open is  OPEN  (72.4% in the example), and the desired value of  1/KL  is called  
KLI  (0.775 above).  Figure 10.13 presents the computer code which is inserted into the
program to perform the interpolation.

      DO 32 I=1,10
      ITEST=(OPEN-PCT(I))*0.10
      IF(ITEST.EQ.0) GO TO 33
   32 CONTINUE
   33 FACT=(OPEN-PCT(I))*0.10
      KLI=KI(I)+FACT*(KI(I+1)-KI(I))

Figure 10.13.  Linear interpolation computer code.

Owing to its simplicity, the linear interpolation procedure should be used whenever
possible.  However, for functions which are sharply curved or for table data which vary
substantially, a higher-order interpolation should be considered.

10.4.5. PARABOLIC INTERPOLATION
The purpose of parabolic interpolation is to obtain a more accurate interpolation than is

possible with linear interpolation.  While this goal is generally achieved for smoothly
varying functions, data sets which are highly curved or which possess points of inflection
may not be represented well.

In this case we fit a parabola through subsets of three consecutive data points which
cover the range over which interpolation is required (see Fig. 10.14).  Once the parabolic
equation has been found, the interpolated value is calculated by direct substitution.  The
value of  x  in Fig. 10.14 is the percent-open  OPEN  of the valve, and the value of  f(x)
is  KLI,  the value of  1/KL  which is sought.  A displaced local coordinate system is
placed at  xn,  and the parabolic equation is first written in this local coordinate system.
The general form of the parabolic equation is

η = Aξ 2 + Bξ + C (10.56)
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Figure 10.14  Definition sketch for parabolic interpolation.

but here  C = 0  owing to the choice of the local coordinate system origin.  The values of
A   and  B  are found by using the known data values at points  xn-1  and  xn+1.  
Assuming a constant  x-spacing  ∆x  for the data points, the equations for  A   and  B
become

A =
f xn+1( ) + f xn−1( ) − 2 f xn( )

2∆x2 (10.57)

B =
f xn+1( ) − f xn−1( )

2∆x
(10.58)

Recognizing that the two coordinate systems are related by the equations

η + f xn( ) = f x( ) ξ + xn = x (10.59)

the parabolic equations in the local coordinate system can be transformed back into the
original coordinate system, giving

f x( ) = f xn( ) + 1
2

f xn+1( ) − f xn−1( )[ ] x−xn
∆x

+
1
2

f xn+1( ) + f xn−1( )− 2 f xn( )[ ] x−xn
∆x







2

(10.60)

While this equation looks bulky, the computer code is straightforward, and the
computation is efficient.

If, however,  x  is in the first segment, then no  xn-1  exists.  In this instance we
simply shift the local coordinate system so its origin is at  xn-1. For the first interval only
we then use the following equation for  f(x):

f x( ) = f x1( ) − 1
2

f x3( )+3 f x1( )−4 f x2( )[ ] x−x1
∆x

+
1
2

f x3( )+ f x1( )−2 f x2( )[ ] x−x1
∆x







2

(10.61)



The computer code segment that carries out this interpolation is shown in Fig. 10.15;
it uses the same symbols as the linear interpolation code.  While this code could be placed
in a subroutine, it is so brief that it seems unnecessary.

      IF(OPEN.LT.10.) GO TO 9000
      DO 9001 I=2,10
      ITEST=(OPEN–PCT(I))*0.10
      IF(ITEST.EQ.0) GO TO 9002
 9001 CONTINUE
 9002 FACT=(OPEN–PCT(I))*0.10
      KLI=KI(I)+0.5*FACT*(KI(I+1)-KI(I–1))+
     $0.5*FACT*FACT*(KI(I+1)+KI(I–1)–2.0*KI(I))
      GO TO 9004
 9000 FACT=OPEN*0.10
      KLI=KI(1)-0.5*FACT*(KI(3)+3.0*KI(1)–4.0*KI(2))+
     $0.5*FACT*FACT*(KI(3)+KI(1)–2.0*KI(2))
 9004 CONTINUE

Figure 10.15.  Parabolic interpolation code.

A word of caution is appropriate when one considers the use of parabolic interpolation.
One has no control over the shape of the local parabolic curve and could sometimes
experience an odd result.  Such is the case if, under certain circumstances, the parabolic
code is used with the gate valve head loss data.  At the point when the valve is just about
closed, it is possible for the locally parabolic curve to dip below the axis and produce a
negative value for  1/KL.  This creates numerous problems in the analysis and is the major
reason why programs in this text use linear interpolation for the computation of  1/KL.

10.4.6. TRANSIENT VALVE CLOSURE EFFECTS ON PRESSURES
The use of real valves in a transient situation has a more substantial impact on pressures

than might be expected from our limited experience with valves that artificially vary the
velocity linearly at the valve.  This impact is even more pronounced with gate valves;  in
this case the valve must be nearly closed before it generates enough head loss to decrease
the velocity by a significant amount.  The result for simple pipe-reservoir systems is that
the linear valve closure time must be substantially greater than  2L/a  to reduce the
transient pressure appreciably below that obtained for sudden valve closure.  Example
Problem  10.2  demonstrates this fact using three different closure schedules.

Example Problem 10.2
A pipe-reservoir system has a reservoir at the upstream end and a gate valve and reservoir

at the downstream end.  The steady-state pressure head at the valve is  300 ft.  For sudden
valve closure, Eq. 8.8 predicts an increase in pressure head of  431 ft.

Compute the pressure head at the valve for the following three closure schedules, and
compare the results with the sudden-closure values.  For this system,  L/a = 1.07 seconds.

(1)  Linear closure in  6  seconds.
(2)  Close linearly to  10%  open in  1  sec;  close the remainder linearly over  5  sec so

the valve is completely closed in 6 sec.
(3)  Close linearly to  5%  open in  1  sec;  close the remainder linearly over  5   sec so

the valve is completely closed in 6 sec.

The results of the analyses are shown in the following diagram.  It is clear that the last 5%
or less of the valve closure is critical in this case.  Examining the results for case (1), it
appears for all practical purposes that the valve in effect does not begin to close until the
last  0.2  sec.  Even though the valve is closed over approximately three times the critical
closure time of  2L/a  = 2.14  sec, we have achieved almost no reduction in pressure head



increase.  In fact, the fluid velocity doesn't change much in any of these cases until the
valve is over  90%  closed.  For the gate valve it is the manner in which the last  5-10%
of actuator movement is managed that will determine the pressure head increase.

Linear valve closure

Close to 10% in 1 sec
Close to 0% in 5 sec

Close to 5% in 1 sec
Close to 0% in 5 sec

Hmax for sudden valve closure
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*                              *                              *

10.5 PRESSURE-REDUCING VALVES

Pressure reducing valves (PRV's) may routinely be placed in pipe systems, particularly
water distribution networks.  Because of their common occurrence and the fact that their
computer models must be treated somewhat differently numerically than other internal
boundary conditions, we will briefly examine their behavior.

10.5.1. QUICK-RESPONSE PRESSURE-REDUCING VALVES
In this case we assume the pressure reducing valve is spring actuated and undamped so

that it responds instantaneously to changes in flow conditions.  You will recall that the
purpose of the PRV is to maintain a specified pressure on the downstream side of the valve
within prescribed limits;  the pressure there remains essentially unchanged so long as the
upstream pressure is greater.  However, if the upstream pressure drops so low that the
prescribed downstream pressure cannot be maintained, then the PRV causes a major interior



head loss with flow in the original direction.  If under transient conditions the downstream
pressure increases to the point where backflow could occur through the valve, the PRV
then acts as a one-way check valve and prevents back flow.

The PRV could act in any one of three different modes.  The first set of equations
represents the normal mode of operation and assumes the PRV operates as intended.  In
solving this set of equations for the valve, if we discover that the PRV is not operating in
the normal mode, we must then shift to another set of equations which describe one of the
other two modes.  The equations for each of these three modes follow.

For the normal mode of operation, the equations are similar to the major interior loss
equations of Section 10.3.  Figure 10.16 defines the variables applicable to this case.  The

PRV
Pipe 1 Pipe 2

P1 P2

C+ C-

Figure 10.16  Definition sketch for the pressure reducing valve.

resulting equations are

Pipe  1,  C+ VP1
= C1 − C2HP1

(10.62)

Pipe  2,  C- VP2
= C3 + C4HP2

(10.63)

Conservation of mass V VP P1 2
= (10.64)

Work-energy HP1
= HP2

+ KLPRV

VP2

2

2g
(10.65)

The last equation must be altered for normal PRV operations when
HP2

= HPRV =  constant .  Consequently for normal operation

V C C H VP PRV P2 13 4= + = (10.66)

and

H
C V

CP
P

1

11

2

=
−

(10.67)

Before these calculations can be considered to be correct, we must verify that normal
operation is indeed occurring.  If, for example,  VP2

  is negative, normal operation does not

occur, and we must set both velocities to zero and solve Eqs. 10.62 and 10.63 for the
proper heads.  If, however,  VP2

  is positive, we then must check whether the pressure head

drop across the valve is larger than the minimum that is allowable with the valve wide
open.  This check can be made with Eq. 10.65  by using the wide-open value of  KLPRV

  to

compute the drop in head  ∆Hmin  for the given velocity and comparing it with the value
obtained from Eq. 10.67, HP1

− HPRV = ∆Hact .  If  ∆Hact ≥  ∆Hmin,  then the valve is

operating normally.  If ∆Hact ≤ ∆Hmin, then the PRV cannot sustain the downstream



pressure requirement, even though the flow is still in the original direction.  Now the
velocities and heads must be computed from Eqs. 10.62 through 10.65 using KLPRV

  for a

fully-open PRV.

10.5.2. SLOWER ACTING PRESSURE-REDUCING OR PRESSURE-
SUSTAINING VALVES

Most valves of this type are operated by a pilot system which senses the pressure on
the downstream (or upstream) side of the valve and actuates a valve system in the pilot
piping which moves a diaphragm to change the valve setting and maintain the required
pressure.  Because the pilot operation requires fluid to move through the pilot system,
there is a discrete or finite response time to sudden and large pressure changes in the
pipeline.  These valves are designed to respond to much more slowly fluctuating pressures
than occur when transients are present.  In addition, the time-varying response of these
valves is unknown and varies from valve to valve as well as with the magnitude of the
transient pressure.  In most instances these uncertainties prevent any attempt at a
sophisticated analysis;  instead the system is simply conservatively assumed to respond
instantaneously, as was described in the previous section.

10.6 WAVE TRANSMISSION AND REFLECTION
AT PIPE JUNCTIONS*

In many instances it is desirable to be able to estimate what portions of pressure waves
are reflected and transmitted at pipe junctions.  We already know at reservoirs that none of
the pressure wave is transmitted into the reservoir.  We will now briefly look into the
reflection and transmission properties of series pipe junctions and tee junctions.  In all
cases we assume that the head lost at the junction is negligible.

10.6.1. SERIES PIPE JUNCTIONS
The equations of mass and linear momentum conservation can be applied to flow at a

junction as a pressure head increase  ∆H  reaches a junction.  At that instant  ∆H1  passes
through the junction (is transmitted) and  ∆H -  ∆H1  is reflected.  Figure 10.17 depicts
the

Pipe 1 Pipe 2

Before

Pipe 1 Pipe 2

After

∆H∆H
∆H1

a2

a1EL - HGL

a2

Figure 10.17  Wave transmission and reflection at a series pipe junction.

configuration of the  EL-HGL  before and after the pressure wave reaches the junction.  The
analysis produces the following equation for transmission and reflection:

                                                
* This section is adapted from Elementary Fluid Mechanics, by R. L. Street, G. Z.
Watters, and J. K. Vennard, Ed. 7, Copyright 1996 by John Wiley & Sons, Inc.  Reprinted
by permission.



∆H1 =
2a1A2

a2A1 + a1A2
∆H (10.68)

Here  A  is the cross-sectional area of the pipes.  When the wave speeds  a  are approxi-
mately the same, we obtain

∆H1 =
2A1

A1 + A2
∆H (10.69)

Example Problem 10.3
A  24-in-diameter pipeline with a wave speed of  3300 ft/s  reduces to a  6-in-diameter

pipe with a wave speed of  3700 ft/s.  The velocity in the  24-in pipe is  1.0 ft/s  which
corresponds to a velocity in the  6-in pipe of  16 ft/s.  The head difference  ∆H  for sudden
flow stoppage in the  6-in pipe is  1838 ft.  Find the portion of this wave which is
transmitted through the junction.

From Eq. 10.69,

 ∆H1 =
2a1A2

a2A1 + a1A2
∆H =

2(3300) π/4( ) 6/12( )2 (1838)

3700 π/4( ) 24/12( )2 + 3300 π/4( ) 6/12( )2
= 194 ft

With only some  10%  of the head difference being transmitted upstream, it appears that
the upstream pipe acts much like a reservoir.

*                              *                              *

10.6.2. TEE JUNCTIONS
A tee junction is shown in Fig. 10.18.  Using the same analysis techniques as before

∆H

EL - HGL

Pipe 1

Pipe 2

a3

Pipe 3

Figure 10.18  Wave transmission and reflection at a tee junction.

 leads to the following equations

∆H1 = ∆H2 =
2a1a2A3

a2a3A1 + a1a3A2 + a1a2A3
∆H (10.70)

or, for pipes with similar wave speeds,

∆H1 = ∆H2 =
2A3

A1 + A2 + A3
∆H (10.71)



Example Problem 10.4
A  24-inch-diameter main line has a  6-in-diameter takeoff (similar to Fig. 10.18) which

has a velocity of  10 ft/s.  The velocities in the main line are  4.0 ft/s  before the takeoff
and  3.38 ft/s  after the takeoff.  A sudden flow stoppage in the 6-in-diameter takeoff causes
a head difference  ∆H = 1150 ft  to occur.

Assuming that the wave speeds in all pipes are similar, compute the portion of  ∆H
that passes into the 24-in-diameter pipe.

We calculate the transmitted portion of the wave from Eq. 10.71:

∆H1 = ∆H2 =
2A3

A1 + A2 + A3
∆H =

2 π/4( ) 6/12( )2 (1150)

π/4( ) 24/12( )2+ π/4( ) 24/12( )2 + π/4( ) 6/12( )2
= 70 ft

With a tee connection only  6%  of the pressure wave passes into the 24-in-diameter pipe.
It is easy to see why transients in pipe networks are absorbed so rapidly.

*                              *                              *

10.6.3. DEAD-END PIPES
If a pipe system contains a member which carries no discharge and terminates in a dead

end, e.g., a closed valve, then a unique situation exists which could cause unexpectedly
high pressures.  This is actually a special case of the tee junction in the previous section.
As a high-pressure wave passes the junction from which the dead-end pipe extends, a
portion of the wave is transmitted into the dead-end pipe, increasing the pressure there by
an increment  ∆H1  and inducing a flow velocity  ∆V1  toward the closed end.  When the
pressure wave reaches the dead end, the induced velocity is abruptly stopped, thereby
increasing the pressure head at the dead end by  2∆H1.

While pipe system geometry, pipe size, and friction losses all affect the overall pressure
increase in varying amounts, the maximum effect at a dead end occurs when the dead-end
pipe is very small in comparison with the main pipe.  For this condition with small
frictional effects, the pressure head increase is at most twice the value of the ∆H  that
initially passes the junction.  The following example demonstrates the dead-end pipe effect
for two extreme cases.

Example Problem 10.5
A  3000-ft-long dead-end pipe extends from the side of a  12-in pipeline.

EL - HGL
EL - HGL

a

Pipe 2

Pipe 1

Pipe 3

(a)  If the dead-end pipe has a diameter of  1.0 in,  find the maximum pressure head
increase in this pipe if the mainline velocity of  5 ft/s  in pipe 2 is suddenly halted.
Assume a wave speed of  3000 ft/s  for all pipes and neglect friction.

(b)  If part (a) were solved with a friction factor of  0.020  in the 1-in pipe, what would
be the result?

(c)  What is the result if all three pipes are 12 in in diameter and friction is neglected?



(a)  From Eq. 8.4  the incremental head increase in the main line is

∆H = −
a

g
∆V = −

3000
32.2

−5( ) = 466 ft

From Eq. 10.71  the head increment in the dead-end pipe is

 ∆H3 =
2A2

A1 + A2 + A3
∆H =

2 ×122

122 +122 +12 (466) = 464 ft

when the common constants in both numerator and denominator are canceled.  The
maximum possible head increase would be  2(464) = 928 ft,  according to our earlier
reasoning.  A computer analysis gives an identical 928 ft, thus verifying our earlier
conclusion.

(b)  The pressure head increment moving up the 12-in pipe would again be  466 ft,  and
the head increment entering the 1-in pipe would be  464 ft.  Although the maximum
possible pressure head increment would remain  928 ft,  a computer analysis shows that
friction effects have reduced the maximum head increment to  770 ft.

(c)  The head increment moving into pipe 3 is again computed from Eq. 10.71  as

∆H3 =
2A2

A1 + A2 + A3
∆H =

2 ×122

122 +122 +122 (466) = 311 ft

The maximum possible head increase is  2(311) = 622 ft.  A computer analysis also gives
622 ft  as the actual head increase.

*                              *                              *

We conclude in the absence of friction that the rule that the head increment doubles is
valid.  The presence of friction reduces the head increase by an undetermined amount.  We
note that the neglect of friction when estimating a dead-end pressure increment gives
conservative results.

10.7 COLUMN SEPARATION AND RELEASED AIR

It is common knowledge that excessively-high pressures resulting from transients in
pipes can cause damage.  It is also generally recognized that low pressures could cause the
collapse of pipes with thin walls or high external loads.  What is not so commonly known
or understood is the phenomenon of column separation and the consequences of its
occurrence.

10.7.1. COLUMN SEPARATION AND RELEASED AIR
When transients in a pipe system cause the pressure to approach the vapor pressure of

the liquid, gases in solution begin to come out of solution and dramatically affect the flow
behavior.  If the drop in pressure is severe enough to cause the local pressure to reach the
vapor pressure of the liquid, then the liquid boils (cavitates, vaporizes), forming large
pockets of undissolved gases and vapor.  This phenomenon is called column separation.

One consequence of this occurrence is a substantial change in the wave speed caused by
the presence of entrained gases and vapor bubbles which affect the compressibility of the
liquid (see Section 8.4).  A second consequence is the fact that the liquid "column" is no
longer homogeneous and in fact may have large cavities.  This means that the analyses we
have developed no longer apply directly.



Whenever the pressure at any point in the pipeline drops below the pressure at the
pipeline source, the saturation pressure of the dissolved gases may be reached, and these
gases will begin to come out of solution.  This is one of the reasons for placing air release
valves at pipeline summits.  The amount of gas that comes out of solution depends on the
degree of initial saturation and the severity and extent of the low pressure.  If the pressure
drops to the fluid vapor pressure for an extended time period, large cavities of vapor and
gases may form.

If we look carefully at the consequences of closing a valve, we find a simple example of
how column separation can form.  Upon sudden valve closure, the pressure head just
downstream of the valve attempts to drop by an amount (given by Eq. 8.8) which should
be just enough to bring the liquid column to rest.  However, if this pressure drop is greater
than that required to reach the fluid vapor pressure, a vapor cavity will form because a
liquid cannot remain a liquid at a pressure which is lower than its vapor pressure (see Fig.
10.19).  Because the pressure drop is limited, there is not a sufficient pressure gradient to
stop the flow, so the flow separates at the valve and forms a vapor cavity.  Analysis of the
ensuing transient can become exceedingly complex, requiring at the least a means of
representing the cavity formation, growth and decay over time.  Owing to the large
difference in density

A mixture of 
water and 
water vapor 
at the vapor 
pressure

Hatm - Hvap

H0 ∆H

∆H

a

a

Figure 10.19  Column separation caused by sudden valve closure.

between the liquid and the gases, buoyancy effects encourage a gaseous cavity to lie over
the liquid rather than fill the pipe cross section, which calls into question the assumption
of the existence of a one-dimensional flow.

10.7.2. ANALYSIS WITH COLUMN SEPARATION AND RELEASED
AIR

Tullis et al. (1976) thoroughly discuss the effects of air release at low pressures as well
as column separation at vapor pressure.  They suggest that volumes of released air may be
either uniformly distributed throughout the flow or concentrated in pockets.  In the first
case Eq. 8.40 can be used to find the reduced wave speed.  Because the change in wave
speed will cause large interpolations if a rectangular grid is used, they suggest the use of a
method whereby the characteristic lines are followed as closely as possible to minimize
interpolation errors and maintain numerical stability.



If it is undesirable to use this approach, then the regular wave speed is used, and the air
or vapor is assumed to be concentrated in discrete sections along the pipeline with internal
boundary conditions imposed at the ends of each cavity.  The growth and decline of the
cavities is monitored; if they disappear, the regular analysis technique can then resume.

Other investigators who cite experience with the modeling of column separation are
Martin et al. (1976), Ewing (1980), and Marsden and Fox (1976).  Most studies address the
modeling of the vapor cavity, the mechanism of release and re-absorption of air and water
vapor, and numerical techniques.  Wylie and Streeter (1993) offer a compact summary of
the state of the art.

To address the problem of column separation, we must first create a model of the
phenomenon.  The simplest model of column separation ignores the existence of dissolved
gases that might come out of solution at low pressures.  Instead it is assumed that the
liquid remains intact until the vapor pressure is reached.  When that point is reached, it is
postulated that the vapor cavity will grow at a constant cavity pressure equal to the vapor
pressure.  Eventually, when the cavity closes, it is presumed that the vapor re-absorbs so
that it disappears at the instant of cavity closure.  In effect, the vapor cavity is treated much
like a vacuum.

This simple model also requires some assumptions regarding the form of the cavity.  In
reality, this form is quite complicated and nearly impossible to simulate accurately.  There-
fore we might as well use the simplest possible model.  We assume the walls of the cavity
remain normal to the pipe cross section, and the growth or decay of the cavity depends
entirely on the relative velocity of the cavity endwalls.  This in turn requires an internal
boundary condition to be imposed at each node within the cavity where the pressure is fixed
at the vapor pressure.  Thus, at each node where column separation occurs, there are two
velocities, one associated with the upstream face of the cavity and one associated with the
downstream face.  The relative magnitudes and directions of these velocities determine the
growth or decay of the cavity.  All of the cavity behavior is concentrated at the compu-
tational nodes in the pipeline with the liquid between the nodes intact and retaining the
original wave speed.  This model is illustrated in Fig. 10.20.

Vupstream Vdownstream

i - 1 i + 1i

Cavity

��
��
��
��

Figure 10.20  Basic model for column separation analysis.

The determination of the consequences of cavity closure is an important prediction of
the model.  To analyze this feature we apply conservation of momentum to the collision of
the two collapsing cavity walls that are moving at different velocities.  The result is an
equation for the head increase which results from the collision:

∆H =
a

2g
Vupstream − Vdownstream( ) (10.72)

This head increase  ∆H  is added to the vapor pressure head at the node to determine the
new pressure immediately after cavity closure.  PROG8 employs this model of column
separation occurring in pumped pipelines.

While this model of column separation seems very primitive, it is widely used in
practice.  Although much research over recent years sought to improve on this basic
model, no one has developed a model and analysis which is sufficiently more general and
accurate to attract the user community.  Commenting on this state of affairs, Wang and
Locher (1991) note that this vapor cavity model is a "very simplified formulation of what



is really a highly complex problem ... that works surprisingly well in spite of well-
grounded theoretical objections to the approach."  And in applying this method they
caution that it is "essential to understand the formulation of the method, its limitations,
and to interpret the results in the light of this knowledge and past experience".  Clearly,
experience and an understanding of the physical phenomena are crucial ingredients in
successfully applying this model.



10.8 PROBLEMS

Note:  Use  PROG2  for computer analyses in this chapter unless instructed otherwise.

10.1  The gate valve in the pipeline below closes linearly from wide open to completely
closed in  30 sec.  The diameters shown are inside diameters.  The pipe is welded steel with
a wall thickness of  0.135 in  and Case (b) restraint.  Assume the gate valve has the same
loss coefficients as shown in Table 10.2.

Find the maximum and minimum pressures in the system and where and when they
occur.  If column separation occurs, identify when and where it first appears.

El. 1470' -

El. 1570'

10,000' - 24"

El. 1330'

Valve

2000' - 12"

- El. 1200'

El. 1230'

10.2   The engineer in charge of project design wants you to answer the following
questions regarding the proposed pipeline shown below.

(a)  What will be the maximum pressure in the pipeline?
(b)  Where and when will it occur?
(c)  Will column separation occur?
(d)  If so, where and when will it occur?

The pipe diameters shown are inside diameters.  The pipe is  14-ga. (0.0747-in) welded
steel with Case (b) restraint.  Use a Hazen-Williams coefficient of  140  in your calcula-
tions.  The Pratt butterfly valve, which has the loss characteristics given in Appendix C,
closes at a uniform angular rate in  20 sec.

Valve

El. 3470'

3000' - 6"

El. 3890' -

7000' - 8" - El. 3700'

El. 3720'

El. 3960'

10.3  The reservoir of surface elevation  4226 ft  supplies a city water supply through a
15,000-ft  pipeline.  The pipe is  7-ga (0.1793-in) welded steel with Case (b) restraint; the
diameters are inside diameters.  The working pressure in the  18-in  pipe is  270 lb/in2  and
in the  12-in  pipe  420 lb/in2.  The design engineer wants to close the Cla-Val globe
valve linearly without exceeding the working pressure in either pipe.  Assume the valve
loss characteristics in Appendix C for Cla-Val valves follow the GA Industries curve for
variation with percent open.



As a consultant, your task is to analyze the transient behavior of this system for valve
closure times of  20,  40,  and  60 sec  and determine whether the working pressure in the
pipeline is exceeded in any of these cases.  As part of your report, you should find the
maximum and minimum pressures in the pipeline and where and when they occur.  Also
note whether column separation occurs.

Valve

El.3800'

5000' - 12"

El. 4190' -

10,000' - 18"
- El. 4094'

El. 4100'

El. 4226'

10.4   Water flows from the upper reservoir by gravity through a  7500-ft-long steel
pipeline.  Discharge is controlled by an angle valve at the downstream reservoir.  The
system is to be shut down as quickly as possible without exceeding the allowable working
pressure of  200 lb/in2  or causing column separation.

The GA Industries angle valve, with loss characteristics given in Appendix C, is
programmed to close at two different rates.  Recalling from Example Problem 10.2 how
gate valves behave, use this knowledge to adjust the closure stages of the angle valve to
minimize the closure time.

El. 4500'

El. 4470' -

4000' - 18"

1500' -
18"

El. 4300'

El. 4400'

Valve
2000' - 18" - El. 4430'

El. 4450'

ƒ = 0.018
a = 3450 ft/s

10.5   The  24-in  (23.65 in  inside diameter) pipeline is  7-ga (0.1793-in) welded steel
pipe with a working pressure of  200 lb/in2.  Water flows between the two reservoirs
shown atop the following page, controlled by a valve at the downstream reservoir.  The
valve has the following loss coefficients  KL  for the different openings:

% Open    100     75     50   37.5    25  12.5
     KL   0.07  0.42  2.20   5.10    12    56

As a consultant to the project engineer, your task is to determine a closure schedule
which will close the valve as quickly as possible without exceeding the working pressure
or causing column separation.  The valve is designed to close at two different rates.



El. 3800'

El. 3760' -

El. 3550'

El. 3720'
Valve

- El. 3720'

El. 3770'

2500' - 24"
1500' - 24"

2000' - 24"

10.6  The pipeline connecting the two reservoirs is  12-inch CL 200 Transite pipe with
an inside diameter of  11.56 in  and a wall thickness of  1.26 in.  The pipe sections are
joined with couplings and ring gaskets.  Assume a friction factor of  0.014  in your
calculations.

The discharge rate is controlled by a GA Industries globe valve at elevation  4030 ft.  To
determine the valve loss coefficients, use the plot of  Cv  vs. %-open for the GA Industries
valves found in Appendix C.

As a consultant, your task is to recommend a fast closure schedule which will not cause
pressures in excess of the pipe class rating  (200 lb/in2)  or column separation.  Use
PROG2A  for this analysis.

El. 4230'

El. 4180'

- El. 4110'800' - 12" 10
00

' -
12

"
El. 4100'

El. 4030'
Valve

1500' - 12"
El. 4100'

1000' - 12"

El. 4180' -

10.7   The pipeline supplying water from the upper reservoir is  12-in  Class 200 PVC
pipe (wall thickness = 0.61 in,  outside diameter = 12.750 in).  The pipe is considered
hydraulically smooth so use a Hazen-Williams coefficient of  150.  The pipe is joined by
bell-and-spigot connections, and anchor blocks are installed at all bends and fittings.

Two valves are being considered for use by the design engineer.  Valve  A   is an
expensive servo-controlled valve which can cause the velocity at the valve to vary linearly.
Valve  B  is a lower-cost globe valve with a wide-open  Cv  of  1750.  The variation of
Cv  with  %-open is given in Appendix  C  for  GA  Industries valves.  The globe valve
can close at only one rate.

Each valve closes in  30 sec.  You are to conduct analyses of the two alternatives and
determine the maximum and minimum pressures to be expected in each case.  Make a
recommendation as to which valve to use.

Valve
- El. 4700'2000'500'

El. 4620'El. 4640'
300'300'

El. 4670'El. 4690'El. 4700'

El. 4650'

El. 4800'
El. 4750' - 1500'

200'

300'

El. 4760'



10.8  Water flows from the reservoir at surface elevation  4870 ft  shown below at a rate
of  6.28 ft3/s.  The system is to be designed to shut down in the least possible time
without developing excessively high pressures or column separation.  Current plans are to
use a gate valve that can be programmed to close at two different rates.  The loss
characteristics of the valve are given in Table 10.2. 

The project design engineer has decided to try the following schedules:

           Stage 1         Stage 2
(a)  90% closed at 5 sec 100% closed at 15 sec
(b)  95% closed at 5 sec 100% closed at 15 sec
(c)  90% closed at 10 sec 100% closed at 20 sec
(d)  95% closed at 5 sec 100% closed at 20 sec
(e)  95% closed at 10 sec 100% closed at 20 sec

Your task is to identify the high and low pressures, their location, and the time they occur.

El. 4870'

El. 4820' -

El. 4600'

El. 4690'
Valve

- El. 4730'

El. 4754'
3000' - 12"

1500' - 12"
2000' - 12"

ƒ = 0.018 
a = 4000 ft/s

10.9  The pipeline below is constructed of  7-ga. (0.1793-in) welded steel with a working
stress of  13,500 lb/in2,  which corresponds to a working pressure of  200 lb/in2.  Water
flows from the reservoir at  4800 ft  through a  6000-ft pipeline  24 in  in diameter (23.65
in  inside diameter).  The discharge is controlled by a Pratt ball valve at the lower reservoir
whose loss characteristics are given in Appendix C.

The system is to be designed to shut down as quickly as possible without developing
pressures greater than the working pressure or causing column separation.  It is possible to
purchase a valve which can be programmed to close at two different uniform angular rates.
The project design engineer has decided to try the following five schedules:

           Stage 1         Stage 2
(a)  90% closed at 4 sec 100% closed at 15 sec
(b)  95% closed at 4 sec 100% closed at 15 sec
(c)  98% closed at 4 sec 100% closed at 15 sec
(d)  90% closed at 2 sec 100% closed at 20 sec
(e)  98% closed at 2 sec 100% closed at 20 sec

Your task is to identify the high and low pressures, their location, and the time they occur.

El. 4800'

El. 4760' -
2500' - 24"

1500' - 24"

El. 4550'

El. 4720'

Valve

2000' - 24"
- El. 4720'

El. 4770'



CHAPTER 11
_________________________________________________________________________

PUMPS IN PIPE SYSTEMS

The designers of liquid conveyance systems are frequently faced with a pump selection
problem.  While vendors of pumps and pumping appurtenances are generally quite helpful
in the selection process, it is better to be well informed on pumps and their operating char-
acteristics, particularly under transient conditions.  For this reason Chapter 2 presented
some fundamental elements of pump theory and operation; this chapter will address the
issue of transients, building on the knowledge of similarity relationships from Chapter 2.
We will restrict our coverage to centrifugal, turbine, and axial-flow pumps.  Positive
displacement pumps are not considered.

11.1 PUMP POWER FAILURE RUNDOWN

The sudden loss of energy to a pump can be caused by an unexpected power failure or
simply because an individual has switched off the power.  In either case the rotating pump
impeller begins to decelerate with the pressure dropping on the discharge side of the pump
and rising on the suction side (if it is an inline booster pump configuration).  The resultant
transient may quickly lead to column separation with ensuing hard-to-predict consequences,
including cavity collapse or exceedingly high pressures, perhaps caused by the closure of a
check valve.  Whatever the cause, it can be very important to be able to simulate this rather
common occurrence to determine whether dangerous pressures develop.

As the pump slows down after power failure, its head vs. discharge and torque vs.
discharge characteristics change.  It is customary to assume as the pump speed changes that
the pump characteristics at any speed can be found by using the similarity relations that are
presented in Chapter 2 for homologous pumps.  While the changes in pump torque are
important in the rundown process, we will first concentrate on how the pump head itself
varies with discharge.

The pump characteristics at various speeds can be displayed as shown in Fig. 11.1.  The
solid line labeled  N0  is the pump characteristic curve during steady-state conditions, while
the similarly-shaped dashed lines represent that characteristic curve at successively lower
speeds.  The position of each dashed characteristic line can be calculated from the steady-
state line by using the similarity rules from Chapter 2.  Noting that the diameter of the
slowing pump is a constant, we can incorporate it into the similarity constant to yield a
form of the similarity equations which applies directly to pump power failure rundown:

Q

N
=  constant (11.1)

hp

N2 =  constant (11.2)

T

N2 =  constant (11.3)
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Figure 11.1  Multi-characteristics for a given pump at various speeds.

The curves at successive speeds  Ni  can be created by selecting a range of values for  Q0  
and  hp

0
  at a set of points  C-3,  C-2,  etc. along the original characteristic curve and

calculating the corresponding values for each other speed with the following equations:

Qi = Q0
Ni
N0

(11.4)

hpi
= hp0

Ni
N0











2

(11.5)

In fact, by using the same  Q0   and  hp
0

,  say at point  C1,  and varying  N ,  we can

generate a large set of corresponding points, each on a different characteristic curve.  These
points all lie on a parabola passing through  C1  and the origin.  If the same procedure is
followed for points  C-3,  C-2,  etc. on the original curve, then a set of pump characteristic
lines can be drawn for a set of speeds, and in principle can be drawn for all speeds.  Figure
11.1 shows one set of parabolas drawn through the origin.

As the speed of the pump decreases, a path develops on the characteristic diagram of
Fig. 11.1 which traces the changes of pump head and discharge as the rundown progresses.
However, this trace does not follow a particular parabolic curve; instead the path is



determined by the pump and motor rotational inertia and the back pressure exerted by the
water in the pipe on the pump impeller.  Two typical examples are shown in Fig. 11.1:

Case (1) occurs when the static lift of the pipeline is high, and the line is relatively
short.  In this case the inertia of the water in the pipeline is relatively small, and gravity
helps to decelerate the flow.  As a consequence, the discharge through the pump drops to
zero rather quickly while a positive head across the pump still exists.  Then flow backward
through the pump occurs unless a check valve has been installed in the line.

Case (2) occurs when the pipeline is relatively long, and a large portion of the head that
has been generated by the pump is needed to overcome the friction loss in the line.  When
power fails in this case, the large inertia of the moving fluid prevents the flow from
decelerating rapidly.  The rotation rate of the pump also decreases more slowly, and the
head across the pump drops to zero before the discharge does.  At this point the flow will
either continue to flow forward through the pump, doing work on the pump and causing it
to "windmill," or else the flow goes around the pump in a bypass line.

There are actually four possible flow configurations through the pump:
(1)  Flow is forward through the pump, and the pump rotates forward.
(2)  Flow is in the reverse direction while the pump is still rotating forward (generally

of short duration).
(3)  Flow is in the reverse direction while the pump also rotates backwards.
(4)  Flow is in the forward direction while the pump rotates backwards (also of short

duration).
The actual occurrence of any of these situations depends on the inertia of the pump and
motor and on the existence of check valves, bypasses and other appurtenances.
Unfortunately, the data needed to simulate these conditions are usually only available from
manufacturers for the first situation.  Even in this situation, the data are not available for
Case (2) in Fig. 11.1 when there is a head loss through the pump.  If the pump is expected
to operate in any of the other three modes, then additional information must be sought
either through model tests of that pump or by a study of data from tests of similar pumps.

We will analyze a common pump power failure situation, assuming there is a check
valve in the pump discharge line.  If the pump is a booster pump, we will assume there is
a low-loss bypass line around the pump station.  This will permit us to complete an
analysis while using only information that is commonly available from pump
manufacturers.

11.1.1. SETTING UP THE EQUATIONS FOR BOOSTER PUMPS
Along each of the parabolic curves passing through  C-3,  C-2,  etc. in Fig.11.1, the

values of  Q/N  and  hp/N2  are constant.  Hence we can represent all of the pump

characteristic behavior in Fig. 11.1 by a single plot of  Q/N  vs.  hp/N2.  The same

reasoning applies to the torque description where a single plot of  Q/N  vs.  T/N2  will
suffice.  A typical example of each curve is shown in Fig. 11.2.  The curves can be
constructed by selecting  hp  and  Q  pairs from the manufacturer's curves, dividing by  N

and  N2,  respectively, and plotting the results.  To see how this works, let's look at an
example.

Consider a booster pump station in the interior of a line (see Fig. 11.3).  There is a
check valve on each pump discharge line, and there is a bypass line around the pump
station which also has a check valve in it.  All pumps are assumed to experience power
failure simultaneously.  The appropriate equations are the following:

Suction side  C+ VPs
= C1 − C2HPs

(11.6)
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Figure 11.2  Typical  hp/N2  and  T/N2  curves for a pump.

Discharge side  C- VPd
= C3 + C4HPd

(11.7)

Conservation of mass VPs
As = VPd

Ad (11.8)

Work-energy HPs
+ hp = HPd

(11.9)

Pump characteristic hp = f Q( ) or f1 VPd( ) or  f 2 VPs( ) (11.10)

Bypass

 P

 P

 PArea = As
Area = Add

Check valves

s

Figure 11.3  A typical parallel pump booster configuration.

This set of equations contains the unknown value of  N  plus five additional unknowns.  If
we presume that  N can be found before we begin the solution for the other five unknowns,
then we can proceed to seek a solution.

In the work-energy equation, Eq. 11.9, we find only the head increase across the pump,
as is given by the pump characteristic diagram.  If there are significant losses in the pump
discharge column, discharge head, check valve or isolation valve, then adjustments to  hp
must be made.  That is,  hp  must be reduced by the amount of the hydraulic losses for a
given discharge.  Consequently, we must redraw the pump characteristic diagram, corrected
for the head losses occurring for each discharge.  Because these losses are typically of the
form  KLV2/2g,  the loss coefficients for the individual local losses can be summed
appropriately for the full range of pump discharge and then applied to reduce the pump
head.  Since  hp  is the sum of the head increases across each stage of a multistage pump,
the local losses for a given discharge must be divided by the number of stages before
computing the head per stage and the pump characteristic diagram is redrawn.  This step is
necessary because the pump characteristic curve for only one stage is entered into the
computer program and is then internally multiplied by the number of stages.  One might
ask why a head loss term was not included in Eq. 11.9 so one could then proceed in a



straightforward manner.  The answer can be seen in Section 11.1.3.  In that section we
linearize the pump characteristic curve to avoid parabolic or higher-order interpolation tech-
niques.  To reintroduce a quadratic equation now would defeat this strategy.  In short, we
adjust the pump characteristic diagram for local losses in order to retain its subsequent
linear representation.

It is apparent that we need a representation for Eq. 11.10 that can be combined with the
other four equations.  In Chapter 9 we modeled the pump curve with a parabolic equation.
This approach was restrictive in that it worked well only for characteristic curves which
were already nearly parabolic in shape.  We will now follow a much more general approach
and represent the  Q/N  vs.  hp/N2  curve by a series of straight-line segments.  At any
point the curve is then a straight line valid over a limited range of  Q/N.  The details of
this process will follow after we find the current speed  N.

11.1.2. FINDING THE CHANGE IN SPEED
To this point we have assumed that the new speed is known at the time when the new

head and velocity values are to be computed.  The change in speed is found by calculating
the decelerating torque and using rotational dynamics to find  ∆N.  The rotating portions of
the pump — shaft, motor, and impeller — have a rotational moment of inertia  I.
Normally the motor is by far the largest contributor.  However, the rotation of the water-
filled impeller and the pump shaft must be included.  Values for these elements must be
obtained from the manufacturer or estimated by comparison with values for similar pumps
whose moments of inertia  I  are known.  In the United States pump manufacturers usually
give the value of  I  as  Wr2  in units of  lb-ft2.  This is the value the computer program
expects.  Should the value of  I  for a particular motor not be immediately available, then
the following formula (Thorley, 1991), adjusted to U.S. units, may be used as an estimate:

I = 1818
HP

N






1.48
(11.11)

Here  I  is in  lb-ft2,  HP  is in  horsepower, and  N  is in  rev/min or rpm.
Under steady-state conditions the driving torque of the motor is balanced by the resisting

torque exerted by the water on the impeller vanes.  When power fails, the driving torque
disappears and the resisting torque decelerates the pump.  This deceleration is described by

T = Iα = I
dω
dt

=
2π
60

I
dN

dt
(11.12)

where  N  is again the speed in rev/min, and  I  is the total rotational moment of inertia of
the rotating parts.

To find the change in speed which occurs over a time increment  ∆ t,  we now integrate
Eq. 11.12:

dN =
60

2π I∫ Tdt∫ (11.13)

Since the functional relation for  T  is not known, we choose to keep  ∆t  small and let  T
be constant over  ∆ t  at its known value at the previous instant in time.  This
approximation is a good one because torque normally does not change much over even the
full discharge range.  The new rotational speed can then be calculated as

N t + ∆t( ) = N t( ) −
60

2πI
T t( )∆t (11.14)



The first change in speed will be calculated from the steady-state values of  N0  and  T0.

Subsequent torque values are interpolated from the table of  Q/N  vs.  T/N2  using the just-
computed values of  Q.  We can now proceed with the solution of Eqs. 11.6 through 11.10
for the new head and velocity.

11.1.3. SOLVING THE EQUATIONS
The first step in solving the equations is to represent Eq. 11.10 as a linear function over

a finite range of  Q/N.  Figure 11.4 shows  hp/N2  vs.  Q/N  as a sequence of linear
segments.  The linear equation over the segment is

hp

N2 = Nst

hp / N2( )
A

− hp / N2( )
B

Q / N( )A − Q / N( )B


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


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Q
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(11.15)

in which the values of  hp/N2  and  Q/N  are for one stage of the pump, and  Nst  is the
number of pump stages.  To simplify the algebra, we rewrite Eq. 11.15 as

Q
N

hp
N2

Q
N

Q
N (   )(   )

A B

A

B

hp
N2

hp
N2

(   )
A

(   )
B

Figure 11.4  Piecewise linear representation of  hp/N2  vs.  Q/N.

hp

N2 = Nst C7
Q

N
+ C8







(11.16)

Now the simultaneous solution of the five equations for the pipeline velocity on the
discharge side of the pump station produces



VPd
=

C1
C2

+ Nst N2C8 +
C3
C4

1
C4

+
Ad

C2As
−

Nst NAdC7
Npu

(11.17)

in which  Npu  is the number of pumps in parallel.  If VPd
 > 0, Eqs. 11.6 through 11.10

can be used to find the remaining unknowns.  However, if hp < 0, then we must open the
bypass line by setting  hp = 0  and  H HP Ps d

= ;  then we must recompute the velocity

from the following two equations:

VPd
=

C1C4 + C2C3

C2 + C4
Ad
As

(11.18)

VPs
=

Ad
As

VPd
(11.19)

Now Eqs. 11.6 and 11.7 can be used to determine  HPs
  and  HPd

.

If the solution of Eq. 11.17 yields a negative velocity, we must set both  VPs
  and

VPd
  to zero and use Eqs. 11.6 and 11.7 to compute  HPs

  and  HPd
.  Finally, we must

compute  Q/N  and verify that we are indeed within the interval between  A  and  B  in Fig.
11.4.  If not, we must recompute  C7  and  C8  and repeat the solution process.

Example Problem 11.1
To examine the effect of booster pump power failure, we will place a four-pump station

in the interior of a 45,000-ft pipeline.  The  30-in  diameter pipeline is constructed of
welded steel with a friction factor of  0.013  and a wave speed of  3590 ft/s.  The line
extends between two reservoirs, and the booster station is  15,000 ft  downstream from the
first reservoir.

The pumps are three-stage Ingersoll-Dresser 15H277 turbine pumps with  11.83-inch
impellers having pump characteristics shown in Appendix B.  For each pump and motor
unit  Wr2  is approximately  475 lb-ft2.  To set up data tables for pump performance, we
select six data points along the Q-axis,  Q =  0,  1000,  2000,  3000,  4000,  and  4500
gal/min.  We then read the corresponding  hp  and  bhp  values for each  Q  and enter them
into the input data file.

The program determines the steady discharge, so no preliminary hydraulic compu-
tations are needed.  One need only select an accuracy standard for the iterative process.  In
this case an accuracy of  0.50 gal/min was chosen.

We have also elected to obtain additional output detail at two points.  The first is at the
suction side of the pump;  the second is at the discharge side.  This information is read by
the PGRAPH subroutine.

The input data file follows:

DEMONSTRATION OF PROGRAM NO. 4 - INPUT DATA FILE "EP111.DAT"
BOOSTER PUMP POWER FAILURE, FOUR INGERSOLL-DRESSER 15H277 3-STAGE PUMPS
&SPECS NPIPES=2,NPARTS=5,IOUT=10,HRESUP=1000.,HRESDN=1240.,
       ZEND=1100.,HATM=30.,QTRY=0.,QACC=0.50,TMAX=60.,
       PFILE=T,HVPRNT=T,PPLOT=T,GRAPH=T,RERUN=F/
1  30.  15000.  0.013  3590.  800.
2  30.  30000.  0.013  3590.  800.
&PUMPS NPUMPS=4,NSTAGE=3,IPUMP=1,RPM=1775.,WRSQ=475.,



       QN=0.,1000.,2000.,3000.,4000.,4500.,
       HNSQ=129.,127.5,121.,103.5,67.5,0.,
       TNSQ=50.,58.,78.,92.,97.,80./
&GRAF NSAVE=2,IOUTSA=1,PIPE=1,2,0,0,NODE=999,1,0,0/

The booster pump power failure program  PROG4  is used to analyze the problem.  
The source and executable programs are on the  CD.  The following plot of extreme
pressure values along the pipeline is one of the primary results to come from this analysis.
We observe that high heads occur on the suction side of the pump, as well as low heads on
the discharge side.  No column separation occurs in this case.
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1100'
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800'
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*                              *                              *

11.1.4. SETTING UP THE EQUATIONS FOR SOURCE PUMPS
We will follow the same general procedure as for booster pumps.  There is a check valve

on each pump discharge line.  There is also a low-friction, essentially frictionless, bypass
line with a check valve around the pump station to supply the pipeline if the pump head
should drop to zero during the transient.  We again assume all pumps fail simul-taneously.

Four equations are needed to model the pump behavior:

Discharge side  C- VPd
= C3 + C4HPd

(11.20)

Conservation of mass Npu Q = VPd
Ad (11.21)

Work-energy Hsump + hp = HPd
(11.22)

Pump characteristic
hp

N2 = Nst C7
Q

N
+ C8







(11.23)

Here  Npu  is the number of pumps in parallel, and  Hsump  is the pump sump elevation.

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


When  N  is found as in the previous case, we have only four unknowns here.  With
Eqs. 11.20-11.23 we can proceed with a solution.  In this case we find

HP =

Hsump +
Nst N

Npu
C7C3Ad + Nst N2C8

1 −
Nst N

Npu
C7C4Ad

(11.24)

If  HP  is less than  Hsump,  then the pump bypass is open, and we must then equate  HP
to  Hsump  and use Eq. 11.20 to compute the velocity.  If the velocity were found to be
negative, then we would set  VPd

= 0   and compute  HP  from Eq. 11.20.

The next example problem applies this analysis to a source pump configuration
subjected to a power failure.

Example Problem 11.2
Four pumps in parallel are used to pump approximately  12,000 gal/min  from a

reservoir at elevation  395 ft  to a storage reservoir at elevation  840 ft,  as shown below
(not to scale).  The pump discharge lines have check valves and lead into a manifold which
in turn supplies the  30-in  welded steel pipeline.

El. 395'

2000' - 30"
- El. 415'

ƒ = 0.013

2 mi. - 30"

 El. 700'

El. 840'

ƒ = 0.013

3 mi. - 30" ƒ = 0.019

- El. 810'

The pipeline extends  2000 ft  horizontally from the pump station at an elevation of
415 ft.  It then slopes upward for three miles to elevation  700 ft.  The remaining two
miles of pipe are reinforced concrete and slope gradually upward to enter the storage
reservoir at elevation  810 ft.  The friction factor and the wave speed for the steel pipe are
0.013  and  3590 ft/s,  respectively.  For the concrete pipe these values are  0.019  and
3490  ft/s.  The pumps are the same Ingersoll-Dresser 15H277 turbine pumps used in
Example Problem 11.1, except they now have five stages.  Refer to the previous Example
Problem for the pump characteristics.  The  11.83-in  impeller will be used.  The total
rotary  moment of inertia of each pump and motor unit is  475 lb-ft2.

Find the consequences of pump power failure.

This is a source pump configuration, so  PROG3  will be used to determine the effect of
pump power failure.  The input data file for this program is shown below.  This program
also uses the subroutine  PGRAPH  which makes it possible to generate additional tables
of output data, printer plots, and data files for external plot programs.



DEMONSTRATION OF PROGRAM NO. 3, INPUT DATA FILE "EP112.DAT"
SOURCE PUMP FAILURE, 4 INGERSOLL-DRESSER 15H277 5-STAGE PUMPS
&SPECS NPIPES=3,NPARTS=3,IOUT=5,HRES=840.,HSUMP=395.,
       ZEND=810.,HATM=33.,QACC=0.50,TMAX=10.,DTNEW=0.,
       PFILE=T,HVPRNT=T,PPLOT=T,GRAPH=T,RERUN=F/
1  30.   2000.  0.013  3590.  415.
2  30.  15840.  0.013  3590.  415.
3  30.  10560.  0.019  3490.  700.
&PUMPS NPUMPS=4,NSTAGE=5,RPM=1775.,WRSQ=475.,
       QN=0.,1000.,2000.,3000.,4000.,4500.,
       HNSQ=129.,127.5,121.,103.5,67.5,0.,
       TNSQ=50.,58.,78.,92.,97.,80./
&GRAF NSAVE=3,IOUTSA=1,PIPE=1,2,3,0,NODE=1,1,1,0/

The results show that column separation occurs about  5 sec  after power failure.  At that
time the program execution ends because this program is not prepared to analyze vapor
cavities.  A plot of the  EL-HGL  for times prior to column separation is presented.
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11.2 PUMP STARTUP

Pressure surges caused by pump startup can be difficult to predict, particularly if air is
initially in the system.  This air may be in the pump discharge column or located at high
spots along the pipeline.  Whatever the case, the air-exhaustion process must be simulated
in order to approximate the pressures which could occur during startup.

On the other hand, if the pump startup is associated with a recent power failure
shutdown, then the restart sequence is important in controlling the pressures.  Because the
power failure may have caused air to be drawn into the system, we once again must
confront the problem of modeling the air removal process from the pipeline.

To simulate this sequence of events,  PROG3  has been modified to examine source
pump power failure followed by a restart procedure.  And  PROG8  also can simulate the
column separation that may occur during the power failure phase of the sequence and the
subsequent air removal process that takes place during the startup phase.  Both column
separation and air exhaustion are simulated in the simplest manner.  The air and vapor
cavities are concentrated at the nodes;  the pressures at these nodes are set at atmospheric
and vapor pressure, respectively, so long as an air bubble or vapor cavity exists.  The
calculation of pressures that are caused by vapor cavity closure follows the procedure
detailed in Section 10.7.  Pressures resulting from the elimination of an air bubble through
an air valve are treated in the same way.  While this simulation procedure is not
sophisticated, there are enough uncertainties in the understanding of vapor cavity formation
and collapse, the location and movement of vapor cavities and air bubbles, and the extent
to which air can be removed from a pipe, that a more thorough analysis is unwarranted.

PROG8  allows air-vacuum valves to be located at pipe junctions along the pipeline
which can admit and exhaust air.  Vapor cavity formation and collapse are modeled.  A
bypass line with friction is provided around the pump station to supply water when the
pump head drops to zero.  The program calculates the steady-flow situation, simulates the
power failure rundown and then permits us to explore the behavior of a restart procedure to
bring pumps back on line with various ramp times.  To simulate power failure without
restart, the restart time is simply chosen to be greater than the total execution time for the
program.  To look at only pump startup, let the program simulate a power failure and then
delay the restart until the flow has stabilized.  Always keep in mind that the simulation of
vapor cavity behavior and the removal of air from pipelines is a very uncertain process, and
the results of such analyses should be viewed very conservatively.

We will now look further at the pipeline and pumping configuration of Example
Problem 11.1 to observe some effects of column separation and pump restart.

Example Problem 11.3
The description in Example Problem 11.2 still applies.  In addition, we will restart the
pumps at  20-sec intervals, beginning  60 sec after power failure.  We will ramp up each
pump from  300 rev/min  to the full speed of  1775 rev/min  in  10 sec.  We assume there
are air-vacuum valves at the two interior junctions.  The loss coefficient  KL  for the  24-
inch  bypass line is  2.5.

The input data file for this analysis follows:

DEMONSTRATION OF PROGRAM NO. 8, INPUT DATA FILE "EP113.DAT"
PUMP POWER FAILURE AND RESTART, SAME CONFIGURATION AS EP11.2
&SPECS NPIPES=3,NPARTS=3,HRES=840.,HSUMP=395.,ZEND=810.,
       HATM=33.,QACC=0.50,TMAX=180.,DTNEW=0.,DB=24.,KLB=2.5,
       PFILE=F,HVPRNT=T,PPLOT=F,GRAPH=T,RERUN=F/
1  30.   2000.  0.013  3590.  415.  0
2  30.  15840.  0.013  3590.  415.  1
3  30.  10560.  0.019  3490.  700.  1
&PUMPS NPUMPS=4,NSTAGE=5,RPM=1775.,RPMZ=1775.,WRSQ=475.,



NSTART=4,QN=0.,1000.,2000.,3000.,4000.,4500.,
       HNSQ=129.,127.5,121.,103.5,67.5,0.,
       TNSQ=50.,58.,78.,92.,97.,80./
&RESTART TSTART(1)=60.,TSTART(2)=80.,TSTART(3)=100.,
       TSTART(4)=120.,TRAMP(1)=10.,TRAMP(2)=10.,TRAMP(3)=10.,
       TRAMP(4)=10.,RPMSTRT(1)=300.,RPMSTRT(2)=300.,
       RPMSTRT(3)=300.,RPMSTRT(4)=300.,RPMEND(1)=1775.,
       RPMEND(2)=1775.,RPMEND(3)=1775.,RPMEND(4)=1775./
&OUTCTRL IOU=1000,    2,    1000,    2,    1000,    1000,
        TIOU= 0.,   60.,    60.5, 179.7,   180.,    400./
&GRAF NSAVE=4,IOUTSA=4,PIPE=1,2,3,3,NODE=1,1,1,7/



Example Problem 11.3
Pump power failure rundown and restart
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11.3 PROBLEMS

11.1   A seven-stage Ingersoll-Dresser 15H277 pump (see Appendix B) runs at  1775
rev/min  with  11.83-in  impellers.  Water is pumped between two reservoirs with a  500-
ft  lift.  The rotating parts have  Wr2 = 510 lb-ft2.  The wave speed is  3500 ft/s.

Investigate the possibility of column separation occurring after power failure to the
pump by applying  PROG3.
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- El. 1015'

0.016
3 mi. - 15"

- El. 1470'

El. 1500'
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15
"
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11.2  The pump of Problem 11.1 is used in the system shown below.  If  Wr2  has been
reduced to  427 lb-ft2,  determine if, when, and where column separation occurs after power
failure to the pump.  Use  PROG3  for your analysis.

El. 0' Check valve

- El. 15'

0.016

4 mi. - 15"
- El. 450'

El. 486'

2mi. - 15"

0.016
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11.3   A  24-in  pretensioned reinforced concrete pipe  (f = 0.0135)  extends  37,700 ft
between two reservoirs.  The wave speeds for the three separate pressure zones in the
pipeline are as follows:

First        2,600 ft: a  = 3550  ft/s
Middle  10,600 ft: a  = 3400  ft/s
Last       24,500 ft: a  = 3270  ft/s

The pump station is equipped with four three-stage pumps turning at  1760 rev/min.  For
each pump  Wr2 = 138 lb-ft2.  Data from the pump characteristic diagram are tabulated
atop the next page.



Q (gal/min) Head/stage (ft) BHP/stage (hp)
         0        213          97
    2500        162        130
    3000        156        140
    3250        151        142
    3500        145        145
    4000        130        150

Investigate the possibility of column separation following power failure to the pumps
by applying  PROG3.  If it does occur, find the time and location and plot the  EL-HGL  
at the time of column separation.
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11.4  A proposed project will employ five six-stage 15H277 Ingersoll-Dresser turbine
pumps (see Appendix B) to lift approximately  14,000 gal/min  of water from the
Columbia River gorge to a storage reservoir on a plateau above.  The  11.83-in  impeller
will be used, and the rotating parts have an estimated  Wr2  of  510 lb-ft2.

The pumps are connected by a manifold to one  36-in  line constructed of two materials.
The first  2000 ft  is welded steel, and the second  2000 ft  is asbestos cement.  The wave
speeds in the pipes are  3190 ft/s  and  2860 ft/s,  respectively.  Use  PROG3  to conduct a
power failure analysis to determine whether, when, and where column separation occurs.
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11.5  A project plans to use four five-stage Ingersoll-Dresser 15M185 turbine pumps (see
Appendix B) to pump water from the Snake River  6500 ft  to a storage reservoir.  The
approximate pipeline profile is shown below.  The four pumps have 11.83-in impellers and
are connected via a check-valve and manifold to a  24-in  pipeline.  For each pump and
motor unit it is estimated that  Wr2 = 200 lb-ft2.  The Snake River water level fluctuates
between  500  and  520 ft  over the pumping season.  The deck of the pumping station and
the pump manifold are at elevation  525 ft.  The portion of the pipeline from the pump



station to the top of the incline is welded steel having a wave speed of  3190 ft/s.  The
remainder of the line is asbestos cement pipe with a wave speed of  2860 ft/s.

Use  PROG3  to determine if, when, and where column separation occurs during pump
power failure.
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11.6  The pump station in the system below is equipped with three five-stage Ingersoll-
Dresser 14JKH  pumps operating in parallel (see Appendix B).  The pumps use the  10.5-
inch  impellers and run at  1175 rev/min.  Each impeller has  Wr2 = 2.6 lb-ft2;  the inertia
of the pump shaft can be neglected.  For the motor  Wr2  can be estimated with Thorley's
formula.
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Analyze the system for power failure using  PROG4, and determine the maximum and
minimum pressures, their location and time of occurrence.

11.7   The booster pump station in the next figure houses two single-stage Ingersoll-
Dresser 20KKH turbine pumps.  The pumps run at  1180 rev/min and have  15-in
impellers.  Assume the rotary inertia for the pump and motor unit is  225 lb-ft2.
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Investigate the consequences of power failure for the pipeline using  PROG4,  and find
the extreme pressures occurring and their locations and time of occurrence.

11.8  Use  PROG8  to estimate the consequences of column separation in Problem 11.1.
There are no air-vacuum valves in the system.

11.9  If an air-vacuum valve exists at the downstream end of the  2-mile  pipe in Problem
11.2, use  PROG8  to investigate the effects of power failure on the extreme pressures
occurring in the system.

11.10   Analysis of Problem 11.3 with  PROG3  revealed that column separation
occurred.  Use  PROG8  to estimate the effects of column separation on the maximum and
minimum pressures occurring in the pipeline.

11.11   Column separation was found to occur in Problem 11.4 as a result of power
failure.  Analyze again the system by using  PROG8  to estimate the effects of this event.
An air-vacuum valve is at the downstream end of the  1000-ft  pipe at elevation  720 ft.

11.12   We have established that column separation will occur in Problem 11.5 as a
consequence of power failure.  Using  PROG8,  estimate the extreme pressures which will
then occur.  An air-vacuum valve is at the downstream end of the  4000-ft  pipe.



CHAPTER 12
_________________________________________________________________________

NETWORK TRANSIENTS

12.1 INTRODUCTION

Both rigid column theory and elastic or water hammer analysis will be applied in this
chapter to the solution of unsteady flows in pipe networks.  Simplified solutions that
ignore both inertial and elastic effects in pipe networks were covered in Chapter 6 under the
name "extended time simulations."

What conditions require the full consideration of inertial effects, and what situations
will make the elastic properties of the liquid and pipe so important that a full water
hammer network analysis is necessary?  When is an extended time simulation sufficient?
There are no precise answers for these questions.  The next few paragraphs mention some
relevant factors in making such a decision, but in the end professional judgment and
personal experience are also factors.

An elastic analysis is required whenever the changes in velocity are sufficiently rapid to
cause substantial changes in the flow variables over time intervals that are less than several
times the value of  L/a  for the pipe(s) under investigation.  Examples are the rapid closure
of a valve, the filling of a pipeline with liquid that moves at high velocity and forces air
from the lines, an abrupt change in the operation of pumps, and in general any event that
is sufficiently rapid to prevent the fluid throughout the network from gradually
accommodating the change.  However, the occurrence of a rapid change in a single pipe
does not necessarily mean that an elastic analysis of the entire network is warranted.  When
demands are changing throughout a large distribution system, large pressure changes will
alter the system demands so the pressure wave is rapidly absorbed.  In this case the need for
an elastic analysis may be restricted to that pipe, or possibly to it and a few nearby pipes.

Rigid column theory can be applied to situations in which the demands on an elastic
pipe network change rather rapidly but not instantaneously, causing the inertial effects in
accelerating the liquid to have a significant effect on the pressure.  Examples are found
during the morning hours in a large city when additional pumps must accommodate
relatively rapid increases in demand, or whenever a major user may shut down rapidly.
These changes in demand are not so rapid that elastic effects become significant, yet the
effect of accelerating the fluid, owing to the long pipelines that exist between the supply
sources and the demand sites, can cause the pressures far downstream in a distribution
system to be significantly different than would be the case if only fluid friction were
considered.

If both inertial and elastic effects can be ignored, then a quasi-static or extended time
simulation would be valid for much of the operation of a water distribution system.

12.2 RIGID-COLUMN UNSTEADY FLOW IN NETWORKS

12.2.1. THE GOVERNING EQUATIONS
In the latter portion of Chapter 7 some unsteady flows in single pipes were studied.

That theory assumed the liquid to be incompressible and the pipes to be rigid, thus
ignoring the elastic properties of the liquid and the pipe.  Here this same rigid column
theory will be expanded to multiple-pipe systems.  Here we ignore the convective
acceleration term  V∂V/∂s  for reasons discussed in Section 8.5.2.  In the analysis of steady
flows in networks it is also common practice to ignore the difference between the hydraulic



grade line and the energy line by assuming they are coincident.  This simplification is
consistent with the deletion of the convective acceleration term, and it is standard practice
in the application of rigid column theory, so long as velocities are low.

Equation 8.59, the equation of motion,  can be written as

dV

dt
= − g

∂H

∂s
−

f

2D
V V (12.1)

Since  ∂H/∂s  is constant along a pipe, it can be expressed as  (Hj - Hi)/Lk.  The
subscripts indicate that pipe  k  has an upstream node  i  and a downstream node  j.
Substituting  one expression for the other in Eq. 12.1 gives

dVk

dt
= g

Hi − H j

Lk
−

f kVk Vk

2Dk
(12.2)

in which the subscript  k  has been added to the velocity  V ,  the diameter  D,  and the
friction factor  f,  to show the equation applies to pipe  k  in the system.  Usually it is
more convenient to use the discharge  Q = VA  as a dependent variable in place of  V;  then
Eq. 12.2 can be written as

dQk

dt
= gAk

Hi − H j

Lk
−

f kQk Qk

2Dk Ak
(12.3)

For unsteady flows Eq. 12.3 relates the time-varying discharge in pipe  k,  the frictional
loss, and the instantaneous heads at the end nodes of the pipe.  If  dQk/dt = 0  so the flow
is steady, we recover from Eq. 12.3 the Darcy-Weisbach equation itself.  Thus Eq. 12.3 is
the unsteady-flow analog of the Darcy-Weisbach equation, or an empirical equation such as
the Hazen-Williams formula, for the relation between the frictional head loss and the
discharge.

The junction continuity equations must also be satisfied for unsteady flows.  Therefore,
in addition to the equations that can be written by applying Eq. 12.3 to a network,  NJ  (or
NJ - 1  if all external flows are specified) junction continuity equations must be written,
one for each node, in the form

Qk∑ − QJi = 0 (12.4)

Here the summation includes all pipes that join at junction  i,  and  QJi  is the demand at
this junction.  In Eq. 12.4 the discharge is positive if it flows into junction  i  and
negative if it flows from the junction.

12.2.2. THREE-PIPE PROBLEM
We begin by describing how Eqs. 12.3 and 12.4 can be used to model the unsteady flow

in a small network.  For this example we select the three-pipe network in Fig. 12.1. 
Since all external flows are specified, there are  NJ - 1, or  2,  junction continuity
equations for this network.  These continuity equations are

F1 = Q1 − Q2 − QJ2 = 0

F2 = Q2 + Q3 − QJ3 = 0
(12.5)

These two equations require the negative demand  QJ1  at node 1  to equal the sum of the
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Figure 12.1  Three-pipe network.

positive demands  QJ2  at node  2  and  QJ3  at node 3.   In addition, the following three
ordinary differential equations apply, one for each pipe:

dQ1

dt
= gA1

H1 − H2

L1
−

f1Q1 Q1

2D1A1

dQ2

dt
= gA2

H2 − H3

L2
−

f 2Q2 Q2

2D2 A2

dQ3

dt
= gA3

H1 − H3

L3
−

f 3Q3 Q3

2D3A3

(12.6)

In this network we assume that the head  H1  is constant since the fluid is supplied from a
reservoir.  Therefore, if the demands  QJ2  and  QJ3  are specified for all time, then the five
variables  Q1,  Q2,  Q3,  H2,  and  H3  are the unknown variables in this network.

To determine five unknown variables, we must have five independent equations.  In this
problem Eqs. 12.5 and 12.6 satisfy this requirement.  But how can this system of
equations be solved when some of the equations are ordinary differential equations (ODEs)
rather than algebraic equations?  If a solution can be found, it must then be applied
repeatedly as time advances.  Thus such a solution is far more than a single steady-flow
solution.  Instead the solution process must be repeated over and over until the results are
known over a sufficiently long time period to satisfy our need for knowledge of the
behavior of this system.  To simulate the performance of a water main network over a
twenty-four-hour period, say at 10 second intervals, would require  8640  incremental
solutions.  Obviously this is a task for a fast computer if the network is very large.  But
usually such unsteady-flow solutions are only required for much shorter time intervals,
over which rapid changes occur.

With the correct approach, the Newton method will allow us to solve a set of algebraic
and ordinary differential equations simultaneously.  As a first step in this method, the
equations are each equated to zero, as shown:



F1 = Q1 − Q2 − QJ2 = 0

F2 = Q2 + Q3 − QJ3 = 0

F3 = Q1 − QODE1 = 0

F4 = Q2 − QODE2 = 0

F5 = Q3 − QODE3 = 0

(12.7)

In Eqs. 12.7 each of the variables is in general a function of time.  At time  t = 0  we
assume all variables are known.   These initial values are usually obtained by solving the
steady-state network problem.  The notation in the last three of Eqs. 12.7 has the
following meaning:  the  Q  with a subscript  1,  2,  or  3  is the discharge in each pipe.
Each  Q  with the  ODE  subscript is the discharge that is found from the solution of the
first, second or third ordinary differential equation at the designated time.  When these latter
discharges equal the respective pipe flows, then the last three equations are clearly satisfied.
However,  QODE1,  QODE2,  and  QODE3  are obtained by solving the corresponding
ODEs numerically over the latest time increment from the last known solution to the new
time instant.  Thus the last three equations are expressions or functions, just as algebraic
equations are expressions.  The only difference is that much more algebra is required to
evaluate each expression, since an ODE is solved for this purpose.  The Newton method is
a systematic and effective means of directing the solution process so convergence to the
correct solution is obtained in relatively few iterations.

Often we cannot compute formally for every function all of the partial derivatives that
are required in the process of solving the ODEs;  then the evaluation of the elements of the
Jacobian matrix is most conveniently done by using numerical approximations.  This
numerical evaluation can be accomplished in the same way as it was for algebraic
equations, namely by evaluating the equation twice and dividing the difference of these two
values by the increment of the unknown  ∆xj  for which the derivative is sought, or

∂Fi

∂x j
=

Fi x1, x2 ,... x j + ∆x j ,... xn( ) − Fi x1, x2 ,... x j,... xn( )
∆x j

(12.8)

To see the solution process in operation, we now solve the three-pipe network over  8
seconds in 2 second intervals.  At  t = 0  the flows are steady, and for simplicity let (1) the
friction factors  f  for the three pipes retain their steady-state values, and (2) the demand at
node  2  be constant in time, so only  QJ3  changes with time.  The head  H1 = 100 ft at
node  1  is also constant.  The values in the following tables define the problem further:

Values at time = 0:

P i p e   D
 in.

    L
   ft.

   e
  in.

 Node  QJ,
f t 3 / s

   1     8   2000 0.005       1 -   3.0
   2     8   2400 0.005       2     1.5
   3     8   3000 0.005       3     1.5

Variation of  QJ3  with time:

Time, sec   0   2   4   6   8
QJ3, ft3/s 1.5 2.0 2.5 3.0 3.5

First the network solution to the steady problem is obtained:



Pipe      Q
   ft3/s

    hL

     ft
     f  Node  HGL

      ft

 1  1.652  20.10 0.0193     1 100.00
 2  0.152    0.29 0.0270     2   79.90
 3  1.348  28.16 0.0196     3   79.61

The program  THREPIP.FOR  for the solution of this problem can be found on the  CD;
the reader is encouraged to obtain a listing before reading further.  The solution for this
unsteady problem is summarized in Table 12.1:

Table 12.1  Unsteady Flow Solution

S t e p Time   QJ3   Q1   Q2   Q3   H2   H3

   sec  ft3/s  ft3/s  ft3/s  ft3/s      ft      ft

   0    0.0 1.500 1.652 0.152 1.348  79.90  79.61
   1    2.0 2.000 1.860 0.360 1.640  58.63  35.60
   2    4.0 2.500 2.076 0.576 1.924  51.98  26.09
   3    6.0 3.000 2.299 0.799 2.201  44.57  14.80
   4    8.0 3.500 2.527 1.027 2.473  36.49  1.72

Problem 12.1 (end of chapter) seeks the solution of four analogous steady-flow
problems that can be used to study the differences between steady and unsteady network-
flow behavior.  That comparison will show that inertial effects lower the head at node  3
in much the same way as do steady-state frictional losses.  For networks with rapidly-
changing nodal demands we conclude that inertial effects must be included in an analysis.

Some study of the listing of  THREPIP.FOR  to understand the program structure can
be valuable.  This program calls two standard programs,  DVERK  from  IMSL  (see
Appendix A) to obtain the solution to the ODEs, and  SOLVEQ  to solve the linear
equation system that is the result of implementing the Newton method.  The main
program first sets up the problem by obtaining input data from the user, and then it
implements the Newton method by defining the Jacobian matrix and the equation vector for
each iteration.  Then it subtracts the latest linear solution from the previous vector of
unknowns to improve the solution.  A solution is sought for each time step within the  DO
60  loop, which prompts the user to supply new values for  QJ3.  The main program calls
subroutine  DEFFUN  to evaluate the five functions in Eqs. 12.7;  the first two functions
are the continuity equations, and the other three functions are obtained by calling  DVERK.
The actual derivatives are computed in subroutine  SLOPE,  which  DVERK  calls.  After
DVERK  solves the three ODEs over the latest time increment, subroutine  DEFFUN
defines functions  F(3),  F(4),  and  F(5).

The program assumes constant friction factors.  This assumption is questionable in the
example because the small discharge in pipe  2  caused the friction factor  f2 = 0.027  to be
larger than the others.  Some program changes would allow the friction factors to be
computed from the Colebrook-White Equation.  Instead of assigning these factors as input
data, the Colebrook-White equation could be solved in subroutine  SLOPE  to provide a
friction factor for each initial discharge.

In the example only the demand at node  3  was a function of time primarily because the
effects of inertia on the nodal heads could then be more easily understood.  Changes in
input data would allow both  QJ2  and  QJ3  to vary with time.  The heads  H2  and  H3
might alternatively have been specified as functions of time with the demands  QJ2  and
QJ3  being considered as unknown variables, along with  Q1,  Q2,  and  Q3.  In this case
the set of five governing equations would be unchanged, but the computer program to
solve the problem must then to be modified to indicate correctly which variables are known
and which are unknown.
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When a steady network problem is solved by using the  Q-equations or the ∆Q-
equations, the nodal heads were then computed later as secondary dependent variables, as
discussed in earlier chapters.  This sequential process no longer is successful for unsteady
network analyses, for the discharges and heads are now coupled.  The computations are
more extensive because ODEs have replaced algebraic equations, and discharges and heads
are wanted at numerous time increments.

12.3 A GENERAL METHOD FOR RIGID-COLUMN
UNSTEADY FLOW IN PIPE NETWORKS

12.3.1. THE METHOD
The solution methodology that was applied in the unsteady-flow analysis of the three-

pipe network will now be described in general terms so it can be used to analyze any
network having  NP  pipes and  NJ  nodes. We assume that the network has at least two
supply sources.  For such networks the number of independent simultaneous equations
consists of  NJ  junction continuity equations and  NP  ODEs that govern the rigid-column
unsteady flow in the pipes.  These equations are

NJ  junction continuity equations Qk∑ − QJi = 0 (12.9)

NP  ODEs
dQk

dt
= gAk

Hi − H j

Lk
−

f kQk Qk

2Dk Ak
(12.10)

in which one head is the water surface elevation of a reservoir if this pipe connects the
reservoir to the network.  This equation system will allow  NP + NJ  unknowns to be
determined.  For the analysis problem these unknowns are  NP  discharges in  NP  pipes
and the heads at  NJ  nodes.  This set of unknowns assumes that the time-dependent nodal
demands are specified.  But one might alternatively specify heads as functions of time at
the nodes, and then the demands at the nodes would replace the heads as the unknowns.  In
fact it is possible to mix the specification of demands and heads as functions of time.  For  
any node where  QJ  is specified as a function of time, the head must be unknown at that
node, and at any node where the head is specified as a function of time, the demand  QJ
there must be an unknown.

The continuity equations are linear and are identical to those that would be written for
any steady-state analysis.  The equations of motion for the fluid in the pipes, i.e. the
ODEs,  must be appropriately solved over the time increment for which new information
is wanted, and these solutions must also relate the discharges and heads to each other at the
nodes of the network.  To solve this system of algebraic and ordinary differential equations,
any iterative method could in principle be used, but we prefer to use Newton's method.
When applying the Newton method to the ODEs, functions are created that are simply the
difference between the current discharge value in the pipe and the value that is found by
solving the ODE for this pipe over the present time increment.  In short, we create
functions of the form

Fi = Qk − QODE = 0 (12.11)

This set of equations must be solved for each new time increment.
Thus the process of obtaining an unsteady solution to a problem in which demands or

heads are specified functions of time consists of seven tasks:



1.  The time span, over which the unsteady solution is to be obtained, is divided into
NT  time increments or steps.

2.  The discharges in all pipes and the heads at all nodes are assigned initial values that
are chosen from a steady state solution that has the same demands, etc. as the
unsteady solution has at time zero.  (In place of a steady state solution, this
initialization may be obtained from the last time-step solution from a prior
unsteady-flow solution.)

3.  All demands over each time increment must be specified.
4.  Over each new time increment define and evaluate the functions (identify the

equations to be solved, and substitute the current value of each variable into them if
they are algebraic, or solve the ODE using the current values of all variables) and  
the Jacobian matrix of derivatives of these functions.

5.  Solve the resulting linear equation system.  The solution of this equation system is
then subtracted from the set of unknown values, according to the Newton method.

6.  Steps  4  and  5  are repeated iteratively, until the specified convergence criterion has
been satisfied.

7.  Write the solution for the discharges and the nodal heads for this time increment, and
then repeat steps  3  through  7  until the unsteady solution spans the entire time
period.

12.3.2. AN EXAMPLE
Figure 12.2 depicts a network with  19  pipes and  12  nodes.  The nodal demands sum

to  10.3 ft3/s,  and this discharge must come from the two reservoirs.  The steady state
solution to this network is listed in Tables 12.2.  As in the tables, all pipe diameters are in
inches and lengths in feet.  The largest head loss,  24.3 ft,  occurs in pipe  1  that supplies
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the network from a reservoir, and the third largest head loss,  21.7 ft,  occurs in the other
reservoir supply line, pipe  5.  The steady problem was solved by using seven  ∆Q-equa-
tions around loops.  Six of these loops are real loops, and one is a pseudo loop that
connects the two reservoirs through a sequence of connected pipes.

Tables  12.2  Steady-flow solution,  19-pipe network.

PIPE DATA

PIPE
 NO.

  N O D E S
FROM    TO

    L  DIA.    e
x 1 0 3

   Q VEL
.

HEAD
LOSS

HLOS
S
/ 1 0 0 0

       ft.     in     in   ft3/s  ft/s      ft.
   1      0      1    2000.   12.0    5.0   5.30 6.75 24.26  12.13
   2      1      2    2000.   10.0    5.0   2.17 3.98 10.96    5.48
   3      1      3    2500.   10.0    5.0   0.41 0.74   0.60    0.24
   4      4      3    2500.   10.0    5.0   2.13 3.90 13.19    5.27
   5      0      4    2000.   12.0    5.0   5.00 6.37 21.67  10.84
   6      2      5    3800.   10.0    5.0   1.42 2.61   9.29    2.44
   7      1      6    3500.   10.0    5.0   1.97 3.62 15.95    4.56
   8      3      7    3200.   10.0    5.0   1.83 3.36 12.70    3.97
   9      4      8    4000.   10.0    5.0   2.22 4.07 22.89    5.72
 10      6      5    3500.     8.0    5.0   0.55 1.56   4.30    1.23
 11      7      6    2500.     8.0    5.0   0.50 1.44   2.65    1.06
 12      8      7    3800.     8.0    5.0   0.43 1.23   3.00    0.79
 13      5      9    2500.     8.0    5.0   0.87 2.48   7.34    2.94
 14      6    10    3000.     8.0    5.0   0.93 2.66 10.06    3.35
 15      7    11    3500.     8.0    5.0   0.91 2.61 11.29    3.23
 16      8    12    3200.     8.0    5.0   1.04 2.99 13.32    4.16
 17    10      9    3200.     8.0    5.0   0.33 0.95   1.59    0.50
 18    11    10    2000.     8.0    5.0   0.40 1.16   1.41    0.70
 19    12    11    3500.     8.0    5.0   0.24 0.69   0.97    0.28

AVE. VEL. = 2.80  ft/s, AVE. HL/1000 = 3.625, MAX. VEL. = 6.75  ft/s, MIN. VEL. = 0.69  ft/s

NODE DATA

NODE    D E M A N D ELEV. HEAD PRESSURE HGL ELEV.
   ft3/s gal/min     ft.    ft.     lb/in2        ft.

    1     0.75    336.6    0.0 175.74     76.15    175.74
    2     0.75    336.6    0.0 164.78     71.40    164.78
    3     0.70    314.2    0.0 175.14     75.89    175.14
    4     0.65    291.7    0.0 188.33     81.61    188.33
    5     1.10    493.7    0.0 155.49     67.38    155.49
    6     1.00    448.8    0.0 159.79     69.24    159.79
    7     0.85    381.5    0.0 162.44     70.39    162.44
    8     0.75    336.6    0.0 165.44     71.69    165.44
    9     1.20    538.6    0.0 148.15     64.20    148.15
  10     1.00    448.8    0.0 149.74     64.89    149.74
  11     0.75    336.6    0.0 151.15     65.50    151.15
  12     0.80    359.1    0.0 152.11     65.92    152.11

AVE. HEAD   =  162.4 ft.,      AVE. HGL     =  162.4 ft.,
MAX. HEAD  =  188.3 ft.,      MIN. HEAD  =  148.2 ft.

The number of simultaneous equations to model this unsteady flow problem is  31,
based on rigid column theory.  Twelve of these are algebraic junction continuity equations,



and the other  19  are ODEs that define the relation between the rates at which the
discharges change and  the slopes of the HGL in the pipes.

We will seek the solution of the unsteady problem in which all demands but one remain
constant;  at node  9  the demand gradually increases from  1.2 ft3/s  to  2.5 ft3/s  over  20
seconds, as outlined in the table:

Time,  sec   0    5   10  15   20
Demand at node 9,  ft3/s 1.20 1.50 1.75 2.00 2.50

This increase in demand at node  9  of  1.3 ft3/s  over  20  seconds is approximately a
doubling of the original demand and is typical of demand increases that might be expected
in a network that has an average demand of  10.3 ft3/s.  An increased demand of  1.3 ft3/s
in 20 seconds could occur when a single major water user begins operation at the
beginning of the work day.  Thus this problem, while having relatively few pipes, can
provide a basis for an evaluation of the importance of inertial effects during periods when
one or more demands vary rapidly.  The input data for the solution of the problem can be
found in file  EPB12F_2.IN  on the CD.

Results for the unsteady-flow solution are tabulated in  Tables  12.3a-d  after each of
four  5-sec  time increments.  Tables 12.3a-b list the discharge in each pipe after each of
the  5-sec  intervals.  In these tables the results from this solution are also compared with
results from four steady-state solutions;  in each steady solution the demand at node  9
matches the unsteady-flow demand at this node at the end of the five-second interval.  The
first tables compare the discharges in the pipes, and Tables 12.3c-d  compare the heads at
the nodes.  We find the steady and unsteady discharges differ only by small amounts.

Table  12.3a  Discharge Comparison, ft3 / s .

              QJ9 = 1.50 ft3/s                QJ9 = 1.75 ft3/s
Pipe                 Time = 5 sec                 Time = 10 sec

Unsteady Steady Difference Unsteady Steady Difference

    1     5.49   5.48       0.01     5.65   5.63       0.02
    2     2.28   2.26       0.02     2.36   2.34       0.02
    3     0.41   0.42    -  0.01     0.41   0.42    -  0.01
    4     2.18   2.18       0.00     2.23   2.23       0.00
    5     5.11   5.12    -  0.01     5.20   5.22    -  0.02
    6     1.53   1.51       0.02     1.61   1.59       0.02
    7     2.06   2.05       0.01     2.13   2.12       0.01
    8     1.89   1.90    -  0.01     1.94   1.95    -  0.01
    9     2.27   2.29    -  0.02     2.32   2.34    -  0.02
  10     0.61   0.59       0.02     0.65   0.64       0.01
  11     0.54   0.54       0.00     0.57   0.57       0.00
  12     0.45   0.45       0.00     0.47   0.47       0.00
  13     1.03   1.01       0.02     1.16   1.13       0.03
  14     0.99   1.00    -  0.01     1.05   1.05       0.00
  15     0.95   0.96    -  0.01     0.99   1.00    -  0.01
  16     1.07   1.09    -  0.02     1.10   1.12    -  0.02
  17     0.47   0.49    -  0.02     0.59   0.62    -  0.03
  18     0.47   0.50    -  0.03     0.54   0.57    -  0.03
  19     0.27   0.29    -  0.02     0.30   0.32    -  0.02

           Absolute Averages                              0.013                                                         0.015
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Table  12.3b  Discharge Comparison, ft3 / s .

              QJ9 = 2.00 ft3/s               QJ9 = 2.50 ft3/s
Pipe                Time = 15 sec                Time = 20 sec

Unsteady Steady Difference Unsteady Steady Difference

    1     5.80   5.78       0.02     6.12   6.09       0.03
    2     2.44   2.42       0.02     2.61   2.57       0.04
    3     0.41   0.43    -  0.02     0.42   0.44    -  0.02
    4     2.28   2.28       0.00     2.37   2.37       0.00
    5     5.30   5.32    -  0.03     5.48   5.51    -  0.03
    6     1.69   1.67       0.02     1.86   1.82       0.04
    7     2.20   2.19       0.01     2.34   2.32       0.02
    8     1.99   2.01    -  0.02     2.09   2.11    -  0.02
    9     2.37   2.39    -  0.02     2.46   2.49    -  0.03
  10     0.69   0.68       0.01     0.79   0.77       0.02
  11     0.60   0.60       0.00     0.66   0.67    -  0.01
  12     0.48   0.48       0.00     0.52   0.52       0.00
  13     1.28   1.25       0.03     1.54   1.50       0.04
  14     1.10   1.11    -  0.01     1.21   1.22    -  0.01
  15     1.02   1.04       0.02     1.10   1.11    -  0.01
  16     1.14   1.16    -  0.02     1.20   1.22    -  0.02
  17     0.71   0.75    -  0.04     0.96   1.00    -  0.04
  18     0.61   0.64    -  0.03     0.74   0.78    -  0.04
  19     0.34   0.36    -  0.02     0.40   0.42    -  0.02

          Absolute Averages                               0.019                                                         0.024

Table  12.3c  Head Comparison, ft.

              QJ9 = 1.50 ft3/s                QJ9 = 1.75 ft3/s
Node                 Time = 5 sec                 Time = 10 sec

Unsteady  Steady Difference Unsteady  Steady Difference

    1   171.70 174.10   -    2.40   170.71 172.69   -    1.98
    2   157.76 162.25   -    4.49   156.36 160.06   -    3.70
    3   171.16 173.47   -    2.31   170.04 172.05   -    2.01
    4   186.18 187.32   -    1.14   185.51 186.46   -    0.95
    5   143.17 151.82   -    8.65   141.53 148.60   -    7.07
    6   151.41 156.88   -    5.47   149.95 154.37   -    4.42
    7   155.91 159.89   -    3.98   154.44 157.73   -    3.29
    8   160.35 163.15   -    2.80   158.94 161.22   -    2.28
    9   127.13 142.09   -  14.96   124.26 136.55   -  12.29
  10   137.25 145.37   -    8.12   134.95 141.61   -    6.66
  11   141.56 147.43   -    5.87   139.48 144.29   -    4.81
  12   144.74 148.75   -    4.01   142.71 145.91   -    3.20

        Averages                                              -    5.35                                                      -    4.39

The largest difference in discharges occurs at  20 sec  when the average absolute difference
in discharges is  0.024 ft3/s,  with individual differences no larger than  0.04 ft3/s.  In
Tables 12.3c-d where head solutions are compared, the difference should probably be
examined in comparison with the frictional losses.  From the steady solutions for this
network we find the head losses in pipes  13  and  17  that supply node  9  are  7.34  and
1.59 ft,  respectively.  The largest difference in heads between the unsteady and steady
solutions is  23.47 ft,  which is approximately five times the average frictional head loss
in the pipes that supply node  9.  It is therefore obvious that an extended time simulation
would be quite inadequate in determining the transient pressure distribution, especially near
the location (node 9) of a rapid change in demand over a short time period (20 sec).



Table  12.3d  Head Comparison, ft.

              QJ9 = 2.00 ft3/s               QJ9 = 2.50 ft3/s
Node                Time = 15 sec                Time = 20 sec

Unsteady  Steady Difference Unsteady  Steady Difference

    1   169.28 171.25   -    1.97   164.38 168.25   -    3.87
    2   154.12 157.80   -    3.68   145.85 153.06   -    7.21
    3   168.58 170.59   -    2.01   163.62 167.57   -    3.95
    4   184.64 185.59   -    0.95   181.91 183.79   -    1.88
    5   138.24 145.25   -    7.01   124.37 138.14   -  13.77
    6   147.39 151.80   -    4.41   137.76 146.44   -    8.68
    7   152.24 155.52   -    3.28   144.46 150.96   -    6.50
    8   157.00 159.26   -    2.26   150.69 155.24   -    4.55
    9   118.43 130.57   -  12.14     93.84 117.31   -  23.47
  10   131.09 137.75   -    6.66   116.50 129.65   -  13.14
  11   136.28 141.09   -    4.81   124.90 134.51   -    9.61
  12   139.88 143.04   -    3.16   130.71 137.19   -    6.48

         Averages                                             -    4.36                                                      -    8.59

12.4 SEVERAL PUMPS SUPPLYING A PIPE LINE

A common network problem concerns several pumps that deliver discharges to a single
pipeline.  As an example, Fig. 12.3 shows two pumps.  In general the number of pipes
containing pumps is  NPUMPS,  and the number of pipes is  NP = NPUMPS + 1  in the
system.  Often the supply source water surface elevations are identical for all pumps, but
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P2

WS1
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Figure 12.3  Multiple Pumps.

for generality each supply water surface elevation is denoted by  WSi,  i = 1, 2 . . . .
NPUMPS,  and each pipe containing a pump is also indexed by  i.  There will always be
two nodes in such systems, node  1  where the pipes containing the pumps join with the
downstream pipe, and node  2  at the other end of this pipe.  The downstream pipe will be
numbered  NP;  at its downstream end there will be a valve to control the discharge, or in
its place there may be some other type of boundary condition.  To allow several
possibilities, we assume at node  2  that either the discharge or the head is specified as a
function of time.

The equations to model the network behavior are therefore (1) one junction continuity
equation at node  1  that indicates that the sum of the discharges in the pipes containing the
pumps must equal the discharge in pipe  NP,  and (2) an ordinary differential equation for
each of  NP  pipes.  Thus the number of unknowns that can be found is  NE = NP + 1.  In
the example we have  4  equations and  4  unknowns.  If the discharge in pipe  3  is
specified, then these unknowns will be  Q1,  Q2,  H1,  and  H2.  But if  H2  is specified,
then the unknowns are  Q1, Q2, Q3,  and  H1.  The equations can be written as

F1 = Qi∑ − QNP = 0 i = 1,..., NPUMPS

Fi+1 = Qi − QODE i = 0 i = 1,..., NP
(12.12)



in which  QODEi  is obtained by solving the unsteady ODE with the discharge as the
dependent variable.  For the pipes containing the pumps this ODE will be

dQi

dt
= gAi

WSi + hpi − H1

Li
−

f i Li /Di + Ke( )Qi Qi

2Di Ai
(12.13)

in which the pump head can be given by the usual second-order polynomial equation.  If
this representation is used for  hp,  then

hpi = (AiQi + Bi )Qi + Ci (12.14)

For the last pipe, numbered  NP,  the ODE is

dQNP

dt
= gANP

H1 − H2

LNP
−

f NPLNP /DNP( )QNP QNP

2DNP ANP
(12.15)

In our  2-pump,  3-pipe system the equation system becomes

F1 = Q1 + Q2 − Q3 = 0 (12.16a)

F2 = Q1 −QODE 1 = 0 ,
dQ1

dt
= gA1

WS1 + hp1 − H1

L1
−

f1L1 /D1 + Ke( )Q1 Q1

2D1A1
(12.16b)

F3 = Q2 −QODE 2 = 0 ,
dQ2

dt
= gA2

WS2 + hp2 − H1

L2
−

f 2L2 /D2 + Ke( )Q2 Q2

2D2 A2
(12.16c)

F4 = Q3 −QODE 3 = 0 ,
dQ3

dt
= gA3

H1 − H2

L3
−

f 3L3 /D3( )Q3 Q3

2D3A3
(12.16d)

The program  PUMPPAR  on the CD solves problems of this type.  As the listing shows,
this program consists of the main program, a subroutine  FUNCT  which inserts equation
values into array  F  when it is called, and a subroutine  DQT  that evaluates the derivative
dQ/dt  when it is called by the  ODE  solver.  The program permits either the discharge or
the head at the downstream node to be given as a function of time.

Example Problem 12.1
The flows from two pumps (with operating characteristics defined by tabular data which

follow) are combined into a single pipe line, as diagrammed in Fig. 12.3.  The supply
water surface elevations are  WS1 = 80 m  and  WS2 = 70 m;  assume also  ν  = 1.31x10-

6 m2/s  and  e = 0.5 mm.  Additional pipe data are listed in the following table:

Pipe     1     2     3
L,  m   500   400  2000
D,  mm   400   400    500

Determine the unsteady discharges in the pipes if (a) the discharge in pipe  3  is given by
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Time
 sec

 0.5 1.0 2.0 3.0 4.0 5.0 7.5 10 15 20 25 30 35

  Q3

m3/s
0.6
5

0.6
0

0.5
5

0.5
0

0.4
5

0.4
0

0.3
5

0.3
0

0.2
5

0.2
0

0.1
5

0.1
0

0.0
5

and (b) if the head at node  2  is given by

Time
s e c

0.5 1.0 2.0 3.0 4.0 5.0 7.5 10 15 20 25 30 35

H2

 m
70 80 90 100 100 100 90 80 70 60 60 60 60

Assume prior to time zero that the head at the downstream end of pipe  3  is  60 ft.

  Pump  1                       Pump  2
Q ,
m3/s

hp,  m Q ,
m3/s

hp,  m

  0.25    25   0.25    30
  0.35    23   0.35    28
  0.45    20   0.45    25

We must first solve the steady-flow problem to provide the initial condition for the
unsteady problem.  This solution can be obtained from  NETWK,  which is  Q1 = 0.334

m3/s,  Q2 = 0.357 m3/s,  H1 = 91.5 m, and  H2 = 60 m.  Fitting second-order

polynomials to the pump data yields  hp1 = 25.625 + 10Q1 - 50Q1
2,  and  hp2 = 30.625

+ 10Q2 - 50Q2
2.  The input data to solve part (a) of this problem using program

PUMPPAR  follows:

3 2 0.000001 0.0001 0.0005 9.81 1.31E-6
0.4 500
0.4 400
0.5 2000
- 50 10 25.625 80 0.334
- 50 10 30.625 70 0.357
91.5 60
1    (to indicate  Q3  will be specified)
13 .5 .65 1 .6 2 .55 3 .5 4 .45 5 .4 7.5 .35 10 .3 15 .25 20 .2 25 .15 30 .1 35 .05

The solution for part (a) can be found in file  EPB12_1.OU1  on the CD;  we encourage
the reader to run the program and compare results with this file.

For part (b) the input file is unchanged, except for the last two lines:  a  2  will be
given to indicate that  H2  is specified.  Then the last two lines of the input file are

2
13 .5 70 1 80 2 90 3 100 4 100 5 100 7.5 90 10 80 15 70 20 60 25 60 30 60 35 60

The solution for part (b) can be found in file  EPB12_1.OU2  on the CD.

*                              *                              *

12.5 AIR CHAMBERS, SURGE TANKS AND STANDPIPES

Air chambers, surge tanks and simple standpipes are all devices, basically tanks of
various kinds, that are used in piping systems to protect the lines from extreme pressure
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surges which may be caused when a velocity quickly changes.  When any appurtenances are
a part of a network, the equations to describe them must be added to the set of continuity
equations and unsteady equations of motion, and this enlarged equation system must then
be solved.  Two example problems which follow will illustrate the inclusion of these
devices into the equation systems for the networks.

If the upper portion of the tank contains air under pressure, the tank is called an air
chamber;  if the top is open to the atmosphere, it is called a surge tank.  As the water
surface level rises in the closed air chamber, the air above the water is compressed.
Consequently the head at node  i  that is connected to the air chamber has two components,
the elevation of the water surface plus an additional water pressure head to represent the air
pressure in excess of atmospheric pressure, or  Hi = WSi + ∆pair/γw;  here  ∆pair  is the
air pressure above atmospheric pressure.  (See also Section 13.2.6)  In a tank of constant
volume from which no air escapes, the air mass in the chamber is constant.  This air
undergoes a process that is likely to be somewhere between isothermal (constant
temperature) and adiabatic (no energy transfer), and if a very small time interval is involved
in the compression process, then the process will be essentially adiabatic so  p/ρk =
constant.  Since the pressure in this equation is the absolute pressure, we compute  ∆pair

as  (∆pair + patm)/ρk = po/ρo
k = Constant (assuming the initial conditions  po  and  ρo

can be used to compute the constant for the adiabatic process), or

∆pair = po
ρ
ρo











k

− patm (12.17)

Since the density  ρ  is the ratio of mass  M   to volume  V   we have  ρ = M / V( )air  

with the air volume_

Vair = Vair( )o − Q dt∫ (12.18)

The air volume at any instant is the original air volume minus the increase in water
volume  ∫Qdt  as the water flows into the air chamber.  The magnitude of the initial air
mass is found by first determining the pressure of the air;  then its density is computed
from the perfect gas law and other initial conditions as  ρo = po/(RTo),  followed by
multiplying this density by the initial air volume in the tank, or

M = ρo Vair( )o = ρo Vtotal − Vwater( )o (12.19)

Many types of surge tanks exist, and they vary considerably in complexity.  Some of
the simplest tanks are basically a vertical standpipe, and these pipes may or may not
contain an orifice constriction at the base where the device is connected to the network.  
We turn to two examples to see how air chambers and tanks are incorporated into a
network model.

Example Problem 12.2
This network has an air chamber at the midpoint of pipe  7.  To accommodate the air

chamber, the original pipe  7  is divided into pipes  7  and  8,  and the pipe from the
connection point to the air chamber is called pipe  9.  The tank volume is 100 ft3  with a
cross-sectional area of  10 ft2,  and initially half of the tank is filled with water so the
initial water level  xo = 5 ft.  The pipe connecting the surge tank to the network is  100 ft
long and has a  6-in  diameter.  Data which describe the pump characteristic curve are
presented in the table below the figure.  At node  5  is a butterfly valve with discharge
coefficient  cD = coexp(cD),  in which  D  is the degree of opening  (0o  is completely
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closed and  90o  is fully open).  Valve tests indicate that the ratio of  cD  between  D = 80o

and  D = 10o  is  53.3.  From an initial valve setting of  40o  at time  t = 0,  the valve is
closed linearly at  7o/sec  for  5 sec  and thereafter remains at the  5o  position.  The
demand (discharge) at node  3  is a linear function of the pressure head at this node;  thus
QJ3 = 0  when  H3 = 0,  and  QJ3 = 1.5 ft3/s  when  H3  is at its steady state value.  We
seek to simulate the unsteady flow in the network for  10 sec,  according to rigid-column
theory, to find the discharge in each pipe and the head at each node as a function of time.

The solution process begins with the determination of the initial flow state;  NETWK
can be used to generate these steady-flow data.  There are  17  unknowns in this problem;
they are the  9  discharges in the pipes, the nodal heads at the original  5  nodes, the head at
node  6  where the air-chamber connector pipe is linked to pipe  7,  the head  H7  in the air
chamber itself, and finally the unknown demand  QJ3  at node 3.  The program
SURGNET  on the CD will solve this type of problem.  Examine its listing.  In this
program the array of unknowns  X( )  is indexed in the following sequence:  1 = Q1,  2 =
Q2 . . . 9 = Q9,  10 = H1,  11 = H2, 12 = H3,  13 = H4,  14 = H5,  15 = H6,  16 = H7,
17 = QJ3.  The set of  17  equations to be solved follows.

Fi = Qj∑ − QJi = 0     i  = 1, 2, 3, 4, 6

The sums in these junction continuity equations range over the pipes that are connected to
node  i.  The demand vs. head relation at node  3  must express the nodal demand there as
being linearly proportional to the pressure head, as the problem specifies.  Thus we write

F5 = QJ3 − c3(H3 − Elev3 ) = X(17) − 0.0123H3 = 0

in which the constant  c3 = 1.5/121.76 = 0.0123;  at steady state the demand is  1.5 ft3/s,
and the associated steady state head, from the input data list which follows, is  121.76 ft.
In a similar way the continuity equation for node  5  with the butterfly valve is written

F7 = Q8 − coecD(H5 − Elev5 )1/2 = Q8 − 0.0324e0.0568DH5
1/2
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In these two equations  Elev3 = Elev5 = 0.0,  as the diagram indicates.  The next  9
equations are the  ODEs  that describe the rigid-column pipe transients,  equation numbers
i = 8, 9, . . . , 15, 16;  pipe numbers  k = 1, 2,  . . ., 9:

Fi = QODE k −Qk = 0
dQk

dt
= gAk

Hu − Hd

Lk
−

f kQk Qk

2Dk Ak

In these equations  Hu  is the upstream head, including any additional head from a pump,
and  Hd  is the downstream head.  The final equation models the air chamber:

F17 = H7 − x − xo( ) − po
M

ρo Vair( )o − Q7dt∫{ }
















k

− patm



















/ γw = 0

The input data to  SURGNET  consists of

2 3 0.0000001 0.001 1 10 0.000417 32.2 1.217e-5 5 60 10 100 50

which is entered from the keyboard, and the input file  SURGNET.DAT  that can be found
on the  CD.  The remaining data are

3000 1.0   5.9
3500 0.833 2.9
2000 0.833 1.3
4000 0.833 3.3
4000 0.833 2.6
2500 0.667 1.2
1500 0.833 3.0
1500 0.833 3.0
100  0.5   0.0
1.5 170.71
1.6 166.55
1.5 121.76
1.4 135.47
3.0  91.15
170 200 -0.5 0.5 60

The resulting solution can be found on the  CD  in file  EPB12_2.OUT.  That file
contains a sequential listing of the  17  unknown variables at intervals of one second.

*                              *                              *

Example Problem 12.3
A five-pipe network, shown atop the next page, contains a standpipe downstream from

the pump in pipe 1.  The orifice diameter at the base of this standpipe is  2 in (assuming a
contraction coefficient of unity), and the standpipe has a diameter of 1 ft.  Initially the
system is in steady-state operation, when the demand at node  2  is reduced to zero in  7
seconds according to the following schedule:

Time,  sec  1.0  2.0  3.0  4.0  5.0  6.0  7.0
QJ2,  ft3/s 1.25  1.0  0.8  0.6  0.4  0.2  0.0
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Applying rigid-column theory, develop the equation system that describes this network,
and then simulate the performance of the network over a  10-sec  time period.
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1250'

Hdp250'
8 - 1500

     Pump data

Q,  ft3/s  1.5  2.0  2.5
hp,  ft   50   48   45

Without the standpipe there are three interior nodes in the network, a total of five pipe
discharges, and a need for eight equations to describe the network operation.  To model the
addition of the standpipe we must divide pipe  1  at the standpipe location into pipes  1
and  6,  as the figure shows.  The standpipe itself becomes pipe  7.  To describe this
modified system we now need  4  junction continuity equations and  7  rigid-column
unsteady flow ODEs for the  7  pipes.  In addition, the water surface elevation  z  in the
standpipe becomes another variable.  If the nodal demands are all regarded as known, then
the list of unknowns becomes  Q1,  Q2,  Q3,  Q4,  Q5,  Q6,  Q7,  z,  H1,  H2,  H3,  and
Hdp.  This last variable is the head just downstream from pump at the new standpipe node.
The full equation set takes the following form:

F1 = Q6 −Q2 −Q4 −QJ1 = 0

F2 = Q2 +Q3 −QJ2 = 0

F3 = Q5 +Q4 −Q3 −QJ3 = 0

F4 = Q1 −Q6 −Q7 = 0

F5 = Q1 −QODE1 = 0,
dQ1

dt
= gA1

WS1 + hp − Hdp

L1
−

f1 Q1 Q1

2D1A1

F6 = Q2 −QODE2 = 0,
dQ2

dt
= gA2

H1 − H2

L2
−

f 2 Q2 Q2

2D2 A2

F7 = Q3 −QODE3 = 0,
dQ3

dt
= gA3

H3 − H2

L3
−

f 3 Q3 Q3

2D3A3



F8 = Q4 −QODE4 = 0,
dQ4

dt
= gA4

H1 − H3

L4
−

f 4 Q4 Q4

2D4 A4

F9 = Q5 −QODE5 = 0,
dQ5

dt
= gA5

WS2 − H3

L5
−

f 5 Q5 Q5

2D5A5

F10 = Q6 −QODE6 = 0,
dQ6

dt
= gA6

Hdp − H1

L6
−

f 6 Q6 Q6

2D6 A6

F11 = Q7 −QODE7 = 0,
dQ7
dt

= gA7
Hdp − z

z
−

f 7
2D7A7

+
A7
Ao







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2











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Q7 Q7

F12 = z − zODE = 0,
dz

dt
=

Q7

A7

In equation  F11  A7 = πD7
2 /4  is the cross-sectional area of the standpipe, and  Ao  is

the area of the orifice at the base of the standpipe.  In the equation called  F5  the

substitution for pump head  hp = AQ1
2 + BQ1 + C   must be made;  otherwise the equation

F13 = hp − AQ1
2 − BQ1 − C = 0  must be added to the equation set, and  hp  must be

added to the list of unknowns.
The solution relies on the program  PIPSTAND  on the CD, which is written

specifically to solve this problem.  It calls on  DVERK  to solve eight ODEs that are part
of the combined system of algebraic and differential equations that describe the behavior of
the  12  unknowns in this system.  The subroutine  DEFFUN  returns values for the  12
equations  F1,  F2, . . . . F12,  when it is called, and the main program then obtains the
solution by applying the Newton method.  The array  X  contains the unknowns listed in
the sequence given in the earlier paragraph.  The input to  PIPSTAND  to solve this
problem consists of

2  3  0.000001  0.001  1  10  0.000417  32.2  1.217e-5  0.1667

from the keyboard, and the following data from an input file (PIPSTAND.IN  on the  CD):

250 0.667 1.81
2000 0.5 0.78
2000 0.5 0.72
2500 0.667 0.53
1000 0.667 0.69
1250 0.667 1.81
1.0 1.0 0.0
0.5 130.97
1.5 110.49
0.5 128.08
100.0 130.0 -2.0 3.0 50.0 145.88

The discharges in the pipes, given as the last item on the first seven lines of this file, were
obtained with the nodal heads from the steady-state solution of the original network before
pipes 6 and 7 were added.  (The length of the standpipe, pipe  7,  is given as  1.0  since in
the program  GA(7) = G*AA/L(7),  and the varying length  z  is the length of the fluid in
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this pipe.)  The nodal heads are the second values on the next three lines for the three
original nodes.  The last line contains the two water surface elevations, the three
coefficients that describe the polynomial pump curve, and finally the head (145.88) at the
standpipe location.  This value is obtained from the steady-state solution by apportioning
the head loss in pipe  1  along its length.

The solution, with the output re-organized into two tables for easier review (or as given
by program  PIPSTAND), follows.

Pipe Discharges

Time QJ2      Q1      Q2      Q3      Q4      Q5      Q6      Q7

  sec ft3/s     ft3/s     ft3/s     ft3/s     ft3/s     ft3/s     ft3/s     ft3/s

  1.0 1.25   1.719   0.659   0.591   0.542   0.549   1.701   0.018
  2.0 1.0   1.617   0.540   0.460   0.557   0.403   1.597   0.021
  3.0 0.8   1.539   0.446   0.354   0.572   0.282   1.518   0.021
  4.0 0.6   1.464   0.354   0.246   0.588   0.158   1.442   0.022
  5.0 0.4   1.393   0.263   0.137   0.607   0.030   1.370   0.023
  6.0 0.2   1.323   0.173   0.027   0.626 - 0.100   1.300   0.024
  7.0 0.0   1.257   0.086 - 0.086   0.647 - 0.233   1.233   0.024
  8.0 0.0   1.273   0.095 - 0.095   0.659 - 0.254   1.254   0.019
  9.0 0.0   1.293   0.105 - 0.105   0.670 - 0.275   1.275   0.018
10.0 0.0   1.311   0.114 - 0.114   0.680 - 0.294   1.294   0.018

Heads

Time QJ2       z     H1     H2     H3     Hdp

  sec ft3/s       ft      ft      ft      ft      ft

  1.0 1.25 145.90 146.48 167.38 140.99 148.29
  2.0 1.0 145.93 148.41 173.89 142.03 149.18
  3.0 0.8 145.96 146.88 168.08 140.30 149.23
  4.0 0.6 145.98 147.96 171.53 140.83 149.60
  5.0 0.4 146.01 148.93 174.25 141.27 149.93
  6.0 0.2 146.04 149.76 176.22 141.59 150.22
  7.0 0.0 146.07 150.53 177.56 141.95 150.49
  8.0 0.0 146.10 139.13 135.67 132.21 148.74
  9.0 0.0 146.12 138.91 135.52 132.12 148.59
10.0 0.0 146.14 138.77 135.41 132.05 148.53

*                              *                              *

12.6 A FULLY TRANSIENT NETWORK ANALYSIS

12.6.1. THE INITIAL STEADY STATE SOLUTION
A steady-state solution for a network must be available before a transient (water

hammer) analysis of the network can be conducted.  Herein these steady-state solutions will
be obtained from  NETWK,  since it can produce a file with the information that is needed
by the transient network analysis program  TRANSNET.  The use of  TRANSNET  will
be described and illustrated in subsequent pages.  By setting the option  NETPLT=4 (as is
done when  NETWK  is asked to write an input file for UNSTPIP), a file will be written
that will enable  TRANSNET  to know the physical configuration of the network and a
suitable set of initial conditions.  The next subsection describes the use of program
TRANSNET.  In this section the use of  NETWK  to obtain the steady-state solution is
described.

To ensure that the file written by  NETWK  for  TRANSNET  will contain the correct
information, it is necessary (in addition to setting the option  NETPLT=4)  to set two



additional options,  NODESP=1  and  PCHAR3=0;  the first of these assigns node
numbers to reservoirs and source pumps, and the second option allows more than three
pairs of  (Q, hp)  data to be used to define pump characteristics.  Program  TRANSNET
defines pump curves by piecewise linear segments, as illustrated in Section 11.1, and
requires six pairs of points.  Therefore each pump curve must be defined by supplying six
pairs of  (Q, hp)  values;  the first pair should contain  Q = 0,  and the last pair should
contain  hp = 0  so the entire pump curve is defined.  Booster pump stations, pressure
reduction valves, back pressure valves, check valves and some similar appurtenances are
not currently accommodated by program  TRANSNET;  when used to write a file for
TRANSNET,  the commands  to  NETWK  should be limited to  PIPES,  NODES,
PIPE-,  RESER,  PUMPS,  RUN  and  END.   Furthermore, with current dimensions a
maximum of four pipes may join at a node.  Under the  NODES  command the listing of
nodes for source pumps should follow real nodes, and nodes assigned to reservoirs should
follow source pump nodes.

Since the file written for  TRANSNET  is different from a file written for  UNSTPIP,
NETWK  will ask which unsteady program will use the file when the option  NETPLT=4
is set.  Upon selecting  2  for  TRANSNET  and providing a file name, the user will be
asked for the following additional information that is needed for a transient network
analysis:

(a) the wave speed in the pipes of the network, and
(b) the following two lines of information for each pump station:

On line one,  (1)  the number of stages (pumps in series),  (2)  the number of 
pumps in parallel,  (3)  the rotational speed in rev/min for which the pump 
curve is defined, and  (4)  the rotational moment of inertia in units of force 
times length squared (lb-ft2 for ES units, kN-m2 for SI units) for each pump 
stage.

On line two,  a list of six values for power (horsepower for ES units, kW for SI 
units), corresponding to the six  (Q, hp)  data pairs that define that pump's 
characteristic curve.

This additional information that is needed by  TRANSNET  can be provided in any of
three ways:  (1)  after the  RUN  (or  END)  command in the same file provided to
NETWK  to obtain the steady-state solution,  (2) in a separate file, or (3) from the
keyboard during execution of  NETWK.  NETWK will prompt the user to learn which
option is to be used to enter the additional information.  For example, if  3  is specified,
meaning that the keyboard will be used, then a prompt will tell the user what is expected
next.

If this information is to be in a file, then the data must be sequenced:

First:  One line that contains the wave speeds, formatted as pipe numbers and their
wave speeds in pairs, or a range of pipe numbers and the wave speed for this range.  For
example,

1  3000  2-8  2800  9  2500

assigns a wave speed of  3000  to pipe  1,  a wave speed of  2800  to pipes  2  through  8,
and a wave speed of  2500  to pipe  9.  The pipes with numbers that are not included in the
list will be given the wave speed that was assigned to the previous pipe in the list;  if there
are  12  pipes in the example, then pipes  10,  11  and  12  will be assigned a wave speed
of  2500.  NETWK contains the default wave speed of  3000 ft/s;  if pipes 1 through 5, for
example, are not assigned a wave speed, then their wave speed will default to  3000.  There
is considerable flexibility in providing this wave speed data, since any pipes without
assigned wave speeds are given the wave speed of the previous pipe.  A comma can be used
in place of a blank in any of the lists, and blanks may follow commas.  However, both end
values in a range of pipes must be specified.



Second:  Two lines for each pump, in the same order as the pumps are listed in the
input data file, following the instructions for item (b) above.

The program  NETWK  allows composite pump curves for pumps in series or pumps in
parallel to be given with the data pairs rather than using the  SERIES  and/or  PARALLEL
commands, and the number of pumps in series or parallel need not be integer values, thus
allowing non-identical pumps to be lumped at a pumping station.  The user can apply this
same treatment of pumps when preparing a file for  TRANSNET.   However, if data are
presented for a composite curve in place of a single pump stage, then one must place a
minus sign before the number of stages and/or the number of pumps in parallel;  then the
discharges and heads will be adjusted before the file for  TRANSNET  is written.  In other
words, the final input file for  TRANSNET  must contain the discharge, head and rotational
moment of inertia for one stage of a single pump.

This input is illustrated in the next section as three example network problems are
described, analyzed by using  NETWK to obtain steady-state solutions, and then transient
analyses are performed by using the file written by  NETWK  to drive  TRANSNET.

12.6.2. TRANSNET
The transient program  TRANSNET  permits the user to investigate the effects of

several events that can cause rapid, possibly severe, transients.  The equations that are
solved for each pipe of the network are the equations that have been developed in Chapters
7-9 and applied to individual pipes and smaller systems in Chapters 8-11.  Power failure at
any number of pump stations can be simulated.  The effects of sudden valve closure at
either end of any number of pipes can be investigated.  Staged valve closure at the
downstream end of any pipe can be specified.  The consequences of sudden demand changes
at any number of junctions can also be studied.

Most of the data that are required to initiate the study of a transient is stored in the data
file which is created during the execution of  NETWK  with the option  NETPLT=4,  as
described in the previous section.  The only additional data is the specification of the
transient-causing event.  If the assumed flow direction in any pipe is found to be incorrect,
NETWK  corrects this direction before writing the file for  TRANSNET;  the investigator
should also change these flow directions on a diagram of the network.  The example
problems will illustrate these procedures.

A description of the input data parameters which determine the transient behavior is
included at the beginning of the source listing of  TRANSNET;  before reading further, a
listing of  TRANSNET  should be obtained from the  CD  so it can be studied.

Example Problem 12.4
This network is supplied by gravity flow from two elevated reservoirs.  Pipe and node

numbers are shown in the diagram with the diameters and lengths of the pipes.  Nodes  1
through  4  have ground elevations of  860 ft,  while nodes  5  and  6  have ground
elevations of  980 ft  and  960 ft,  respectively.  The equivalent sand roughness of all pipes
is  e = 0.002 in.  The demand is increased from  450 gal/min  to  900 gal/min  at node  2
to meet a sudden need for more water for fire suppression.  Determine the effect of this
increase in demand on the heads at nodes  1,  2,  and  4.
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In this analysis the first step is to determine the steady-state solution which will define
the initial conditions for the ensuing transient.  Two alternative input data files have been
prepared for  NETWK  to use in obtaining this steady-state solution.  The option
OUTPU1=4  tells  NETWK  to provide the values of friction factors, rather than  e's,  in
the  PIPE DATA  table.  One input file is listed below, and both input files are available
on the  CD  under the names  EPB12_4.IN  and  EPB12_4.IN1.

Example Problem 12.4
/*
$SPECIF NETPLT=4,NFLOW=1,OUTPU1=4
 COEFRO=0.002,NODESP=1 $END
PIPE-
1 10.0 1500. 5 980. 1 580. 860.
2  8.0 3000. 1 2 450. 860.
3  8.0 2000. 3 2
4 10.0 1300. 6 960. 3 630. 860.
5  8.0 3000. 3 4 490. 860.
6  8.0 2000. 1 4
RESER
5 1020
6 1000
RUN
1 3000/ Assigns a wave speed of  3000  to all pipes.

Since additional data are provided after the  RUN  command,  NETWK  will use a prompt
to learn where the wave speed information is to be found;  the user should select  1,
meaning "in the same file after the other data."  The steady-state solution found by
NETWK  is listed in the following two tables:
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PIPE DATA

PIPE
N O .

 N O D E S
FROM  TO

   L DIA.     f   Q VEL. HEAD
LOSS

HLOSS/
1 0 0 0

    ft.    in gal/min  ft/s      ft.
  1     5   1   1500  10.0 0.01598 1447 5.91   15.61   10.41
  2     1   2   3000    8.0 0.01877   389 2.48     8.08     2.69
  3     3   2   2000    8.0 0.02693     61.2 0.39     0.19     0.10
  4     6   3   1300  10.0 0.01750   703 2.87     3.49     2.69
  5     3   4   3000    8.0 0.04171     11.7 0.07     0.02     0.01
  6     1   4   2000    8.0 0.01820   478 3.05     7.90     3.95

NODE DATA

NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.
     ft3/s gal/min      ft.     ft.       lb/in2         ft.

     1       1.29     580     860.  144.39       62.57      1004.4
     2       1.00     450     860.  136.31       59.07        996.3
     3       1.40     630     860.  136.51       59.15        996.5
     4       1.09     490     860.  136.49       59.15        996.5
     5   -   3.22 - 1447     980.    40.00       17.33      1020.0
     6   -   1.57 -   703     960.    40.00       17.33      1000.0

Now the execution of the program  TRANSNET  can proceed.  Two files are needed as
input to  TRANSNET,  the file written by  NETWK  and a file that describes the transient
analysis to be done.  The file written by  NETWK  is currently unformatted, so it can not
easily be examined.  The reader should have the experience of having  NETWK  produce
this file, but the  CD  also contains this unformatted information in file  EPB12_4.OU1.
The following file contains the transient analysis data (on the  CD  under the name
EPT12_4.DAT):

DEMONSTRATION OF PROGRAM TRANSNET - INPUT DATA FILE "EPB12_4.DAT"
DEMAND AT JUNCTION  2  IS INCREASED FROM  450  TO  900  GAL/MIN
&SPECS NPARTS=4,IOUT=1000,NQNEW=1,HATM=28.,TMAX=60.,GRAPH=T,
                 NODEQ(1)=2,QNEW(1)=900./
&GRAF NSAVE=3,IOUTSA=2,PIPE=1,2,6,0,NODE=999,999,999,0/

The output file written by  TRANSNET  (also on the  CD  in file  EPB12_4.OUT
with the plot file  EPB12_4.PLT)  follows:

******************************
* NETWORK TRANSIENT ANALYSIS *
******************************

DEMONSTRATION OF PROGRAM TRANSNET -  INPUT DATA FILE "EPB12_4.DAT"
DEMAND AT JUNCTION  2  IS INCREASED FROM  450  TO  900  GAL/MIN

                      IOUT  = 1000
                NPARTS  =        4
                  NPIPES  =        6

                    HATM  = 28.0 FT

                    TMAX  =  60.0 SEC
                    DELT    =  0.10 SEC
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    TRANSIENT        CONDITIONS      IMPOSED     
DEMAND DISCHARGES SUDDENLY CHANGED AT NODE  2  TO   900.0  GAL/MIN

PIPE INPUT DATA
PIPE DIAMETER

        in
LENGTH
      ft

WAVE SPEED
        ft/s

 PIPEZ
     ft

      f VELOCITY
      ft/s

   1     10.00   1500.       3000.    980. 0.0160      5.89
   2       8.00   3000.       3000.    860. 0.0188      2.47
   3       8.00   2000.       3000.    860. 0.0267      0.41
   4     10.00   1200.       3000.    980. 0.0175      2.90
   5       8.00   3000.       3000.    860. 0.0389      0.10
   6       8.00   2000.       3000.    860. 0.0182      3.03

PIPE DELTA
   sec

 PARTS      SINE    L/A
   sec

INTERPOLATION

   1  0.124       4 -  0.0800   0.50           0.202
   2  0.249     10     0.0000   1.00           0.003
   3  0.167       6     0.0000   0.67           0.103
   4  0.100       4 -  0.1000   0.40           0.003
   5  0.250     10     0.0000   1.00           0.003
   6  0.166       6     0.0000   0.67           0.103

NODE INPUT DATA

NODE      HGL
        ft

GRND EL
       ft

        P     I     P     E     S
    1          2           3           4

DEMAND
    ft3/s

    1 1004.51    860.0 -  1    2    6    0     1.29
    2   996.52    860.0 -  2 -  3    0    0     2.00
    3   996.73    860.0    3 -  4    5    0     1.40
    4   996.70    860.0 -  5 -  6    0    0     1.09
    5 1020.00    980.0    1    0    0    0 -   3.21
    6 1000.00    980.0    4    0    0    0 -   1.58

***************************
* TABLE OF EXTREME VALUES *
***************************

    X MAX HEAD
         ft

TIME
  sec

MIN HEAD
        ft

TIME
  sec

MAX H
     ft

MIN H
    ft

PIPE  1
0.000       40.0   59.9       40.0   59.9   1020.   1020.
1.000     200.0     3.9       71.0     1.8   1060.     931.

PIPE  2
0.000     200.0     3.9       71.0     1.8   1060.     931.
1.000     233.9     9.7    -    1.8     1.2   1094.     858.

PIPE  3
0.000     190.8     4.2       61.5     1.4   1051.     921.
1.000     233.9     9.7    -    1.8     1.2   1094.     858.

PIPE  4
0.000       20.0   59.9       20.0   59.9   1000.   1000.
1.000     190.8     4.2       61.5     1.4   1051.     921.

PIPE  5
0.000     190.8     4.2       61.5     1.4   1051.     921.
1.000     259.8     4.6    -    9.5     2.4   1120.     850.

PIPE  6
0.000     200.0     3.9       71.0     1.8   1060.     931.
1.000     259.8     4.6    -    9.5     2.4   1120.     850.

MAXIMUM HEAD = 268.1 FT  IN PIPE   5  AT  X = 0.800  AT TIME =   4.59 SEC
MINIMUM HEAD = -  12.5 FT  IN PIPE   4  AT  X = 0.250  AT TIME =   1.10 SEC



Since plot information was requested by setting  GRAPH=T  (for true),  another output
file is written by  TRANSNET  that contains data for the transient pressure heads at nodes
1,  2,  and  4.  The plot of these data, shown below, indicates how the pressure waves
decay with time.  From the extreme value table we note that neither the highest nor lowest
pressures occur at the node where the demand changes;  instead they occur near node 4.  
Can the reader explain why this occurs?

An unsteady solution that ignores elastic effects will now also be obtained.  The input
file is again provided to  NETWK,  but now  select  1  when asked whether a file for  1.
UNSTPIP  or  2. TRANSNET  should be written.  Even when elastic effects are ignored,
the demand clearly can not be increased instantly from 450 to 900 gal/min, so let us
assume the increase occurs linearly over 2 sec.  We encourage the reader to prepare the
input for  UNSTPIP  and obtain this solution.  The following graph presents some of the
solution.  We see that the pressure head at node  2  becomes smallest, at  53.7 ft,  after  2
sec  when the demand at this node has just become  900 gal/min  and the increase in
demand ceases.  Note also from this solution, after the demand becomes constant, how
rapidly the pressure heads approach the new steady-state conditions with a pressure head at
node  2  of  127.8 ft,  which is  8.5 ft  less than the head for  QJ2 = 450 gal/min.  One
could solve again this problem (we encourage the reader to do so) with  QJ2 = 900 gal/min  
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and find after only  5 sec  that the nodal pressure heads are essentially identical to these new
values.  If the demand were to increase more rapidly, then the pressure at node  2  would
decrease still further.  If one tries to double the demand in  1.5  or  1.0 sec,  negative
pressures will occur at node  2,  which is obviously not physically possible.  A more
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realistic problem description would very rapidly reduce the pressure head at node  2  to zero;
then one could determine from the solution the time that is required to increase the demand
at this node to  900 gal/min.  Therefore rigid-column unsteady solutions should not be
used to study rapid changes;  that approach is more appropriate to the study of gradual
changes that could occur continually throughout a network.

*                              *                              *

Example Problem 12.5
Here we see how a pump is incorporated into a network.  A source pump (the operating

characteristic data are listed in the input file for  NETWK)  is located at one of the three
reservoirs.  The Hazen-Williams roughness coefficient is  CHW = 120  for all pipes.  This
network experiences a transient that is caused by the sudden closure of a valve at the
downstream end of pipe  5.  Obtain a transient analysis of this network if the wave speed is
2850 ft/s  for all pipes.

[1]

(1)

[4]

[3]

(5)

(6)
(4)

(2)

(3)

[5] [6]

[2]
8 - 8200

12 - 3300

El. 4200'

El. 4050' -

El. 3800'

El. 4130'
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El. 3770'
El. 4000' El. 4010'

El. 4130'

6 - 3300
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 - 
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475 gal/min

790 gal/min

317 gal/min

P

To begin the solution process, we have chosen to supply the following input data file
(EPB12_5.IN  or  EPB12_5.IN1  on the  CD)  to  NETWK  to obtain the initial condition
for the ensuing transient analysis:
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Example Problem 12.5
/*
$SPECIF NETPLT=4, NFLOW=1, NPGPM=1, OUTPU1=4, NODESP=1, COEFRO=120
  PCHAR3=0  $END
PIPE-
1 12. 3300. 4 4050. 1 475. 3800.
2 8. 8200. 2 317. 3830. 1
3 8. 3300. 1 3 790. 3770.
4 12. 4900. 2 3
5 6. 3300. 3 5 4000.
6 14. 2600. 6 4010. 2
RESER
4 4200
5 4130
PUMPS
6  0  118  2000  92  3000  82  4000  67  4500  52  5300  0  4130/
RUN
1 2850
1 1 1180 50
57 68 77 80 76 60

In this input file the option  PCHAR3=0  is set so that six  (Q, hp)  pairs can be entered
to define the pump curve.  Additional data needed by  TRANSNET  are provided after the
RUN  command.  The first line following  RUN  indicates that all pipes have a wave speed
of  2850 ft/s;  the second line indicates one pump stage at this station, one pump in
parallel with a rotational speed of  1180 rev/min  and a rotational moment of inertia of  50
lb-ft2;  the third line lists the six horsepower values corresponding to the six discharge-
head pairs provided under the PUMPS command.

The steady-state solution from  NETWK  is described in the following two tables (and
listed in file  EPB12_5.OUT on the  CD):

PIPE DATA

PIPE
N O .

 N O D E S
FROM  TO

   L DIA.  CHW    Q VEL. HEAD
LOSS

HLOSS
/ 1 0 0 0

    ft.    in gal/min  ft/s      ft.
  1      4   1   3300  12.0   120   340.1 0.96    1.32    0.40
  2      2   1   8200    8.0   120   273.0 1.74 15.70    1.91
  3      1   3   3300    8.0   120   138.1 0.88    1.79    0.54
  4      2   3   4900  12.0   120 1110.0 3.15 17.49    3.57
*5      3   5   3300    6.0   120   458.1 5.20 66.89  20.27
  6      6   2   2600  14.0   120 1700.0 3.54    9.64    3.71

NODE DATA

NODE   D  E  M  A  N  D  ELEV. HEAD PRESSURE HGL ELEV.
     ft3/s gal/min      ft.     ft.       lb/in2         ft.

    1      1.06       475    3800.  398.68      172.76    4198.68
    2      0.71       317    3830.  384.38      166.57    4214.38
    3      1.76       790    3770.  426.89      184.99    4196.89
    6  -   3.79 -  1700    4010.  214.03         92.74    4224.03
    4  -   0.76 -    340    4050.  150.00         65.00    4200.00
    5      1.02       458    4000.  130.00         56.33    4130.00

The supplemental input file (EPB12_5.DAT  on the  CD) for  TRANSNET  can take
the following form:
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DEMONSTRATION OF PROGRAM TRANSNET - INPUT DATA FILE "EPB12_5.DAT"
NETWORK EXAMPLE 12.5 -  SUDDENLY-CLOSED VALVE AT THE DS END OF PIPE  5
&SPECS NPARTS=4, IOUT=100, NSHUT=1, HATM=30., TMAX=20.0, ALLOUT=T,
                 HVPRNT=T, ISHUT(1)=-5/
&GRAF NSAVE=4, IOUTSA=1, PIPE=5,5,1,6,NODE=999,1,999,999/

Together with the file written by  NETWK,  this file can be executed by  TRANSNET  to
produce the transient solution.  Only part of the output file (see  EPB12_5.OU1) is
presented here:

******************************
* NETWORK TRANSIENT ANALYSIS *
******************************

DEMONSTRATION OF PROGRAM NO. 6 -INPUT DATA FILE "EPB12_5.DAT"
NETWORK EXAMPLE 12.5 - SUDDENLY-CLOSED VALVE AT THE DS END OF PIPE 5

                   IOUT  =  100
             NPARTS  =       4
               NPIPES  =       6

                 HATM  =  30.0  FT

                 TMAX  =  20.00  SEC
                   DELT  =   0.227 SEC

    TRANSIENT        CONDITIONS      IMPOSED     

SUDDENLY CLOSED VALVE AT DOWNSTREAM END OF PIPE    5

PIPE INPUT DATA

PIPE DIAMETER
        in

LENGTH
      ft

WAVE SPEED
        ft/s

 PIPEZ
     ft

   CHW VELOCITY
      ft/s

   1     12.00   3300.       2850.   4050.     120.      0.97
   2       8.00   8200.       2850.   3830.     120.      1.74
   3       8.00   3300.       2850.   3800.     120.      0.88
   4     12.00   4900.       2850.   3830.     120.      3.15
   5       6.00   3300.       2850.   3770.     120.      5.20
   6     14.00   2600.       2850.   4010.     120.      3.54

PIPE DELTA
   sec

 PARTS      SINE    L/A
   sec

INTERPOLATION

   1  0.289       5 -  0.07576   1.16          0.019
   2  0.718     12 -  0.00366   2.88          0.052
   3  0.289       5 -  0.00909   1.16          0.019
   4  0.428       7 -  0.01224   1.72          0.075
   5  0.288       5     0.06970   1.16          0.019
   6  0.227       4 -  0.06923   0.91          0.004



NODE INPUT DATA

NODE      HGL
        ft

GRND EL
       ft

        P     I     P     E     S
    1          2           3           4

DEMAND
    ft3/s

    1 4198.68    3800.0 -  1 -  2    3    0     1.06
    2 4214.38    3830.0    2    4 -  6    0     0.71
    3 4196.89    3770.0 -  3 -  4    5    0     1.76
    6 4224.03    4010.0    6    0    0    0  -  3.79
    4 4200.00    4050.0    1    0    0    0  -  0.76
    5 4130.00    4000.0 -  5    0    0    0     1.02

PUMP INFORMATION

      Q
gal/min

HEAD/STAGE
           ft

HP/STAGE
       HP

 LINE               =        6          0.0        118.0      57.0
 PUMPS          =        1   2000.8           92.0      68.0
 STAGES         =        1   3001.1           82.0      77.0
 RPM               = 1180. RPM   4001.5           67.0      80.0
 SUMP ELEV = 4130. FT   4501.7           52.0      76.0
 WRSQ            =      50. LB-FTSQ   5302.0             0.0      60.0

PRESSURE HEADS, HGL'S AND VELOCITIES AS FUNCTIONS OF TIME

 X/L HEAD
    ft

 HGL
   ft

  VEL
  ft/s

 X/L HEAD
    ft

 HGL
    ft

  VEL
  ft/s

TIME =  0.000  SEC
         PIPE  1 0.00  150. 4200.   0.97 0.20  200. 4200.   0.97

0.40  249. 4199.   0.97 0.60  299. 4199.   0.97
0.80  349. 4199.   0.97 1.00  399. 4199.   0.97

         PIPE  2 0.00  384. 4214.   1.74 0.08  386. 4213.   1.74
0.17  387. 4212.   1.74 0.25  388. 4210.   1.74
0.33  389. 4209.   1.74 0.42  390. 4208.   1.74
0.50  391. 4206.   1.74 0.58  393. 4205.   1.74
0.67  394. 4204.   1.74 0.75  395. 4202.   1.74
0.83  396. 4201.   1.74 0.92  397. 4200.   1.74
1.00  398. 4198.   1.74

PIPE  3 0.00  399. 4199.   0.88 0.20  404. 4198.   0.88
0.40  410. 4198.   0.88 0.60  416. 4198.   0.88
0.80  421. 4197.   0.88 1.00  427. 4197.   0.88

PIPE  4 0.00  384. 4214.   3.15 0.14  390. 4212.   3.15
0.29  396. 4209.   3.15 0.43  403. 4207.   3.15
0.57  409. 4204.   3.15 0.71  415. 4202.   3.15
0.86  421. 4199.   3.15 1.00  427. 4197.   3.15

PIPE  5 0.00  427. 4197.   5.20 0.20  367. 4183.   5.20
0.40  308. 4170.   5.20 0.60  248. 4156.   5.20
0.80  189. 4143.   5.20 1.00  129. 4129.   5.20

PIPE  6 0.00  214. 4224.   3.54 0.25  257. 4222.   3.54
0.50  299. 4219.   3.54 0.75  342. 4217.   3.54
1.00  384. 4214.   3.54

PIPE   6 PUMP SPEED = 1180.0 RPM PUMP DISCHARGE = 1700.6 GAL/MIN EACH
PUMP HEAD =  94.0 FT

  COLUMN SEPARATION HAS OCCURRED AT  7.73  SEC IN PIPE   5  AT LOCATION  1.00



 X/L HEAD
    ft

 HGL
   ft

  VEL
  ft/s

 X/L HEAD
    ft

 HGL
    ft

  VEL
  ft/s

TIME =  7.726  SEC
         PIPE  1 0.00  150. 4200. - 0.25 0.20  201. 4201. -

0.25
0.40  268. 4218. - 0.40 0.60  332. 4232. -

0.47
0.80  375. 4225. - 0.25 1.00  407. 4207.   0.04

         PIPE  2 0.00  379. 4209.   1.63 0.08  335. 4163.   1.48
0.17  299. 4124.   1.17 0.25  272. 4094.   1.10
0.33  240. 4060.   1.12 0.42  228. 4046.   1.34
0.50  223. 4038.   1.49 0.58  223. 4035.   1.59
0.67  228. 4038.   1.69 0.75  267. 4074.   1.58
0.83  316. 4121.   1.71 0.92  367. 4169.   2.15
1.00  407. 4207.   2.61

PIPE  3 0.00  407. 4207. - 0.33 0.20  396. 4190. -
0.22

0.40  396. 4184. - 0.23 0.60  406. 4188. -
0.23

0.80  415. 4191. - 0.22 1.00  422. 4192. -
0.24

PIPE  4 0.00  379. 4209.   2.60 0.14  397. 4218.   2.66
0.29  402. 4215.   2.69 0.43  392. 4197.   2.46
0.57  390. 4186.   2.19 0.71  404. 4191.   2.13
0.86  414. 4193.   2.10 1.00  422. 4192.   2.07

PIPE  5 0.00  422. 4192. - 1.11 0.20  373. 4189. -
1.14

0.40  254. 4116. - 0.56 0.60  146. 4054. -
0.35

0.80    41. 3995. - 0.28 1.00 -  39. 3961.   0.00

PIPE  6 0.00  219. 4229.   3.07 0.25  260. 4225.   3.07
0.50  301. 4221.   3.07 0.75  340. 4215.   3.09
1.00  379. 4209.   3.10

PIPE   6 PUMP SPEED = 1180.0 RPM PUMP DISCHARGE = 1470.6 GAL/MIN EACH
PUMP HEAD =  98.9 FT



***************************
* TABLE OF EXTREME VALUES *
***************************

X/L MAX HEAD
        ft

TIME
  sec

MIN HEAD
        ft

TIME
  sec

MAX HGL
        ft

MIN HGL
       ft

 PIPE  1
0.00      150.0   7.7       150.0   7.7      4200.     4200.
0.20      256.1   3.6       176.8   5.9      4256.     4177.
0.40      308.9   3.9       224.3   6.1      4259.     4174.
0.60      359.7   4.1       275.5   5.9      4260.     4175.
0.80      412.0   4.3       327.6   5.7      4262.     4178.
1.00      463.1   4.5       378.6   5.5      4263.     4179.

 PIPE  2
0.00      476.5   4.5       337.4   6.8      4307.     4167.
0.08      476.8   4.8       317.7   7.5      4304.     4145.
0.17      522.0   5.0       283.6   7.3      4347.     4109.
0.25      532.8   5.2       267.0   7.5      4355.     4090.
0.33      535.1   5.5       240.2   7.7      4355.     4060.
0.42      537.1   5.7       228.2   7.7      4355.     4046.
0.50      539.0   5.9       223.3   7.7      4354.     4038.
0.58      538.2   5.7       222.7   7.7      4351.     4035.
0.67      535.3   5.5       227.6   7.7      4345.     4038.
0.75      512.4   5.2       266.5   7.7      4320.     4074.
0.83      460.0   5.0       316.2   7.7      4265.     4121.
0.92      461.6   4.8       367.0   7.7      4264.     4169.
1.00      463.1   4.5       378.6   5.5      4263.     4179.

 PIPE  3
0.00      463.1   4.5       378.6   5.5      4263.     4179.
0.20      527.4   2.5       360.4   5.7      4321.     4154.
0.40      537.3   2.7       353.8   5.9      4325.     4142.
0.60      545.4   3.0       357.6   6.1      4327.     4140.
0.80      555.1   3.2       367.4   5.9      4331.     4143.
1.00      563.4   3.4       380.8   6.6      4333.     4151.

 PIPE  4
0.00      476.5   4.5       337.4   6.8      4307.     4167.
0.14      498.4   3.0       334.9   5.5      4320.     4156.
0.29      521.5   3.2       329.6   5.5      4334.     4142.
0.43      531.0   3.4       333.1   5.7      4335.     4137.
0.57      540.3   3.6       338.6   5.9      4336.     4134.
0.71      549.4   3.9       345.7   6.1      4337.     4133.
0.86      556.4   3.6       374.3   6.6      4335.     4153.
1.00      563.4   3.4       380.8   6.6      4333.     4151.

 PIPE  5
0.00      563.4   3.4       380.8   6.6      4333.     4151.
0.20      799.4   1.4       258.8   3.6      4615.     4075.
0.40      761.6   1.6       200.1   3.9      4624.     4062.
0.60      722.2   1.8       146.3   7.7      4630.     4054.
0.80      682.8   2.0          40.5   7.7      4637.     3995.
1.00      643.4   2.3     -   39.1   7.7      4643.     3961.

 PIPE  6
0.00      227.4   5.9       214.0   0.0      4237.     4224.
0.25      329.6   3.9       225.0   6.1      4295.     4190.
0.50      386.3   4.1       256.1   6.4      4306.     4176.
0.75      431.6   4.3       296.1   6.6      4307.     4171.
1.00      476.5   4.5       337.4   6.8      4307.     4167.

MAXIMUM HEAD =  799.4 FT IN PIPE   5  AT  X = 0.20  AT TIME =   1.36 SEC
MINIMUM HEAD =  -  39.1 FT IN PIPE   5  AT  X = 1.00  AT TIME =   7.73 SEC



The network experiences column separation in pipe  5  after  7.7  sec.  The pump is
still producing flow, although at a reduced discharge.

*                              *                              *

Example Problem 12.6
Reconsider Example Problem 12.5, replacing the sudden valve closure with a gate valve

that closes in  20 sec  at two different rates.  The first stage is to  95 %  closure in  1  sec,
with the remainder of the closure in  19 sec.  Use the gate valve loss coefficient data listed
in Table 10.2 in Section 10.4.4.

In this problem the same initial condition applies as in the previous problem; however,
a different file is needed to tell  TRANSNET  what to do.  The revised file consists of the
following instructions:

DEMONSTRATION OF PROGRAM TRANSNET -INPUT DATA FILE "EPB12_6.DAT"
NETWORK OF EXAMPLE 12.6 - GRADUALLY-CLOSED VALVE AT THE DS END OF PIPE  5
&SPECS NPARTS=4, IOUT=1000, IVALVE=5, HATM=30., TMAX=60., GRAPH=T,
                 PC1=5., TC1=1., TC2=20., KLI=0.,0.0167,0.0313,0.0556,0.100,0.179,
                 0.333,0.625,1.25,2.50,5.27/
&GRAF NSAVE=4, IOUTSA=2, PIPE=5,5,6,6, NODE=999,1,999,1/

The output from  TRANSNET  will be found in file  EPB12_6.PLT on the  CD.  The
output plot, followed by the information for the plot file, is presented next:
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*************************
* PLOT FILE INFORMATION *

*************************

PLOT DATA IS SAVED ON FILE:  prb12_6.plt
TMAX =     59.99 SEC
NUMBER OF PRESSURE HEAD VALUES IN FILE = 133
PHMAX =  487.3 FT
PHMIN   =  124.4 FT

PIPE  5   NODE  6
PIPE  5   NODE  1
PIPE  6   NODE  5
PIPE  6   NODE  1

*                              *                              *

Example Problem 12.7
This example examines a larger network which receives water by gravity from one

reservoir and additional water that is pumped from two other reservoirs.  The demands at all
nodes are shown on the diagram, and the roughness is  e = 0.01 in  for all pipes. 

Investigate the effects on the network of power failure at the pump station in line  1.
The wave speed is  a = 3000 ft/s  for all pipes.  Data for the pump characteristics will be
found in the input data file  EPB12_7.IN.

[1]

(1)

[4]

[3]

(5)

(6)

(4)

(2)

(3)

[5]

[6]

[2]

8 - 1800

15 - 800

El. 1425'

El. 1360'

El. 1290'

El. 1382'

El. 1310'

El. 1320'

El. 1380'

El. 1440'

El. 1475'

10
 - 

10
00

8 - 1
500

8 - 1200

10 - 800

900 

1300

P
P

El. 1300'

12 - 600 8 - 800

8 - 400

1800

El. 1280'

12 - 1200

12 - 1000 El. 1310'

(9)

(10)

(8)

(11)
(12)

[7]

[9]

[8] [10]

El. 1260'

6 
- 1

20
0

1300

(7)

450 

All nodal demands in gal/min
Diameters in inches
Lengths in feet

The solution of this example problem follows the now-familiar routine.   The input data
to create the steady-state solution of the problem, to serve as the initial condition for the
transient problem, can be found in file  EPB12_7.IN  on the CD;  the steady-state solution
is stored in file  EPB12_7.OU1.  In the input file we will see that the pipes and nodes have
been entered in random order.  Pipes and nodes need not be numbered sequentially.  In
addition, composite curves for the two parallel pumps, each with two stages in pipe  9  at
node  6,  have been developed and entered in this file;  to communicate this information to

http://www.crcpress.com/us/ElectronicProducts/download.asp?cat_no=1806


NETWK,  a minus sign must precede the  2  after the RUN  statement, thus indicating that
there are two stages and two parallel pumps at this station.  Moreover, the discharges from
the second pump have been multiplied by  6,  and the  - 6  in the data file indicates that
there are actually six parallel pumps at station  2, but that this fact is accounted for in the
pump data that have been prepared.

The data for TRANSNET to solve this problem are provided in file  EPB12_7.DAT  on
the  CD,  the file written by  NETWK  is  EPB12_7.OU2,  and the transient output will
be found on the  CD  in file  EPB12_7.OU3.  A plot of the output data for four nodes is
presented in the figure which follows.

Example Problem 12.7
Pipe network w/ power failure to pumps at Node 1

Node 1
Node 2140

130

110

100

90

80

70

Pr
es

su
re

 h
ea

d,
 ft

60

0 10 20 30 40

Time, sec

Node 7

120

170

160

150

Node 6

*                              *                              *
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12.7 PROBLEMS

12.1   Obtain steady-state solutions for the three-pipe network in Section 12.2.2. for
demands  QJ3  of  2.0,  2.5,  3.0,  and  3.5 ft3/s,  and compare the resulting heads at nodes
2  and  3  from each solution with the corresponding heads from the unsteady solution.
The differences in these heads can be interpreted as the amount of head that is required to
accelerate the fluid columns.  Also compare the other discharges.

12.2  For the  6-pipe,  4-node network described below:
(a)  Write the  10  equations that will allow the pipe discharges and nodal heads to be

determined for any number of time increments with the specification of either the
demands or heads at selected nodes.  Assume  WS1 = 100 ft,  WS2 = 95 ft.

(b)  Obtain the steady-flow solution for this network for the demands listed in the
demand table, which will serve as the initial condition (t = 0) for the unsteady
solution.

(c)  Obtain the unsteady solution, according to rigid-column theory, over an  8-sec  time
period using  2-sec  increments.  Assume the demand at node  2  varies in the way
listed in the table for  QJ2.

(d)  Prepare a set of four steady-flow solutions as in (b), but replace  QJ2  for  t = 0
with  QJ2  for  t = 2 sec,  t = 4 sec,  t = 6 sec and  t = 8 sec,  respectively.

(e)  Compare the pipe discharges and nodal heads from the steady-state solutions, part
(d), with those from the unsteady solution, part (c).

                       Pipe Properties                                     Demands                                 QJ2  Schedule

Pipe Dia.
 in

Length
    ft

Node
    i

  QJi
ft3/s

Time
  sec

 QJ2

ft3/s

   1 10  2000    1  1.5     0  1.0
   2   8  2000    2  1.0     2  1.5
   3   8  1500    3  1.5     4  2.0
   4   8  2000    4  2.0     6  2.5
   5   8  1500     8  3.0
   6 10  2000

[4][2]

(5)

(6)

(2)

(3)

[1](1) [3]

(4)

QJ2

WS2

WS1
QJ1

QJ4

QJ3

12.3   Repeat parts (b) through (e) of problem 12.2 with this change:  the Demand
Schedule for  QJ2  begins at  3.0 ft3/s at time  t = 0,  and it then decreases in  0.5 ft3/s

increments to  1.0 ft3/s  after  8 sec.



12.4  A water distribution system is shown below.  In it the demands at nodes  2  and  5
change with time, but the demands  at the other three nodes remain constant.   For a long
time there have been no changes in the demands, with the demands at nodes  2  and  5
being zero and  0.5 ft3/s,  respectively.  Beginning at time  t = 0,  the demands at these
two nodes change as shown in the demand table.

(a)  The initial steady-flow condition must be determined before the unsteady problem
can be solved.  State the  ∆Q-equations that can be solved to provide this initial
condition.

(b)  How many equations must be solved simultaneously over each time step of the
unsteady problem using rigid column theory?  How many of these are algebraic
equations, and how many are differential equations?  List the unknown variables.

(c)  Write the equations that govern this unsteady problem, and describe how they are to
be solved.

(d)  Solve the unsteady problem with  QJ2  and  QJ3  varying as listed in the table.

                                         Pipe Data                                                     Demand Table

Pipe Dia.
in

Length
     ft

Time
  sec

 QJ2

ft3/s
 QJ3

ft3/s

   1 14    200   0.0  0.0  0.5
   2 12    180   2.0  0.5  1.0
   3 10    190   5.0  0.7  1.2
   4 10    180   7.5  0.8  1.0
   5 10    230 10.0  0.8  0.8
   6   8    200

[4]

[2]

(5)

(6)

(2) (3)

[1]

(1)
[3]

(4)

QJ2
QJ1 = 1.2 ft3/s

QJ5

QJ3 = 2.0 ft3/s

QJ4 = 0.8 ft3/s

[5]

100'

All e = 0.005 in.
All elev. = 0 ft.

12.5  A  6-pipe network supplied by a source pump and a reservoir is shown below;  the
diagram presents pipe data and the initial steady-flow nodal demands.  Do the following:

(a)  Prepare input data for  NETWK  to obtain a steady-state solution for this network.
(b)  Assuming that the demands at the four nodes are to change in time, apply rigid-

column theory to write the equation system that describes the unsteady-flow
network problem.  In performing this task, identify the unknowns and develop an
appropriate number of independent equations to determine them.



(c)  Prepare an input data file for the program  UNSTPIPD  to solve this problem if
QJ4  varies with time, as listed in the Demand Schedule.

       Pump Curve                Steady Discharges                    Steady Heads                   Demand Schedule

 Q
ft3/s

hp

 ft
Pipe    Q

 ft3/s
Node     H

     ft
Tim
e
 sec

 QJ4

ft3/s

 2.0 35    1 2.485     1 207.11  1.0  0.9
 3.0 32    2 0.659     2 195.24  2.0  1.0
 4.0 28    3 0.141     3 196.09  3.0  1.1

   4 0.626     4 194.98  4.0  1.2
   5 0.174  5.0  1.3
   6 0.815  6.0  1.4

[4]

[2]

(5)

(6)

(2) (3)

[1]

(1) [3]
(4)

QJ3 = 0.5 ft3/s

QJ2 = 0.8 ft3/s

All e = 0.005 in.

6 - 800

6 - 2000

6 - 1
800

6 - 1
600

6 - 800

8 - 1200 QJ4 = 0.8 ft3/s

QJ1 = 1.2 ft3/s WS2 = 205'

P

WS1 = 200'
35'

40'

45'

50'

12.6  The network in the next diagram receives its water supply from a pump.  The tank
at the other end stores water during periods of low demand and supplies water during
periods of larger demand.  The pump characteristic curve is described by  hp = - 0.4Q2 + Q
+ 75.  The demands have been constant for a long time.  At time  t = 0  the demands at
nodes  3  and  4  begin to increase at a rate  dQ/dt = 0.05 ft3/s2  for 20 sec and then become
constant again.

(a)  Describe how to obtain the initial condition for this unsteady problem, including
the preparation of the input data file for  NETWK  to obtain a solution.

(b)  Write the equations that must be solved simultaneously, using rigid-column theory,
to obtain the unsteady solution at several subsequent times:  0.5,  1.0,  2.0,  and
5.0  sec.  For each of these times indicate which variables are unknown and which
are known.

(c)  For the changes shown in the Demand Schedule, solve this problem by modifying
program  UNSTPIP  to include a pump and then applying the new program.

                         Pipe Data                                         Nodal Data                               Demand Schedule

Pipe Length
     ft

Dia.
  in

Node   QJ
 ft3/s

Elev.
   ft

Tim
e
 sec

 QJ2

 ft3/s
 QJ3

 ft3/s

   1   1000  14    1 2.50  350  0.0 1.60 1.50
   2   1500  12    2 1.80  360  0.5 1.70 1.60
   3   1600  12    3 1.60  340  1.0 1.80 1.75
   4   1800  10    4 1.50  335  2.0 1.80 2.00
   5   1400    8  5.0 1.80 2.30
   6   1500    8



[4]

[2]

(5)

(6)

(2) (3)

[1](1) [3]

(4)

1.5 ft3/s

410'

P

1.8 ft3/s

2.5 ft3/s

1.6 ft3/s

450'

12.7  A 12-in-diameter  4000 ft  long pipe branches into two 8-in-diameter pipes.  One is
1500 ft  long which discharges freely into the air at an elevation of  60  ft.  The other is
2000 ft  long with a butterfly valve having a loss coefficient  K = 8000e8(x - 1)  at the
downstream end, in which  x = 0  for a fully open valve, and  x = 1  when the valve is
98%  closed.  The  12-in  pipe is supplied by a reservoir with a water surface elevation that
is  100 ft  above the elevation of the valve.  Do the following:

(a)  Write the equation system whose solution will provide the initial condition for a
transient if the valve is fully open at  t = 0.

(b)  Write the rigid-column equation system to describe the unsteady motion if the valve
is  98%  closed after  5 sec.  Obtain this solution and provide a plot of discharge
vs. time for each pipe and also a plot of head vs. time at the junction.  Use  ∆ t =
0.5 sec  for about  30  time steps.  Assume  e = 0.004 in  for all pipes, and  ν  =
1.41x10- 5 ft2/s.

Elev. = 60'

Elev. = 0'

Valve

8" - 2000'

8" - 
1500'

12" - 4000'

Elev. = 15'

100'

12.8  In the following network the constant demand at node  1  is  QJ1 = 1.5 ft3/s,  but
the demands vary at nodes  2  and  5,  as are listed in the last portion of the file written by
NETWK,  shown below.  Do the following:

(a)  Indicate the appropriate unknown variables for an unsteady-flow solution based on
rigid column theory.

(b)  Write the system of equations that must be solved for these unknowns for each time
step of the solution.

The pipe diameters and lengths, both in ft, are given in the file which follows.  For all
pipes  e = 0.005 in = 0.000417 ft,  and all nodal elevations are zero ft.



[4]

[2]

(5)
(6)

(2)

(3)

[1]

(1)

[3]

(4)

QJ3 = 2.0 ft3/s

QJ4 = 0.8 ft3/s

10 - 3000

QJ1 = 1.2 ft3/s

QJ2

QJ5
10 - 2500

10
 -

 1
50

0

8 - 1400

10 - 1500
14 - 1500

[5]

100'

File written by  NETWK  with option  NETPLT = 4:
    6    6    0    0   32.2  0.14100E-04    0.00100    3
    1    6 5555    1    1   1500.0  1.167  0.000417  6.30
    2    1    1    2    2   2500.0  0.833  0.000417  2.30
    3    2    2    3    3   3000.0  0.833  0.000417  2.00
    4    2    2    4    4   1500.0  0.833  0.000417 -1.00
    5    1    1    4    4   1500.0  0.833  0.000417  2.80
    6    4    4    5    5   1400.0  0.667  0.000417  1.00
        1.20        0.00       88.40
        1.30        0.00       73.11
        2.00        0.00       59.07
        0.80        0.00       75.00
        1.00        0.00       69.62
      - 6.30      100.00      100.00
4 0
2 2 2 1.5 5 1.2
6 2 2 1.7 5 1.5
10 2 2 1.5 5 2.0
20 2 2 1. 5 2.5

12.9   Modify the program  STANDPIP.FOR  so it calls the ODE solver  ODESOL
rather than the subroutine  DVERK.

12.10   Modify the program  STANDPIP.FOR  so the pipeline will lie at a slope  So
from the horizontal.  Then obtain a solution to the following problem with this program: 

The pipeline has a  24-in diameter, a total length of  5000 ft,  with a 36-in-diameter
standpipe located  500 ft  upstream from a butterfly valve.  The diameter of the orifice
opening at the base of the standpipe is  18 in.  The pipeline is supplied by a constant-head
reservoir at its upstream end with a water surface elevation of  40 ft.  The delivery pipe
slopes upward at  5 ft  per  1000 ft  and has a roughness  e = 0.003 in.  Assume  ν  =
1.41x10- 5 ft2/s.  Laboratory tests of the butterfly valve indicate its flow coefficient  Cv
plots as a straight line on semi-log paper, with the valve opening in degrees (the linear
scale), so that  Cν  = 420  at a  10o  opening and  Cν  = 42,000  at a  90o  opening, with

Cν   defined by Eq. C.1 in Appendix C.   Initially the pipeline contains a steady discharge

of  8 ft3/s = 3590 gal/min.  Starting at time  t = 0,  the valve angle changes linearly with
time from its initial steady-flow position to a  3o  position in  10 sec.

12.11   Repeat problem 12.10, assuming there is an opening into the standpipe that
creates a constant minor loss coefficient  K = 2  in the expression  hL = KV2/(2g)  for the
head loss at the entrance to the standpipe, with  V  being the velocity in the standpipe.  (In



this problem one could also study how the maximum head at the valve and the water
height in the standpipe are related to the magnitude of the loss coefficient  K.)

12.12  A standpipe is located  4000 m  downstream from a reservoir;  the reservoir water
surface is  30 m  above the  400-mm-diameter horizontal supply pipe.  The standpipe has a
500 mm  diameter, and the orifice from the main pipe has a  300 mm diameter.
Downstream  2000 m  from the standpipe is a butterfly value, which is initially wide open
but which can be almost entirely closed in  10 sec.  The loss coefficient for this butterfly
valve is  K = 10000e9(x - 1).  Assume the pipe roughness is  e = 0.2 mm,  and use  ν  =
1.31x10- 6 m2/s  for the kinematic viscosity of water.  The pump in the upstream pipe has
operating characteristics given by the data in the table below.  Apply rigid-column theory
to analyze the system for  35 sec  of operation when the valve is closed over a ten-second
interval (x  varies linearly from  0  to  1  in  10 sec).

Pump Characteristic Data

Q,  m3/s 0.20 0.25 0.30
hp,  m 31.0 29.6 29.0

[1]

(1)

(2)

(3)
P

[2]

St
an

dp
ip

e

400 mm - 4,000 m

v = 1.31 x 10-6 m2/s z

50
0 

m
m

350 mm - 2,000 m Elev. = 0 m

ValveH2Do = 300 mm

12.13   The flow from three pumps is delivered to one pipe line, as shown below.  All
pipes have a roughness  e = 0.005 in;  assume  ν = 1.41x10- 5 ft2/s  for water.

(a) If the discharge for a long time is  7.5 ft3/s  and the reservoir water surface
elevations are  WS1 = 50 ft,  WS2 = 45 ft,  and  WS3 = 40 ft,  what are the steady
discharges in pipes  1-3  and the heads at the two nodes?  Assume the elevation of
nodes  1  and  2  is  0.0 ft.  The pump operating characteristics are given in the
tables below.

(b) Determine the unsteady, rigid-column discharges and heads if the pressure at the
downstream end decreases linearly from the steady value to  0 lb/in2  in  5 sec,  and
then during the next  10 sec  increases linearly to  40 lb/in2.  Follow the transient
over  28  sec.

(c)  If the discharge in the downstream pipe decreases linearly from  7.5 ft3/s  to  0  in
5 sec, determine with rigid-column theory the velocities and nodal heads over the
following  30 sec.

                                         Pump  1                              Pump  2                            Pump  3

  Q
ft3/s

hp

 ft
  Q
ft3/s

hp

 ft
  Q
ft3/s

hp

 ft

 2.0 40 0.8 45 2.5 50
 3.0 37 1.2 43 3.0 48
 4.0 32 1.6 39 3.5 44



(1)

(2)
(4)

H1

H2

P2

P3

WS1

WS2

P1

WS3 (3)
10 - 900

6 - 780

8 - 800

15 - 4000

Diameters in inches
Lengths in feet

12.14   A U-tube (This is not a manometer that contains water on both sides of the
manometer fluid and is used to measure pressure differences) taps a pipe at a distance  L1
downstream from a reservoir of constant head  H,  as shown in the sketch.  At a distance
L2  further downstream is a valve that controls the discharge through the pipe.  The

discharge coefficient  cv  in the relation  Q = cv(H2 - z)1/2  or  V1 = cv(H2 - z)1/2/A  is
known for the valve;  in particular, it is known as a function of position during the valve
closure process, and since the position of the valve is known as a function of time,  cv  is
known as a function of time.

Formulate the unsteady flow problem in the pipe and U-tube using rigid-column theory,
i.e., write the system of equations that govern the velocity  V1(t)  in the pipe, the
deflection  x(t) = dV2/dt  of the manometer fluid in the U-tube, as well as  H1(t)  and  
H2(t)  for a problem in which the following variables are known:  H,  the specific gravity
of the manometer fluid  Gm,  the diameter  d  of the pipe,  the diameter  D  of the tube,
L1,  L2,  L = L1 + L2,  the distance  L3  from the pipe to the manometer fluid when  x =
0,  the length  L4  of the manometer fluid in the U-tube, and  cv(t).

Time, sec    1.0    2.0    3.0    4.0    5.0
Coefficient  cv   0.50   0.10   0.05 0.025   0.02

z

H2

H1

L3L1

V1

V2

L4

L2
Air

Datum

x

x

D
Gm = ρm/ρ 

�
vm 

H

12.15   The sketch on the next page shows a 5-pipe network.  During periods of low
demand water is pumped into the upper reservoir through pipe  5,  but during periods of
larger demand the pump is turned off, and the valve in the bypass line around the pump is
opened so the upper reservoir can supply part of the demand.  The low demands are shown
by the outward arrows at the nodes, and the larger demands are shown thereafter in
parentheses.  Assume the elevation of nodes  1, 2,  and  3  is  300 ft,  that the pipe



roughness  e = 0.002 in,  and the kinematic viscosity of the water is  ν = 1.41x10- 5 ft2/s.
Do the following:
(a)  Prepare the input to  NETWK  to determine the steady flows during the period of

low demand.
(b)  List the changes that should be made to this input file to analyze the network

performance in response to the larger demands.
(c)  Write the system of equations that would govern the solution of both steady state

problems in parts (a) and (b).  These should be general equations that would in
principle allow pipe diameters or pump heads to be determined.

(d)  Applying rigid-column theory, write the equations to be solved to obtain the
unsteady discharges and nodal heads for this network if the demands change with
time.  What equation(s) will change, depending on whether the pump is operating?

(e)  Obtain an unsteady solution with  UNSTPIP  when the pump is operating, the
demands at all three nodes change linearly from the low values to the high values
over  30 sec and thereafter remain constant over the next  70 sec.

Pump Characteristic Data

Q,  ft3/s 1.0 1.5 2.0
hp,  ft 50 48 45

[1]

(1)

[3]

(5)

(4)

(2)

(3)

P 520'

[2]

8 
- 2

50
0

8 - 2
000

0.5 (1.7) ft3/s

0.6 (1.8) ft3/s

8 - 1500

500'

Valve

8 - 1200

10 - 1200

0.3 (1.5) ft3/s

12.16  An  8-in  diameter (e = 0.002 in) horizontal pipeline obtains its water supply from
a reservoir with a constant head of  50 ft  above the pipeline.  It has a closed cylindrical
tank, with a total volume of  100 ft3 and a cross-sectional area of  20 ft2,  connected to it
at a pipe bend which is  6000 ft  downstream from the reservoir.  The pipe continues an
additional  500 ft  to a valve.  The pipe that connects the pipeline to the closed tank has a
4-in  diameter and is  100 ft  long.  The downstream valve has been open for a long time,
and at  t = 0  it is closed so the discharge through the valve is reduced linearly from the
steady-state discharge to zero in  5 sec.  The local loss coefficient for the valve is a
function of the discharge through the valve in the form  K = 8000/e8Q.  During steady
flow the tank is half full of water and half full of air;  when the water surface elevation in
the tank is at this middle position, it has the same elevation as the centerline of the
pipeline.

Complete the following tasks:
(a)  Compute the steady-state head in the pipeline at the bend, which is node  1,  when

the valve is open.  The steady discharge is  Qo = 1.523 ft3/s.
(b)  Determine the pressure and density of the air in the tank, assuming any changes are

adiabatic from an initial temperature of  58 oF  and pressure of  14.7 lb/in2

absolute.



(c)  Write a system of equations, using rigid-column theory, to describe the unsteady
flow in the pipeline and surge tank that is caused by closing the valve in  5 sec
(i.e. reducing the discharge at the end of the pipeline linearly from  Qo  to  0  in 5
sec).

(d)  Determine the time-dependent flow in the pipe lines and the surge tank.

Air

50'

[1]

(1)

[3]

(2)

(3)

[2]

8 - 6000

8 
- 

50
0

Water

Closure in 5 sec

4" = 100'

Valve

12.17   Repeat problem 12.16, assuming that the total tank volume and cross-sectional
area are reduced by one-half to  50 ft3  and  10 ft2,  respectively.

12.18   This network is supplied by two pumps.  A  24-in-diameter standpipe exists
downstream from the second pump, with a  6-in-diameter orifice at the entrance to the
standpipe.  Assume the nodal elevations are all zero feet and all pipes have roughnesses  e =
0.005 in.  The demand at node  4  is reduced by  0.1 ft3/s  per second until it becomes
zero.  Simulate with rigid-column theory the network performance over  10 sec,  using  
0.5 sec  increments.

                         Pump  1                             Pump  2

   Q
ft3/s

hp

 ft
   Q
ft3/s

hp

 ft

 1.5 60 2.0 80
 2.5 52 3.0 72
 3.5 41 4.0 60

[1](1)

[3]

(5)

(6)

(4)

(2)

(3)

P2

75'

[2]

10
 - 

15
00

14 - 2700

2.5 ft3/s

1.8 ft3/s St
an

dp
ip

e

80'
10 - 6

000

2.0 ft3/s

10 - 4000 (7)

12 - 2000

10
 - 

10
00

P1

2.2 ft3/s

14 - 300

(8)
[4]

[5]

12.19   Determine the unsteady discharges and heads in the network in problem 12.18
when the demand at node  2  is reduced linearly in time to zero in  12.5  sec.

12.20  In problem 12.18 the demand at node  3  changes linearly in time from  2.0 ft3/s
to  2.5 ft3/s  and then to zero.

12.21   Program  SURGNET,  originally written to analyze the network in Example
Problem 12.4, calls on  DVERK  to solve nine simultaneous first-order ODEs for the



unsteady pipe discharges.  Modify this program so that each call to  DVERK  requests the
solution of only one first-order ODE.  (In using  DVERK  in this way, note that the
argument  IND  returns a value of  3  after a solution has been completed over the specified
interval in anticipation that it will be called to continue the solution over additional
increments of the independent variable.)

12.22  Modify program  SURGNET,  used in Example Problem 12.4, so  ODESOL  is
used in place of  DVERK  to solve the system of ODEs.

12.23   Modify the program that was developed in problem 12.22 so that each call to
ODESOL  requests the solution of only one first-order ordinary differential equation.

12.24  Modify the program that was developed in problem 12.23 so that the solution to
the single first-order ODE is obtained by  RUKUST  rather than  ODESOL  or  DVERK.

12.25  For the pipe network shown below the pressure at node  1  is  85 lb/in2,  and all
pipes have a Hazen-Williams coefficient of  120.  The network lies in a horizontal plane at
an elevation of  1100 ft.  Assume the wave speed in all pipes is  3000 ft/s.

(a)  Obtain the steady state solution.
(b)  Find the maximum and minimum pressures, their location and their time of

occurrence if the demand at node  12  is instantly increased to  650 gal/min,  and
elastic effects are included in the analysis.

(c)  Ignore elastic effects and increase the demand at node  12  linearly to  650 gal/min
over  4 sec.
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12.26  For the network of problem 12.25, predict the consequences of a sudden stoppage
of the  1650 gal/min  input to the network at node  1.

12.27   For the network of problem 12.25, find the maximum and minimum pressures,
their location and time of occurrence if the valve at the downstream end of pipe  7  were
suddenly closed.



12.28  For this network the pipe roughnesses are all  e = 0.02 in,  and the wave speed for
each pipe is  3300 ft/s.  The pump curve for the one pump in pipe  69  is defined by  hp =

- 0.5Q2 - 0.3Q + 90, with  Q  in ft3/s and  hp  in ft.  The pump runs at  1750 rev/min,

and for this unit  Wr2 = 40 lb-ft2.
(a)  Obtain the steady state solution.
(b)  Assuming the brake horsepower for the pump is constant at  40 hp,  determine the

consequences of pump power failure.
(c)  Ignore elastic effects and determine the consequences if the head supplied by the

pump dropped to zero in  4 sec.
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12.29   For the network in problem 12.28, find the maximum and minimum pressures,
their location and time of occurrence if the valve at the downstream end of pipe  7  is
suddenly closed.

12.30   Solve problem 12.28 if pipe  23  is removed and the demand at node  99  is
reduced to  1.0 ft3/s.

12.31   In problem 12.30 determine the consequences of sudden valve closure at the
downstream end of pipe  88.

12.32  For the network shown atop the next page, all pipes have  roughness  e = 0.008 in
and wave speeds of  2700 ft/s.   The nodes are all at elevation  1050 ft.  The pump curve
for pipe  1  is  hp = - 1.5Q2 - 1.5Q + 170,  with  Q  in ft3/s  and  hp  in feet.  The pump

runs at  1180 rev/min,  and for this unit  Wr2 = 50 lb-ft2.
(a)  Obtain the steady state solution.
(b)  Assuming the brake horsepower is constant at  45 hp,  determine the consequences

of  power failure.
(c)  Let the head of the pump decrease to zero over  5 sec,  ignore elastic effects, and

determine how the pressures and discharges decrease throughout the network.
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12.33   For the network in problem 12.32, find the maximum and minimum pressures,
their location and time of occurrence if the valve at the downstream end of pipe  14  is
suddenly closed.



CHAPTER 13
_________________________________________________________________________

TRANSIENT CONTROL DEVICES AND PROCEDURES

Transients in a pipeline system can cause objectionably high or low pressures.
Excessively high pressures can damage pumps, valves, and other pipeline appurtenances, as
well as rupturing the pipe itself.  However, "failure" may refer only to the inability to
meet a given standard of performance;  thus it is possible for a failure to occur in the
absence of any physical damage.  For example, it may be required under all conditions that
the pressure in a pipeline remain above atmospheric pressure to prevent air from entering
the lines through vacuum valves.  If an analysis indicated that the pressure would drop
below atmospheric pressure for even a single operating condition, the pipeline has "failed."

Excessively low pressures can lead to the release of large amounts of dissolved air, and
extensive vaporization of the liquid can occur if the pressure drops to the liquid vapor
pressure.  The resulting low pressures, possibly enhanced by external pressures, could
cause the pipe to collapse.  Also, a vapor cavity closure event occurring at some point in
the pipeline can produce high shock pressures which could lead to failure of the pipe.
These cavity closure shocks are difficult to predict owing to the difficulty of simulating the
actual physical phenomena occurring in the pipe.  The approach outlined in Section 10.7
appears to be the most commonly used method of simulating this complex phenomenon.
Brittle pipe materials such as concrete are particularly susceptible to this type of problem.
For example, some types of reinforced concrete pipe contain a thin steel cylinder which is
lined with cement mortar and then wrapped under tension with reinforcing wire (see Section
8.3).  If pressure shocks cause the fracture and spalling of the internal cement lining, the
thin steel cylinder has little support to prevent wall buckling and collapse.  Even under less
dramatic circumstances the loss of the mortar lining would potentially expose the steel to
corrosion which could ultimately undermine the integrity of the pipe.

Another type of transient condition which can cause problems in a pipeline is vibration.
A periodic pressure variation could excite some component of the pipeline which possesses
a natural frequency near the pressure fluctuation frequency.  Under this condition, large
stresses, strains, and displacements could occur which at best would be undesirable and at
worst could cause system failure.  Because a good understanding of these phenomena
requires a knowledge of the natural frequencies of the system components and how they are
related to the periodic pressure fluctuations, the method of characteristics may not be as
appropriate as other existing techniques for this analysis.  Therefore, the analysis of
periodic transient flow will not be addressed in this work.  The reader may consult Wylie
and Streeter (1993) and Chaudhry (1987) for details.

13.1 TRANSIENT PROBLEMS IN PIPE SYSTEMS

In this section we explore the most common causes of transient problems in pipe
systems.

13.1.1. VALVE MOVEMENT
Probably the most common and well-known cause of transient flow problems is the

movement of a valve.  Any valve movement causes pressure waves to propagate through
the system.  The magnitude of the pressure waves depends on the type of valve, the way in
which the valve is moved, the hydraulic properties of the system, and the elastic properties
and restraint of the pipe system.



The proper evaluation of the impact of valve movement on the pressures in a system
depends strongly on the loss characteristics of the valve.  While there are charts and graphs
available to estimate the effects of valve closure, it is far more reassuring to be able to
calculate the effects in a specific situation.  We have shown how this can be accomplished
in Section 10.4.

13.1.2. CHECK VALVES
Check valves can cause large transient pressure differences if the flow backwards

through them can occur before the valve closure is complete.  Such a case is documented
by Purcell (1997), in which check-valve slam was caused by an air chamber at the pump
discharge.  The high discharge pressure, maintained by the air chamber after pump power
failure, caused the pump discharge to drop to zero rapidly, in turn causing the check valve,
presum-ably undamped, to close abruptly.  In this situation the slamming check valve
creates the same problem that is caused by sudden valve closure.

Most modern check valves do not slam.  In some cases a spring or weight causes the
check valve to close at the instant forward flow ceases, thereby preventing the reverse-flow
problem.  Another type closes slowly, regulated by a damping mechanism, to bring the
reverse flow to rest gradually.

13.1.3. AIR IN LINES
Filling empty lines, particularly in pumped systems, can produce velocities that are well

above the expected steady-state velocities.  At the low pump head that generally exists early
in the filling process, the pump is operating on its curve at a point where the discharge is
quite large.  If the line ends at any device which acts as a flow obstruction, as Fig. 13.1
shows, e.g., a partially-closed valve or an open air-vacuum valve, then a serious water
hammer situation can occur.

Pump

Motor

Air

Air

Vacuum valve

Figure 13.1  Filling an initially empty pump discharge line.

The air being vented from the pipe ahead of the oncoming water will leave the pipe
much more easily than will the water behind it.  When the last of this air leaves the pipe
and the water hits the obstruction, there is a significant drop in water velocity which can
cause a large increase in pressure.  Research at Colorado State University by Kolp (1968),
Andrews (1970), Diaz (1972), and Berlant (1974) has demonstrated the potential severity of
the consequences of air exhaustion from pipelines.  A Johns-Manville Corporation (1977)
technical report nicely summarizes their work.

Another situation wherein air exhaustion can cause significant pressures is depicted in
Fig. 13.2.  Here the pump discharge column is initially empty, having been vented to the
atmosphere by an air-vacuum valve.  The water in the pipeline is restrained by a check
valve.  When the pump starts up, the water rushes up the discharge column and forces the



air out through the open air-vacuum valve.  When the last air leaves and the valve slams
shut, large water hammer pressures can develop.
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Figure 13.2  Filling a pump discharge column behind a closed check valve.

One other notable situation is a consequence of shutting down a pipeline in such a
manner that air-vacuum valves open and large amounts of air enter the line. Upon
restarting the flow in the line, care must be taken to insure that the air exhaustion  
problems discussed above do not occur here. This situation is insidious in that, after the
pipeline has been successfully filled, it is easy to overlook the fact that significant amounts
of air can be reintroduced by subsequent operation of the line.

13.1.4. PUMP STARTUP
As the pump starts up and comes "on line," a positive pressure surge is created in the

downstream line.  The magnitude of the pressure increment depends on the sudden increase
in velocity which occurs when the check valve is forced open and the liquid in the pipeline
begins to move.  When there is no air in the line, the pressure increase is generally not
large and does not exceed the pump shutoff head.  If the pump has an objectionably high
shutoff head, then there is a problem.  Determining these pressures for various startup
procedures using PROG8 was discussed briefly in Section 11.2.

If there is air in the discharge column or in the line, then substantial transient pressures
can be developed.  We have already discussed the problem of air in the discharge column.
Martin (1976) analyzed this problem and concluded that head increases greater than ten
times the original head can be generated under certain circumstances.

13.1.5. PUMP POWER FAILURE
Systems in which the static lift is large and the pipeline profile rises rapidly

immediately downstream of the pumps can be subjected to the most severe transients upon
power failure.  If power is cut off from the pumps suddenly, either accidentally or purpose-
fully, the pressure just downstream of the pumps drops rapidly, and this pressure drop
propagates downstream at the wave speed (see Fig. 13.3).  This drop in pressure can cause
extensive column separation and lead to subsequent cavity closure shocks of large magni-
tude.  In addition, a flow reversal in the system may also occur and lead to significant over-
pressures in the system, generally in the vicinity of the pumps, if the transient is not
properly controlled.

If the pumps are booster pumps without a bypass line, power failure will initially cause
the pressure to increase on the suction side of the pumps and drop on the discharge side.



Subsequent reflections from the upstream and downstream reservoirs may then cause
unanticipated high or low pressures on either side of the pumps.

These situations are the most common causes of transient problems in pipe systems.
Other situations are often combinations of these basic ones.  We will now examine each of
these situations individually and investigate the procedures and devices which can be
employed to prevent objectionably high or low pressures.

Steady state EL - HGL

t=
4.

5
se

c.

Column
Separation

Figure 13.3  Propagation of a negative wave resulting from pump power failure.

13.2 TRANSIENT CONTROL

Transient pressure waves occur in pipelines because of changes in the fluid velocity that
are commonly caused, for example, by valve movement, pump power failure, and/or
column separation.  Because the change in pressure is directly proportional to the change in
velocity, the avoidance of sudden velocity changes will generally prevent serious transient
pressures from developing.  Most control devices and procedures are designed to function in
a particular application to achieve this goal.  We will now see how this approach can
mitigate or sidestep these problems.

13.2.1. CONTROLLED VALVE MOVEMENT
In Section 10.4 we demonstrated how a valve closure schedule could affect the max-

imum transient pressure.  For a gate valve we saw that the last  2-5%  of the valve closure
motion was critical in determining the maximum pressure.  Different results will be found
for other kinds of valves.  The best way to determine the effect of a valve closure schedule



on transient pressures is to obtain loss coefficients for the valve at various openings and
conduct computer simulations of the system behavior in response to various proposed
closure schedules.  Once the proper closure schedule has been determined, a control system
must be devised to implement it.  The cost and availability of valve closure mechanisms in
relation to funding limits will narrow the exploration of various closure schedules.  For
example, if the only option in closing a valve is to use a constant-speed motor, then two-
rate closure schedules are not relevant to the study.

13.2.2. CHECK VALVES
The best check valves to use do not slam shut but instead close at the moment when

forward flow ceases.  Even in this case there may be some elastic energy in the system
which will cause a pressure surge at the check valve.  If a damped check valve is used, it
must be treated in the same manner as a closing valve during the back flow period.  It is
important to assure that the valve either closes quickly before a reverse flow can become
large or closes slowly over a time interval that is considerably greater than the critical time
of closure  2L/a.  Otherwise an objectionably high pressure could occur at the time of
check valve closure.  Unfortunately, this problem is difficult to analyze;  to do so requires
a knowledge of the back-flow loss characteristics of the valve, which is rarely available.

13.2.3. SURGE RELIEF VALVES
On occasion it is necessary to close valves rapidly or create other obstructions to the

flow which cause abrupt decreases in velocity and result in high transient pressures.  In
these cases the most economical solution is often to use a surge relief valve.  As Weaver
(1972) describes, these valves open when a prescribed pressure is exceeded;  they range
from relatively inexpensive spring-loaded devices to rather expensive and complicated
systems.

The surge relief valve is generally located adjacent to the device that is expected to cause
the high pressure.  The purpose of the valve is to provide an escape for the flowing liquid
so that a sudden change in velocity and the consequent high pressures do not occur.  A
high-quality surge relief valve has little inertia in its actuating mechanism, so it can open
almost instantaneously.  It can be adjusted to operate to minimize the loss of liquid from
the system and yet avoid unnecessarily high pressures during the closure process.  These
requirements can lead to a rather expensive valve which must be adjusted in the field for
proper performance.

Large pipelines can be fitted with small surge relief valves because these valves can
tolerate extremely high velocities for a short time period.  To explore further the effective-
ness of surge relief valves, we will look at an example.

Example Problem 13.1
This  30-in  steel pipeline carries  11,020 gal/min  between the two reservoirs.  The

gate valve closes in  2 sec,  which is half of the critical closure time.  The  8-in  surge
relief valve is set to open when the pressure exceeds  130 lb/in2,  and it will then close  8
sec  later.
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The first analysis of the system assumed a sudden valve closure and an inoperative surge
relief valve.  The other two analyses treated cases with the relief valve (a) opening fully or
(b) opening only  50 %.

With sudden valve closure and an inoperative surge relief valve, we obtain a typical
nearly-square wave form similar to the one found in Chapter 7.  When the surge relief
valve is operative, the gate valve is closed in two seconds.  If the surge relief valve only
opens  50%  of its full stroke, some pressure attenuation is achieved.  However, to achieve
a sig-nificant pressure reduction it is necessary to open the valve completely.  The surge
relief valve has reduced the potential surge pressure from over  500 ft  to less than  200 ft.

The surge pressure can be regulated by the choice of surge relief valve size, opening
pressure, percent of initial opening, and/or by the choice of closure schedule.  Some surge
relief valves are designed to close at the end of the surge in direct response to the pressure
reduction in the line (spring-loaded).  Others are designed to close after a specified (approxi-
mate) time interval has passed.  Simulating well the behavior of a particular valve requires
an intimate knowledge of the operational characteristics of that valve.

*                              *                              *

13.2.4. AIR VENTING PROCEDURES
Filling empty lines

The key to filling the empty lines of a pipeline system safely is caution.  A means
must be provided to introduce liquid slowly into the system at velocities of  1.0 ft/s or less
(Johns-Manville Corp., 1977).  Air release and air-vacuum valves must be located so that
all air can be removed from the system slowly.  Normally valves must be provided at the
ends of lines so each line can be pressurized and all air can be forced out.  This feature is
also needed so that pressure tests can be conducted for leaks.  Whatever the situation,
operational procedures for the system must provide a way to control the rate of change of
velocity so that severe transients do not occur.

The problem of air in the pump discharge column can be solved by replacing the
vacuum valve on the pump discharge line with a valve which opens on sensing a vacuum
but then closes slowly after the air is exhausted.   Such a valve, much like a surge relief
valve, can also be set to open at a prescribed high pressure, thus preventing the pump from
ever operating at shutoff head.

In some pumped pipelines it may be necessary to provide a discharge bypass back to the
sump to avoid the need to operate the pump under no-flow conditions.  This bypass can
prevent high pressures from developing, and it can also reduce the electrical load on the
pump motor and the heat buildup in the pump itself.  This feature is almost always
required for axial-flow pumps.

Removing Air From Lines
Proper location and sizing of air-release and air-vacuum valves is an important

consideration in pipeline design.  Lescovich (1972) discusses this topic thoroughly.  Seipt
(1974) describes some operating techniques and addresses problems related to installation
that can minimize air-related problems.

If the line is mostly filled with only relatively small pockets of air created by a
shutdown, caution must still be used when the pumping system is restarted.  The best
approach is first to fill the empty lines by using the technique above and not resume
normal operation until every air-vacuum and air-release valve has closed.

13.2.5. SURGE TANKS
Surge tanks can be used to mitigate both high and low pressures.  They may act as

temporary storage devices for excess liquid which has been diverted from the main flow.
Such a diversion permits a much more gradual temporal change in velocity in the pipeline
and a reduction in the magnitude of transient pressure waves.  Surge tanks can also supply



liquid to the pipeline to prevent excessive deceleration and objectionably low pressures.
They may also act as damping devices on a pipeline where velocities surge back and forth
frequently.  There are numerous different types of surge tanks, each tailored to a particular
purpose.  The types that are most commonly used to protect pipelines are open-end, one-
way, vented surge tanks, and air chambers.  We will address each in turn.

Open-end surge tanks
The open-end surge tank is the simplest of the various types of tanks.  Unfortunately, as

a consequence of this simplicity, it is not commonly used in pipeline systems.  The tank
is connected to the pipeline so that the steady-state  EL-HGL  passes through the sur-face
of the liquid in the tank.  Any fluctuation in pressure at the surge tank connection causes
flow to or from the tank, thereby moderating the pressure surges in the system.  Unless the
tank is quite tall and possibly rather large, it cannot accommodate large or extended pressure
fluctuations.  It is this disadvantage that limits its usefulness.  It finds its greatest
application in hydroelectric power projects where the damping features are valuable and the
pressures are such that a reasonably sized tank, chamber, or tower can be employed.  The
cost of this type of project is generally so large that even a large surge tank or air chamber
can be justified.

One-way surge tanks
In pumped flows in pipelines the one-way surge tank is commonly used because the

EL-HGL  is usually too far above the pipeline to employ an open-end surge tank.  The
one-way surge tank is used to prevent objectionably low pressures downstream from it.
This tank can not prevent high pressures because the only flow is from the tank.  A check
valve in the connection prevents any return flow to the tank.

During normal steady-state operation the one-way surge tank is isolated from the
system by the check valve.  Figure 13.4 shows a typical one-way surge tank configuration.
When transients occur which cause the pressure head at the tank connection to drop below
the liquid level in the tank, the check valve will open, and flow from the tank into the line
will occur.  As a result, the liquid column is not required to decelerate so rapidly, and the
pipeline EL-HGL is fixed nearly at the surge tank liquid surface.  Figure 13.5 shows
qualitatively how a series of one-way surge tanks placed along an uphill pipeline can
prevent the column separation that is a common result of a pump power failure.

Hs

Altitude valve
Isolation valve

Check valve

A B

Qs

Figure 13.4  Diagram of a one-way surge tank.



Steady state EL - HGL

Figure 13.5  One-way surge tanks in a pumped pipeline.

To include one-way surge tanks in a transient analysis, it is necessary to model them
with a particular set of interior boundary conditions.  Input data to a computer program
must specify the locations of the tanks, their geometry, and their hydraulic characteristics.
We will now develop the equations to simulate the operation of these tanks.

We first assume that the surge tank is always sited at the junction of two series pipes.
This is not a restrictive assumption, because we can always divide any pipe into a
convenient number of series pipes, "breaking" the pipe at any convenient location.
Referring to Fig. 13.4, we can write the following equations for the internal boundary
conditions:

Upstream C+ VPA
= C3 − C4HP (13.1)

Downstream C– VPB
= C1 + C2HP (13.2)

Conservation of mass VPA
AA + Qs = VPB

AB (13.3)

Work-energy Qs = Cout Aout 2g Hs + zAB − HP( ) (13.4)

Here  Cout  is the loss coefficient for the connecting pipe,  Aout  is the cross-sectional area
of that connection,  Hs  is the height of the tank liquid surface above the centerline of the
pipeline, and  zAB  is the elevation of the center of the pipeline.  The  HP's are not
subscripted because the values of the head at locations  A   and  B  are identical.  To
determine when to activate this internal boundary condition, we continually monitor the
pressure head at the surge tank connection.  When the pressure head drops below the liquid
level in the surge tank, flow from the tank begins, and the four equations must then be
activated to simulate this condition.

In Eq. 13.4 the short-tube orifice equation describes the flow from the tank.  The values
of  Cout  can be calculated from the more readily available values for  KL  for the
components of the tank connection by using

Cout =
1

1.0 + KL∑
(13.5)



in which  ΣKL  is the sum of the loss coefficients for the entrance, bends, check valve, and
isolation valve, and  1.0  is the coefficient associated with the loss of one velocity head as
the fluid from the tank enters the flow in the pipe.  The pipe friction coefficient  fL/D  for
the connector must be included if it is long.  For a very well-designed connection  Cout
could be as large as  0.80;  for a poorly designed connection  Cout  may be as low as  
0.40.

In this surge tank model we have five unknowns but only four equations, so we need
another equation.  We resolve this problem by monitoring the height  Hs  of the liquid in
the tank.  Calling the initial height Hs0

, the height  Hs  at any later time can be found by

direct integration via the equation

Hs = Hs0
−

1
As

Qs
0

t

∫ dt (13.6)

in which  As  is the cross-sectional area of the surge tank.
However, instead of performing the integration, we will keep a running record of the

liquid height by finding the change at each time step and recomputing the new height.
Thus  Hs  becomes known in the equation set.  The relation which does this is

Hs t + ∆t( ) = Hs t( ) −
∆t

As
Qs t( ) (13.7)

Here we have treated the flow from the tank as a quasi-steady flow by neglecting inertial
effects and assuming that the steady-flow equation of motion applies.

Solving Eqs. 13.1 through 13.4 simultaneously for the discharge from the tank, we
obtain

Qs = 0.5 C5 − 1 + 1 +
4C6

C5
2









 (13.8)

in which

C5 =
2gCout

2 Aout
2

C2 AB + C4 AA
(13.9)

C6 =
2gCout

2 Aout
2

C2 AB + C4 AA
C1AB − C3AA + C2 AB + C4 AA( ) Hs + zAB( )[ ] (13.10)

Once the surge tank begins to empty, the value of  C6  is continually tested to determine
whether  Qs  is going to become negative.  If  C6 < 0,  then  Qs  is set to zero, thereby
closing the surge tank check valve.  An example is presented to show the input data that
are required for a one-way surge tank and to illustrate their effect on transient pressures.

Example Problem 13.2
Two five-stage Johnston  14BC  pumps with  10-in  impellers (see Appendix B) are

used to pump water from a river at elevation  75 ft  to a reservoir with a surface elevation
of  200 ft.  The ductile iron pipeline is  12 in  inside diameter with a friction factor of
0.017  and a wave speed of  3000 ft/s.  The pipeline profile is shown on the next page.

The one-way surge tank is located at the end of the uphill run of the pipe from the pump
station.  The tank is connected to the pipeline with a short  12-in-diameter pipe
incorporating a slant-disk check valve and an isolation gate valve.  The connection loss
coefficient is estimated to be  Cout = 0.6.
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The input data file for the final analysis follows:

DEMONSTRATION OF PROGRAM NO. 8 - INPUT DATA FILE "EP132.DAT"
USE OF A ONE-WAY SURGE TANK TO ELIMINATE COLUMN SEPARATION
&SPECS NPIPES=2,NPARTS=5,IOUT=1000,NSURGE=1,HRES=200.,
       HSUMP=75.,HATM=33.,ZEND=175.,TMAX=50.,QACC=0.5,AIR=F,
       PFILE=F,HVPRNT=T,PPLOT=F,GRAPH=T/
1  12.  2500.  0.017  3000.   80.
2  12.  2500.  0.017  3000.  175.
&PUMPS NPUMPS=2,NSTAGE=5,RPM=1175.,WRSQ=125.,
       QN=0.,200.,400.,600.,900.,1300.,
       HNSQ=43.,40.,38.,36.,26.,0.,
       TNSQ=4.,4.8,6.,7.2,8.,4./
1  25.  3.  12.  0.6
&GRAF NSAVE=4,IOUTSA=5,PIPE=1,1,2,2,NODE=1,4,1,3/

A one-way surge tank  25 ft  high and  3 ft  in diameter will meet the requirements.
The minimum pressure of  1 lb/in2  occurs in the horizontal section of pipe downstream of
the surge tank.  A plot of the maximum and minimum pressures along the pipeline is
presented on the following page.

*                              *                              *

13.2.6. AIR CHAMBERS
An open-end surge tank placed on the discharge side of a pump station would be an

excellent device for the control of both positive and negative surges.  However, because the
discharge pressure of the pumps is often quite high, the surge tank would have to be very
tall to extend above the  EL-HGL.  This height requirement generally causes the open-end
surge tank to be uneconomical, not to mention unsightly.  However, there is a device
which can play the role of an open-end surge tank without the height problem.  The device
is an air chamber (sometimes called a hydro-pneumatic tank, an air bottle or a shock trap).
It is a relatively small pressurized vessel, containing both air and liquid, which is connected
to the discharge line from the pump station.

The primary purpose of the air chamber is to prevent negative pressures and column
separation in the pipeline downstream of the pump station during power failure rundown.
However, the device can be an excellent positive surge suppresser as well.  As Fig. 13.6
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shows, the chamber is sealed and compressed air overlays the liquid in the chamber.  After
power failure occurs, liquid is drawn into the pipeline from the chamber, permitting the
flow in the pipeline to decelerate more slowly and keeping the pressure relatively high.  As
the amount of liquid in the chamber decreases, the air volume expands, decreasing the
pressure at the pump discharge.  The rate at which the air pressure drops is dependent on
the
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Figure 13.6  Diagram of an air chamber and its appurtenances.

Steady state EL - HGL

Air chamber

Figure 13.7  Propagation of a negative wave after pump power failure with an air chamber at
the pump.

initial air volume, the rate at which liquid is drawn from the chamber, and the thermody-
namic process which the air undergoes.  This process simulates the dropping liquid level of
an open-end surge tank and in many cases is able to bring the pipeline flow gently to rest



without causing objectionably low pressures.  Figure 13.7 illustrates how the air chamber
affects the pressure profile during a transient incident.  Compare this behavior with the
scenario shown in Fig. 13.3.

The air chamber must be sufficiently large to supply the needs of the pipeline without
emptying and permitting air to enter the pipeline.  Also, the initial air volume must be
large enough to prevent the rate of pressure drop from being excessively high.  An initial
air volume that is too small will cause the pump discharge pressure to behave as if the air
chamber is absent, thereby giving little or no assistance in preventing low pressures.
When the flow finally reverses and begins to move back toward the pumps, the check valve
closes (actually it usually is already closed), and flow occurs into the chamber.  To provide
some damping for the system, the losses for flow into the chamber are deliberately made
higher than the losses for flow from the chamber.  This can be done by using a nozzle
similar to the one shown in Fig. 13.6 or by having two connections to the chamber, one
with a low loss for outflow and one with a higher loss for inflow.  Generally, good
damping can be accomplished without causing high pressures during the backflow phase.

Occasionally the air chamber alone is not adequate to prevent column separation.  Low
pressures can occur at local summits along the pipeline where the effect of the air chamber
at the pump is inadequate.  In these cases a one-way surge tank at each summit can be used
to "drape" the  EL-HGL  above the pipeline on both sides of the summit.  Figure 13.8
illustrates this technique.

The set of equations describing the behavior of an air chamber is rather complex.  We
will assume that the air chamber is at the upstream end of the pipeline so the boundary
condition at this point will consist of the relations for both the pumps and the air chamber.
We will assume that all of the pumps fail simultaneously.

Steady state EL - HGL

Air chamber

Figure 13.8  Propagation of a negative wave after power failure with an air chamber and a one-
way surge tank.

The appropriate equations are the following:

C– VP = C1 + C2HP (13.11)

Conservation of mass NpuQ + Qc = VP A (13.12)



Pump work-energy Hsump + hp = HP (13.13)

Chamber work-energy Qc = Cout Aout 2g Hc − HP( ) (13.14)

Pump head increase hp = N2Nst C7
Q

N
+ C8







(13.15)

In these equations  Hc  is the head in the chamber,  Cout  is the outflow coefficient,  Aout
is the outflow cross-sectional area, and  Qc  is the discharge from the chamber.

We have six unknowns in these five equations, so another relation is required.  This
equation will describe the thermodynamic process that the air in the chamber undergoes.
The most commonly used process is the polytropic process

p

γ η =
po

γ o
η (13.16)

in which  po  and  γo   are the absolute pressure and specific weight of the air in the
chamber under steady-flow conditions,  p  and  γ  are those values at a later time, and  η  is
the polytropic exponent, generally chosen to be  1.2.  There is some disagreement over the
appropriateness of this value.  Graze (1972) and Graze et al. (1976) have shown that this
process does not describe precisely the thermodynamic behavior of the air.  One compli-
cating feature during the air expansion process is that the freezing temperature of the liquid
is often reached.  The latent heat released by the freezing of condensed liquid vapor
complicates the thermodynamic process beyond the simplicity of the polytropic model.
However, in light of the many other uncertainties in the analysis, we will continue to use
the polytropic equation until a better model that is reasonably easy to use appears.

With  Hatm  as the atmospheric pressure head, the polytropic equation can be written

Hc + Hatm − zP( )γ w

γ η =
Hco

+ Hatm − zP( )γ w

γ o
η (13.17)

If the initial air volume is  Vco
  and the volume at a later time is  Vc ,  the equation can be

written as

Hc = zP − Hatm + Hco
− zP + Hatm( ) Vco

Vc











η

(13.18)

in which the air volume at any time can be calculated in a way that is similar to the fluid
volume computations for the one-way surge tank:

Vc t + ∆t( ) = Vc t( ) + Qc t( ) ∆t (13.19)

Now we solve the six equations simultaneously.
For the most general case we assume flow continues both through the pumps and from

the chamber.  Knowing  Vc   from Eq. 13.19, we can calculate  Hc  from Eq. 13.18,
reducing the number of unknowns to five.  Solving the five equations for  Qc  produces



Qc = 0.5C5 1 − 1 −
4C6

C5
2









 (13.20)

in which

C5 =
2gCout

2 Aout
2 N NstC7

Npu − N Nst AC7C2
(13.21)

and

C6 = 2gCout
2 Aout

2 − Hc +
Hsump + N Nst /Npu( ) C1C7A + N NpuC8( )

1 − N Nst AC2C7( ) /Npu















(13.22)

After calculating  Qc,  Q  is found from

Q =
1

Npu
AC1 + AC2 Hc −

Qc
2

2gCout
2 Aout

2









 − Qc













(13.23)

If  Q ≥ 0,  then the solution is acceptable, and the remaining unknowns may be calculated
from Eqs. 13.11  through  13.15.

If  Q < 0,  then the pump check valves must be closed, and  Q  must be set to zero.
Now  Qc  must be calculated from

Qc = 0.5C5 − 1 + 1 +
4C6

C5
2









 (13.24)

where

C5 =
2gCout

2 Aout
2

C2 A
(13.25)

and

C6 = 2gCout
2 Aout

2 Hc +
C1

C2









 (13.26)

Once the pumps are off line and the check valves are closed, they are never reopened.
Flow from the air chamber will continue until the flow reverses its direction.

To represent flow into the air chamber correctly, a different set of equations must be
solved.  With flow into the chamber, the pumps are not a factor, so the following
equations are used:

C– VP = C1 + C2HP (13.27)

Conservation of mass Qc = VP A (13.28)

Chamber work-energy Qc = − Cin Ain 2g HP − Hc( ) (13.29)

Here  Cin  is the discharge coefficient for flow into the air chamber, and  Ain  is the inflow

cross-sectional area.
Solving these equations simultaneously for  Qc  leads to



 Qc = 0.5C5 1 − 1 −
4C6

C5
2









 (13.30)

in which

C5 =
2gCin

2 Ain
2

AC2
(13.31)

and

C6 = 2gCin
2 Ain

2 Hc +
C1

C2









 (13.32)

The values of  Cout  and  Cin  can be estimated from Eq. 13.5.

Sizing the air chamber
At the upstream end of a pipeline where an air chamber is located, the variation of

pressure with time depends primarily on the initial air volume in the chamber when the
power failure occurs.  The pressure drops more rapidly with a smaller initial air volume.

The first step in the sizing procedure is to try successive values of the initial air volume
until the minimum pressures along the pipeline are acceptable.  This air volume estab-
lishes the upper emergency level (see Fig. 13.6).  If power failure occurs when the air
volume is smaller than this, undesirably low pressures will occur.

Because pressures fluctuate during the normal operation of the system, there must also
be some space in the air chamber to accommodate this variation.  Evans and Crawford
(1953) recommend  25%  of the initial air volume at the upper emergency level for this
purpose;  however, the chosen value can be based on the actual operation of the pumping
system.

Because it is possible for the power to fail when the initial air volume corresponds to
the upper emergency level plus  25%,  we must make sure the chamber is sufficiently large
that it will not empty during the downsurge.  Hence we make one last analysis using this
larger air volume as the initial air volume.  This initial air volume is associated with the
lower emergency level (see Fig. 13.6).  The maximum air volume which exists during this
analysis establishes the minimum total volume of the air chamber.  This value should be
increased by another  10%  or more as a factor of safety against emptying the air chamber.

While the configuration in Fig. 13.6 may be a typical schematic design for a small
chamber, it may not be appropriate when large chambers are required.  If a large chamber is
needed, it can be replaced with several smaller chambers similar to the one in Fig. 13.6.
Or it can be fabricated as a single horizontal tank that looks much like a large propane
tank.  Both approaches are commonly used.

Air chamber appurtenances
Air chambers do require some special appurtenances for proper operation.  Because the

liquid level in the chamber must be kept between the bounds of the upper and lower
emergency levels (except for short term fluctuations), some provision must be made to
accomplish this.  If the liquid level gets too high and remains there too long, compressed
air from the receiver (see Fig. 13.6) is injected into the chamber to force the liquid down.
Conversely, if the water level drops too low, air is removed from the chamber via an air
release valve to raise the liquid level.

Should the liquid level move above the upper emergency level and resist all efforts to
bring it back down, the system should be shut down carefully to determine the cause.  If
the system cannot be shut down, an alarm should be sounded to alert personnel of the
problem so corrective action can be initiated.

Flow from the chamber should be achieved with minimum head loss so that the pressure
in the pipeline downstream remains as high as possible.  If the smooth nozzle shown in



Fig. 13.6 is not practical, at least the outflow connection should be sufficiently large that
the fluid velocity in it is moderate.  Because the air chamber may take over for the pumps
rather quickly, a good estimate of the initial flow from the chamber is the steady-state
discharge from all of the pumps.

Flow into the chamber typically is designed to undergo a greater head loss than is
experienced by an outflow.  This situation will damp the oscillatory flow over time.  The
nozzle in Fig. 13.6 will accomplish this.  However, there are other ways to reach the same
end.  Separate inflow and outflow connections can be used, with the inflow connection
being smaller to create higher velocities and greater losses.

A sight glass is needed to permit observation of the liquid surface in the chamber.
Water level sensors are needed to determine when to turn the compressed air flow on or off
and when to signal a violation of the upper or lower emergency levels.  They can be
located externally to the chamber via connecting piping so that maintenance or replacement
of these sensors can be done easily.  A man-door is generally provided on larger chambers.
A variety of drains, pressure regulators, pressure gages, air release valves etc. complete the
list of devices.  In cold climates the chambers are usually enclosed in a heated structure to
prevent their freezing.

Example Problem 13.3
Example Problem 11.2 is reconsidered here with the objective of providing corrective

devices to prevent column separation.  In fact, we will attempt to eliminate negative
pressures from the entire pipeline.  We will present the results of five different analyses
using  PROG7.  The five analyses consider the following scenarios:

(a)  No corrective devices.
(b)  Air chamber with an initial air volume of  320 ft3.

(c)  Air chamber with an initial air volume of  400 ft3.

(d)  Air chamber with an initial air volume of  500 ft3.

(e)  Air chamber with an initial air volume of  100 ft3  and two one-way surge tanks.

The input data file for run (e) is presented here:

DEMONSTRATION OF PROGRAM NO. 7 - INPUT DATA FILE "EP133.DAT"
USE OF AN AIR CHAMBER & ONE-WAY SURGE TANKS TO ELIMINATE
COLUMN SEPARATION
&SPECS NPIPES=4,NPARTS=3,IOUT=1000,NSURGE=2,HRES=840.,
       HSUMP=395.,HATM=32.,ZEND=810.,TMAX=50.,QACC=0.50,
       AIR=T,NOPUMP=F,PFILE=F,HVPRNT=T,PPLOT=T,
       GRAPH=T,RERUN=F/
1  30.   2000.  0.013  3590.  415.
2  30.  15840.  0.013  3590.  415.
3  30.   5280.  0.019  3490.  700.
4  30.   5280.  0.019  3490.  755.
&PUMPS NPUMPS=4,NSTAGE=5,RPM=1775.,WRSQ=475.,
       QN=0.,1000.,2000.,3000.,4000.,4500.,
       HNSQ=129.,127.5,121.,103.5,67.5,0.,
       TNSQ=50.,58.,78.,92.,97.,80./
&CHAMB CTZERO=100.,COUT=0.80,CIN=0.50,DNOZ=12.00,EXPON=1.20/
2  40.  6.  12.  0.80
3  50.  6.  12.  0.80
&GRAF NSAVE=3,IOUTSA=2,PIPE=1,3,4,0,NODE=1,1,1,0/

The curves for analysis (a) were copied from Example Problem 11.1 and depict the
progression of the negative wave downstream.  Included in this plot are the results from
runs (b) through (e) which represent the lower bound on pressure heads along the pipeline
for that configuration.



Steady state EL - HGL

C To = 500 ft3

C To = 320 ft3
C To = 400 ft3

C To = 100 ft3

No air chamber
(See Ex. Prob. 11.2) 

with 2 surge tanks

400'

600'

500'

800'

700'

900'

The initial air volumes each differ in size by  25%.  This approach is useful in deter-
mining the final size of the air chamber.  For example, in the cases where the initial air
volume was  500 ft3,  the pressures were found to be well above zero.  The next air
volume was  500/1.25 = 400 ft3.  This analysis still gave positive pressures so we next
tried  400/1.25 = 320 ft3.  This time the minimum pressure was about zero at one point in
the line, so we have now established the initial air volume at the upper emergency level.
Following the  25%  rule for pressure fluctuation space, we next conduct an analysis for
1.25x320 = 400 ft3.  However, this analysis has already been completed, and the
information for sizing the tank is already available.

In the analysis of alternative (c) the maximum air volume reached approximately  730
ft3.  We can now proceed to the design decisions about the number and size of the air
chamber units.

By using two one-way surge tanks, it is possible to reduce the air chamber volume
significantly.  The practicality of this alternative depends on the economics of the design
and on aesthetic considerations at the site.  Two one-way surge tanks,  40 ft  and  50 ft
high, respectively, may be more expensive and unsightly than a larger air chamber.  This
alternative is presented mainly to show that combinations of surge control devices may be
more effective than any one device.  In fact, if there were a local summit in the pipeline, it
is likely that a one-way surge tank would be needed to prevent column separation down-
stream of the summit, and an air chamber would be needed at the pump to prevent the same
problem upstream of the summit.

Design of the physical configuration of the pump station and pipeline, into which the
various control devices are incorporated, is outside the subject matter of this book.  For
more information consult Sanks et al. (1981) for a comprehensive treatment of pumping
station design.

The following two pages present a plot of head vs. time for three locations along the
pipeline and a plot of the maximum and minimum heads along the pipeline.



Example Problem 13.3
Pump power failure with air chamber and one-way surge tanks

At pump discharge
At upstream surge tank

800

700

500

400

300

200

100

P
re

ss
ur

e 
he

ad
, f

t

0

0 10 20 30 40 50

Time, sec

At downstream surge tank

600

60



Example Problem 13.3
Pump power failure with air chamber and one-way surge tanks

Pipeline profile
Steady state EL - HGL

1300

1200

1100

900

800

700

600

500

E
le

va
ti

on
, f

t

400

0 5000 10000 15000 20000 25000 30000

Distance downstream, ft

Minimum head
Maximum head

1000

*                              *                              *



Vented surge tanks
A variant of the one-way surge tank is the vented surge tank.  This device is concept-

ually a one-way surge tank for downsurge and an air chamber for upsurge.  The tank is
sealed and equipped with a vacuum valve (actually a spring-loaded check valve exposed to
the atmosphere) to permit air to enter the tank during downsurge but not exhaust air when
the flow reverses (see Fig. 13.9).  It also has an air release valve to bleed the ingested air
out slowly.  The tank is connected to the pipeline through an open line so that the line
pressure is continually communicated to the tank, i.e. the tank is continually "on line."
When the  EL-HGL  drops to the level of the liquid in the tank during a downsurge, the
vacuum valve opens, permitting air to enter the tank to replace the liquid flowing into the
line;  this behavior mimics the behavior of a one-way surge tank.  With an upsurge the
liquid flows into the tank, but the air is prevented from exhausting rapidly by the vacuum
(check) valve, so it is compressed much like the air in an air chamber on upsurge.  The
compressed air acts as a shock absorber in the system.  The size of the air release valve is
sufficiently small that it does not materially affect the compression process.  After a short
time the air release valve has bled all of the air from the tank, and it is once again full of
liquid and ready to function.

Check valve Air release valve

Isolation valve

Figure 13.9  Schematic diagram of a vented surge tank.

The additional versatility of the vented surge tank in comparison with the one-way
surge tank can be useful if reverse flow problems are anticipated.  However, the tank must
be designed to withstand the line pressure.  Unless it is as tall as the one-way surge tank, it
loses some of its effectiveness in preventing column separation.  It is most effective at a
well-defined summit of a pipeline.

Computationally, the vented surge tank is modeled as a one-way surge tank on
downsurge (keeping track of the accumulating air volume).  When flow begins to enter the
tank, it is then treated like an air chamber.  Computer code from the previous two sections
can be utilized to accomplish such an analysis.

13.2.7. OTHER TECHNIQUES FOR SURGE CONTROL
Air-vacuum valves

Air-vacuum valves are a potential source of surge control.  By opening when the
pressure in the line drops below atmospheric pressure, they expose the pipeline to the
atmosphere, which permits the liquid to decelerate more slowly.  This does not prevent the



occurrence of column separation at points in the pipeline that are remote from the location
of the air-vacuum valves, but it may reduce the intensity of a cavity closure shock by
keeping the velocities lower.  However, a problem may develop when (1) a pump restart or
(2) a reversed flow driven simply by gravity causes the air to exhaust from the pipe and
slam the air-vacuum valve shut.  To determine whether air-vacuum valves are an asset or a
liability in a pumped pipeline system, one can use  PROG8  to analyze the system.  For a
pumped pipeline this analysis will permit one to develop an operational strategy which
will minimize transient pressures.

Surge anticipation valves
In some cases the low pressures associated with column separation are not a problem.

Rather the problem to avoid is the creation of potentially high shock pressures from the
closure of a cavity.  The surge anticipation valve provides this service.  Although it does
not prevent column separation, it minimizes the impact of cavity closure.  It is most
effective in pumping systems which run uphill with no major intermediate summits in the
pipeline profile.  Because the pressure could drop below atmospheric for some time over a
large fraction of the pipeline, air may be ingested into the pipeline through air-vacuum
valves.  This may or may not be a positive occurrence for surge control, as it depends on
the amount of air ingested and a host of other considerations.  We are also then faced with
the removal of the air in the system as a part of the pump restart procedure.  Finally, the
pipeline should be designed to withstand vacuum pressures because they are likely to occur
somewhere along the pipeline.

The surge anticipation valve is a specially-operated surge relief valve placed at the
upstream end of a pipeline.  It is adjusted so that the valve opens after pump power failure
when the pressure at the valve drops below a set value.  As a consequence, the pressure at
the valve quickly drops nearly to atmospheric pressure, causing the pressure in the line
downstream to drop sharply.  The liquid in the line decelerates rapidly with extensive
column separation likely to occur.  When the flow reverses, the surge valve is already open
so the reverse flow is routed out of the system without a sudden decrease in velocity which
would cause cavities to close and lead to high shock pressures.  That is, the nearby cavities
may be washed out of the system through the open surge anticipation valve.  The valve
then closes slowly to bring the reverse flow gently to rest.

Pump inertia control
Because column separation in pumped pipelines is normally the direct result of the low

rotational inertia of the pumping system, increasing the inertia is another means of
mitigating column separation.  The impact of increasing the moment of inertia of the
pump and motor unit was demonstrated by Streeter and Wylie (1967);  for a long pipeline
where most of the pumping head is used to overcome pipe friction, they show that a
quadrupling of the rotational inertia would prevent column separation.  This can be accom-
plished by incorporating a flywheel into the linkage between the pump and motor.  It is
easiest to manage this for pumps driven by diesel or gasoline engines.  This alternative is
attractive because it is simple, low maintenance, and relatively inexpensive.  However,
owing to the practical limits on how much inertia can be added, the method has not found
wide application.



13.3 PROBLEMS

13.1  For Problem 11.1 use  PROG7  to determine the appropriate size for an air chamber
which will prevent any negative pressures from occurring in the pipeline.

13.2   For Problem 11.4 what is the size of the air chamber which will prevent any
negative pressures from occurring in the pipeline?  Use  PROG7.

Complete another design which employs both an air chamber and one-way surge tanks
to accomplish the same purpose.

13.3  For Problem 11.5 use  PROG7  to determine the size of an air chamber which will
prevent any negative pressures from occurring in the pipeline.

Investigate the feasibility of a design using only one-way surge tanks.
Complete a third design using an air chamber and one-way surge tanks.

13.4  For Problem 11.3 use  PROG7  to determine the size of an air chamber which will
prevent negative pressures from occurring over any significant portion of the pipeline.

13.5  A preliminary design is being prepared for a pumped pipeline which lifts water from
a reservoir at elevation  5760 ft  to a canal at elevation  6220 ft.  The steel pipe is  72 in
in diameter with a friction factor of  0.020  and a wave speed of  3100 ft/s.  The pipeline
profile is described in the following table:

  Station, ft Elevation, ft
             0       5765
          350       5875
        1100       5905
        2100       6165
        3150       6095
        6400       6115
        7700       6185
     13,400       6055
     14,000       6200

The pumping station employs ten six-stage pumps operating at  1170 rev/min.  Each
pump and motor unit has  Wr2 = 1500 lb-ft2.  The pump characteristics are given in the
following table:

Discharge, gal/min    Head/stage, ft   BHP/stage, hp
                   0            145            180
            2500            124            180
            5000            104            180
            6500              87            180
            8500              62            180
        10,500              10            180

Use  PROG7  to devise an air chamber and one-way surge tank configuration which will
prevent negative pressures from occurring in the pipeline.  Consider reducing the number
of series pipes by approximating the pipeline profile.  This approach will allow more
freedom in choosing  ∆t  and save both computational time and machine storage.

13.6   A ten-stage pump lifts water through an  8-inch steel pipeline  (7.85 in  inside
diameter) from a reservoir at elevation  4700 ft  to a reservoir at elevation  5120 ft.  The
steel pipe is  14 ga (e = 0.075 in) with a friction factor of 0.023.  The pump character-
istics are for a speed of  1770 rev/min.  For the pump and motor unit  Wr2 = 70 lb-ft2.



D i s c h a r g e ,
g a l / m i n

  Head/stage, ft BHP/stage, hp

                 0               80              8
            300               71              9
            600               65            10
            900               60            13
          1200               48.5            15
          1500               32            14

The pipeline profile is as follows:

Station, ft Elevation, ft
             0       4700
      2210       4950
      4780       5040
      5120       5040
      5600       5100
      6400       5115

Use  PROG3  to analyze the system for pump power failure.  If column separation occurs,
use  PROG7  to find the air chamber size which will prevent negative pressures from
occurring over a significant portion of the pipeline.

13.7   In the pipeline system shown below, two two-stage Ingersoll-Dresser  20KKH
pumps are placed in parallel to pump water into the upper reservoir (For pump
characteristic diagrams see Appendix B).  Driven by diesel engines, the pumps use  15-in
impellers and have  Wr2 = 330 lb-ft2  for the pump and motor combination.

a = 3372 ft/s

El. 546'

El. 480' -

El. 500'

P

2000' - 18"

0.018

El. 510'
3000' - 18"

0.018

- El. 530'

The design engineer suspects that a power failure will cause column separation in the
pipeline.  Use  PROG3  to determine whether this suspicion is correct.

If so, the decision has been made to add flywheels to the pump shafts to slow the pump
deceleration and prevent column separation.  Apply  PROG3  again to determine the value
of the moment of inertia for each of the proposed flywheels that will be required to prevent
column separation.

How large must each value of the moment of inertia be to prevent any negative pres-
sures from occurring?
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APPENDIX  A
_________________________________________________________________________

NUMERICAL METHODS

A.1 INTRODUCTION

The goal of Appendix  A  is to provide enough information so the reader can effective-
ly use some subroutines (functions) that implement commonly used numerical methods.
For detail about the methods readers may refer to any of a number of books on numerical
analysis;  for example, one "oldy but goody" is Applied Numerical Methods, by Carnahan
et al. (1969).  Numerical Recipes: The Art of Scientific Computing, by Press et al. (1992)
with versions that emphasize either Fortran, Pascal, C or Basic, provides detail on effec-
tively implementing these methods in computer codes.  The order in which numerical
methods will be described in this appendix is (1) linear algebra, (2) numerical integration,
and (3) the solution of ordinary differential equations (ODEs).

If the derivative of the dependent variable  y  with respect to the independent variable  x
is only a function of the independent variable, then the solution  y = f(x)  can be obtained
by direct integration.  If  dy/dx  depends upon both  y  and  x,  then the methods for solv-
ing ODEs must be used.  Sometimes it is possible to rearrange the form of the original
equation so only  x  appears on one side of the equal sign, and  y  on the other, i.e. separate
variables, and then integration will provide the solution.  The same principles apply for
second derivatives etc.  Since the methods for solving ODEs normally let  dy/dx = f(x, y),
and this implies  dy/dx  may only be a function of  x  or  y,  the methods for solving
ODEs can be used to solve a problem for which numerical integration could be used.
However, the reverse is not true.

A.2 LINEAR ALGEBRA

A.2.1. GAUSSIAN ELIMINATION
The simplest method for solving a linear system of equations is Gaussian elimination;

in this method we multiply an equation, or row in the coefficient matrix, by a value so that
the first term in a resulting equation becomes zero, or is eliminated, when we subtract that
equation from a given equation .  This process is continued until all elements before the
diagonal are zero.  Then the solution vector is obtained by back substitution.  (If you are
unfamiliar with Gaussian elimination, you should read about it in a book on linear algebra,
because the following discussion will assume you have some understanding of this
method.)  While it is simple and straightforward in its implementation in computer codes,
Gaussian elimination can produce inaccurate solutions due to truncation error.  For
example, in the elimination process the product of two values, when it is subtracted from
another value, can produce a difference that is several digits less accurate than can be carried
in the word length being used by the computer.  Therefore, especially when using single
precision in a computer program, it is well to improve the accuracy by applying iterative
corrections to the solution vector.  The subroutine  GAUSEL  on the accompanying  CD
is a relatively simple program that uses one iterative correction to the Gaussian elimination
method in solving a linear system of equations  [A]{x} = {b}.  You should obtain a listing
of this code and study it as you continue reading this section.  Comments in the code
indicate what is done by the statements in the section which follows.

Gaussian elimination first solves the linear system  [A]{x} = {b} for the approximate
solution {xa}.  This solution can be denoted as  [A]-1{b}.  Next the residual vector  {r}  is
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computed, which is defined by  [A]{xa} = {b} + {r}.  By subtracting the original matrix
equation from this matrix equation, we obtain

[ A]({ xa }− { x }) ≡ [ A]{e } = {r } (A.1)
or

({ xa }− { x }) ≡ {e } ≈ [ A]−1{r } (A.2)

The first of these equations indicates, if  {r}  is used in place of {b},  that the same solution
process that has obtained  {xa}  can be used to find the error vector  as  {e} = [A]-1{r}.  In
this case  {e}  can be considered an approximate value for the error vector  {e} = {xa} - {x}.
By rearrangement of the terms, with the subscript  i  to indicate the iteration number, we
might write  {x}i = {xa}i - {e}i.  This iterative equation indicates for any solution
component  {x}i  that an improved approximation is the original calculated value minus the
calculated error value.  Each subsequent error should be smaller than the current estimated
error, and therefore  |{e}i|  will be a conservative estimate of the error in the new
approximation.  The relative error is defined as  |{e}i|/|{xa}i - {e}i|.  Generally one iterative
improvement is all that is necessary, and that is what is done in  GAUSEL.FOR.

The call to this subroutine should contain a statement of the form

CALL GAUSEL(N, M, A, B, DET, ERRNOR) (A.3)

The arguments are the following:
N = number of equations to be solved;  A  must then contain  N x N  values, and  B

must contain  N  values.
M = the dimensions of arrays  A  and  B  in the main calling program,  A(M, M)  and

B(M).
A = the coefficient matrix  [A].  This matrix will always be a two-dimensional array

that is dimensioned  A(M, M).
B = the known vector  {B},  which will be a one-dimensional array in the calling

program that is dimensioned  B(M).
DET = the determinant for the matrix  [A].  Its value is returned from  GAUSEL.
ERRNOR = the estimate of the relative error;  it must be dimensioned in the calling

program as a one-dimensional array  ERRNOR(M).  The values in this array are
returned by  GAUSEL  and provide a way to decide whether the solution has
sufficient accuracy.

The subroutine always returns the determinant in  DET  and the relative error for each
component of the unknown vector in  ERRNOR.  If these are not wanted, then they can be
eliminated from the statements in the subroutine.  When  GAUSEL  is written to use
double precision, then  A,  B,  DET,  and  ERRNOR  must also be double precision in the
calling program.

A.2.2. USE OF THE LINEAR ALGEBRA SOLVER  SOLVEQ
This section describes subroutine  SOLVEQ,  a more sophisticated subroutine than

GAUSEL.  It will  (1)  solve a linear system of equations, given the coefficient matrix and
the known vector,  (2)  provide the inverse matrix of a square matrix,  (3)  evaluate the de-
terminant,  (4)  evaluate the determinant and produce the inverse matrix, and/or  (5)  evalu-
ate the determinant, produce the inverse matrix and solve the system of equations.
SOLVEQ  is used by a number of programs described in this text.  You should extract it
(the object element if you are using MS-Fortran, or the source code if you are using another
compiler so you can create an object element, or the  C  source if you are a  C  user) from
the  CD,  so it will be available to link with programs that use it.
 Subroutine  SOLVEQ  must be called by a program that defines the problem it is to
solve;  the program does this by supplying the coefficient matrix in a two-dimensional
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array and, if it is required, the known vector in a one-dimensional array.  In  Fortran  the
matrix and vector indexes begin with default subscript  1  and end with subscript  N.  Thus
these arrays are dimensioned as  REAL A(100, 100), B(100).  A call to subroutine
SOLVEQ  should consist of the following (the names of the arguments can be different,
but the types must be as described below, and the dimensions of arrays must be as
indicated.):

CALL SOLVEQ(N, NPROB, NDIM, A, B, ITYPE, DET, INDX) (A.4)

The arguments in the call are as follows:
N = the integer number of equations to be solved, or the size of the matrix if only the

inverse is requested.  The program that calls  SOLVEQ  must supply values for a
square coefficient matrix with  N  rows and  N  columns.

NPROB = the integer number of problems to be solved by providing solution vectors,
i.e., we seek  NPROB  separate solutions from  NPROB  known vectors.  (A
modified version of  SOLVEQ  may omit this argument.)

NDIM = the integer number of dimensions of matrix  A(NDIM, NDIM)  and vector
B(NDIM).  NDIM  can be larger than, or equal to,  N.  Its value allows  SOLVEQ
to locate the proper positions of the elements within the two-dimensional
coefficient array  A.

A = the real two-dimensional array in the calling program which contains the
coefficient matrix;  it must be square with  N  rows and  N  columns.  The correct
coefficient values for the problem to be solved must all be contained within this
array upon entry into subroutine  SOLVEQ.  Upon returning from  SOLVEQ,
this two-dimensional array will contain the inverse matrix, if it is requested.  The
values of the coefficient matrix are altered during the execution of  SOLVEQ.

B = a real array containing the known vector  {b}  in the linear system of equations
[A]{x} = {b},  and the correct values for this known vector must be in the
elements of  B  when  SOLVEQ  is called.  Upon returning from the call to
SOLVEQ,  this array will contain the solution vector  {x}  for the linear algebra
problem.  Generally  B  will be dimensioned as a one-dimensional array.
However, if  NPROB  is greater than one so that more than one linear algebra
problem is to be solved with the same coefficient matrix  [A],  then  B  can be a
two-dimensional array with the second dimension being  NPROB.

ITYPE = the integer that tells  SOLVEQ  which tasks are to be done, described by the
value selected from the following menu of choices:

= 1, solves the linear system of equations;
= 2, produces the inverse matrix (in  A);
= 3, evaluates the determinant and places the result in  DET;
= 4, solves the equation set and produces the inverse matrix;
= 5, evaluates the determinant and produces the inverse matrix;
= 6, finds the determinant and the inverse matrix and solves the equations.

DET = a real variable that returns the value of determinant if it is requested.
INDX = an integer *2  one-dimensional array with the size  NDIM  which is used for

work space.  Upon entry to  SOLVEQ,  it can be empty or it can be another
integer array used subsequently in the calling program.  The values in this array
will be destroyed upon returning from  SOLVEQ,  so if it is an  INTEGER*2
array used for some other purpose, this purpose must be located after all calls to
SOLVEQ  have been completed.

Example programs in the body of the text can be used as examples of how to
implement a call to  SOLVEQ  properly.  If you wish to work in  C (C++),  then you
should print the file  SOLVEQC.DOC  from the  CD  to obtain additional help in using
the function  solveq.
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A.3 NUMERICAL INTEGRATION

A.3.1. TRAPEZOIDAL RULE
The trapezoidal rule (TR) states that an approximation to the integral of a function  

f(x)  from  xb  (beginning value of the independent variable) to  xe  (ending value of the
independent variable) equals the average of the function, evaluated at these two end points,
times the interval  ∆x = xe - xb,  or

∆F = f (x)dx∫ = (xe − xb ){ f (xb ) + f (xe ) } / 2 (Α.5)

The accuracy of the numerical integration depends upon the size of the interval  ∆x.  In
other words, to satisfy an error requirement the  ∆x  in the process must be chosen to be
small enough.  How can it be determined what is small enough?  Normally  ∆x  is small
enough when the result that is obtained by using an increment  ∆x/2  produces the same
final answer as when  ∆x  is used.  In other words, the numerical integration can be repeat-
ed after reducing  ∆x  (usually by a factor of two);  then these results are compared with
those previously obtained, until the difference is less than some chosen error criterion.  If
this process is implemented without a consideration of how to minimize the amount of
computation, much more arithmetic will be done than is required.  We now describe an
algorithm that allows a reduction in interval size without losing the benefit of the previous
arithmetic.  To facilitate this discussion a first order approximation, the trapezoidal rule
(TR) will be used.

Applying the TR repeatedly over consecutive intervals  ∆x,  in which the integration
interval has been divided into  N  intervals  ∆x = (xe - xb)/N,  produces the following
result:

F(xe ) − F(xb ) = ∆x f 0 / 2 + f1 + f 2 +...+ f N−1 + f N / 2{ } (A.6)

Thus the function values at all intermediate points are added together, except for the first
and the last which are halved before being added.  Here  f0 = fb  (the function at the
beginning of the interval) and  fN = fe  (the function at the end of the interval).  Now how
can this extended  TR  be implemented repeatedly with new  ∆x's  that are each equal to
one-half the previous value without losing the previous evaluations of the function, i.e. the
previous arithmetic?  To visualize how such an algorithm can be developed, consider first
the coarsest implementation of the  TR  as the average of the function at the two end points
xb  and  xe,  multiplied by  (xe - xb),  as shown in Fig. A.1 with  N = 1.  When the range
of integration is divided into two intervals with  ∆x = (xe - xb)/2,  the function must be
evaluated at one additional point, the midpoint shown for  N = 2 in Fig. A.1.  The
application of the extended  TR  will multiply the previous end values by  1/2  because  ∆x
is now half as large as before, and this result is then added to the value of the function at
the midpoint, multiplied by  ∆x.  Upon dividing the range of integration into  4  intervals
so  ∆x = (xe - xb)/4, the function must be evaluated at two additional points, i.e., at  x =
xb + (∆x)i-1/2  and at  x = xb + (∆x)i-1/2 + (∆x)i-1,  in which  (∆x)i-1  is the previous
increment.  These two additional points are shown on the line associated with  N = 3.  For
N = 4  the function must be evaluated at four additional points, and this process continues.
As shown in Fig. A.1, the sum of all of the evaluations provides all of the values that are
needed to implement the extended TR.  This process could continue until the evaluations of
the integral between consecutive increases in  N  produce the same value within the error
limit that has been selected.
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Figure A.1  Implementation of trapezoidal rule with ever decreasing increments  ∆x  that are

half of the previous increment, so that only functions at the new points are evaluated as  ∆x  i s
decreased.

The Fortran listing (a  C  function is on the  CD) in Fig. A.2 implements this
algorithm;  thus it is a subroutine that numerically evaluates an integral using the TR.

      SUBROUTINE TRAPR(EQUAT, XB, XE, VALUE, ERR, MAX)
      EXTERNAL EQUAT
      EV=-1.E30
      VALUE=0.5*(XE-XB)*(EQUAT(XB)+EQUAT(XE))
      M=1
      I=1
   10 I=I+1
      DELX=(XE-XB)/FLOAT(M)
      X=XB+0.5*DELX
      SUM=0.
      DO 20 J=1,M
      SUM=SUM+EQUAT(X)
   20 X=X+DELX
      VALUE=0.5*(VALUE+(XE-XB)*SUM/FLOAT(M))
      M=2*M
      IF(ABS(VALUE-EV).LT.ERR*ABS(EV)) RETURN
      EV=VALUE
      IF(I.LT.MAX) GO TO 10
      WRITE(*,*)' FAILED TO SATISFY ERROR REQ.', VALUE-EV
      RETURN
      END

Figure A.2  Program TRAPR.FOR.  It integrates a function by repeatedly reducing  ∆x  until the
selected error criterion is satisfied.

To use this subroutine, two other programs are needed.  The first program is a
FUNCTION  subroutine (with the name  EQUAT  as the first argument in the call to
TRAPR) that evaluates the integrand (the function being integrated) at the argument  X;  so
this program begins  FUNCTION EQUAT(X).  The second program is a main program
that, among other tasks, properly calls  TRAPR.

The arguments for  TRAPR  are as follows:
EQUAT = the name of the external FUNCTION SUBPROGRAM that evaluates the

integrand at the given  X  value.
XB = the real value of the independent variable at the beginning of the interval.
XE = the real value of the independent variable at the end of the interval, i.e., the

integral is from  XB  to  XE.
VALUE = the real value of the integral that is returned to the main program.
ERR = the relative error criterion, a real number. The increment  ∆x  will be repeatedly

reduced by one half until the absolute difference between two successive values of
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the integral is less than the product of  ERR  and the absolute value of  the
integral from the previous evaluation.  A value for  ERR  of  1.0x10-6  is near the
limit that can be used with  32  bit arithmetic and not have truncation error cause
the algorithm to fail to meet the criterion.

MAX = the maximum integer number of reductions in  ∆x  that are allowed.
If the function can be defined as a single statement in the declaration portion of the main
Fortran  program, then a function statement can be used in place of the  FUNCTION
EQUAT.  This approach is used in Example Problem A.1 below.

A.3.2. SIMPSON'S RULE
Simpson's rule is a double interval integration formula; that is, it evaluates the inte-

gral over  2∆x  and produces a second-order approximation by passing a second degree poly-
nomial through three consecutive, evenly spaced points.  Simpson's Rule is

∆Fi−1
i+1 = ∆x f b + 4 f m + f e{ } / 3 (A.7)

in which  fm  is the integrand at the midpoint of the interval  2∆x,  that is, at  x = ∆x.
As with the trapezoidal rule, Simpson's rule can be implemented in an algorithmic

form that is arithmetically efficient by comparing the result with a new interval size  ∆x
with that which was previously obtained by using  2∆x.  The algorithm works in the fol-
lowing way.  We start with the entire range of the independent variable as the increment
∆x0 = xe - xb.  An approximate (TR) value for the integral is  VALU10 = ∆x0(fb + fe)/2.
If we then divide this interval by  2  so  ∆x1 = ∆x0/2  and evaluate the function at the
original midpoint to obtain  fm,  we can apply this rule twice and add to obtain an approxi-
mate value for the integral from  xb  to  xe  as  VALU11 = ∆x1(fb + 2fm + fe)/2.  Simp-
son's rule will be obtained if we multiply this new value by  4,  subtract the first value and
divide the ensuing result by  3,  or

VALUE = (4VALU11 − VALU10 ) / 3

= 4∆x1 f b + 2 f m + f e( ) / 2 − ∆x1 f b + f e( ){ } / 3

= ∆x1 f b + 4 f m + f e( ) / 3

(A.8)

This algorithm can be applied with a successive halving of  ∆xi  for  i = 2, 3, ...,  and the
new approximate value of the integral for Simpson's rule,  VALUE,  that is associated with
each new, halved interval is

VALUE = (4VALU1i − VALU1i−1) / 3 (A.9)

in which the  VALU1's  are obtained by the trapezoidal rule algorithm.  Each  VALU1i  is
evaluated with the new  ∆x,  and each  VALU1i-1  is evaluated with the previous  ∆x.

A Fortran listing of  SIMPR,  which implements Simpson's rule to evaluate integrals
numerically, appears in Fig. A.3.  (A similar  C  function is on the CD.)  Its arguments
are identical to those for subroutine  TRAPR.  In fact, to use it in a program that
previously called  TRAPR,  just change the name itself to  SIMPR.
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      SUBROUTINE SIMPR(EQUAT, XB, XE, VALUE, ERR, MAX)
      EXTERNAL EQUAT
      EV1=-1.E30
      EV=-1.E30
      VALU1=0.5*(XE-XB)*(EQUAT(XB)+EQUAT(XE))
      M=1
      I=0
   10 I=I+1
      DELX=(XE-XB)/FLOAT(M)
      X=XB+0.5*DELX
      SUM=0.
      DO 20 J=1,M
      SUM=SUM+EQUAT(X)
   20 X=X+DELX
      VALU1=0.5*(VALU1+(XE-XB)*SUM/FLOAT(M))
      M=2*M
      VALUE=(4.*VALU1-EV1)/3.
      IF(ABS(VALUE-EV).LT.ERR*ABS(EV)) RETURN
      EV=VALUE
      EV1=VALU1
      IF(I.LT.MAX) GO TO 10
      WRITE(*,*)' FAILED TO SATISFY ERROR REQ.', VALUE-EV
      RETURN
      END

Figure A.3  Program SIMPR.FOR.  It integrates a function by repeatedly reducing  ∆x  until the
selected error criterion is satisfied.

Example Problem A.1
Integrate the function  f(x) = x2(x2 - 2)sin(x)  between the limits of  0  and  π/2  using

first the trapezoidal rule and then Simpson's rule, and compare the results with the exact
integral.

The exact indefinite integral is  F(x) = 4x(x2 - 7)sin(x) - (x4 - 14x2 + 28)cos(x).  The
following programs have been written to complete the solution to this problem:

FORTRAN MAIN program and SUBROUTINE EQUAT to solve problem:
      PARAMETER (NMAX=21, A=0, B=1.5707963, ERR=1.E-5)
      EXTERNAL EQUAT
      CLOINT(X)=4.*X*(X**2-7.)*SIN(X)-(X**4-14.*X**2+28.)*COS(X)
      CALL TRAPR(EQUAT,A,B,VALUE,ERR,NMAX)  ! The name is changed to
SIMPR  to use Simpson's rule.
      WRITE(*,*) VALUE,CLOINT(B)-CLOINT(A)
      END
      FUNCTION EQUAT(X)
      EQUAT=X**2*(X**2-2.)*SIN(X)
      RETURN
      END

Upon executing the program, the following results can be compared:

Method Resu l t
Exact integral   - 4.791598E-1
Trapezoidal rule   - 4.791531E-1
Simpson's rule   - 4.791583E-1



Example Problem A.2
Find the equivalent concentrated vertical component of force, and its location, on the

bottom surface that is  3 m  long with water standing to a height of  6 m.  The distance
between vertical walls is  3 m.  The surface is defined by the equation

y = f x( ) = 2 x − cos
π
2
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The vertical component of the hydrostatic force on the bottom of the tank is simply
the weight of fluid above it, that is, the product of the specific weight of the water and the
fluid volume, which in turn is the product of the area and the  3 m  length.  Since the
bottom of the tank is given as a function of  x,  the area can be determined by numerically
integrating the differential area  dA = (6 - y) dx  or

A = 6 − 2 x − cos
π
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∫ dx

Thereafter the centroid of this area will be determined from  Axc = x(6 − y)dx
0

3

∫   The

programs to obtain the area and the first moment of the area are listed next:

PROGRAM  SIMP1.FOR  TO INTEGRATE THE AREA
      PARAMETER (NMAX=21,A=0,B=3.,ERR=1.E-5)
      EXTERNAL EQUAT
      CALL SIMPR(EQUAT,A,B,VALUE,ERR,NMAX)
      WRITE(*,*) VALUE
      END
      FUNCTION EQUAT(X)
      EQUAT=6.-2.*(X-COS(1.5707963*(1.-X/3.)))
      RETURN
      END
PROGRAM  SIMP2.FOR  TO FIND THE FIRST MOMENT OF THE AREA
      PARAMETER (NMAX=21,A=0,B=3.,ERR=1.E-5)
      EXTERNAL EQUAT
     



CALL SIMPR(EQUAT,A,B,VALUE,ERR,NMAX)
      WRITE(*,*) VALUE
      END
      FUNCTION EQUAT(X)
      EQUAT=X*(6.-2.*(X-COS(1.5707963*(1.-X/3.))))
      RETURN
      END

The area is computed to be  12.820 m2,  and the solution for the first moment of the area
is  16.295 m3.  Therefore the force on the bottom of the tank is  F = γV  = γAb  =
9.806(12.820)(3) = 377.1 kN.  It acts downward at the position  xc = 16.295/12.820 =
1.271 m  from the origin.

A.4 SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS

A.4.1. INTRODUCTION
The need to solve ordinary differential equations (ODE's) occurs frequently in many

fields.  Often closed-form solutions to these equations do not exist, and they must be solved
numerically.  General purpose mathematics application software, such as  MathCAD  and
TK-Solver, facilitates the solution of ODE's and allows the user to select the method to be
used.  Pocket calculators, such as the HP48G(X), also have the ability to solve ODE's (in
addition to numerical integration and algebraic integrations).  In the following paragraphs a
brief description of the Runge-Kutta method (one of many methods, but a widely used
method) for solving ODE's is presented, to be followed by descriptions of how more
sophisticated ODE solvers can be used.

A.4.2. RUNGE-KUTTA METHOD
The Runge-Kutta method of numerical integration is well known as a very dependable

method, although it is neither very fast or efficient.  This section will describe how to
implement the Runge-Kutta method.  The solver  DVERK  in  IMSL (International Mathe-
matical Statistical Libraries), which has been widely used for years and is included in
Microsoft Fortran Powerstation and its descendants, uses a Runge-Kutta method.  The
logic, methods etc. in  DVERK  are more comprehensive than that in this description, but
since several programs in this text call on  DVERK,  the reader should extract it from the
CD  along with  ODESOL  and  RUKUST,  which is the program that will be described
herein.  A description of how to use  DVERK  is in the file  DVERK.DOC  on the  CD.

The Runge-Kutta method evaluates the dependent variable  y  after the next increment
with  yi+1 = yi + ∆y.  The Euler predictor obtains  ∆y  by multiplying the increment  ∆x
in the independent variable by the derivative  dy/dx = y',  evaluated at  xi,  so that  ∆y =
∆xy'(xi, yi).  Consider a trial step to the midpoint of the increment;  now use  x  and  y
here to compute  ∆y,  or  ∆y = ∆xy'(xi + ∆x/2, yi + ∆ym), in which  ∆ym   is the  ∆y
obtained from the Euler predictor for the midpoint.  This way of obtaining  ∆y  is a second-
order approximation since the first-order terms cancel.  This method of evaluating  ∆y  is
called the second-order Runge-Kutta, or midpoint, method.  The derivative  y'  can be
evaluated by using different combinations of the independent and dependent variables, and
from these combinations different values of  ∆y  can be obtained by multiplying by the
appropriate  ∆x's.  We define the following increments:

∆y1 = ∆x ⋅ y' (xi , yi )

∆y2 = ∆ym = ∆x ⋅ y' (xi + ∆x / 2, yi + ∆ym ) = ∆x ⋅ y' (xi + ∆x / 2, yi + ∆y1 / 2)

∆y3 = ∆x ⋅ y' (xi + ∆x / 2, yi + ∆y2 / 2)

∆y4 = ∆x ⋅ y' (xi + ∆x, yi + ∆y3 )

(A.10)
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The first of these four equations is the Euler predictor, and the second of these equations is
the midpoint method.

The fourth-order Runge-Kutta formula can be developed from these relations as

yi+1 = yi + (∆y1 + 2∆y2 + 2∆y3 + ∆y4 ) / 6 (A.11)

This formula requires the derivative to be evaluated four times in order to advance one incre-
ment  ∆x,  and an analysis of the terms that have been truncated from the final result would
show that terms involving  ∆x5  are dropped;  therefore the result provides a fourth-order
approximation.  Computer code to implement this fourth-order Runge-Kutta formula can
consist of Fortran statements (two versions are presented) in a subroutine, as presented in
Fig. A.4 (C  and  Pascal  statements are on the  CD).  In these subroutines the current
values for the independent variable  x,  the increment  ∆x  and the dependent variable  y  are
passed as arguments  X,  DX,  and  Y,  respectively.  (In the C and Pascal programs these
variables must be global, and consequently they are defined in the function or procedure.)
The Fortran routine(s) could be modified so that these variables appear in a common
statement rather than in arguments.

      SUBROUTINE RUKU4(X, DX, Y)
      XH=X+0.5*DX
      DY1=DX*SLOPE(X,Y)
      DY2=DX*SLOPE(XH,Y+0.5*DY1)
      DY3=DX*SLOPE(XH,Y+0.5*DY2)
      Y=Y+(DY1+DX*SLOPE(X+DX,Y+DY3))/6.+(DY2+DY3)/3.
      RETURN
      END

      SUBROUTINE RUKU4A(X, DX, Y)
      DX5=0.5*DX
      XH=X+DX5
      DY1=SLOPE(X,Y)          ! 1st sub-step
      DY2=SLOPE(XH,Y+DX5*DY1) ! 2nd sub-step
      DY3=SLOPE(XH,Y+DX5*DY2) ! 3rd sub-step
      Y=Y+DX*((DY1+SLOPE(X+DX,Y+DX*DY3))/6.+(DY2+DY3)/3.)
      RETURN
      END

Figure A.4  Two alternative Fortran subroutines for the Runge-Kutta fourth-order formula.

The use of either Runge-Kutta subroutine requires a main program that calls it
appropriately, and a FUNCTION Subprogram SLOPE to evaluate the derivatives.  The
listings in Fig. A.4 are designed to solve a single  ODE.

If a system of  ODE's  is to be solved, as accommodated by solvers like  DVERK  and
ODESOL,  whose use is described below, then arrays for  Y  and its derivatives are needed.
Let  SLOPE  be a subroutine that returns  N  derivatives for  N  ODE's  in its last array
argument, evaluated at  X  and  Y,  its first two arguments. (Y  must also be an array.)
Then the solver could consist of the subroutine that is listed in Fig. A.5.

The deficiency in using  RUKU4  (or  RUNK4S)  is that the accuracy of the solution
will be dependent upon the step size  ∆x  that is used.  One way to proceed would be to
solve the ODE twice, once with some  ∆x  and then with  ∆x/2,  and if the solution agrees
within an allowable error, accept the solution;  otherwise reduce  ∆x  again by one-half,
etc.  Rather than putting this burden on the user, it is much better to adjust the step size to
satisfy some error criterion.  The step sizes may then be decreased or increased, as suggested
by the accuracy of the solution being obtained.  To automate this step, an estimate of the
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SUBROUTINE RUKU4S(N, X, DX, Y)
      PARAMETER (NM=5)
      REAL Y(N),YT(NM),DY1(NM),DYT(NM),DYM(NM)
      DX5=0.5*DX
      XH=X+DX5
      CALL SLOPE(X,Y,DY1)       ! 1st sub-step
      DO 10 I=1,N
   10 YT(I)=Y(I)+DX5*DY1(I)
      CALL SLOPE(XH,YT,DYT)     ! 2nd sub-step
      DO 20 I=1,N
   20 YT(I)=Y(I)+DX5*DYT(I)
      CALL SLOPE(XH,YT,DYM)     ! 3rd sub-step
      DO 30 I=1,N
      YT(I)=Y(I)+DX*DYM(I)
   30 DYM(I)=DYM(I)+DYT(I)
      CALL SLOPE(X+DX,YT,DYT)   ! 4th sub-step
      DO 40 I=1,N
   40 Y(I)=Y(I)+DX*((DY1(I)+DYT(I))/6.+DYM(I)/3.)
      RETURN
      END

Figure A.5  Two alternative Fortran subroutines for the Runge-Kutta fourth-order formula.

error is needed.  This estimate can be obtained with a "step doubling;" i.e. each step is re-
peated, once using the full  ∆x  and then independently as two half steps  ∆x/2.  Each of
the three separate Runge-Kutta steps that are needed in using this procedure require four
evaluations of  y',  but the single and double computations initially share common
arguments of  x  and  y,  so the required total number of evaluations of  y'  is  11.  Let the
exact solution be denoted by  y  (without a subscript), the solution based on  ∆x  by  y1,
and the solution based on  ∆x/2  by  y2.  Using the fourth-order Runge-Kutta method, the
exact and two numerical solutions are related by

y(x + ∆x) = y1 + C(∆x)5

y(x + ∆x) = y2 + 2C(∆x / 2)5
(A.12)

in which  C  should remain constant over the step since the Taylor series representation of
C = (d5y/dx5)/5!.  Since  y1  contains  C∆x5  and  y2  contains  C∆x5/16,  the difference
between the two solutions provides a convenient estimate of the error as

ERR = y2 − y1 (A.13)

Hence the exact solution can be expressed as

y(x + ∆x) = y2 + ERR /15 + O(∆x6 ) (A.14)

To develop a criterion to decide whether  Dx  should be changed to satisfy an accuracy
requirement, let  ERR1  be the error from using  ∆x1.  Then the step size  ∆xo  to produce
an error of  ERRo  can be estimated as

∆xo = ∆x1 | ERRo / ERR1 |1/5 (A.15)

Let  ERRo  be the error associated with the desired accuracy.  If  |ERR1|  is larger than
ERRo,  then the above equation gives the  ∆x = ∆xo  to use to recompute the solution



over the failed increment to satisfy the error condition  ERRo.  In other words, if  |ERR1|
is larger than  ERRo,  then the computations over  ∆x1  did not satisfy the error require-
ment and must be repeated with a smaller increment given by  Eq. A.15.  If  |ERR1|  is
less than  ERRo,  then Eq. A.15 provides the  ∆x  to use for the solution over the next
step.  Thus the most recent step in the solution exceeds the desired accuracy and will be
accepted, but the next increment will be enlarged to avoid doing more arithmetic than is
necessary to satisfy the error  ERRo,  as given by Eq. A.15.  For a system of  ODE's  the
errors  ERR1  are an array of values, and the largest in magnitude should be used in Eq.
A.15.  The listing in Fig. A.6 includes logic to redetermine the step size to satisfy the error
condition associated with the magnitude of  ERROR.

      SUBROUTINE RUKUST(N, DXS, XBEG, XEND, ERROR, Y, YTT)
      PARAMETER (NM=5)
      REAL Y(N),YTT(N),YORI(NM)
      X1=XBEG
      DX=DXS
    1 DO 10 I=1,N
      YTT(I)=Y(I)
   10 YORI(I)=Y(I)
      X=X1
      IF(ABS(X+DX).GT.ABS(XEND)) DX=XEND-X
   20 DX5=0.5*DX
      CALL RUKU4S(N,X,DX5,Y)    ! Solve with half increment
      CALL RUKU4S(N,X+DX5,DX5,Y)
      X1=X+DX
      IF(ABS(X1).GT.ABS(XEND)-1.E-8) RETURN
      CALL RUKU4S(N,X,DX,YTT)    ! Solve with full increment
      ERRM=0.0
      X1=X+DX
      DO 30 I=1,N
      YTT(I)=Y(I)-YTT(I)
   30 ERRM=MAX(ERRM,ABS(YTT(I)/Y(I)))
      IF(ERRM.EQ.0.0) THEN
      DX=5.*DX
      DXS=DX
      GO TO 1
      ELSE
      ERRM=ERRM/ERROR
      DX=DX/ERRM**0.2
      DXS=DX
      IF(ERRM.GT. 1.0) THEN
      DO 40 I=1,N
      YTT(I)=YORI(I)
40    Y(I)=YORI(I)
      GO TO 20
      ENDIF
      ENDIF
      DO 50 I=1,N
50    Y(I)=Y(I)+YTT(I)/15.   ! Accounts for truncation error
      GO TO 1
      END

Figure A.6  A fourth-order Runge-Kutta code with automatic adjustment of step size.

The arguments for  RUKUST  now have the following meanings:
N = number of ODE's to be solved, and for which derivatives will be given.



DXS = an initial value for  ∆x.  This value will be decreased or increased, depending
upon what is needed to satisfy the error criterion.  In previous Runge-Kutta sub-
routines  DX  was the interval over which the problem was solved.  Now  DXS
normally will be smaller than this value.  Upon returning from this subroutine,
DXS  is the  ∆x  that was found to be satisfactory at the end of the solution, and
it can be used  as the initial increment in a subsequent call to  RUKUST.

XBEG = the initial value of the independent variable.
XEND = the end value of the independent variable.  The difference between  XEND

and  XBEG  was called  DX  in the previous subroutines.
ERROR = the error criterion to meet in obtaining the numerical solution.
Y = an array of  N  values that, upon entry to the subroutine, provides the initial con-

ditions for the dependent variable.  Upon return from the subroutine it is the solu-
tion for the dependent variable(s) at  x = XEND.

YTT = a work array of  N  values.  It is used only to store the solution for the last in-
terval, which is then compared with the solution  Y  in making decisions about
the next increment in the independent variable to use in satisfying the error
criterion.

Observe that this subroutine calls  RUKU4S  three times;  the first two times com-
plete the solution over the increment  ∆x  in two steps of length  ∆x/2  (this solution is
stored in array  Y), and the third time uses the increment  ∆x,  i.e. uses the four sub-steps
in the Runge-Kutta method (and this solution is stored in the work array  YTT).  The
difference between these two solutions is used to determine the error  ERR  (or  ERR1);  
then, based on Eq. A.15, the  ∆x  that should supply the desired accuracy is computed.  If
the accuracy is insufficient, then the solution is repeated, using the computed  ∆x  (the
statement  GO TO 20  does this).  Another test checks whether the solution has proceeded
to  XEND.  If not, then the solution proceeds over the next increment with the newly
computed  ∆x  by going back to statement 1.  The program is required to end the solution
at  XEND,  and this is accomplished by adjusting the last  ∆x  so it equals the difference
between the current value of  x  and  XEND.

Example Problem A.3
The bottom of the tank is defined by the  ODE  dy/dx = x + y/2,  measured in a coordi-

nate system that is rotated downward  45o  from the horizontal.  The bottom is located be-
tween two vertical walls that are  2 m  apart, and the tank is  5 m  long.  It contains water
that is  5 m  deep at the left wall.  Find the vertical component of force on the bottom, and
the location of its line of action.
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To solve this problem, we must first solve the  ODE  to obtain the shape of the bot-
tom and then numerically integrate from this bottom position to the water surface.  The
program below obtains the solution.  We will need to establish the relation between the  x-
direction and the horizontal direction, denoted by  x'  in the sketch, to account for the rotat-
ed coordinate system.  The differential area to integrate can be written  dA = hdx',  in which
h  is the distance from the bottom of the tank to the water surface;  from the sketch this
distance is  h = H + x sin θ - y cos θ,  with  H = 5  being the water depth at the origin.
Also from the sketch  x' = x cos θ + y sin θ.  Since  sin 45o = cos 45o,  only  sin 45o  will
be used in the program.  While there are alternate approaches, in this solution the  ODE
will be solved first to obtain the shape of the bottom, with the results stored in an array,
YY;  when needed, values from this array will be interpolated.  We choose this approach
because, although the numerical integration is in terms of  x'  and the corresponding value
of  x  along the rotated axis will be needed, the only way to determine this  x  is to use
x'/sin 45o = x + y.  For any  x',  therefore, the table is searched for the entry where  x + y
is just larger than  x'/sin 45o,  and then a linear interpolation is used to find  x  by writing
y = yo + (∆y/∆x)(x - xo)  between the two entries in the table, with subscript  o  denoting
the first entry.  Thus  x'/sin 45o = yo + (∆y/∆x)(x - xo) + x,  and the solution is found to
be  x = (x'/sin 45o - yo + (∆y/∆x)xo)/(∆y/∆x + 1).  Once  x  is determined,  y  is
interpolated as  y = yo + (x - xo)/[∆x(y1 - yo)].  The  ODE  is solved first in the main
program, and the function  EQUAT  performs the interpolations to obtain  h  so that
Simpson's rule can properly evaluate the area.  The solution produces a cross-sectional area
of  9.44 m2,  leading to a force per unit length of  92.5 kN/m  and a total vertical force  FV
= 5x92.5 = 462.5 kN.  The first moment of the area is determined by changing the
EQUAT  statement slightly, as the comment statement in the program shows, and the
result of the integration gives  xcA = 8.82 m3  so the line of action of this vertical force is
at  xc = 8.82/9.44 = 0.934 m.

TANKODEK.FOR
      EXTERNAL EQUAT
      COMMON /TRAS/XX(30),YY(30),H,SIN45,DELX,II
      REAL Y(1),YTT(1)
      II=2
      WRITE(*,*)' GIVE XB,XE,H,Y0,GAMMA,ERR,MAX'
      READ(*,*) XB,XE,H,YO,GAMMA,ERR,MAX
      SIN45=SIN(0.7853982)
      SXY=(XE-XB)/SIN45
      TOL=0.000001
      DXS=0.01
      I=1
      DELX=(XE-XB)/50.
      XX(1)=XB
      YY(1)=YO
      Y(1)=YO
   10 X=XX(I)+DELX
      CALL RUKUST(1,DXS,XB,X,TOL,Y,YTT)
      I=I+1
      XX(I)=X
      YY(I)=Y(1)
      IF(X+Y(1).LT.SXY) GO TO 10
      CALL SIMPR(EQUAT,XB,XE,VALUE,ERR,MAX)
      WRITE(*,"(' AREA = ',F10.3,/,' FORCE = ',F10.3)")
     &VALUE,VALUE*GAMMA
      END
      SUBROUTINE SLOPE(X,Y,DY)
      REAL Y(1),DY(1)
      DY(1)=X+0.5*Y(1)



      RETURN
      END
      FUNCTION EQUAT(X)
      COMMON /TRAS/XX(30),YY(30),H,SIN45,DELX,II
      SX=X/SIN45
   10 IF(XX(II)+YY(II).GT.SX) GO TO 20
      II=II+1
      GO TO 10
   20 DYDX=(YY(II)-YY(II-1))/DELX
      XP=(SX-YY(II-1)+DYDX*XX(II-1))/(DYDX+1.)
      FAC=(XP-XX(II-1))/DELX
      YP=YY(II-1)+FAC*(YY(II)-YY(II-1))
      EQUAT=H+(XP-YP)*SIN45
C     EQUAT=(H+(XPYP)*SIN45)*X
      RETURN
      END

A.4.3. USE OF  ODE  SOLVER  ODESOL
The subroutine  ODESOL  solves either a system of first-order ordinary differential

equations (equations with first derivatives) or a higher-order ordinary differential equation.  It
utilizes an extrapolation with a modified midpoint that is called the Bulirsh-Stoer method.
If a higher-order equation, of order  N,  is to be solved, it must first be reduced to a system
(or coupled set) of  N  first-order differential equations.  For example, if the second-order
equation

d2y

dx2 + f (x)
dy

dx
= g(x) (A.16)

is to be solved, it is first rewritten as the following two first-order coupled equations:

dz

dx
= g(x) − f (x) ⋅ z(x) (A.17a)

and
dy

dx
= z(x) (A.17b)

Subroutine  ODESOL  provides users considerable flexibility.  A common use will
call  ODESOL  repeatedly, with each new call over a new increment of the independent
variable  x,  until the solution has been found over the desired range.  Another use will call
ODESOL  once, with the end values of the desired range given for the independent variable.
In this second use, intermediate values of the dependent variables (and the corresponding
independent variable) can be stored and printed.  In fact, these intermediate values can also
be stored and examined when the first application, with several calls between the end values
of the independent variable, is employed .  The sizes of the arrays in  ODESOL  are
established by integer values passed through arguments of the call;  thus the amount of
memory required by  ODESOL  is related to the size of the problem being solved.  For a
single first-order equation and a very limited storage of intermediate values, a very small
amount of memory is required by  ODESOL,  e.g., that of its code and variables and the
very small arrays that are passed as arguments.  On the other hand, if a system of eight
ordinary differential equations is being solved, the memory requirements for arrays will be
larger.   A smaller version that does not return intermediate values and does not use a blank
COMMON  statement is called ODESOLS.

The call in the driver program for  ODESOL  must contain a statement such as

CALL ODESOL(YBEG,DYDX,NV,X1,X2,ERR,H1,HMIN,NSTOR,XP,YP,WK1,SLOPE) (A.18a)



or
CALL ODESOLS(YBEG,DYDX,NV,X1,X2,ERR,H1,HMIN,WK1,SLOPE) (A.18b)

in which
YBEG = real array of dimension  NV.  Its elements are the dependent variables at  X1

for which a solution is being sought.  Before the call this array contains the
starting values of the dependent variables, i.e. the values of the  y's  at  X1.  Upon
return from the call, this array contains the dependent variables at  X2.

DYDX = real array of dimension  NV.  Its elements are the derivatives of the dependent
variables with respect to the independent variable  x.  The subroutine  SLOPE
defines these derivatives.  The main program must dimension this array.

NV = integer variable, the number of first-order equations to be solved.  In Eq. A.17
NV =  2.

X1 = the independent variable at the beginning of the solution interval.
X2 = the independent variable at the end of the solution interval.  A solution will be

obtained for  x  in the range between  X1  and  X2.  Either  X2  or  X1  can be the
smaller number.

ERR = real variable that defines the desired accuracy that  ODESOL  is to achieve.
The step size will be changed as needed to achieve this accuracy.

H1 = the initial increment in  x  that ODESOL will use in obtaining the solution.  It
will be modified as needed to satisfy  ERR.  Normally  ODESOL  is called
repeatedly to solve a problem over an extended range of the independent variable.
When this is done,  H1  will be used only in the first call to ODESOL.  There-
after the increment that was found to be appropriate in the previous call will be
used.  Therefore, it is best to provide  H1  only in the first call to  ODESOL.

HMIN = the minimum step size that will be allowed in seeking the solution.  It may
be set to zero (but this act may cause an infinite loop), and it is positive even if
X2  is less than  X1.

NSTOR = an integer that agrees with the dimensions of  XP  and the second dimen-
sion of  YP.  If  KMAX  in the common statement is  0,  then  NSTOR  can be
1.  NSTOR  should never be less than  1.

XP = a one-dimensional real array of size  NSTOR  that contains the values of  x
upon return from  ODESOL  if  KMAX  is nonzero.   These values will not be
equally spaced but will range from  X1  to  X2.

YP = a two-dimensional real array of size  NV (first subscript) and  NSTOR (second
subscript) that contains the values of the dependent variable upon return from
ODESOL  if  NBETW  is nonzero. The values in  YP(I, J),  with  I  between  1
and  NV  and  J  constant but between  1  and  IBETW,  will be the values of  y
corresponding to  XP(J).

WK1 = a two-dimensional real array with  NV  as the first dimension and  13  as the
second dimension.  It is used for work space by  ODESOL  in obtaining the
solution.  Thus  WK1  is dimensioned in the main program as  WK1(NV, 13).

SLOPE  must be declared as  EXTERNAL  in the main or driver program and is the
name of the subroutine described below that defines the derivatives.

The main program only requires a  COMMON  statement when  ODESOL  is used;  it
must contain the five variables defined below.  The statement should be similar to

COMMON NGOOD,NBAD,NBETW,IBETW,DXBETW (A.19)

in which
NGOOD = an integer variable, the number of steps in the solution that equal or exceed

the accuracy established by the error criterion  ERR,  i.e. good steps.



NBAD = an integer variable, the number of steps in the solution that did not meet the
accuracy established by the error criterion  ERR,  i.e. bad steps.

NBETW = an integer variable, the maximum number of intermediate values of  x  and
y  in arrays  XP  and  YP.  If  NBETW  is zero, then no intermediate values will
be returned.  NBETW  should not exceed the dimension of  XP  or  YP,  as defined
by  NSTOR,  but the number of values in  XP  and  YP  will usually be less than
NBETW.  However, if the required step sizes are small, values will not be stored
in  XP  and  YP  after  NBETW  values have been placed in these arrays.

IBETW = an integer variable,  the number of intermediate values of  x  and  y  that are
stored in  XP  and  YP  after returning from  ODESOL .  Hence the value of
IBETW  will never exceed  NBETW.

DXBETW = a real variable, the smallest increment in the independent variable for
which intermediate values will be stored in  XP  and  YP.  Should the increment
that is needed to meet the error criterion  ERR  become less than  DXBETW,  then
some values obtained in the solution process will not be stored.

The user of  ODESOL  must supply subroutine  SLOPE  to define the derivative(s) in
the differential equation(s).  The first statement should be

SUBROUTINE SLOPE(X, Y, DYDX) (A.20)

in which the name  SLOPE  is the  EXTERNAL  variable that is the last argument of the
call to  ODESOL.  The arguments are

X = a real variable, the independent variable  x.  Its value will be passed from
ODESOL  to  SLOPE  to define the derivatives.

Y = a real array with the dimension  NV.  Values of this array pass from  ODESOL  to
SLOPE  to define the derivatives at  X.

DYDX = a real array with dimension NV.  Subroutine  SLOPE  must contain  state-
ments to define the elements of this array using  X  and the elements of  Y  to
define each derivative of the individual dependent variables with respect to the inde-
pendent variable  x.  The name must match the second argument of the call to
ODESOL  from the main program.  Somewhere in subroutine  SLOPE  there
must be a statement  DYDX(J) =  ....  with  J  ranging from  1  through  NV.
SLOPE  will be called repeatedly by  ODESOL  and must be written to provide
the correct derivatives in the array  DYDX  which defines the system of ordinary
differential equations that are being solved.

It would be a worthwhile exercise to use  ODESOL  to solve Example Problem A.2.
To do so, first add  SLOPE  to the  EXTERNAL  declaration, and replace the  REAL
declaration at the beginning of the program with two statements:

COMMON NGOOD,NBAD,KMAX,ICOUNT,DXSAVE
REAL W(1,13),XP(1),YP(1,1),DY(1),Y(1)

Then replace  DXS=0.01  with two statements  H1=0.01  and  HMIN=1.E-8,  and replace
the call to  RUKUST  with

CALL ODESOL(Y,DY,1,XB,X,TOL,H1,HMIN,1,XP,YP,W,SLOPE)

Example Problem A.4
A pipe connects two tanks, as shown below, that have different water surface elevations;

at time  t = 0   a valve in the pipe is instantaneously and completely opened.  Analyze the
ensuing unsteady flow for a pipe with a length  L = 1000 ft  and a diameter  D = 10 in,
with tank diameters  D1 = D2 = 4 ft.  Initially the water surface elevations in the tanks are
h1 = 60 ft  and  h2 = 30 ft.  Assume all inertial effects are negligible in the tanks.



Obtain a solution for several situations:
(a)  the fluid is idealized as inviscid, creating no entrance or exit losses;
(b)  the fluid is idealized as inviscid, but assume that the velocity head into the second

tank is lost;
(c)  the fluid is real, and the pipe has a Darcy friction factor  f = 0.02;
(d)  the fluid is real, and the Darcy friction factor is to be determined for a pipe with an

equivalent sand grain roughness  e = 0.005 in.

D, L

e

h1

h2

D1
D2

L = 1000', D = 10", (h1)i = 60', (h2)i = 30' 

The Fortran program  TANKPI  (a  C  version is on the  CD) has been written to solve
all four cases.  It calls the solver  RUKUST  to obtain solutions to the  ODE  for the
problem.  The general ordinary differential equation for this problem is

dV

dt
=

g

L
h1 − h2 − Ke + 1 + f

L

D






V V

2g









in which  Ke  is the entrance loss coefficient and  V   is the velocity in the pipe.  The
velocity in each tank is found by multiplying the pipe velocity by the ratio of the pipe and
tank cross-sectional areas;  for example, for the first tank  dh1/dt = - (D/D1)2V.  Thus the
changes in tank water surface elevation over any time increment  ∆ t,  based on the trape-
zoidal rule for numerical integration, are given by

∆h1 = − D / D1( )2
V p + V pi( )∆t / 2

and

∆h2 = + D / D2( )2
V p + V pi( )∆t / 2

This numerical integration is needed in the main program, where  ∆ t  is the time increment
specified in the input, and within subroutine  SLOPE  since it will be called for times that
will be determined by the  ODE  solver  RUKUST.

For case (a) all terms after  h2  in the  ODE  are ignored,  so that  dV/dt = g(h1 - h2)/L
is to be solved.  Case (b) is obtained by setting  Ke  and  f  to zero.  For case (c) the
program uses  EK1 = Ke + 1 + fL/D  as the multiplier of the velocity head.  In case (d) the
Colebrook-White equation is solved for  f,  unless the Reynolds number is below  2100,  in
which case  f = 64/Re.  If  Re < 100,  then  f = 0.64.

The results for the four cases are plotted on the two graphs which follow.  In case (a) the
water surface elevations in the tanks oscillate repeatedly between elevations  60 ft  and  30
ft.  For all of the other cases the magnitude of the oscillations is damped, or reduced, with
time, but the rates of change differ from case to case.
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The variables that are read by the program have the following meanings:  IOUT =
number of the logic unit for written output,  L = pipe length (ft or m),  E = equivalent sand
grain roughness (ft or m),  D = pipe diameter (ft or m),  D1 =  diameter of tank one (ft or
m),  D2 = diameter of tank two (ft or m), VI = initial velocity in pipe (ft/s or m/s),  H1 =
head in tank one (ft or m),  H2 = head in tank two (ft or m),  G = acceleration of gravity,
KE = entrance loss coefficient,  NT = number of time steps for the solution,  DELT = time
increment (s), VISC = fluid kinematic viscosity (ft2/s or m2/s).



TANKPI.FOR
      REAL V(1),VTT(1)
      COMMON D,FL,GL,AR1,AR2,H1,H2,COE,VISC,VI,SF,G2,EK1,EK,E,TIM1
C IF E=-10 THEN THE DOWNSTREAM VELOCITY HEAD IS LOST; IF E = - ABS(F),
C THEN F = CONSTANT; OTHERWISE KE IS THE ENTRANCE LOSS AND E IS THE
C EQUIVALENT SAND GRAIN ROUGHNESS
      WRITE(*,*) 'GIVE IOUT,L,E,D,D1,D2,VI,H1,H2,G,EK,NT,DELT,VISC'
      DTS=0.05
      V(1)=VI
      G2=2.*G
      GL=G/FL
      AR1=(D/D1)**2/2.
      AR2=(D/D2)**2/2.
      AREA=0.78539816*D**2
      IF(ABS(EK).GT.1.E-7) EK=(1.+EK)/G2
      IF(E.LT.0.) EK=EK+ABS(E)*FL/(D*G2)
      EK1=EK
      IF(E.LT.-9.) EK1=1./G2
      TIM1=0.
      WRITE(IOUT,100) TIM1,VI,AREA*VI,H1,H2
  100 FORMAT(F5.1,4F10.3)
      DO 10 I=1,NT
      TIME=DELT*FLOAT(I)
      CALL RUKUST(1,DTS,TIM1,TIME,1.E-6,V,VTT)
      H1=H1-AR1*V(1)+VI)*DELT
      H2=H2+AR2*(V(1)+VI)*DELT
      WRITE(IOUT,100) TIME,V(1),AREA*V(1),H1,H2
      VI=V(1)
   10 TIM1=TIME
      END
      SUBROUTINE SLOPE(T,V,DVT)
      REAL V(1),DVT(1)
      COMMON D,FL,GL,AR1,AR2,H1,H2,COE,VISC,VI,SF,G2,EK1,EK,E,TIM1
      IF(E.GT.1.E-7) THEN
      RE=V(1)*D/VISC
      IF(RE.LT.100.) THEN
      F=0.64
      ELSE IF(RE.LT.2100.) THEN
      F=64./RE
      ELSE
    1 SF1=SF
      SF=1.14-2.*ALOG10(E/D+9.35*SF/RE)
      IF(ABS(SF-SF1).GT.1.E-6) GO TO 1
      F=1./SF/SF
      ENDIF
      EK1=EK+F*FL/D/G2
      ENDIF
      DVT(1)=GL*(H1-H2-(V(1)+VI)*(AR2+AR1)*(T-TIM1)-EK1*V(1)*ABS(V(1)))
      RETURN
      END

Modifying this program to use  ODESOL  and/or  DVERK  (part of IMSL) in place of
RUKUST  is an instructive exercise.
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APPENDIX  D
_________________________________________________________________________

ANSWERS TO SELECTED PROBLEMS

CHAPTER 2
2.1  (a)  Re = 834, laminar;  (b) Re = 3.94x106,  e/D = 0.00173, wholly rough, turbulent.

2.2  (a)  f  = 0.0174, transitional;  (b)  e = 1.05x10-4m;  (c)  18.6 kW.
2.3  p = 744 kPa.
2.4  Q = 0.607 m3/s,  P = 397 kW.
2.5  Q = 0.559 m3/s.
2.6  D = 143.9 mm.
2.7  (a)  K = 22.907, n = 1.852;  (b)  K = 2868.7, n = 1.852,  (c)  K = 14.410, n = 1.852.
2.9  Darcy-Weisbach  hf = 4.986 ft;  Hazen-Williams  hf = 4.803 ft;  difference = 0.092 ft;

Manning  hf = 5.101 ft;  difference = - 0.205 ft.

2.13  Q = 0.00698 m3/s.
2.14  hf = 3.47 m.

2.15  113.5 m  vs.  34.6 m (about  3  times as large).
2.16  f = 0.0195,  hf = 26.6 m.

2.17  P = 109.7 kW.
2.18  P = 5608 kW.
2.19  hf = 28.95 m.

2.20  Use  10%  of  z  for  hf,  D = 2.58 m.

2.21  f = 0.0279,  D = 0.513 m.
2.22  hp = 109.2 ft,  HP = 99.1,  Ns = 1775 (centrifugal).

2.23  f = 0.0127,  D = 326 mm.
2.24  f = 0.0148,  D = 0.181 m.
2.26  hL = 0.162 m  saved.

2.27  hL = 3.59 m,  2.94 m,  1.96 m.

2.28  hL = 4.077 m,  0.155 m,  8.155 m.

2.29  Q = 0.0082 m3/s.
2.30  Q = 0.55 m3/s  (net return for pumping  = 40.45/16.18 = 2.5).

CHAPTER 4
4.2  Q1 = 3.1 ft3/s,  f = 0.0181.

4.3  (a)  K = 0.8318,  n = 1.960.
4.4  (d)  hf5  = 20.37 m,  H3 = 300.4 m;  (e)  Q6 = 0.112 m3/s,  H2 = 306 m.

4.7  Q1 = 1.75 ft3/s,  hf1 = 16.82 ft.

4.8  Q1 = 0.849 ft3/s,  Q2 = 2.151 ft3/s.

4.9  Q1 = 1.97 ft3/s,  Q2 = 2.47 ft3/s,  H1 = 96.9 ft,  H2 = 116.6 ft.

4.10  Q1 = 0.496 ft3/s,  Q2 = 2.504 ft3/s,  Q3 = 3.504 ft3/s,  hp = 154.4 ft.

4.11  HGL = 69.93 ft,  PRV  dissipates  7.37 ft.
4.12  Q1 = 0.143,  Q2 = 0.622,  Q3 = 0.265,  Q4 = 0.735,  Q5 = 1.857,  all in ft3/s.

4.15  Q1 = 0.202,  Q2 = 0.109,  Q3 = 0.029,  Q4 = 0.033,  Q5 = 0.012,  all in ft3/s.

4.19  Q3 = 0.0446,  Q4 = 0.0196,  Q5 = 0.0554,  Q6 = 0.0254,  all in m3/s.



4.23  (a)  Q1 = 0.606,  Q2 = 0.560,  Q3 = 0.106,  Q4 = 0.0462,  Q5 = 0.0602,  Q6 =

0.394,  Q7 = 0.190,  all in  ft3/s;  (b)  Q1 = 0.0061,  Q2 = 0.0323,  Q3 = 0.0228,

Q4 = 0.1572,  Q5 = 0.1177,   Q6 =  0.1412,  Q7 = 0.5239,  all in  m3/s.

4.25  Q1 = 4.146,  Q2 = 1.783,  Q3 = 0.783,  Q4 = 1.258,  Q5 = 0.606,  Q6 = 0.718,

Q7 = 0.658,  Q8 = 0.058,  Q9 = 0.554,  all in  ft3/s.

CHAPTER 5
5.1  (1)  f = 0.0156,  D = 6.055 in,  D = 6.090 in;  (2)  0.0265,  6.677 in,  7.034 in;   

(3)  0.0179,  9.925 in,  9.811 in.
5.2  (1)  f = 0.0125,  D = 0.344 m,  D = 0.346 m;  (2)  0.0232,  0.428 m,  0.445 m;   

(3)  0.0132,  0.709 m,  0.669 m.
5.5  D1 = 5.65 in, . . . . D10 = 14.48 in.

5.10  Partial results:
         Pipe  Diameter  Discharge   Velocity   Head loss        Re
          1      0.0846     0.000965     1.718      0.200         1345
          5      0.0446     0.000149     0.674      0.200           196
          .         .                .               .            .                 .    
          .         .                .               .            .                 .
         45     0.0446      0.000156    0.476       0.200          196
5.11  D = 7.52 in,  f = 0.0192.
5.12  D  = 7.25 in.
5.13  QJ = 0.327 ft3/s,  f1 = 0.0144,  f2 = 0.0145.

5.14  hp = 177.24 ft,  P = 114.47 kW,  cost/day = $274.72.

5.17  Darcy-Weisbach:  Q1 = 1.438 ft3/s,  Q2 = 0.938 ft3/s;                               

Hazen-Williams:  Q1 = 1.527 ft3/s,  Q2 = 1.027 ft3/s.

5.18  D2 = 4.73 in, f2 = 0.0207.

5.19  hf1 = 12.11 ft,  D2 = 4.71 in.

5.22  Pump 1:  Q = 15.829 ft3/s;  Pump 2:  Q = 11.123 ft3/s.
5.23  Q1 = 22.786 (f = 0.0143);  Q1 + Q2 = 22.786 + 11.123 = 33.909 ft3/s  into the

reservoir.
5.27  Pump  2  must supply  13.0 ft3/s,  producing a negative flow in pipe 4;  a solution

is not possible because  H2 > H3.

5.28  WS elevation = 605 - 39.66 = 565.34 ft;  H14 = 572.4 ft.

5.29  Cases  1,  2  and  4  fail.
5.30  hp = 51 ft.

5.32  A pump with  Qnew = 3.1 ft3/s  and  hp = 50.4 ft  should be selected.

5.35  For  2 ft3/s demands the deficit pressures are 17.8 lb/in2 at node 4, 34.9 lb/in2 at
node 6, and 17.8 lb/in2 at node 9;  increase the diameters of pipe 4 to 18 in, pipe 7
to 6 in, pipes 9 and 10 to 10 in, and pipes 11 and 12 to 8 in.

5.36  (2)  Q1 = 7.104 ft3/s,  Q3 = 1.053 ft3/s,  and  Q6 = 2.406 ft3/s;  also  Q1 = 7.104

ft3/s,  f1 = 0.0128  and  hp = 63.72 ft.

5.37  QJ2 = 0.976 ft3/s,  ht = 403.4 ft.

5.38  Nra = 1.124,  Nrb = 1.132.

5.45  Energy = 81.5x106 ft-lb = 110,600 kWh.

CHAPTER 6
6.9   Partial results: 45.1 kWh,  $767/day,  energy cost present worth = $2,700,000.
6.12  1 in smaller, difference = $12.98/day;  1 in larger, difference = $14.38/day.



6.13   PVC pipe increases discharge to reservoir by 192 gal/min and reduces total power
from 266 kW to 261 kW.

6.14  $712.80/day, reduced by $53.80/day;  flow to reservoir is reduced by 15.5 acre feet.
6.15  Energy cost/year = $2027;  present worth = $228,200.

CHAPTER 7
7.1  ∆t = 85.2 min;  ∆t = 76.9 min.
7.2  tf = 10.5 min.

7.3  t = 117 sec.

7.4   A(h) = (− Ca 2g / K)h1/2,  with  K = dh/dt = negative constant.

7.5  η = 3.19 ft  and  t = 146 sec  when the upper tank is closed;  when  η = 1.0 ft,        
t = 711 sec.

7.6  V0 = 9.51 ft/s;  t50 = 15.6 sec;  t99 = 75 sec.

7.7  t99 = 75 sec.

7.8  t99 = 9.8 sec.

7.9  t99 = 9.6 sec.

7.10  t99 = 38.1 sec.

7.11  t99 = 54.5 sec.

7.12  Minimum pressure head = 113.9 ft at 10 sec on downstream side of valve;  maxi-
mum pressure head = 200 ft at 0 sec at the valve;  final valve loss coefficient =
95.8.

7.13  Minimum pressure head = 32.2 ft  at  9.2 sec  at the valve.
7.14  Pressure head at valve needs to reach  209 ft  but cannot exceed 200 ft;  proposed

scheme will not work.
7.17  Maximum pressure head = 32.2 ft at  t = 7.75 sec.
7.18  V0 = 7.23 ft/s,  maximum pressure head = 74.2 ft  at  t = 26.4 sec.

7.19  pmax = 68 lb/in2  at  28 sec.

CHAPTER 8
8.1  (a)  Case (a)  a = 4190 ft/s,  Case (b)  a = 4210 ft/s,  Case (c) a = 4170 ft/s;  (b)

pmax = 1316 lb/in2  with stress of  18,600 lb/in2  in steel pipe;  stress too high.
8.2  (a)  Choose Case (c) restraint with  a = 860 ft/s;  (b)  1.12%;  (c)  0.068 in.
8.3  (a)  Case (a)  a = 2830 ft/s,  Case (b)  a = 2870 ft/s,  Case (c)  a = 2790 ft/s;

(b)  though the pipe is connected with ring gaskets, soil friction may not permit the
pipe to slip at the joints, so select Case (b) as a conservative approach.

8.4  Liquid compression, 37%;  pipe expansion, 63%.
8.5  (a)  a = 3450 ft/s;  (b)  a = 3970 ft/s;  (c)  a = 3320 ft/s;  (d)  a = 3580 ft/s;

(e) a = 1070 ft/s.
8.6  Percent change = 0.89%.
8.7  (a)  Volume inflow = 369 ft3;  (b)  liquid compression, 156 ft3;  longitudinal

stretching, 22 ft3;  radial stretching, 191 ft3.
8.8  a = 4210 ft/s.
8.9  Case (a)  a = 3870 ft/s,  Case (b)  a = 3900 ft/s,  Case (c)  a = 3850 ft/s.
8.10  Pipe volume change = 0.82%;  liquid density change = 0.18%.
8.11  (a)  a = 1050 ft/s;  (b) pmax = 241 lb/in2;  (c)  σ1 = 0 lb/in2.

8.12  a = 2710 ft/s.
8.13  (a)  Case (a)  a = 960 ft/s,  Case (b)  a = 960 ft/s,  Case (c)  a = 860 ft/s;

(b)  percent area change = 0.80%.
8.14  a = 930 ft/s.
8.15  (a)  Case (a)  a = 4160 ft/s,  0.65% error;  Case (b) a = 4180 ft/s,  0.69% error;

Case (c)  a = 4140 ft/s,  0.68% error;  (b)  Case (a) - 0.62%;  Case (b) - 0.69%;



Case (c) - 0.70%;  (c)  no, the thin-wall formulas give more conservative results for
head increase.

8.16  (a)  Case (a)  a = 2760 ft/s, - 2.5%;  Case (b)  a = 2790 ft/s, - 2.7%;  Case (c)  a =
2720 ft/s, - 2.6%;  (c)  in all cases the thin-wall formulas are more conservative.

8.17  a = 930 ft/s.
8.18  a = 4560 ft/s.
8.19  a = 4300 ft/s.
8.20  a = 4600 ft/s.
8.21  a = 4530 ft/s.
8.22  a = 3260 ft/s.
8.23  With stress-free concrete,  a = 1780 ft/s;  otherwise  a = 3720 ft/s.
8.24  a = 3850 ft/s.
8.25  a = 3480 ft/s.

CHAPTER 9
Answers in this chapter may vary, owing to slightly differing input parameters.
9.1  tc = 0 sec, (p/γ)max = 1010 ft at x = 0.1, (p/γ)min = - 38 ft at x = 1.0 (impossible);

tc = 4 sec, (p/γ)max = 925 ft at x = 1.0, (p/γ)min = - 38 ft at x = 1.0 (impossible);

tc = 8 sec, (p/γ)max = 668 ft at x = 1.0, (p/γ)min = 408 ft at x = 1.0;

tc = 12 sec, (p/γ)max = 589 ft at x = 1.0, (p/γ)min = 283 ft at x = 1.0.

9.2  Minimum  tc = 7.7 sec.

9.3  (a)  Yes, (p/γ)min = 2 ft;  (b) (p/γ)max = 703 ft, (p/γ)min = 462 ft.

9.6  (a)  hp = - 2.86x10-5Q2 + 0.0085Q + 55;  (c)  a = 3980 ft/s;
    (d)  tc = 3 sec:

At valve  pmax = 377 lb/in2 at 2.92 sec,  pmin = 3.5 lb/in2 at 6.36 sec;

At check valve  pmax = 250 lb/in2 at 4.24 sec,  pmin = 140 lb/in2 at 0 sec;

tc = 6 sec:

At valve  pmax = 214 lb/in2 at 4.24 sec,  pmin = 3.9 lb/in2 at 0 sec;

At check valve  pmax = 188 lb/in2 at 6.89 sec,  pmin = 140 lb/in2 at 0 sec;

tc = 9 sec:

At valve  pmax = 206 lb/in2 at 9.01 sec,  pmin = 3.9 lb/in2 at 0 sec;

At check valve  pmax = 188 lb/in2 at 9.81 sec,  pmin = 140 lb/in2 at 0 sec;

tc = 12 sec:

At valve  pmax = 186 lb/in2 at 11.93 sec,  pmin = 3.9 lb/in2 at 0 sec;

At check valve  pmax = 188 lb/in2 at 13.26 sec,  pmin = 140 lb/in2 at 0 sec.

9.7  (a)  hp = - 1.048x10-6Q2 - 0.00938Q + 254;  (c)  a = 2790 ft/s;

   (d)  At valve  pmax = 233 lb/in2 at 14.4 sec,  pmin = 13.0 lb/in2 at 0 sec;

 At check valve  pmax = 152 lb/in2 at 19.7 sec,  pmin = 80 lb/in2 at 0 sec.

9.8  (a)  Q = 3600 gal/min  and  V0 = 10.21 ft/s;

   (b)  hp = - 1.59x10-6Q2 - 0.00730Q + 175;  (c) a = 3720 ft/s;

   (g)  At valve  pmax = 277 lb/in2 at 28.1 sec,  pmin = 17 lb/in2 at 0 sec;

    At pump  pmax = 124 lb/in2 at 34.1 sec,  pmin = 77 lb/in2 at 0 sec.

9.9  (a)  hp = - 2.07x10-6Q2 - 0.00310Q + 180;
   At valve  pmax = 185 lb/in2 at 2.00 sec,  pmin = 100 lb/in2 at 0 sec;

   At check valve  pmax = 155 lb/in2 at 2.57 sec,  pmin = 101 lb/in2 at 0 sec.

9.10  (a)  hp = - 1.14x10-4Q2 + 0.0343Q + 220;



(c)  tc = 3 sec:

At valve  pmax = 286 lb/in2 at 1.71 sec,  pmin = 2.6 lb/in2 at 0 sec;

At check valve  pmax = 211 lb/in2 at 3.75 sec,  pmin = 70 lb/in2 at 0 sec;

 tc = 5 sec:

At valve  pmax = 194 lb/in2 at 5.11 sec,  pmin = 2.6 lb/in2 at 0 sec;

At check valve  pmax = 193 lb/in2 at 5.97 sec,  pmin = 70 lb/in2 at 0 sec;

 tc = 7 sec:

At valve  pmax = 162 lb/in2 at 5.11 sec,  pmin = 2.6 lb/in2 at 0 sec;

At check valve  pmax = 134 lb/in2 at 7.84 sec,  pmin = 70 lb/in2 at 0 sec;

9.11  (a)  hp = - 1.43x10-4Q2 + 0.029Q + 275;  

         (c)  At valve  pmax = 144 lb/in2 at 2.26 sec,  pmin = 13.9 lb/in2 at 0 sec;

     At check valve  pmax = 111 lb/in2 at 4.87 sec,  pmin = 81 lb/in2 at 0 sec.

9.12  At valve  pmax = 129 lb/in2 at 4.00 sec,  pmin = 13.9 lb/in2 at 0 sec;

 At check valve  pmax = 109 lb/in2 at 4.80 sec,  pmin = 81 lb/in2 at 0 sec.

9.13  (a)  hp = - 1.176x10-5Q2 + 0.00647Q + 72;  (c)  (c) 3670 ft/s;

(d)  tc = 3 sec:

At valve  pmax = 357 lb/in2 at 3.00 sec,  pmin = 75 lb/in2 at 0 sec;

At check valve  pmax = 303 lb/in2 at 4.36 sec,  pmin = 109 lb/in2 at 0 sec;

 tc = 6 sec:

At valve  pmax = 223 lb/in2 at 3.82 sec,  pmin = 75 lb/in2 at 0 sec;

At check valve  pmax = 153 lb/in2 at 5.18 sec,  pmin = 109 lb/in2 at 0 sec.

9.14  (a)  (p/γ)max = 800 ft  (b)  (p/γ)min ≈ - 28 ft  (d)  (p/γ)max = 800 ft.

CHAPTER 10
Answers in this chapter may vary, owing to slightly differing input parameters.
10.1  pmax = 828 lb/in2 at 30.1 sec at the valve;  pmin = column separation at 34.6 sec at

 a point  1670 ft  downstream from the upper reservoir.
10.2  (a) pmax = 374 lb/in2;  (b)  it occurs 600 ft downstream of low point at 20.7 sec;  

 (c)  column separation does occur;  (d)  it occurs at the valve at 24.3 sec.
10.3   tc = 20 sec:  pmax = 390 lb/in2 at  21 sec  at low point;  pmin = column separation

at  26 sec  at valve;
 tc = 40 sec:  pmax = 263 lb/in2 at  41 sec  at low point;  pmin = column separation

at  48 sec  at valve;
 tc = 60 sec,  pmax = 221 lb/in2 at  55 sec  at low point;  pmin = column separation

at  69 sec  at valve.
10.4  Minimum valve closure time is  13 sec;  phase 1 closes to 8% open in 1 sec, and 

phase 2 completes closure in 12 sec more;  pmax = 193 lb/in2,  pmin = - 11 lb/in2.

10.5  Minimum valve closure time is  14 sec;  phase 1 closes to 1.5% open in 1 sec, and 
phase 2 completes closure in 13 sec more;  pmax = 198 lb/in2,  pmin = - 12 lb/in2.

10.6  Minimum valve closure time is  5 sec;  phase 1 closes to 20% open in 1 sec, and 
phase 2 completes closure in 4 sec more;  pmax = 191 lb/in2,  pmin = 3 lb/in2.

10.7  Valve A:  pmax = 90 lb/in2 at low point;  pmin = 22 lb/in2  at upper reservoir;

Valve B:  pmax = 124 lb/in2 at low point;  pmin = column separation at 39 sec at 

valve;  valve A is the better choice.
10.8  (a)  pmax = 374 lb/in2 at 16 sec at the low point;

pmin = column separation at 18 sec near midpoint of 2000 ft line;



(b)  pmax = 312 lb/in2 at 16 sec at the low point;
pmin = column separation at 18 sec near midpoint of 2000 ft line;

(c)  pmax = 373 lb/in2 at 21 sec at the low point;
pmin = column separation at 23 sec near midpoint of 2000 ft line;

(d)  pmax = 276 lb/in2 at 21 sec at the low point;
pmin = column separation at 23 sec near midpoint of 2000 ft line

(e)  pmax = 312 lb/in2 at 21 sec at the low point;
pmin = column separation at 23 sec near midpoint of 2000 ft line.

10.9  (a)  pmax = 197 lb/in2 at 5 sec at the low point;  

pmin = - 11 lb/in2 at 19 sec at the valve;

(b)  pmax = 231 lb/in2 at 5 sec at the low point;  

pmin = 5 lb/in2 at 19 sec at the valve;

(c)  pmax = 274 lb/in2 at 5 sec at the low point;  

pmin = - 8 lb/in2 at 8 sec at the upstream end of the 2000 ft pipe;

(d)  pmax = 202 lb/in2 at 3.5 sec at the low point;  

pmin = 1 lb/in2at 24 sec at the valve;

(e)  pmax = 283 lb/in2 at 3.5 sec at the low point;  

pmin = - 8 lb/in2 at 6 sec at the upstream end of the 2000 ft pipe.

With a working pressure of  200 lb/in2,  the only clear-cut option is schedule (a), 
but schedule (d) is close enough to consider.

CHAPTER 11
Answers in this chapter may vary, owing to slightly differing input parameters.
11.1  Column separation occurs at the midpoint of the first pipe segment at  4 sec.  At

that time the pump is still turning at  525  rev/min, producing  129 gal/min  at a
head increase of  77.5 ft.

11.2  Column separation occurs at the midpoint of the first pipe segment at  2.7 sec.  At
that time the pump is turning at  600 rev/min, producing  263 gal/min  at a head
increase of  100 ft.

11.3  Column separation occurs at the downstream end of the  2600 ft  pipe at  2.19 sec.
At that time the pumps were turning at  352 rev/min, producing  994 gal/min  at a
head increase of  6 ft.

11.4  Column separation occurs at the upstream end of the last pipe at  0.9 sec.  At that
time the pumps were turning at  1194 rev/min, producing  1300 gal/min  at a head
increase of  329 ft.

11.5  Column separation occurs  2700 ft  downstream in the  4000 ft  pipe at  1.6 sec.  At
that time the pumps were turning at  760 rev/min, producing  564 gal/min  at a
head increase of  117 ft.

11.6  pmax = 162 lb/in2  at  12.6 sec  at the pump discharge;  pmin = 8.5 lb/in2  at  2.2

sec  near the downstream reservoir.
11.7  pmax = 55 lb/in2 occurs under steady flow conditions at the pump discharge;  pmin

= 10 lb/in2  at  7 sec  3700 ft  downstream of the pumps.
11.8   Vapor pressure is reached throughout most of the pipeline, but the largest cavity

appears at the “knee” at elevation  1350 ft.  Cavity volume reaches  34 ft3  at  17
sec  but has collapsed by  29 sec.  The maximum pressure of  415 lb/in2  occurs at
the pump discharge at  44 sec.

11.9   Vapor pressure is reached throughout most of the pipeline, except at the “knee”
where an air-vacuum valve causes a  151 ft3  air cavity to form.  The air cavity
begins to form at  3 sec,  reaches its maximum size at  59 sec,  and finally is



exhausted at  135 sec.  The maximum pressure of  435 lb/in2  occurs at the pump
discharge at  11 sec.

11.10  Vapor pressure is reached throughout most of the pipeline, but the largest cavities
are at the “knees” at elevations  4440 ft  and  4470 ft.  Maximum cavity volumes
reach  111 ft3  and  34 ft3  at  34 sec  and  22 sec, respectively.  By  45 sec,  major
cavity formation has ceased.  The maximum pressure of  364 lb/in2  occurs at the
pump discharge at  66 sec.

11.11  Vapor pressure is reached throughout the  2000 ft  pipe but is not extensive owing
to the air-vacuum valve at the “knee”.  At that point a  58 ft3  air cavity forms,
reaching maximum size at  5 sec.  The air cavity continues to form and exhaust
periodically until its size is down to  10 ft3  at 60  sec.  The maximum pressure of
492 lb/in2  occurs at the pump discharge at  10 sec.

11.12   Vapor pressure is reached throughout the downstream half of the pipeline;
however, the presence of the air-vacuum valve at the “knee” prevents the formation
of large vapor cavities.  The air cavity reaches a maximum volume of  66 ft3  at  6
sec, reforming several more times until dying out completely by  50 sec.  The
maximum pressure of  478 lb/in2  is at the pump discharge at  15 sec.

CHAPTER 12
Answers in this chapter may vary, owing to slightly differing input parameters.
12.2  (b)  Q3 = 0.74 ft3/s,  H2 = 72.11 ft.

12.4  (a)  One real loop equation,  Q2 = 2.13 ft3/s,  H2 = 98.81 ft;  (b)  5 continuity

equations + 6 ODE's = 11 equations;  (d)  at  t = 5 sec  Q2 = 2.98 ft3/s,  H2 = 97.94
ft.

12.5  (a)  Q5 = 0.17 ft3/s,  H4 = 194.98 ft;  (b)  6 ODE's and a total of  11  equations;

(c)  at  t = 6 sec  Q5 = 0.49 ft3/s,  H4 = 154.48 ft.

12.6  (a)  Q2 = 3.29 ft3/s,  H2 = 452.74 ft;  (b)  6 ODE's and a total of  10  equations;

(c)  at  t = 5 sec  Q2 = 3.21 ft3/s,  H2 = 448.49 ft.
12.7  (a)  Four equations, plus 3 Colebrook-White equations;  (b) one continuity equation

and 3 ODE's;  H1(0) = 64.3 ft,  H1(4) = 156.3 ft,  H1(15) = 89.0 ft.

12.12  At  t = 0  Q1 = Q3 = 0.248 ft3/s,  Q2 = 0;  H1 = 34.55 ft;  at  t = 3.5 sec  Q1 =

0.160 ft3/s,  Q2 = 0.127 ft3/s, Q3 = 0.033 ft3/s,  H1 = 51.54 ft,  z = 62.33 ft,
H2 = 61.32 ft.

12.13  (a)  Q1 = 2.62,  Q2 = 1.22,  Q3 = 3.66,  Q4 =  7.50,  all in ft3/s;  H1 = 68.81 ft,
H2 = 38.30 ft;  (b)  at  t = 5 sec  Q1 = 2.26,  Q2 = 1.04,  Q3 = 1.90,  Q4 = 3.49,

all in ft3/s,  H1 = 85.11 ft;  (c)  at  t = 5 sec  V1 = 0.243 ft/s,  V2 = - 1.047 ft/s,
V3 = 0.222 ft/s,  V4 = 0,  H1 = 201.4 ft,  H2 = 698.1 ft;  at  t = 30 sec  V1 =
1.763 ft/s,  V2 = 0.589 ft/s,  V3 =  - 1.340 ft/s,  V4 = 0,  H1 = H2 = 85.1 ft.

12.15  (a)  Q1 = 2.78 ft3/s,  Q5 = 1.38 ft3/s,  H3 = 479.1 ft;  (e)  at  t = 30 sec  Q1 =

1.34,  Q2 = 0.73,  Q3 = - 0.88,  Q4 = - 0.97,  Q5 = 3.66,  all in ft3/s;  H1 =
493.7 ft,  H2 = 488.1 ft,  H3 = 498.7 ft;  at  t = 100 sec  Q1 = 1.42,  Q2 = 0.75,

Q3 = - 0.83,  Q4 =    - 0.95,  Q5 = 3.58,  all in ft3/s;  H1 = 497.3 ft,  H2 =
494.2 ft,  H3 = 502.2 ft.

12.16  (a)  H1 = 3.85 ft;  (b)  pair = 240 lb/ft2,  ρ = 0.0144 slugs/ft3;  (d)  at  t = 3 sec

Q1 = 1.16 ft3/s,  Q2 = 0.61 ft3/s,  Q3 = 0.54 ft3/s,  H1 = 86.5 ft,  H2 = 86.4 ft,

H3 = 38.7 ft,  Volume = 50.83 ft3,  x = 0.042 ft;  at  t = 37.5 sec  Q1 = Q3 =

0.045 ft3/s,  Q2 = 0,  H1 = 58.2 ft,  H2 = 58.2 ft,  H3 = 60.7 ft,  Volume =

64.09 ft3,  x = 0.704 ft.



12.18  At  t = 10 sec  Q1 = 3.44,  Q2 = 0.68,  Q3 = 0.55,  Q4 = 1.83,  Q5 = 1.44,  Q6 =

3.48,  Q7 = 3.26,  Q8 = 0.22,  all in ft3/s;  z = 124.1,  H1 = 111.7,  H2 = 111.2,
H3 = 111.3,  H4 = 126.9,  H5 = 139.1,  all in ft.

12.19  At  t = 12.5 sec  Q1 = 2.52,  Q2 = - 0.71,  Q3 = 1.02,  Q4 = 0.71,  Q5 = 0.98,

Q6 = 3.69,  Q7 = 3.48,  Q8 = 0.21,  all in ft3/s; z = 124.1,  H1 = 135.1,  H2 =
143.5,  H3 = 131.5,  H4 = 132.0,  H5 = 137.4,  all in ft.

12.25  (a)  Q1 = 823,  Q8 = 170,  Q14 = 110,  Q18 = 99,  all in gal/min;  p12 = 81.7

lb/in2;  (b)  column separation occurs in pipe  4  one third of the distance from the
upstream end at  14 sec.

12.26  Column separation occurs instantaneously at node 1.
12.27  Max. pressure head = 298 ft in pipe 7 at upstream side of closed valve at 2.0 sec;

Min. pressure head = 47 ft  at the same location at  10.7 sec.
12.28  (a)  Q7 = 3910,  Q24 = 1535,  Q77 = 80,  Q555 = 1040, all in gal/min;  pressure

at node 500 = 76.3 lb/in2;  (b)  Max. pressure head = steady state value of  190 ft
at node 99,  Min. pressure head = steady state value of 20 ft at the reservoir at the
upstream end of pipe 7.

12.29  Max. pressure = 388 lb/in2  at the upstream side of the closed valve at the instant
of closure;  Min. pressure causes column separation at the downstream side of the
valve at the same time.

12.30  (a)  Q7 = 3620,  Q24 = 1390,  Q77 = 390,  Q555 = 970, all in gal/min;  pressure

at node 500 = 77.8 lb/in2;  (b)  Max. pressure head = 194 ft  near midpoint of pipe
88 at 11 sec;  Min. pressure head = the steady state value of 20 ft at the reservoir
at the upstream end of pipe 7.

12.31  Column separation occurs at the downstream end of pipe 88 at 3.3 sec.  The max.
pressure head before this time is 493 ft at the same location at 1.1 sec.

12.32  (a)  Q1 = 940,  Q4 = 1033,  Q8 = 890,  Q14 = 407, all in gal/min;  pressure at

node 5 = 43.2 lb/in2;  (b)  column separation occurs at the upstream end of pipe 1
at 2.0 sec.  The max. pressure head before this is the steady state value of 110 ft at
the pump discharge.

12.33  Max. pressure head = 197 ft at the downstream end of pipe 14 at 0.37 sec;  Min.
pressure head = - 19 ft near the downstream end of pipe 6 at 2.7 sec.

CHAPTER 13
Answers in this chapter may vary, owing to slightly differing input parameters.
13.1  Approximately  310 ft3,  including a safety factor.
13.2  (a) About 935 ft3, including a safety factor;  (b)  an air chamber of approximately

450 ft3  and a one-way surge tank  8 ft  in diameter and  25 ft  tall.
13.3   (a) Approximately  630 ft3,  including a safety factor;  (b)  there is no practical

means of accomplishing this design objective;  (c)  an air chamber of approximately
210 ft3  and a one-way surge tank  6 ft  in diameter and  15 ft  tall.

13.4  Approximately  950 ft3,  including a safety factor.
13.5  The air chamber size is approximately  1036 ft3;  a one-way surge tank  12 ft  in

diameter and  35 ft  tall is needed at the first summit, with another  10 ft  in diameter
and  20 ft  tall at the second summit.

13.6  Approximately  52 ft3,  including safety factor.
13.7 Wr2 = 460 lb-ft2  to prevent column separation;  Wr2 = 795 lb-ft2  to prevent

negative pressures.
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