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Series Preface

The field of aerospace is multi-disciplinary and wide-ranging, covering a large variety of
products, disciplines and domains, not solely in engineering but also inmany related sup-
porting activities. These combine to enable the aerospace industry to produce innovative
and technologically advanced vehicles. The wealth of knowledge and experience that has
been gained by expert practitioners in the various aerospace fields needs to be passed
onto others working in the industry and also researchers, teachers and the student body
in universities.
The Aerospace Series aims to provide a practical, topical and relevant series of books

aimed at people working within the aerospace industry, including engineering profes-
sionals and operators, engineers in academia, and allied professions such commercial
and legal executives. The range of topics is intended to be wide-ranging, covering design
and development, manufacture, operation and support of aircraft, as well as topics such
as infrastructure operations and current advances in research and technology.
There is currently a renewed interest world-wide in space, both in terms of interplan-

etary exploration, and its commercialisation via a range of different opportunities includ-
ing: communications, asteroid mining, space research and space tourism. Several new
companies have been set up with the aim of exploiting the commercial opportunities.
A fundamental issue for any space mission is how to get the system into space and then
how to control its trajectory and attitude to complete the mission objectives.
This book, Space Flight Dynamics, provides a comprehensive coverage of the topics

required to enable space vehicles to achieve their design goals whilst maintaining the
desired performance, stability and control. It is a very welcome addition to the Wiley
Aerospace Series.

Peter Belobaba, Jonathan Cooper and Allan Seabridge
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Preface

This textbook is intended for an introductory course in space flight dynamics. Such a
course is typically required for undergraduates majoring in aerospace engineering. It
is also frequently offered as an elective in mechanical and aerospace engineering curri-
cula. Whether taken for required or elective credit, this course is usually taken in the
junior or senior year, after the student has completed work in university physics,
rigid-body dynamics, and differential equations. A brief survey of university catalogs
shows that titles for these courses include Orbital Mechanics, Astrodynamics, Astronau-
tics, and Space Flight Dynamics. The principal topic covered in essentially all courses is
two-body orbital motion, which involves orbit determination, orbital flight time, and
orbital maneuvers. A secondary topic that appears in many of these courses is spacecraft
attitude dynamics and attitude control, which involves analyzing and controlling a satel-
lite’s rotational motion about its center of mass. A number of space flight courses also
cover topics such as orbital rendezvous, launch trajectories, rocket propulsion, low-
thrust transfers, and atmospheric entry flight mechanics. The primary goal of this text-
book is to provide a comprehensive yet concise treatment of all of the topics that can
comprise a space flight dynamics course. Tomy knowledge, a single space flight textbook
that covers all the topics mentioned above does not exist.
A secondary goal of this textbook is to demonstrate concepts using real engineering

examples derived from actual space missions. It has been my experience that undergrad-
uate students remain engaged in a course when they solve “real-world” problems instead
of academic “textbook” examples. A third goal is to produce a readable textbook with a
conversational style inspired by my textbook-author role model, John D. Anderson,
Jr. Space Flight Dynamics is a distillation of 20 years of course notes and strategies for
teaching space flight in the Mechanical and Aerospace Engineering Department at
the University of Missouri-Columbia.
Chapter 1 is a brief historical overview of the important figures and events that have

shaped space flight. Chapter 2 provides the foundation of this textbook with a treatment
of orbital mechanics. Here we are able to obtain analytical expressions for the orbital
motion of a small body (such as a satellite) relative to a large gravitational body (such
as a planet). Chapter 3 extends these concepts with a discussion of orbit determination,
that is, the process of completely characterizing a satellite’s orbit. In Chapter 4 we present
Kepler’s time-of-flight equations which allow us to predict a satellite’s orbital position at
a future (or past) time.We also discuss Lambert’s problem: the process of determining an
orbit that passes through two points in space separated by a particular flight time.

xiii



Chapter 5 introduces orbital perturbations that arise from the non-spherical shape of
the attracting body, third-body gravity forces, and atmospheric drag. Perturbations cause
the satellite’s motion to deviate from the analytical solutions we obtained for the two-
body motion studied in Chapters 2–4.We also introduce the restricted three-body prob-
lem where gravitational forces from two primary bodies (such as the Earth and moon)
simultaneously influence the satellite’s motion.
Chapter 6 presents fundamentals of rocket propulsion and launch trajectories. This

chapter serves as a key transitional link to subsequent chapters that involve orbital man-
euvers. Chapter 6 shows that burning a given quantity of rocket propellant corresponds
to a change in orbital velocity, or Δv. The next four chapters involve orbital maneuvers,
where the performance metric is typically the Δv increment. Chapter 7 discusses orbital
changes achieved by so-called impulsive maneuvers where a rocket thrust force produces
a velocity change in a relatively short time. Chapter 8 treats relative motion and orbital
rendezvous, where a satellite moves in proximity to a desired orbital location or another
orbiting satellite. In Chapter 9, we discuss low-thrust orbit transfers where an electric
propulsion system provides a continuous but small perturbing thrust force that slowly
changes the orbit over time. Interplanetary trajectories are treated in Chapter 10. Here
we analyze a space mission by piecing together three flight segments: a planetary depar-
ture phase, an interplanetary cruise phase between planets, and a planetary arrival phase.
Chapter 11 introduces atmospheric entry or the flight mechanics of a spacecraft as it

moves from orbital motion to flight through a planetary atmosphere. Here we develop
analytical solutions for entry flight both with and without an aerodynamic lift force.
Chapters 2–11 involve particle dynamics, where we treat the satellite as a point mass.

The last two chapters involve analyzing and controlling the rotational motion of a sat-
ellite about its center of mass. Chapter 12 presents attitude dynamics, or the analysis of a
satellite’s rotational motion. Topics in Chapter 12 include rotational motion in the
absence of external torques, spin stability, and the effect of disturbance torques on rota-
tional motion. Chapter 13 presents an introduction to attitude control. Here we prima-
rily focus on controlling a satellite’s angular orientation by using feedback and attitude
control mechanisms such as reaction wheels and thruster jets.
Numerous examples are provided at key locations throughout Chapters 2–13 in order

to illustrate the topic discussed by the particular section. Chapters 2–13 also contain
end-of-chapter problems that are grouped into three categories: (1) conceptual pro-
blems; (2) MATLAB problems; and (3) mission applications. Many of the example
and end-of-chapter problems illustrate concepts in space flight by presenting scenarios
involving contemporary and historical space missions.
Appendix A presents the physical constants for celestial bodies. Appendix B provides a

brief review of vectors and their operations and Appendix C is a review of particle
kinematics with respect to inertial and rotating coordinate frames.
My intent was to write a comprehensive yet concise textbook on space flight dynamics.

A survey of 35 space flight courses offered by US aerospace engineering programs shows
that nearly half (17/35) are “orbits only” courses that focus on orbital mechanics, orbit
determination, and orbital transfers. The remaining (18/35) courses include a mix of
orbital motion and attitude dynamics and control. In addition, more than one-third
(13/35) of the surveyed courses cover rocket performance and atmospheric entry.
Few existing space flight textbooks adequately cover all of these topics. I believe that this

Prefacexiv



textbook has the breadth and depth so that it can serve all of these diverse space flight
courses.
Several people have contributed to the production of this textbook. Many reviewers

provided valuable suggestions for improving this textbook and they are listed here:

Jonathan Black, Virginia Polytechnic Institute and State University
Craig McLaughlin, University of Kansas
Eric Monda, United Launch Alliance
Erwin Mooij, Delft University of Technology
Henry Pernicka, Missouri University of Science and Technology
David Spencer, The Pennsylvania State University
Srinivas Rao Vadali, Texas A&M University
Ming Xin, University of Missouri-Columbia

I am grateful for Jonathan Jennings’ help with figures and illustrations. Finally, I would
like to thank my wife Nancy M. West for her patience, encouragement, and skilled edi-
torial work throughout this project. This book is dedicated to her.

University of Missouri-Columbia, May 2017 Craig A. Kluever
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•M files
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1

Historical Overview

1.1 Introduction

Before we begin our technical discussion of space flight dynamics, this first chapter will
provide a condensed historical overview of the principle contributors and events asso-
ciated with the development of what we now commonly refer to as space flight. We
may define space flight as sending a human-made satellite or spacecraft to an Earth
orbit or to another celestial body such as the moon, an asteroid, or a planet. Of course,
our present ability to launch and operate satellites in orbit depends on knowledge of the
physical laws that govern orbital motion. This brief chapter presents the major develop-
ments in astronomy, celestial mechanics, and space flight in chronological order so that
we can gain some historical perspective.

1.2 Early Modern Period

The fields of astronomy and celestial mechanics (the study of the motion of planets
and their moons) have attracted the attention of the great scientific and mathematical
minds. We may define the early modern period by the years spanning roughly
1500–1800. This time frame begins with the late Middle Ages and includes the Renais-
sance and Age of Discovery. Figure 1.1 shows a timeline of the important figures in the
development of celestial mechanics during the early modern period. The astute reader
will, of course, recognize these illuminous figures for their contributions to mathematics
(Newton, Euler, Lagrange, Laplace, Gauss), physics (Newton, Galileo), dynamics (Kepler,
Newton, Euler, Lagrange), and statistics (Gauss). We will briefly describe each figure’s
contribution to astronomy and celestial mechanics.
The first major figure is Nicolaus Copernicus (1473–1543), a Polish astronomer and

mathematician who developed a solar-system model with the sun as the central body.
Galileo Galilei (1546–1642) was an Italian astronomer andmathematician who defended
Copernicus’ sun-centered (or “heliocentric”) solar system. Because of his heliocentric
view, Galileo was put on trial by the Roman Inquisition for heresy and spent the remain-
der of his life under house arrest.

1
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Johann Kepler (1571–1630) developed the fundamental laws for planetary motion
based on astronomical observations of the planet Mars compiled by the Danish noble-
man Tycho Brahe (1546–1601). Kepler’s three laws are:

1) The orbit of a planet is an ellipse, with the sun located at a focus.
2) The radial line from the sun to the planet sweeps out equal areas during equal time

intervals.
3) The square of a planet’s orbital period for one revolution is proportional to the cube of

the planet’s “mean distance” from the sun.

The third law notes the planet’s “mean distance” from the sun. In Chapter 2 we will
define this “mean distance” as one-half of the length of the major axis of an ellipse. Kepler
published his first two laws of planetary motion in 1609 and his third law in 1619. Kepler
developed an expression for the time-of-flight between two points in an orbit; this
expression is now known as Kepler’s equation.
Isaac Newton (1642–1727) was an English astronomer, mathematician, and physicist

who developed calculus and formulated the laws of motion and universal gravitation.
Newton’s three laws of motion are:

1) A body remains at rest or moves with a constant velocity unless acted upon by a force.
2) The vector sum of the forces acting on a body is equal to the mass of the body multi-

plied by its absolute acceleration vector (i.e., F=ma).
3) When a body exerts a force on a second body, the second body exerts an equal-and-

opposite force on the first body.

1500 1600 1700 1800

Galileo

Newton

Euler

Lambert

Lagrange

Laplace

Gauss

Kepler

Copernicus

Figure 1.1 Timeline of significant figures in the Early Modern Period.
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The first and second laws hold relative to a fixed or inertial reference frame. Newton
published the three laws of motion in Principia in 1687. Newton’s universal law of
gravitation states that any two bodies attract one another with a force that is proportional
to the product of their masses and inversely proportional to the square of their separation
distance. Newton’s laws of motion and gravitation explain the planetary motion that
Kepler described by geometrical means.
Leonhard Euler (1707–1783), a Swiss mathematician, made many mathematical and

scientific contributions to the fields of calculus, mathematical analysis, analytical
mechanics, fluid dynamics, and optics. Euler also developed equations that govern the
motion of a rotating body; these equations serve as the foundation for analyzing the rota-
tional motion of satellites in orbit. Johann Heinrich Lambert (1728–1777), also a Swiss
mathematician, formulated and solved the problem of determining the orbit that passes
through two known position vectors with a prescribed transit time. Known today as
Lambert’s problem, its solution provides a method for the orbit-determination process
as well as planning orbital maneuvers. Joseph-Louis Lagrange (1736–1813) was an Ital-
ian-bornmathematician whomade significant contributions in analytical mechanics and
celestial mechanics, including the determination of equilibrium orbits for a problemwith
three bodies and the formulation of Lagrange’s planetary equations for orbital motion.
Pierre-Simon Laplace (1749–1827) was a French mathematician who, among his many
mathematical contributions, formulated the first orbit-determination method based
solely on angular measurements. Carl Friedrich Gauss (1777–1855), a German mathe-
matician of great influence, made significant contributions to the field of orbit determi-
nation. In mid-1801 he predicted the orbit of the dwarf planet Ceres using a limited
amount of observational data taken before Ceres became obscured by the sun. In late
1801, astronomers rediscovered Ceres just as predicted by Gauss.

1.3 Early Twentieth Century

Let us next briefly describe the important figures in the early twentieth century. It is dur-
ing this period when mathematical theories are augmented by experimentation, most
notably in the field of rocket propulsion. It is interesting to note that the important fig-
ures of this period were inspired by the nineteenth century science fiction literature of
H.G. Wells and Jules Verne and consequently were tantalized by the prospect of inter-
planetary space travel.
Konstantin Tsiolkovsky (1857–1935) was a Russian mathematician and village school

teacher who worked in relative obscurity. He theorized the use of oxygen and hydrogen
as the optimal combination for a liquid-propellant rocket in 1903 (the same year as the
Wright brothers’ first powered airplane flight). Tsiolkovsky also developed theories regard-
ing rocket propulsion and a vehicle’s velocity change – the so-called “rocket equation.”
Robert H. Goddard (1882–1945), a US physicist, greatly advanced rocket technology

by combining theory and experimentation. On March 16, 1926, Goddard successfully
launched the first liquid-propellant rocket. In 1930, Goddard moved his laboratory to
New Mexico and continued to develop larger and more powerful rocket engines.
Hermann J. Oberth (1894–1989) was born in Transylvania and later became a German

citizen. A physicist by training, he independently developed theories regarding human
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space flight through rocket propulsion. Oberth was a key figure in the German Society
for Space Travel, which was formed in 1927, and whose membership included the young
student Wernher von Braun. Von Braun (1912–1977) led the Nazi rocket program at
Peenemünde during World War II. Von Braun’s team developed the V-2 rocket, the
first long-range rocket and the first vehicle to achieve space flight above the sensible
atmosphere.
At the end of World War II, von Braun and members of his team immigrated to the

US and began a rocket program at the US Army’s Redstone Arsenal at Huntsville,
Alabama. It was during this time that the US and the Soviet Union were rapidly devel-
oping long-range intercontinental ballistic missiles (ICBMs) for delivering nuclear
weapons.

1.4 Space Age

On October 4, 1957, the Soviet Union successfully launched the first artificial satellite
(Sputnik 1) into an Earth orbit and thus ushered in the space age. Sputnik 1 was a pol-
ished 84 kg metal sphere and it completed an orbital revolution every 96min. The US
successfully launched its first satellite (Explorer 1) almost 4 months after Sputnik on Jan-
uary 31, 1958. Unlike Sputnik 1, Explorer 1 was a long, tube-shaped satellite, and because
of its shape, it unexpectedly entered into an end-over-end tumbling spin after achiev-
ing orbit.
Our abridged historical overview of the first half of the twentieth century illustrates the

very rapid progress achieved in rocket propulsion and space flight. For example, in less
than 20 years after Goddard’s 184 ft flight of the first liquid-propellant rocket, Nazi Ger-
many was bombarding London with long-range V-2 missiles. Twelve years after the end
of World War II, the USSR successfully launched a satellite into orbit. Another point of
interest is that in this short period, rocket propulsion and space flight transitioned from
the realm of the singular individual figure to large team structures funded by govern-
ments. For example, the US established the National Aeronautics and Space Adminis-
tration (NASA) on July 29, 1958.
The US and USSR space programs launched and operated many successful missions

after the space age began in late 1957. Table 1.1 summarizes notable robotic space mis-
sions (i.e., no human crew). A complete list of successful space missions would be quite
long; Table 1.1 is not an exhaustive list and instead presents a list of mission “firsts.” It is
truly astounding that 15 months after Sputnik 1, the USSR sent a space probe (Luna 1) to
the vicinity of the moon. Equally impressive is the first successful interplanetary mission
(Mariner 2), which NASA launched less than 5 years after Explorer 1. Table 1.1 shows
that spacecraft have visited all planets in our solar system and other celestial bodies such
as comets and asteroids.
On April 12, 1961, the USSR successfully sent the first human into space when Yuri

Gagarin orbited the Earth in the Vostok 1 spacecraft. Less than 1 month later, the US
launched its first human into space when Alan Shepard flew a suborbital mission in
a Mercury spacecraft. Table 1.2 presents notable space missions with human crews
(as with Table 1.1, Table 1.2 focuses on first-time achievements). Tables 1.1 and 1.2
clearly illustrate the accelerated pace of accomplishments in space flight. Table 1.2 shows
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Table 1.1 Notable robotic space missions.

Mission Date Achievement Country

Sputnik 1 October 4, 1957 First artificial satellite to achieve Earth orbit USSR

Luna 1 January 2, 1959 First satellite to reach the vicinity of the moon USSR

Mariner 2 December 14, 1962 First spacecraft to encounter (fly by) another planet
(Venus)

US

Mariner 4 July 14, 1965 First spacecraft to fly by Mars US

Luna 9 February 3, 1966 First spacecraft to land on another body (moon) USSR

Luna 10 April 3, 1966 First spacecraft to orbit the moon USSR

Venera 7 December 15, 1970 First spacecraft to land on another planet (Venus) USSR

Mariner 9 November 14, 1971 First spacecraft to orbit another planet (Mars) US

Pioneer 10 December 3, 1973 First spacecraft to fly by Jupiter US

Mariner 10 March 29, 1974 First spacecraft to fly by Mercury US

Viking 1 July 20, 1976 First spacecraft to land on Mars US

Voyager 1 March 1979,
November 1980

Fly by encounters with Jupiter, Saturn, and Saturn’s
moon Titan

US

Voyager 2 January 1986,
August 1989

First spacecraft to fly by Uranus and Neptune US

Galileo December 8, 1995 First spacecraft to orbit Jupiter US

Mars Pathfinder July 4, 1997 First rover on the planet Mars US

NEAR
Shoemaker

February 12, 2001 First spacecraft to land on an asteroid (433 Eros) US

Cassini-Huygens July 2004, January
2005

First spacecraft to orbit Saturn (Cassini) and first
spacecraft to land on the moon Titan (Huygens)

US and
Europe

Stardust January 16, 2006 First spacecraft to return samples from a comet US

MESSENGER March 18, 2011 First spacecraft to orbit Mercury US

New Horizons July 14, 2015 First spacecraft to fly by Pluto US

Table 1.2 Notable space missions with human crews.

Mission Date Achievement Country

Vostok 1 April 12, 1961 First human to reach space and orbit the Earth USSR

Vostok 6 June 16, 1963 First woman in space USSR

Voskhod 2 March 18, 1965 First human “spacewalk” outside of orbiting
spacecraft

USSR

Gemini 6A December 15, 1965 First orbital rendezvous US

Apollo 8 December 24, 1968 First humans to orbit the moon US

Apollo 11 July 20, 1969 First humans to land and walk on the moon US

Salyut 1 April 19, 1971 First orbiting space station with crew USSR

STS-1 April 12, 1981 First flight of a reusable spacecraft (Space Shuttle) US

International
Space Station

November 20, 1998 First multinational space station and largest
satellite placed in Earth orbit

Russia, US,
Europe, Japan,
Canada



the very rapid progress in space missions with human crews in the 1960s, culminating
with the first Apollo lunar landing on July 20, 1969. To date, three countries have devel-
oped human space flight programs: USSR/Russia (1961); US (1961); and China (2003).
We end this chapter with a brief summary of the significant twentieth century figures

in the field of space flight dynamics. Table 1.3 presents these figures and their accom-
plishments. This list is certainly not exhaustive; furthermore, it is difficult to identify sin-
gle individuals when the tremendous achievements in space flight over the past 60 years
involve a large team effort.

Table 1.3 Significant advances in space flight dynamics in the twentieth century.

Researcher(s) Achievement

Dirk Brouwer
Yoshihide Kozai

Developed pioneering work in the field of analytical satellite theory,
including the perturbing effects of a non-spherical Earth

Theodore Edelbaum Obtained analytical optimal trajectory solutions for spacecraft propelled
by low-thrust electric propulsion engines

Richard Battin Developed guidance and navigation theories for lunar and interplanetary
spacecraft

Rudolf Kalman Developed an optimal recursive estimation method (the Kalman filter)
that has been applied to orbit determination and satellite navigation

W.H. Clohessy and
R.S. Wiltshire

Developed closed-form solutions for the motion of a satellite relative to an
orbiting target satellite (i.e., orbital rendezvous)

Derek Lawden Developed theories for optimal rocket trajectories

A.J. Eggers and
H.J. Allen
Dean Chapman

Obtained analytical solutions for the entry flight phase of a ballistic
capsule or lifting spacecraft returning to Earth from space

Robert Farquhar Conceived of and managed space missions that targeted orbits where the
satellite is balanced by the gravitational attracting of two celestial bodies

Ronald Bracewell
Vernon Landon

Developed theories regarding the stability of a spinning satellite in orbit

Paul Cefola Developed the Draper Semianalytical Satellite Theory (DSST) for rapid
orbital calculations over a long time period
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2

Two-Body Orbital Mechanics

2.1 Introduction

In this chapter, we will develop the fundamental relationships that govern the orbital
motion of a satellite relative to a gravitational body. These relationships will be derived
from principles that should be already familiar to a reader who has completed a course in
university physics or particle dynamics. It should be no surprise that we will use New-
ton’s laws to develop the basic differential equation relating the satellite’s acceleration
to the attracting gravitational force from a celestial body. We will obtain analytical (or
closed-form) solutions through the conservation of energy and angular momentum,
which lead to “constants of motion.” By the end of the chapter the reader should be able
to analyze a satellite’s orbital motion by considering characteristics such as energy and
angular momentum and the associated geometric dimensions that define the size and
shape of its orbital path. Understanding the concepts presented in this chapter is para-
mount to successfully grasping the subsequent chapter topics in orbit determination,
orbital maneuvers, and interplanetary trajectories.

2.2 Two-Body Problem

At any given instant, the gravitational forces from celestial bodies such as the Earth, sun,
moon, and the planets simultaneously influence the motion of a space vehicle. The mag-
nitude of the gravitational force of any celestial body acting on a satellite with massm can
be computed using Newton’s law of universal gravitation

Fgrav =
GMm
r2

(2.1)

whereM is the mass of the celestial body (Earth, sun, moon, etc.), G is the universal con-
stant of gravitation, and r is the separation distance between the gravitational body and
the satellite. It is not difficult to see that Eq. (2.1) is an inverse-square gravity law. The
gravitational force acts along the line connecting the centers of the two masses.
Figure 2.1 illustrates Newton’s gravitational law with a two-body system comprising
the Earth and a satellite. The Earth attracts the satellite with gravitational force vector
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F21 and the satellite attracts Earth with force F12. The reader should note that Eq. (2.1)
presents the magnitude of the mutually attractive gravitational forces.
Figure 2.2 shows a schematic diagram of a three-body system (Earth, satellite, moon)

with mutual gravitational forces among all three bodies. It should be clear from
Figure 2.2 that Fij = −Fji. Equation (2.1) shows that the magnitudes are equal, or
Fij = Fji . It is not difficult to imagine a diagram similar to Figure 2.2 with several

(or N) gravitational bodies (however, an N-body diagram is very cluttered). The goal
of this chapter (and the objective of this textbook) is to determine the motion of the sat-
ellite. Hence, a reasonable approach (similar tomethods used in a basic dynamics course)
would be to apply Newton’s second law to a free-body diagram of the satellite. Applying
Newton’s second law to satellite mass m2 for the three-body problem illustrated in
Figure 2.2 yields

m2r2 = F21 +F23 (2.2)

where r2 is the satellite’s acceleration vector relative to an inertial frame of reference or a
frame that does not accelerate or rotate (we will use the over-dot notation to indicate a time
derivative, e.g., r= dr/dt and r = d2r/dt2). We can extend Eq. (2.2) to an N-body system

m2r2 =
N

j= 1
j 2

F2j (2.3)

Earth, M Satellite, m
r

F12

F21

22112 r

GMm== FF

Figure 2.1 Newton’s law of universal gravitation.

Earth, m1 Satellite, m2

moon, m3

F12
F21

F13

F31

F32

F23

Figure 2.2 Gravitational forces for a three-body system.
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Clearly, Eq. (2.3) is reduced to Eq. (2.2) whenN = 3 as in Figure 2.2. Integrating Eq. (2.3)
allows us to obtain the satellite’s motion [velocity r2 t and position r2(t)] in an N-body
gravitational field. However, we cannot obtain analytical solutions of the general
N-body problem [note that the inverse-square gravity (2.1) is a nonlinear function].
We must employ numerical integration schemes (such as Runge–Kutta methods) to
obtain solutions to the N-body problem.
It is possible, however, to obtain analytical solutions for the satellite’s motion if we only

consider two bodies. These closed-form solutions will provide the basis for our analysis
of space vehicle motion throughout this textbook. Figure 2.3 shows a two-body system
comprising the Earth (massM) and satellite (massm). Coordinate system XYZ is an iner-
tial Cartesian frame that does not rotate or accelerate. Vectors r1 and r2 are the inertial
(absolute) positions of the Earth and satellite relative to the XYZ frame. The position of
the satellite relative to the Earth is easily determined from vector addition:

r= r2−r1 (2.4)

If the mutual gravitational forces are the only forces in the two-body system, then
applying Newton’s second law to each mass particle yields

Earth Mr1 =
GMm
r2

r
r

(2.5)

Satellite mr2 =
GMm
r2

−r
r

(2.6)

Note that r/r is a unit vector pointing from the Earth’s center to the satellite (hence −r/r
is the direction of the Earth’s attractive gravitational force on the satellite). Adding Eqs.
(2.5) and (2.6) yields

Mr1 +mr2 = 0 (2.7)

Integrating Eq. (2.7), we obtain

Mr1 +mr2 = c1 (2.8)

O

X

Y

Z

Earth, M

r1

r2

r

Satellite, m

Inertial frame
(XYZ)

Figure 2.3 Two-body system.
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where c1 is a vector of integration constants. Equation (2.8) is related to the velocity of the
center of mass of the two-body system. To show this, let us express the inertial position of
the two-body system’s center of mass:

rcm =
Mr1 +mr2
M +m

(2.9)

Taking the time derivative of Eq. (2.9), we see that Eq. (2.8) is equal to the product of the
total mass (M + m) and the velocity of the center of mass. Therefore, we can conclude
that the center of mass rcm is not accelerating.
Our goal is to develop a governing equation for the satellite’s motion relative to a single

gravitational bodyM. Let us take the second time derivative of the relative position vec-
tor, Eq. (2.4):

r = r2−r1 (2.10)

Next, we use Eqs. (2.5) and (2.6) to substitute for the absolute acceleration vectors of the
Earth and satellite:

r =
GM
r2

−r
r

−
Gm
r2

r
r

or

r = −
G M +m

r3
r (2.11)

Note that although the denominator is r3, Eq. (2.11) is still an inverse-square law because
r/r is a unit vector. Equation (2.11) is a vector acceleration equation of the relativemotion
for the two-body problem.
Let us complete the two-body equation of motion bymaking use of the previous results

and the assumption that the satellite’smassm is negligible compared with themass of the
gravitational bodyM. This assumption is very reasonable; for example, themass ratio of a
1,000 kg satellite and the Earth is less than 2(10–22). Hence, we may assume that the two-
body system center of mass and the center of the Earth are coincident. Furthermore,
because the center of mass is not accelerating we can place an inertial frame at the center
of the gravitational mass M. Figure 2.4 shows this scenario where the origin O of the

X

Y

Z

Earth, M

r Satellite, m

Inertial frame
(XYZ)

O

v

Orbital path

Figure 2.4 Two-body system with a body-centered inertial frame XYZ.
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inertial frame XYZ is at the Earth’s center. With this definition, vector r becomes the
absolute or inertial position of the satellite. Finally, because massm is negligible we have
G M +m ≈GM. We define the gravitational parameter μ≡GM so that Eq. (2.11) may
be rewritten as

r = −
μ

r3
r (2.12)

Equation (2.12) is the two-body equation of motion. Solving Eq. (2.12) will yield the
position and velocity vectors [r(t) and v t = r t ] of the satellite mass m relative to
the central gravitational body M. Equation (2.12) is the fundamental equation for
two-body motion that we will use for the remainder of the textbook. It is useful to sum-
marize the assumptions that lead to Eq. (2.12):

1) The two bodies are spherically symmetric so that they may be considered as particles
or point masses.

2) The mutually attractive gravitational forces are the only forces acting in the two-body
system.

3) The mass of the satellite is negligible compared with the mass of the celestial body.

A final note is in order. The motion of an Earth-orbiting satellite is governed by
Eq. (2.12) where the Earth’s gravitational parameter is μ = 3.986(105) km3/s2. For a sat-
ellite orbiting the moon we may still use Eq. (2.12) but with the moon’s gravitational
parameter (μmoon = 4,903 km3/s2). We must remember to use the gravitational param-
eter μ that corresponds to the appropriate central attracting body. Table A.1 in Appendix
A presents the gravitational parameters of several celestial bodies.

2.3 Constants of Motion

We begin to develop the analytical solution for two-body motion by determining
constants associated with the two-body problem. The concepts presented in this
section (momentum and energy) should be familiar to students with a background in
basic mechanics. Many of the derivations that follow rely on vector operations such as
the cross product and vector triple product; we summarize these operations inAppendix B.

2.3.1 Conservation of Angular Momentum

Linear momentum of a satellite is simply the product of its massm and velocity vector v.
Angular momentum H (or “moment of momentum”) is defined by the cross product of
position vector r and linear momentum mv:

H= r×mv (2.13)

The time derivative of angular momentum (for a satellite with constant mass) is

H= r×mv + r×mv (2.14)

Because r= v, the first cross product in Eq. (2.14) is zero. The term mv is equal to the
force F acting on the satellite. Hence, Eq. (2.14) becomes the familiar relationship
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between the time-rate of angular momentum and the external torque produced by
force F

H= r× F (2.15)

For the two-body problem, the central-body gravitational force is the only force acting
on the satellite. Furthermore, this attractive force is aligned with the position vector r and
hence the cross product in Eq. (2.15) is zero. Consequently, the satellite’s angular
momentum H vector is constant for two-body motion.
We can arrive at the same result by performing vector operations on the governing

two-body equation of motion (2.12). First, take the cross product of position r with each
side of Eq. (2.12):

r× r = r×
−μ

r3
r (2.16)

Clearly, the right-hand side of Eq. (2.16) is zero because we are crossing two parallel vec-
tors. Hence, Eq. (2.16) becomes r× r = 0. Next, we can carry out the following time
derivative

d
dt

r× v = r× v + r× v

= v × v + r× r

= r× r

(2.17)

Because Eq. (2.16) shows that r× r = 0, the cross product r× vmust be a constant vector.
Referring back to Eq. (2.13), we see that r× v is angular momentumH divided bymassm.
The “specific angular momentum” or angular momentum per unit mass of a satellite in a
two-body orbit is

h= r× v = constant vector (2.18)

Position and velocity vectors (r and v) will change as a satellite moves along its orbit but
the angular momentum h remains a constant vector. Figure 2.5 shows an arc of a

Reference direction

Local 
horizonr

v

θ

θθ

γ

Satellite

Orbital
path

Angular momentum
(out of the page)

r∙vr =

r
∙

v =

vrh ×=

Figure 2.5 Angular momentum and flight-path angle, γ.
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satellite’s orbit where its current position and velocity vectors are denoted by r and v.
Because angular momentum h is the cross product r× v, it is perpendicular to the plane
containing vectors r and v. Figure 2.5 shows counterclockwise satellite motion where
vectors r and v are in the plane of the page and hence h is pointing out of the page.
Because vector h is constant, the plane containing the motion of the satellite (known
as the orbital plane) is also fixed in space for two-body motion. The orbital plane passes
through the center of the gravitational body because it contains position vector r. The
angle γ in Figure 2.5 is called the flight-path angle and it is measured from the local hori-
zon (perpendicular to r) to the velocity vector v. Flight-path angle is positive when the
satellite’s radial velocity component is positive, or r > 0 (as shown in Figure 2.5). Con-
versely, γ < 0 if the length of the radius vector is decreasing, or r < 0. If the satellite moves
in a circular orbit where the radius is constant (r = 0), then the flight-path angle is zero at
all times and the velocity vector v remains perpendicular to position vector r.
We can express the magnitude of the angular momentum vector in terms of radius r

and the components of velocity vector v. Let us define vectors r and v in terms of polar
coordinates

r= rur (2.19)

v = vrur + vθuθ (2.20)

where unit vector ur points in the radial direction and unit vector uθ points in the trans-
verse direction (perpendicular to r or along the local horizon in the direction of motion;
see Section C.3 in Appendix C for additional details). The radial and transverse velocity
components are vr = r = vsinγ and vθ = rθ = vcosγ, respectively (see Figure 2.5). Using
Eqs. (2.19) and (2.20), the angular momentum is

h= r× v =

ur uθ uk

r 0 0

vr vθ 0

= rvθuk (2.21)

where the unit vector uk points normal to the orbital plane according to the right-hand
rule. Equation (2.21) shows that the magnitude of the angular momentum vector is the
product of the radius r and the transverse velocity component vθ.Therefore, a satellite
with purely radial velocity will have zero angular momentum – it has no angular motion!
The following expression may be used to determine the angular momentum magnitude:

h= rvθ = r2θ = rvcosγ (2.22)

From the equivalence of the terms above, it is easy to reconcile that the satellite’s trans-
verse velocity component is vθ = rθ = vcosγ (see Figure 2.5).

2.3.2 Conservation of Energy

We demonstrated the conservation of angular momentum by taking the vector (or cross)
product of the governing two-body equation and position r. Next, we will obtain a scalar
result by taking the scalar (or dot) product of the velocity vector r and both sides of the
governing two-body equation of motion (2.12):

r r = r
−μ

r3
r (2.23)
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The left-hand side of Eq. (2.23) is the dot product v v while the right-hand side involves
the dot product r r. Therefore both sides contain a dot product between a vector and
its time derivative. Figure 2.5 shows that the dot product r v = r r involves the projection
of velocity vector v in the direction of position r, that is

r r= rvr = rr (2.24)

Using this result, we obtain v v = vv, or the product of the velocity magnitude and the
rate of change of the length of vector v. Equation (2.23) becomes

vv=
−μ

r3
rr =

−μ

r2
r (2.25)

Note that each side of Eq. (2.25) can be written as a time derivative:

d
dt

v2

2
= vv and

d
dt

μ

r
=
−μ

r2
r (2.26)

Therefore, Eq. (2.25) becomes

d
dt

v2

2
=

d
dt

μ

r
(2.27)

or

d
dt

v2

2
−
μ

r
= 0 (2.28)

The bracketed term in Eq. (2.28) must be a constant. Integrating Eq. (2.28), we obtain

ξ=
v2

2
−
μ

r
= constant (2.29)

where ξ is the specific energy (total energy per unit mass) of the satellite in its orbit. The
reader should be able to identify the first term on the right-hand side (v2/2) as kinetic
energy per unit mass. The second term (−μ/r) is the potential energy of the satellite
per unit mass. A satellite’s potential energy increases as its distance from the attracting
body increases (similar to the “mgh” potential energy discussed in a university physics
course). However, a satellite’s minimum potential energy (occurring when r is equal
to the radius of the attracting body) is negative and its maximum potential energy
approaches zero as r ∞ . We shall soon see that adopting this convention means that
a satellite in a closed (or repeating) orbit has negative total energy while a satellite fol-
lowing an unbounded open-ended trajectory has positive energy. In either case, Eq. (2.29)
tells us that the satellite’s total energy ξ remains constant along its orbital path. The sat-
ellite may speed up during its orbit and gain kinetic energy but in doing so it loses poten-
tial energy so that total energy ξ remains constant.
We can also demonstrate the conservation of energy by using a gravitational potential

function. From the gradient of a scalar potential function U, we can determine the grav-
itational force (or gravitational acceleration)

r =∇U (2.30)
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where the “del” operator is a vector differential operation of partial derivatives with
respect to position coordinates (such as XYZ Cartesian coordinates). The two-body
potential function is

U =
μ

r
(2.31)

Note that the potential function U is the negative of the potential energy. Computing
the gradient of potential function U = μ/r leads to the right-hand side of Eq. (2.12), the
governing equation of motion for the two-body problem (we will present the details of
the gradient operation in Chapter 5). Next, we may use the chain rule to write the time
derivative of the scalar potential function:

dU
dt

=
∂U
∂r

dr
dt

The first term on the right-hand side is ∇U = r. Therefore, the time derivative is

dU
dt

= r r= v v = vv (2.32)

Equation (2.26) shows that vv is the time derivative of kinetic energy. Defining specific
kinetic energy as T = v2/2, we can write Eq. (2.32) as

dU
dt

=
dT
dt

or

d
dt

T −U = 0 (2.33)

Equation (2.33) shows that T – U is constant. Because potential energy V is the negative
of the potential function (i.e., V = −μ/r = −U), Eq. (2.33) shows that the sum of kinetic
energy and potential energy (ξ=T +V ) is constant.

2.4 Conic Sections

So far we have determined that a satellite’s angular momentum h is a constant vector (i.e.,
the orbital plane remains fixed in space) and total energy ξ is constant. However, we have
not completely determined the orbital solution of the governing two-body equation of
motion (2.12). One more vector manipulation of Eq. (2.12) will lead to an expression
for the satellite’s position in its orbit. The derivation of an orbital position solution follows.

2.4.1 Trajectory Equation

To begin, we take the cross product of the two-body equation (2.12) with angular
momentum vector h

r ×h=
μ

r3
h× r (2.34)
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Note that the minus sign of the right-hand side term is cancelled by reversing the
order of the cross product (i.e., h× r= −r×h). The left-hand side of Eq. (2.34) is the
time derivative of the cross product r×h

( ) hrhrhr ×+×=×
dt
d 0

2 35

The right-hand side of Eq. (2.34) can be expanded using h= r× v:

μ

r3
h× r =

μ

r3
r× v × r (2.36)

Using the vector triple product, Eq. (2.36) becomes

μ

r3
r× v × r=

μ

r3
v r r −r r v

=
μ

r3
r2v−rrr

=
μ

r
v−

μr
r2
r

(2.37)

Note that the intermediate step in Eq. (2.37) involves the dot products r r= r2 and
r r= rr. The right-hand side of Eq. (2.37) can also be expressed as a time derivative:

d
dt

μ

r
r =

μ

r
r−

μ

r2
rr (2.38)

Therefore, the original cross-product, Eq. (2.34), may be expressed in terms of these two
time derivatives:

d
dt

r×h =
d
dt

μ

r
r (2.39)

Integrating Eq. (2.39) yields

r×h=
μ

r
r+C (2.40)

where C is a constant vector. Next, let us take the dot product of Eq. (2.40) with position
vector r so that we can obtain a scalar equation:

r r×h =
μ

r
r r+ r C (2.41)

For a scalar triple product, we have r r×h = r× r h, or h h= h2. Hence, Eq. (2.41)
becomes

h2 = μr + rCcosθ (2.42)

where the dot product r C is replaced by the product of the two magnitudes and the
cosine of the angle θ between vectors r and C. Dividing Eq. (2.42) by the gravitational
parameter μ and factoring out r from the right-hand side yields

h2

μ
= r 1 +

C
μ
cosθ (2.43)
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Solving for radial position we obtain

r =
h2/μ

1 +
C
μ
cosθ

(2.44)

Equation (2.44) is the equation of a conic section written in polar coordinates with the
origin at a focus. Consulting a standard textbook in analytical geometry shows that the
constant numerator term h2/μ in Eq. (2.44) is the parameter p (or semilatus rectum) and
the constant C/μ is the eccentricity e. Using these constants, we may express Eq. (2.44) as

r =
p

1 + ecosθ
(2.45)

Equation (2.45) is known as the trajectory equation and it relates radial position r to
polar angle θ. Because an ellipse is a conic section Eqs. (2.44) and (2.45) prove Kepler’s
first law. We will discuss the trajectory equation in more detail after presenting the
geometry of the possible conic sections.
A conic section is the curve that results from the intersection of a right circular cone

and a plane. Figure 2.6 shows two cones placed tip-to-tip and the three possible conic
sections: (a) ellipse; (b) parabola; and (c) hyperbola. The ellipse is a closed curve that
results from a cutting plane that intersects only one cone. Note that the circle
(Figure 2.6a) is a special case of an ellipse where the cutting plane is parallel to the base
of the cone (or perpendicular to the cone’s line of symmetry). A parabola is an open curve
that is produced when the cutting plane is parallel to the edge of the cone (Figure 2.6b).
A hyperbola is also an open curve that is produced when the cutting plane intersects both
cones; hence it consists of two branches (Figure 2.6c).
Figure 2.7 presents the geometrical characteristics of the three conic sections. All con-

ics have two foci (labeled F1 and F2) where the gravitational body is located at the primary
focus F1 and F2 is the secondary or “vacant focus.” The foci lie on the major axis (the

Hyperbola

(c)(a) (b)

Parabola

Ellipse

Circle

Figure 2.6 Conic sections: (a) ellipse and circle; (b) parabola; and (c) hyperbola.
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“long” axis) and are separated by distance 2c for an ellipse (Figure 2.7a) and distance –2c
for a hyperbola (Figure 2.7c). The length of the major axis connecting the extreme ends
of the conic section is 2a for an ellipse (Figure 2.7a) and –2a for a hyperbola (Figure 2.7c).
For a hyperbola, the distances –2c and –2a shown in Figure 2.7c are feasible because by
convention the dimensions a and c are both taken as negative (the second branch of a
hyperbola about focus F2 is shown in Figure 2.7c as a dashed path so that the dimensions
can be defined; a satellite on a hyperbolic trajectory follows the first branch). For a parab-
ola (Figure 2.7b), the secondary focus F2 is an infinite distance from the primary focus F1
and therefore both dimensions c and a are infinite. The minor axis of an ellipse spans its
narrow width and is perpendicular to the major axis. The dimension a is called the semi-
major axis. For an ellipse a is half of the length of the major axis and b is half the length of
the minor axis. The parameter p is the perpendicular distance from the gravitational
body to the conic section. Parameter p is a positive, finite distance for all three conics
sections shown in Figure 2.7. Because all conic sections obey the polar equation
(2.44) or (2.45), the parameter is related to the angular momentum of the orbit:

p=
h2

μ
(2.46)

It is useful to present some basic relationships for conic sections. The eccentricity e is
defined as

e=
c
a

(2.47)

Eccentricity increases as the two foci move farther apart and the ellipse becomes “long
and skinny.” For a closed conic section, the dimension c is always less than a and hence
e < 1 for an ellipse. Eccentricity becomes smaller as the two foci move closer together and
c decreases. When the two foci coincide, c = 0 and we have a circular orbit with e = 0.
Eccentricity for a parabola is exactly equal to unity. Figure 2.7c shows that for a hyperbola
the distance –2c is greater than distance –2a and hence e > 1.
The ratio of the minor andmajor axes will be used to derive an expression for the flight

time on an ellipse in Chapter 4. Because the radial distance from a focus to theminor-axis
crossing is equal to a (Figure 2.7a) we have a right triangle where b2 + c2 = a2. Substituting
c = ae, we arrive at the relationship

b
a
= 1−e2 (2.48)

We may use Eq. (2.48) along with the definition p= b2/a to obtain an expression for
parameter

p= a 1−e2 (2.49)

Equation (2.49) holds for an ellipse and hyperbola but not for a parabola.
Figure 2.7 shows that the point of closest approach to the gravitational body is the per-

iapsis (or “near apse”). The apoapsis is the farthest point from the focus and it only exists
for an ellipse. The apse line connects the apoapsis and periapsis and it coincides with
the major axis. Polar angle θ is the angle between a vector pointing from the primary
focus to the periapsis direction and the position vector r. In other words, polar angle θ
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Figure 2.7 Geometrical characteristics of conic sections: (a) ellipse; (b) parabola; and (c) hyperbola.

Two-Body Orbital Mechanics 19



is measured from the major axis (in the periapsis direction) to the satellite’s current
position vector r in the direction of motion (the satellite in Figure 2.7a is moving
counter-clockwise in the elliptical orbit). We call polar angle θ the true anomaly. When
θ = 0, the satellite is at periapsis and when θ = 180 , the satellite is at apoapsis. Of course, a
parabola and hyperbola do not have an apoapsis because they are open-ended curves
with branches that extend to infinity.
We may use the trajectory equation (2.45) and the parameter equation (2.49) to

develop concise expressions for the radial distances for periapsis and apoapsis. At
periapsis, we have θ = 0 and the trajectory equation (2.45) yields

Periapsis rp =
p

1 + e
(2.50)

Substituting Eq. (2.49) for parameter p, we obtain another expression for periapsis
position rp

Periapsis rp = a 1−e (2.51)

At apoapsis, true anomaly θ = 180 and the trajectory equation yields

Apoapsis ra =
p

1−e
(2.52)

We may express Eq. (2.52) in terms of semimajor axis and eccentricity

Apoapsis ra = a 1 + e (2.53)

Equations (2.50) and (2.51) are valid for all conic sections, while the apoapsis equa-
tions, Eqs. (2.52) and (2.53), only apply to elliptical orbits.

2.4.2 Eccentricity Vector

Recall that in our derivation of the trajectory equation (2.45) we defined the polar angle θ
(i.e., the true anomaly) as the angle between constant vector C and position vector r.
Hence, vectorC points in the periapsis direction. Comparing Eqs. (2.44) and (2.45) shows
that the eccentricity e is related to the magnitude of vector C; that is, e=C/μ. Therefore,
the eccentricity vector e=C/μ also points in the direction of periapsis. We can solve
Eq. (2.40) for the constant vector C

C= r×h−
μ

r
r (2.54)

Substituting r= v and h= r× v into Eq. (2.54) yields

C= v × r× v −
μ

r
r (2.55)

Using the vector triple product, Eq. (2.55) becomes

C= r v v −v v r −
μ

r
r (2.56)
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Using v v = v2 and dividing Eq. (2.56) by μ we obtain the eccentricity vector e=C/μ

e=
1
μ

v2−
μ

r
r− r v v (2.57)

The magnitude of the eccentricity vector is the eccentricity of the orbit, or e= e .
The eccentricity vector e and the angular momentum vector h define the orbit’s ori-

entation in three-dimensional space. Both e and h are computed from the satellite’s posi-
tion and velocity vectors r and v. Referring to Figure 2.4, we see that position and velocity
vectors (r,v) may be expressed in a body-centered Cartesian coordinate frame. Further-
more, even though r and v coordinates change as the satellite moves along its orbital
path, the angular momentum and eccentricity vectors h and e remain constant and fixed
in inertial space. We will use this information for the three-dimensional orbit determi-
nation problem discussed in Chapter 3.

2.4.3 Energy and Semimajor Axis

We have already shown that total energy ξ consists of kinetic energy T and potential
energy V and that this sum (T + V) remains constant along the orbital path. It is useful
to develop an expression that relates total energy to a geometric property of the conic
section. To show this, let us use Eq. (2.29) to determine the total energy using the satel-
lite’s position and velocity at periapsis, rp and vp

ξ=
v2p
2
−
μ

rp
(2.58)

Equation (2.22) shows that (constant) angular momentum can be computed using the
periapsis position and velocity

h= rpvp (2.59)

Note that flight-path angle γ is zero at periapsis (and at apoapsis) because the radial
velocity component r is zero as the satellite passes through its minimum (or maximum)
radial position. Using Eq. (2.59), periapsis velocity squared is

v2p =
h2

r2p
=
μp
r2p

=
μa 1−e2

r2p
(2.60)

Equation (2.60) has made use of p = h2/μ [Eq. (2.46)] and the relationship p= a 1−e2

[Eq. (2.49)]. Using Eq. (2.60) in the energy equation (2.58), we obtain

ξ=
μa 1−e2

2 r2p
−
μ

rp
=
μa 1−e2 −2μrp

2 r2p
(2.61)

We may use Eq. (2.51) and substitute rp = a 1−e into Eq. (2.61) to yield

ξ=
μa 1−e2 −2μa 1−e

2a2 1−e 2 (2.62)
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Equation (2.62) can be reduced to the very simple relationship

ξ= −
μ

2a
(2.63)

Equation (2.63) shows that total energy is solely a function of the semimajor axis a.
Some very important conclusions may be drawn from Eq. (2.63): (1) because a > 0 for
an elliptical orbit, its total energy is negative; (2) because a= ∞ for a parabolic orbit,
its total energy is zero; and (3) because a < 0 for a hyperbolic orbit, its total energy is
positive.
Table 2.1 summarizes the important characteristics of conic sections and two-body

orbits. Note that although a circular orbit is a special case of an ellipse it is included
in Table 2.1 for completeness. For closed (repeating) orbits (circles and ellipses) the
semimajor axis is positive, eccentricity is less than unity, and the total energy is negative.
Hyperbolas are open-ended trajectories where semimajor axis is negative, eccentricity is
greater than unity, and energy is positive. The parabola has infinite semimajor axis,
eccentricity of exactly one, and zero energy. In this textbook we will tend to refer to cir-
cles and ellipses as orbits (closed paths) and parabolas and hyperbolas as trajectories. As a
final summary of this section, we should note that the expressions for the conservation of
momentum [Eqs. (2.18) and (2.22)], conservation of energy [Eqs. (2.29) and (2.63)], and
the trajectory equation (2.45) are valid for all conic sections.

Example 2.1 A tracking station determines
that an Earth-orbiting satellite is at an altitude
of 2,124 km with an inertial velocity of 7.58
km/s and flight-path angle of 20 (Figure 2.8;
not to scale). Determine (a) total specific energy,
(b) angular momentum, (c) eccentricity, and
also the type of orbit (conic section) (Exam-
ple 2.1).

a) Total energy can be computed using
Eq. (2.29)

ξ=
v2

2
−
μ

r
with the given inertial velocity v =
7.58 km/s and radius r = 2,124 km + RE

Table 2.1 Orbital characteristics.

Orbit Semimajor axis Eccentricity Energy

Circle a > 0 e= 0 ξ < 0

Ellipse a > 0 0 ≤ e < 1 ξ < 0

Parabola a= ∞ e= 1 ξ= 0

Hyperbola a < 0 e > 1 ξ > 0

v

γ = 20ο

Horizon

Satellite
r

2,124 km

Figure 2.8 Earth-orbiting satellite
(Example 2.1).
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where RE is Earth’s radius. It is extremely important for the reader to note that r is
the radius from the center of the gravitational body to the satellite, and therefore
when an altitude is given (as in this case), we must add the radius of the celestial
body. For problems involving Earth-orbiting satellites in this textbook, we will use
RE = 6,378 km. The reader should also note that two-body orbital calculations require
the appropriate gravitational parameter; for the example problems in this textbook
we will use μ = 3.986(105) km3/s2 for Earth. The reader may consult Appendix A
to obtain more precise numerical values for the physical constants.
Using RE = 6,378, km we find that r = 2,124 km + RE = 8,502 km. The total energy is

ξ= 7 58 2 2– 3 986 105 8,502 = – 18 1549 km2/s2

Because energy is negative, we know that the satellite is following a closed orbit.

b) Angular momentum is computed using Eq. (2.22)

h= rv cosγ = 8,502 7 58 cos 20∘ = 60,558 64 km2/s

c) Eccentricity can be computed from Eq. (2.49)

p= a 1−e2 or e= 1−
p
a

We obviously need semimajor axis a and parameter p. Semimajor axis can be
computed from total energy using Eq. (2.63)

ξ= −
μ

2a
or a= −

μ

2ξ
= 10,977 76 km

and parameter can be computed directly from angular momentum using Eq. (2.46)

p=
h2

μ
= 9,200 57 km

Using these dimensions, the eccentricity is e= 1−
p
a
= 0 4024 .

Because energy ξ < 0 and eccentricity is in the range 0 < e < 1, the satellite is in an
elliptical orbit.
This example demonstrates how we will use basic orbital relationships for the

remainder of this textbook, namely that semimajor axis a can be computed from total
energy ξ and parameter p is solely a function of angular momentum h. Eccentricity e is
a function of a and p or energy and angular momentum.

2.5 Elliptical Orbit

We developed several relationships between conic-section geometry (i.e., a, p, and e) and
orbital characteristics (energy ξ and angular momentum h) in the previous section. This
section will continue to develop relationships for elliptical orbits. The reader should note
that a circular orbit is a special case of an ellipse (e = 0) and therefore we will treat it in this
section. Furthermore, we will present a few “standard orbits” (circles and ellipses) that
are frequently used for Earth-orbiting satellites.
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2.5.1 Ellipse Geometry

Figure 2.9 shows a satellite in an elliptical orbit about the Earth. If we compare
Figure 2.7a and Figure 2.9, we see that the length of the major axis (2a) is equal to
the sum of the perigee and apogee radii (rp + ra); therefore, the semimajor axis a can
be computed using

a=
rp + ra

2
(2.64)

Of course, Eq. (2.64) is valid for an elliptical orbit about any celestial body where rp is
the periapsis radius and ra is the apoapsis radius. We can also determine eccentricity e
from perigee and apogee radii. Comparing Figure 2.7a and Figure 2.9, we see that the
distance between the foci is 2c= ra−rp. Because eccentricity is the ratio of c and a
[see Eq. (2.47)], we can determine e by dividing 2c= ra−rp by 2a= rp + ra to yield

e=
ra−rp
rp + ra

(2.65)

Equation (2.65) is a useful formula for determining the eccentricity for an ellipse.
Clearly, when perigee radius rp is nearly equal to apogee radius ra the eccentricity is very
small and the orbit is nearly circular. The reader must remember that rp and ra are radial
distances from the center of the gravitational body and not altitudes above the surface of
the celestial body.

2.5.2 Flight-Path Angle and Velocity Components

Figure 2.9 also shows the satellite’s flight-path angle, γ. Recall that wemeasure flight-path
angle from the local horizon (perpendicular to the radius vector r) to the velocity vector
v. Flight-path angle γ is always between –90 and +90 and it is zero when the satellite is
at perigee or apogee. When a satellite is traveling from periapsis to apoapsis (as shown in
Figure 2.9), its true anomaly is between zero and 180 and its flight-path angle is positive.

Apogee

Earth

Satellite

ra

r

θ

Perigee

v

rp

 γ

Local 
horizon

Figure 2.9 Elliptical orbit about the Earth.
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Conversely, flight-path angle is negative when a satellite approaches periapsis
(i.e., 180 < θ < 360 ).
The reader should note that Eq. (2.22) is the only formula we have developed thus far

for computing flight-path angle. Using Eq. (2.22) to find γ requires taking the inverse
cosine of the positive quantity h/(rv). A calculator or computer inverse-cosine operation
of a positive argument will always place the angle in the first quadrant (i.e., 0 < γ < 90 ).
From the previous discussion, we know that γ < 0 for half of an elliptical orbit when the
satellite approaches periapsis. We can resolve this quadrant ambiguity by expressing
the tangent of the flight-path angle as the ratio of the radial velocity component vr
and the transverse velocity component vθ

tanγ =
vr
vθ

(2.66)

Figure 2.5 shows this simple geometric relationship between the velocity components.
We obtain the radial velocity by taking the time derivative of the trajectory equation
(2.45) via the chain rule:

vr = r =
dr
dθ

dθ
dt

=
pesinθ

1 + ecosθ 2

dθ
dt

(2.67)

Equation (2.22) shows that the time rate of true anomaly is

dθ
dt

=
h
r2

=
h 1 + ecosθ 2

p2
(2.68)

Note that the trajectory equation (2.45) has been squared and substituted for r2 in
Eq. (2.68). Finally, substituting Eq. (2.68) for dθ/dt in Eq. (2.67) and using p= h2/μ we
obtain a simplified expression for radial velocity

vr =
μ

h
esinθ (2.69)

Equation (2.69) shows that r = 0 at periapsis (θ = 0) and apoapsis (θ = 180 ) as expected.
Transverse velocity can be computed directly from the ratio of h and r

vθ = rθ =
h
r
=
h 1 + ecosθ

p
(2.70)

Again, the trajectory equation (2.45) has been substituted for r. Using p= h2/μ in
Eq. (2.70) yields

vθ =
μ

h
1 + ecosθ (2.71)

Dividing Eq. (2.69) by Eq. (2.71) yields the tangent of the flight-path angle

tanγ =
esinθ

1 + ecosθ
(2.72)

Applying a calculator’s or computer’s inverse-tangent function to Eq. (2.72) will place the
flight-path angle in the correct range (i.e., –90 < γ < 90 ).
Finally, let us determine the locations in the orbit where velocity is minimum andmax-

imum. Equation (2.22) shows that angular momentum h is the product of radius r and
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the transverse velocity vθ (i.e., the velocity component perpendicular to r). Hence, the
angular momentum at periapsis and apoapsis is

h= rpvp = rava (2.73)

where vp and va are the velocities at periapsis and apoapsis, respectively. Because h is
constant and periapsis rp is the minimum radius, the satellite’s maximum velocity is
at periapsis. Conversely, the satellite’s slowest velocity occurs when it is at apoapsis or
the farthest position in its orbit.
Table 2.2 summarizes the values (or range of values) for true anomaly and flight-path

angle for positions within an elliptical orbit. True anomaly θ is a key element because it is
needed to determine whether flight-path angle is positive or negative [remember that
using Eq. (2.22) to compute flight-path angle does not determine its sign]. The fourth
column in Table 2.2 is the dot product r v = rr which can be used to determine the range
for true anomaly. When r v > 0, radial velocity must be positive and the satellite is
approaching apoapsis. If r v < 0, the satellite is approaching periapsis (r < 0).
It is useful to summarize the orbital relationships that we have developed at this stage

of the chapter (most of these relationships are valid for all conic sections).

1) Semimajor axis (a) determines total energy (this is true for all conic sections).
2) Parameter (p) determines the angular momentum magnitude h (this is true for all

conic sections).
3) The three geometric characteristics (a, e, and p) are not independent. Knowledge of

two characteristics can be used to determine the missing element. From a, e, and pwe
can determine total energy, angular momentum, and periapsis radius (this is true for
all conic sections). For elliptical orbits we can determine the apoapsis radius.

4) Given any two of the three geometric characteristics (a, e, and p) and true anomaly θ
(i.e., angular position in the orbit), we can determine radius r using the trajectory
equation. Velocity magnitude v can be determined from the total energy. Flight-path
angle γ can be determined from angular momentum or by using Eq. (2.72) (this is true
for all conic sections).

5) Position and velocity vectors (r,v) determine every orbital constant and the satellite’s
position in the orbit. Note that we calculate true anomaly using the trajectory equa-
tion where the proper quadrant for θ is determined by checking the sign of the dot
product r v (this is true for all conic sections).

The following examples illustrate many of these relationships for a satellite in an
elliptical orbit.

Table 2.2 True anomaly and flight-path angle values on an elliptical orbit.

Orbital position True anomaly Flight-path angle Dot product

Periapsis θ = 0 γ = 0 r v = 0

Approaching apoapsis 0ο < θ < 180ο γ > 0 r v > 0

Apoapsis θ = 180ο γ = 0 r v = 0

Approaching periapsis 180ο < θ < 360ο γ < 0 r v < 0
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Example 2.2 An Earth-orbiting satellite has semimajor axis a = 7,758 km and param-
eter p = 7,634 km. Determine (a) orbital energy, (b) angular momentum, and (c) whether
or not the satellite will pass through the Earth’s appreciable atmosphere (i.e., altitude less
than 122 km).

a) We compute total energy using Eq. (2.63) with μ = 3.986(105) km3/s2

ξ= −
μ

2a
= – 25 6896 km2/s2

Energy is negative because the satellite is following an elliptical orbit (a > 0).

b) We determine angular momentum using parameter p and Eq. (2.46)

h= μp= 55,162 6 km2/s

c) Computing the perigee radius rp will determine the satellite’s closest approach. We
may use either Eq. (2.50) or Eq. (2.51). In either case, we need to determine the orbital
eccentricity from a and p

e= 1−
p
a
= 0 1264

This calculation also verifies that the orbit is elliptical. Perigee radius is

rp =
p

1 + e
= 6,777 2 km

Perigee altitude is rp – RE = 6,777.2 – 6,378 = 399.2 km which is greater than 122 km.
Therefore, this satellite will not pass through the Earth’s appreciable atmosphere.

Figure 2.10 shows the elliptical orbit about the Earth with the proper scale. The Earth’s
atmosphere is the very thin shaded region surrounding the Earth in Figure 2.10. The

Orbit

Orbit

Apogee

Earth’s 
atmosphere

Earth

Zoomed -in
view

Figure 2.10 Elliptical orbit and Earth’s atmosphere with zoomed-in view near perigee (Example 2.2).
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zoomed-in view near perigee (shown on the right-hand side of Figure 2.10) illustrates the
proximity between perigee and the upper atmosphere: the perigee pass is less than
280 km above the significant atmosphere. Computing the apogee radius ra yields an
apogee altitude of 2,361 km, which is a substantial distance above the Earth’s atmosphere
as shown on the left-hand side of Figure 2.10.

Example 2.3 The Chandra X-ray Observatory (CXO) is an Earth-orbiting satellite with
perigee and apogee altitudes of 14,308 km and 134,528 km, respectively (Figure 2.11).
Calculate (a) angular momentum of the orbit, (b) total energy of the orbit, and (c) radius,
velocity, and flight-path angle at true anomaly θ = 120 .

a) First, let us compute the perigee and apogee radii from the given altitude information:

Perigee radius rp = 14,308 km +RE = 20,686 km

Apogee radius ra = 134,528 km +RE = 140,906 km

where RE = 6,378 km is the Earth’s radius. It is extremely important for the reader to
remember that radius is the value used in the energy, momentum, and trajectory
equations and not the altitude above a planet’s surface!
We can determine semimajor axis (a) and eccentricity (e) using perigee and apogee

radii and Eqs. (2.64) and (2.65):

a=
rp + ra

2
= 80,796 km

e=
ra−rp
rp + ra

= 0 7440

We can compute angular momentum directly from parameter p. Using Eq. (2.49),
the parameter is determined to be

p= a 1−e2 = 36,075 81 km

Angular momentum is

h= μp= 119,915 89 km2/s

θ
Apogee altitude 

134,528 km
Perigee altitude 

14,308 km

γ

r

v
Satellite

Figure 2.11 Chandra X-ray Observatory orbit (Example 2.3).
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b) We can calculate total energy using semimajor axis a = 80,796 km

ξ= −
μ

2a
= – 2 4667 km2/s2

c) Using the trajectory equation (2.45) and the computed values of p and e, the radius at
true anomaly θ = 120 is

r =
p

1 + ecosθ
= 57,444 31 km

We can manipulate the energy equation (2.29) and obtain the velocity:

ξ=
v2

2
−
μ

r
v= 2 ξ+

μ

r
= 2 9907 km/s

We can compute flight-path angle using either the angular momentum equa-
tion (2.22) or Eq. (2.72). First, let us determine γ using Eq. (2.22) and
h = 119,915.89 km2/s, r = 57,444.31 km, and v = 2.9907 km/s:

h= rvcosγ γ = cos−1
h
rv

= 45 73

Flight-path angle is positive because θ = 120 (the CXO is approaching apogee; see
Figure 2.11). Let us re-compute flight-path angle using Eq. (2.72) with e = 0.7440 and
θ = 120 :

tanγ =
esinθ

1 + ecosθ
= 1 025931 γ = 45 73 same result

Example 2.4 The Apollo command module (CM) is being tracked by an Earth-based
radar station during its return from the moon. The station determines that the CM
orbit has a semimajor axis a = 424,587 km with eccentricity e = 0.9849.

a) Determine the flight-path angle and radial velocity of the CM when true anomaly
is 330 .

b) Determine the vehicle’s velocity and flight-path angle at the so-called “entry inter-
face” (EI) or start of the atmospheric entry phase (EI is defined as 122 km above
the Earth’s surface).

a) We can compute flight-path angle using Eq. (2.72) with e = 0.9849 and θ = 330 :

tanγ =
esinθ

1 + ecosθ
= – 0 265766

Taking the inverse tangent, we find flight-path angle γ = –14 8832

One way to compute radial velocity is to use Eq. (2.69):

r =
μ

h
esinθ
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where angular momentum h is computed from parameter p

p= a 1−e2 = 12,725 72 km h= μp= 71,221 28 km2/s

Using these values, the radial velocity at θ = 330 is

r =
μ

h
esinθ = – 2 7561 km/s

Radial velocity is negative because the CM is approaching Earth (or, approaching per-
igee).
Let us show an alternate solution method using the total energy. Because

radial velocity is vr = vsinγ, we must determine the vehicle’s velocity at true anomaly
θ = 330 . First, compute the energy from semimajor axis:

ξ= −
μ

2a
= – 0 469397 km2/s2

Total energy is the sum of kinetic and potential energy. Potential energy depends
on radius r which in turn can be determined using the trajectory equation (2.45) with
p = 12,725.72 km, e = 0.9849, and θ = 330 :

r =
p

1 + ecosθ
= 6,867 82 km

Next, solve the energy equation (2.29) for velocity:

v= 2 ξ+
μ

r
= 10 7303 km/s

Therefore, the radial velocity is vr = vsinγ = – 2 7561km/s (same result).

b) We can write an energy equation by combining Eqs. (2.29) and (2.63)

ξ=
v2EI
2

−
μ

rEI
= −

μ

2a
= – 0 469397km2/s2

where rEI and vEI are the radius and velocity at entry interface, respectively. It should
be clear that energy is constant along the return trajectory. Using rEI = 122 km + RE =
6,500 km, the velocity at EI is

vEI = 2 ξ+
μ

rEI
= 11 0321km/s

The flight-path angle at EI can be determined from angular momentum, Eq. (2.22):

h= rEIvEI cosγEI γEI = cos
−1 h

rEIvEI

Using the previously computed values for h, rEI, and vEI, we obtain

γEI = – 6 6841
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Note that flight-path angle is negative at entry interface because the CM is
approaching Earth (i.e., r < 0).
Let us show an alternate solution for EI flight-path angle using Eq. (2.72):

tanγEI =
esinθEI

1 + ecosθEI

We can obtain the true anomaly at EI (θEI) using the trajectory equation:

rEI =
p

1 + ecosθEI
cosθEI =

1
e

p
rEI

−1 = 0 972487

The true anomaly at EI is θEI = –13.47 (or, 346.53 ). True anomaly at EI is in the
fourth quadrant because the CM is approaching perigee. Finally, the tangent of the
flight-path angle is

tanγEI =
esinθEI

1 + ecosθEI
= – 0 117192

The inverse-tangent operation yields γEI = –6.6841 as previously computed.
One advantage of using Eq. (2.72) to determine the flight-path angle is that a quadrant

check is unnecessary. However, we must correctly determine the satellite’s
true anomaly θ by using the trajectory equation (2.45) and additional information
regarding the satellite’s position in the orbit. In this example, we are told that the Apollo
commandmodule is returning to Earth and therefore it is approaching perigee (180ο < θ
< 360ο and γ < 0). The reader should make a special note regarding this example!

2.5.3 Period of an Elliptical Orbit

We have not yet considered the period of an ellipse, or the time required for one orbital
revolution. Figure 2.12 shows the differential area dA that is “swept” by the radius vector
as the satellite moves counterclockwise in its orbit. The differential area swept by r
through differential angle dθ is

dA=
1
2
r rdθ (2.74)

dθ

r

dA

Satellite
2r

h=θ
.

Figure 2.12 Differential area dA swept out by the radius vector.
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Dividing both sides by differential time dt, we obtain the time rate of area, dA/dt

dA
dt

=
1
2
r2
dθ
dt

(2.75)

We know from the angular momentum equation (2.22) that the angular rate is θ = h/r2

and therefore Eq. (2.75) becomes

dA
dt

=
1
2
h (2.76)

Because h is a constant, Eq. (2.76) shows that the time rate of area dA/dt swept by the
radius vector is constant. Hence, Eq. (2.76) proves Kepler’s second law: “equal areas are
swept out by the radius vector in equal times.”
We can determine the period of an elliptical orbit from Eq. (2.76) by separating

variables

dA=
1
2
hdt or dt =

2
h
dA (2.77)

Integrating both sides of Eq. (2.77) over one orbital revolution yields

Tperiod =
2
h

πab (2.78)

where Tperiod is the period and πab is the area of an ellipse. Equation (2.48) shows that the

product ab is equal to a2 1−e2. Substituting this result and h= μp into Eq. (2.78), the
period becomes

Tperiod =
2π
μp

a2 1−e2 (2.79)

Equation (2.49) shows that p= a 1−e2; substituting this result into Eq. (2.79)
yields

Tperiod =
2π
μ
a3/2 (2.80)

Equation (2.80) shows that the period of an elliptical orbit only depends on the semi-
major axis a. Squaring both sides of Eq. (2.80) proves Kepler’s third law: “the square of the
period is proportional to the cube of the mean distance.”

2.5.4 Circular Orbit

As previously mentioned, a circular orbit is a special case of an ellipse where eccentricity
is zero. All of the orbital relationships (such as the energy, angular momentum, and tra-
jectory equations) hold for circular orbits but with the condition that radius is constant
and equal to the semimajor axis and parameter (i.e., r = a = p). Because periapsis is unde-
fined for a circular orbit, we must measure the satellite’s angular position relative to a
fixed axis in the orbital plane.
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We can determine a simple expression for circular velocity from the energy equations
(2.29) and (2.63) with a = r

Circle ξ=
v2c
2
−
μ

r
= −

μ

2a
= −

μ

2r
(2.81)

where the subscript c indicates circular. Solving Eq. (2.81) for circular velocity, we obtain

vc =
μ

r
(2.82)

Equation (2.82) is the constant velocity of a satellite in a circular orbit with radius r.
Because space missions frequently utilize circular orbits, we will often use this important
relationship in this textbook. We can also derive the circular velocity from the balance
between the centrifugal force and gravitational force:

m
v2c
r
=mg =m

μ

r2

Canceling the satellite mass m in the above equation and solving for circular velocity,
we obtain vc = μ/r which verifies Eq. (2.82).
We can determine the period of a circular orbit by equating the constant circular veloc-

ity to the distance traveled over one orbit (the circumference, 2πr) divided by the period:

vc =
μ

r
=

2πr
Tperiod

(2.83)

Solving Eq. (2.83) for the period yields

Circle Tperiod =
2π
μ
r3/2 (2.84)

This expression is identical to Eq. (2.80) with a = r.

2.5.5 Geocentric Orbits

We will briefly discuss a few common Earth-centered or geocentric orbits in this subsec-
tion. A low-Earth orbit (LEO) is a circular orbit with an altitude up to roughly 1,000 km.
The lower bound on LEO altitude is determined by interaction with the upper atmos-
phere (and the subsequent aerodynamic drag) and the intended lifetime of the satellite.
For example, the Apollo lunar missions began by injecting the upper stage of the
Saturn V rocket into a 190-km altitude circular parking orbit. After the ground control-
lers verified that the spacecraft systems were operating as intended the upper stage was
reignited to send the astronauts on a translunar orbit to the moon. Even at an altitude of
190 km, a satellite experiences enough aerodynamic drag such that it would lose energy
over several days and eventually enter the dense atmosphere and be destroyed by aero-
dynamic heating (we will discuss aerodynamic drag on LEO satellites in Chapter 5).
Therefore, a parking orbit is a temporary, intermediate orbit and not a final destination.
Interplanetary spacecraft (such as theMars Science Laboratory) are inserted into parking
orbits before an upper rocket stage is fired to send the spacecraft on a trajectory to its
planetary target.
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Orbiting science platforms, such as the International Space Station (ISS) and the
Hubble Space Telescope (HST), occupy LEOs. For example, the ISS and HST are in
nearly circular LEOs with altitudes of about 410 and 540 km, respectively. The US Space
Shuttle achieved circular LEO with altitudes ranging from roughly 300 to 500 km
and was used to construct and service the ISS. For a typical Shuttle orbit with an altitude
of 320 km (i.e., r = 6,698 km), Eq. (2.82) shows that the circular velocity is vc = 7.714 km/s
and Eq. (2.84) shows that its orbital period is about 91 min.
A medium-Earth orbit (MEO) has an altitude ranging from roughly 1,000 to

35,000 km. Navigation and communication satellites are often placed in MEO. One
example is the Global Positioning System (GPS), which consists of a constellation of
satellites in circular orbits at an altitude of 20,180 km (r = 26,558 km). Hence, a GPS
satellite has a circular orbital velocity of 3.874 km/s and a period of 12 h.
A geostationary-equatorial orbit (GEO) is a circular orbit with angular velocity that

matches the Earth’s rotation rate about its axis. Because the Earth completes one revo-
lution in one sidereal day (23 h, 56 min, and 4 s) the circular radius required for GEO can
be computed from Eq. (2.84)

rGEO =
TGEO μ

2π

2/3

where the GEO period is TGEO = 86,164 s (or 23.934 h). GEO radius must be rGEO =
42,164 km (or an altitude of 35,786 km above the Earth). The orbital plane of a GEO
satellite is coincident with the Earth’s equatorial plane (hence the “E” in the GEO acro-
nym) so that it remains motionless (or stationary) to a ground-based observer and
appears to “hover” overhead a particular geographic point on the equator. Communica-
tion and weather satellites are placed in GEO because they are always visible from a
ground-based station and can always monitor the same geographic region. Using
Eq. (2.82), we find that the circular orbital velocity for GEO is 3.075 km/s.
The reader may wonder why the period of GEO is 23 h, 56min, and 4 s and not simply

24 h. A sidereal day (23.934 h) is the time required for the Earth to complete one
revolution relative to an inertial frame. Hence, the inertial spin rate of the Earth is
one revolution per sidereal day or ωE = 7.292(10−5) rad/s. Therefore, a GEO satellite’s
rotation rate must be θ = vGEO/rGEO =ωE in order to match the Earth’s rotation. A solar
day is the time required for the sun to reappear directly over the same meridian (line of
longitude). In other words, a solar day (24 h) is the period between 12 o’clock noon on
one day and 12 o’clock noon on the next day. Because we measure the 24 h solar day
relative to the sun (and the Earth is moving in its orbit about the sun), the Earth actually
completes more than one revolution in 24 h when the sun reappears directly overhead
at noon.
The Geostationary Operational Environmental Satellite (GOES) system is a collection

of GEO satellites used by the NationalWeather Service for weather monitoring and fore-
casting. The GOES system was established with the launch of GOES-1 in 1975. At the
time of writing, GOES-13 (or GOES-East) is positioned at a longitude of 75ο W (New
York City is at 74ο W) and GOES-15 (GOES-West) is located at 135ο W (Honolulu,
Hawaii is at 157.5ο W). Of course, the GOES satellites “hover” over the equator at their
respective longitudes. At GEO altitude each GOES satellite can view about 42% of the
Earth’s surface where the total viewing area is centered on its fixed longitude.
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Russia uses the so-called Molniya orbit for its communication satellites. A Molniya
orbit is highly elliptical with apogee and perigee altitudes of about 39,874 and
500 km, respectively. Eccentricity of a Molniya orbit is 0.741 and the period is 12 h.
Molniya orbits are oriented so that apogee is located at a very high geographic latitude
(we will discuss the three-dimensional orientation of orbits in Chapter 3). Because satel-
lites in Molniya orbits spend most of their time near apogee, they are well suited to view
northern latitudes such as Russia.

Example 2.5 Consider a US communication satellite that is destined for a geostation-
ary-equatorial orbit (GEO). Initially, the satellite is placed in a 200-km altitude circular
low-Earth orbit (LEO) by a launch vehicle. In order to reach GEO, the satellite follows a
geostationary transfer orbit (GTO) as shown in Figure 2.13. The GTO is an ellipse that is
tangent to the inner and outer circular orbits and therefore has a perigee radius equal to
the LEO radius and an apogee radius equal to the GEO radius. Determine:

a) Perigee velocity on the GTO and LEO circular velocity.
b) Apogee velocity on the GTO and GEO circular velocity.
c) Period of the GTO.

a) We begin by defining the perigee and apogee radii for the GTO:

GTOperigee rp =RE + 200km = 6,578 km

GTOapogee ra =RE + 35,786 km = 42,164 km

LEO altitude (200 km) is given in the problem while GEO altitude is known to
be 35,786 km (see the previous section discussing GEO radius and the sidereal
day). We can compute semimajor axis of the GTO from the perigee and apogee radii:

a=
rp + ra
2

= 24,371 km

Total energy of the GTO is solely a function of a

ξ= −
μ

2a
= – 8 1778 km2/s2

Knowledge of orbital energy allows us to determine velocity at a known radial dis-
tance using Eq. (2.29). Using perigee radius rp = 6,578 km, the perigee velocity on
the GTO is

vp = 2 ξ+
μ

rp
= 10 2390km/s

The GTO perigee velocity vp is shown in Figure 2.13.
We compute circular velocity for LEO using Eq. (2.82) and radius rLEO = 6,578 km

vLEO =
μ

rLEO
= 7 7843km/s

A satellite in circular LEO and at GTO perigee has the same potential energy due to
the common radius rLEO = rp = 6,578 km. However, the total energy of GTO is greater
than LEO energy (to see this compare the GTO and LEO semimajor axes; see
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Figure 2.13). Therefore, the kinetic energy at GTO perigee must be greater than the
kinetic energy of circular LEO; the calculations of vp and vLEO demonstrate this fact.

b) We can compute GTO apogee velocity using the energy equation with ra =
42,164 km:

va = 2 ξ+
μ

ra
= 1 5974 km/s

The GTO apogee velocity va is also shown in Figure 2.13. GTO apogee velocity is less
than 16% of its perigee velocity.
We determine the circular velocity for GEO using radius rGEO = 42,164 km

vGEO =
μ

rGEO
= 3 0747 km/s

This result makes sense because GEO energy is greater than GTO energy (again, see
Figure 2.13 and compare the semimajor axes). Because GTO apogee and GEO have
the same potential energy, the GEO kinetic energy must be greater than the kinetic
energy at GTO apogee.

c) Orbital period is solely a function of semimajor axis. Using Eq. (2.80) the orbital
period of the GTO is

TGTO =
2π
μ
a3/2 = 37,863 5 s = 10 52 h

In practice, an onboard rocket is fired in LEO to increase the satellite’s velocity from
vLEO = 7.7843 km/s to the required GTO perigee velocity vp = 10.2390 km/s. The sat-
ellite then coasts for one-half of a revolution (5.26 h) to reach GTO apogee where a

GTO perigee 
200 km altitude

GTO apogee 
35,786 km altitude

vp

va

GTO

GEO

LEO

Figure 2.13 Geostationary transfer orbit (Example 2.5).
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second rocket burn is needed to increase the velocity from va = 1.5974 km/s to GEO
circular velocity vGEO = 3.0747 km/s. Orbital maneuvers and their associated propel-
lant mass requirements are treated in Chapters 6 and 7.

Example 2.6 The Lunar Atmosphere and Dust Environment Explorer (LADEE) space-
craft was launched into a highly elliptical orbit by a Minotaur V booster in September
2013. After completing the fifth-stage burn of the Minotaur V at an altitude of
200 km, the LADEE spacecraft entered an elliptical orbit with perigee and apogee alti-
tudes of 200 km and 278,000 km, respectively (see Figure 2.14). The LADEE spacecraft
completed one revolution in this elliptical orbit before firing an onboard rocket at perigee
to increase its orbital energy. Determine the eccentricity of the elliptical orbit and the
coasting time between the Minotaur booster burnout and the thrusting maneuver at
perigee.
First, we determine the perigee and apogee radii from the altitude information:

Perigee rp =RE + 200km=6,578 km

Apogee ra =RE + 278,000 km=284,378 km

Using Eq. (2.65), the eccentricity is determined to be

e=
ra−rp
rp + ra

= 0 9548

Hence, the “coasting orbit” for the LADEE spacecraft is highly elliptical.
We can compute the orbital period using Eq. (2.80) and knowledge of the semimajor

axis. The semimajor axis is half of the sum of perigee and apogee radii:

a=
rp + ra

2
= 145,478 km

The orbital period of the ellipse is

Tperiod =
2π
μ
a3/2 = 552,214 s = 6 39days

Therefore, the total coasting time is one period, or

tcoast = Tperiod = 6 39days

Perigee altitude
200 km

Apogee altitude
278,000 km

Earth

Figure 2.14 Elliptical orbit for the LADEE spacecraft (Example 2.6).
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The LADEE spacecraft was placed in this intermediate elliptical orbit because
the Minotaur V booster could not provide enough energy to achieve a direct orbit to
the moon. LADEE’s onboard propulsion system provided the final energy increase to
send the spacecraft to the moon. We will analyze the LADEE orbital maneuvers in
Chapter 7.

2.6 Parabolic Trajectory

Figure 2.15 shows a parabolic trajectory about the Earth. Recall that a parabola is an
“open-ended” trajectory where the semimajor axis is infinite and eccentricity e is exactly
unity. Equation (2.63) shows that the total energy ξ of a parabolic trajectory is zero
because a= ∞ . A parabola is the transitional conic section between an ellipse (a > 0,
e < 1, and ξ < 0) and hyperbola (a < 0, e > 1, and ξ > 0). A parabolic trajectory is a
one-way path to infinity. Figure 2.15 shows the scenario where the satellite is moving
away from the central body and hence the flight-path angle γ is positive.
Let us substitute e = 1 into the trajectory equation (2.45) for a parabola:

Parabola r =
p

1 + cosθ
(2.85)

Equation (2.85) shows that radius r becomes infinite as true anomaly θ approaches
± 180 (note also that the periapsis radius of a parabola is always one-half the parameter;
i.e., rp = p/2).
Next, let us use Eq. (2.29) to determine the velocity on a parabola “at infinity” where

r ∞ (or, θ 180 ):

Parabola:
∞

∞ −=
r

v µξ
2

2
= 0

0
2 86

Earth
Perigee

Satellite

r

v

γ

θ

rp∞=ar

Figure 2.15 Parabolic trajectory about the Earth.
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Note that we have used subscript ∞ in Eq. (2.86) to indicate conditions “at infinity.”
Because total energy ξ is zero on a parabolic trajectory, the satellite’s velocity “at infinity”
v∞ is also zero! While this result seems very odd at first we must remember that in a
“two-body universe” the central body is the only gravitational body that influences the
satellite’s motion. If a satellite is on a parabolic trajectory (with ξ = 0) it has just enough
energy to “escape” the gravitational pull of the planet and reach a great distance (i.e.,
radius r ∞ ) where the potential energy is zero. Because total energy is zero at every
point on the parabola, kinetic energy (and therefore velocity) is zero “at infinity.” Of
course, for real space missions, our solar system has N gravitational bodies (the sun,
moon, and other planets) which continuously influence a satellite’s motion. The reader
must remember that the two-body problem is an approximation that allows us to
develop analytical solutions for the satellite’s motion through the use of conic sections.
Another way to think about this result is to remember that for our two-body problem

we have fixed an inertial frame at the center of the sole celestial body and therefore a
satellite’s radius and velocity are relative to the gravitational body. For an Earth-orbiting
satellite, the non-rotating “inertial” geocentric framemoves with the Earth along its orbit
about the sun. When a geocentric satellite on a parabolic trajectory leaves Earth and
reaches a very large radial distance (r∞ ≈∞ ), its velocity relative to Earth becomes zero.
In this case, the satellite is now orbiting the sun in the samemanner as the Earth. Hence, a
parabolic trajectory is not useful in practice because it does not possess enough energy to
move beyond Earth’s orbit about the sun. The parabola represents the transitional conic
section between closed orbits (ellipses, ξ < 0) and open-ended trajectories (hyperbolas,
ξ > 0) that do have the excess energy to reach interplanetary targets.
In the previous discussion we called a parabolic trajectory an “escape” trajectory. The

parabola has the minimum energy (ξ = 0) required for a satellite to theoretically reach an
infinite distance from the gravitational body (i.e., to escape the central body). It is easy to
determine the escape velocity vesc required to achieve a parabolic trajectory. Using the
energy equation, we may write

Parabola ξ=
v2esc
2

−
μ

r
= 0 (2.87)

where r is any radial position on the parabola. Solving Eq. (2.87) for the escape velocity,
we obtain

vesc =
2μ
r

(2.88)

Equation (2.88) can be thought of as the “local escape velocity” because vesc depends on
the satellite’s current radius r (i.e., the satellite’s current potential energy). For example,
the escape velocity for a satellite in LEO is much larger than the required escape velocity
for a satellite in GEO because rGEO > rLEO. Equation (2.88) also shows that as radius
becomes very large the local escape velocity goes to zero – the satellite has already
achieved escape conditions!

Example 2.7 A satellite is in parabolic trajectory about the Earth with a perigee altitude
of 500 km.

a) Compute the satellite’s velocity at true anomalies θ = –60 , 0 , 90 , 150 , and 179 .
b) Plot the satellite’s velocity vs. true anomaly for −179 ≤ θ ≤ 179 .
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a) It is easy to compute the velocity from the energy equation for a parabola (ξ = 0)
given the radius r:

Parabola ξ=
v2

2
−
μ

r
= 0 v=

2μ
r

We can obtain the radial position from the trajectory equation with e = 1:

Parabola r =
p

1 + cosθ

Because perigee radius is rp = p/2 for a parabola, we can determine the parameter p

p= 2rp = 2 RE + 500 km = 13,756 km

where RE = 6,378 km. Using the constant p and the given true anomalies (θ = –60 , 0 ,
90 , 150 , and 179 ), we can compute the radius using the trajectory equation and the
parabolic velocity using r and the energy equation. For example, using θ = –60
we have

r =
13,756 km

1+ cos −60o
= 9,170 7 km and v=

2μ
r
= 9 3236 km/s

Parabolic velocity values at the five true anomalies are shown in Table 2.3. Note
that when θ = 90 the radius is equal to the parameter p, and that when θ = 179
the radial distance from the Earth is over 90 million km and the parabolic velocity
is small as expected. For comparison, the average sun–Earth distance is almost 150
million km.

b) We can follow the same process as part (a) and compute the radial distances of the
parabola corresponding to −179 ≤ θ ≤ 179 and then the parabolic velocities using
the energy equation. Figure 2.16 shows parabolic velocity vs. true anomaly and the
five values from Table 2.3 are shown with circular markers. Clearly, maximum
velocity occurs at perigee (this is no surprise) and velocity is symmetric about
the major axis.

Table 2.3 Radius and velocity on a parabolic trajectory
(Example 2.7).

True anomaly, θ
Radius, r
(km)

Velocity, v
(km/s)

–60 9,171 9.3236

0 6,878 10.7660

90 13,756 7.6127

150 102,676 2.7864

179 90,318,861 0.0939
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Example 2.8 Determine the escape velocities for a satellite in a 300-km altitude
circular LEO and for a satellite in GEO.
The LEO radius is rLEO = RE + 300 km = 6,678 km. Using Eq. (2.88), the local escape

velocity is

From LEO vesc =
2μ
rLEO

= 10 9260 km/s

The GEO radius is rGEO = 42,164 km. Hence, the local escape velocity at GEO is

From GEO vesc =
2μ
rGEO

= 4 3482 km/s

The local escape velocity at GEO is less than 40% of the escape speed at LEO.
As a side note, the circular orbital velocity in LEO is vLEO = 7.7258 km/s and the cir-

cular orbital velocity in GEO is vGEO = 3.0747 km/s. Therefore, we must increase LEO
velocity by about 3.20 km/s to achieve escape speed while escape conditions are
achieved at GEO by increasing velocity by 1.27 km/s. Firing an onboard rocket engine
accelerates the satellite and creates the change in velocity. Although a GEO satellite
requires less velocity change (or, added energy) to achieve an escape trajectory com-
pared with a LEO satellite, the reader must note that much more energy is required to
insert a satellite into GEO compared with inserting a satellite into a low-Earth orbit
(after all, aGEO > aLEO). We will discuss orbital maneuvers using rocket propulsion
in Chapters 6 and 7.

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

True anomaly, θ , deg

0

2

4

6

8

10

12

V
el

oc
ity

 o
n 

a 
pa

ra
bo

la
, k

m
/s

Figure 2.16 Parabolic velocity vs. true anomaly (Example 2.7).
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2.7 Hyperbolic Trajectory

Recall that a hyperbola is an open curve with negative semimajor axis, positive total
energy, and eccentricity greater than unity. Examples of hyperbolic trajectories include
spacecraft escaping the Earth’s gravity at the onset of an interplanetary mission and a
flyby encounter with a target planet. The hyperbola as a conic section has two branches
(see Figure 2.7c) but only one branch represents the physical trajectory. Figure 2.17
shows a satellite on a hyperbolic trajectory. The arrival and departure paths of the hyper-
bola are along two straight-line asymptotes and the asymptotic velocity of the satellite at
either end is computed from the energy equation (2.29)

Hyperbola:
∞

∞ –=
r

v μξ
2

2

> 0 
0

2 89

or

v∞ = 2ξ (2.90)

This residual speed “at infinity” is called the hyperbolic excess speed. Referring again to
Figure 2.17, the asymptotic velocity vectors are labeled v−

∞ for the arrival asymptote and
v +
∞ for the departure asymptote. Because energy is constant on the hyperbola, the mag-

nitudes of these two asymptotic velocities are equal (i.e., v−∞ = v+
∞ = 2ξ).

The angle between the asymptotes as shown in Figure 2.17 is called the turning angle δ.
When a spacecraft encounters a gravitational body on a hyperbolic trajectory, the arrival
hyperbolic velocity vector v−

∞ is turned by angle δ to produce the departure hyperbolic
velocity v +

∞ . The turning angle is solely a function of eccentricity

δ= 2sin−1 1
e

(2.91)

δ

Satellite

θ

Arrival 
asymptote

Departure 
asymptote

r

+
∞v

−
∞v

+
∞θ

Figure 2.17 Hyperbolic trajectory.
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Equation (2.91) can be derived from the geometry of a hyperbola presented in Figure 2.7c
[i.e., sin δ/2 = a/c where c/a= e].
The true anomaly of the departure asymptote shown in Figure 2.17 is labeled θ +

∞ and it
is determined by evaluating the trajectory equation (2.45) at an infinite radial distance:

r∞ =
p

1 + ecos θ +
∞

= ∞ (2.92)

Therefore, the denominator of Eq. (2.92) must be zero and we obtain

θ +
∞ = cos−1

−1
e

(2.93)

Because e > 1 the departure asymptotic true anomaly θ +
∞ is always in the second quad-

rant (the arrival asymptotic true anomaly θ−
∞ is always in the third quadrant; note that

cosθ−
∞ = cosθ +

∞ ). Equations (2.91) and (2.93) show that when e≈1 both the turning angle
δ and asymptotic true anomaly θ∞ approach 180 (i.e., a “skinny hyperbola” similar to
a parabola). At the other extreme when e >> 1, the turning angle becomes very small and
θ +
∞ approaches 90 (i.e., a “flat hyperbola” with very little curvature).
While parabolic trajectories are of little interest to space mission designers, hyperbolic

trajectories are essential for missions to interplanetary targets beyond Earth’s gravita-
tional influence. Recall that a fundamental assumption of the two-body problem (and
the subsequent conic-section solution) is that the gravitational force of one celestial body
is influencing the satellite’s motion. Sending a robotic probe to Mars (for example)
requires a hyperbolic departure trajectory from Earth so that the probe has excess speed
“at infinity.”Of course, after the satellite has “escaped” Earth’s gravitational pull in a two-
body sense and reached “infinity” (relative to Earth) it is primarily influenced by the sun’s
gravity. At this stage, we may analyze the satellite’s motion as a two-body problem with
the sun as the sole gravitational body. Eventually (if the trajectory is correctly planned),
the satellite reaches the vicinity of the target planet (e.g., Mars) and we can analyze the
arrival trajectory as another two-body problem. Because the probe is arriving “from infin-
ity” with finite velocity (v−∞ ), the satellite will approach the target planet on a hyperbolic
trajectory. This process of analyzing the entire interplanetary mission as a sequence of
two-body problems is called the patched-conic method and will be discussed in detail in
Chapter 10.

Example 2.9 The Mars Exploration Rover-A (MER-A) spacecraft was launched on
June 10, 2003 by a Delta II booster rocket. At burnout conditions for the final rocket
stage, the MER-A spacecraft was at an altitude of 225 km above the Earth’s surface with
a velocity of 11.4 km/s and a flight-path angle of 5 . Determine:

a) The departure hyperbolic excess speed v+
∞ .

b) The true anomaly of the departure asymptote θ +
∞ .

a) We can compute hyperbolic excess speed from the energy of the hyperbolic trajec-
tory. Using the rocket burnout conditions (denoted by subscript “bo”)

Radius at burnout rbo =RE + 225 km=6,603 km

Velocity at burnout vbo = 11 4 km/s
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Total energy on the hyperbola is

ξ=
v2bo
2

−
μ

rbo
= 4 6135 km2/s2

Using Eq. (2.90), the hyperbolic excess speed is

v+
∞ = 2ξ= 3 0376km/s

Note that we have inserted a superscript “+” to indicate the departure asymptotic
speed.

b) Computing asymptotic true anomaly requires the eccentricity of the hyperbolic
trajectory. We can compute the angular momentum of the hyperbola from the burn-
out conditions:

h= rbovbo cosγbo = 74,987 76 km2/s

where γbo = 5 is the flight-path angle at burnout. Parameter p can be determined
from angular momentum

p=
h2

μ
= 14,107 29 km

Recall that parameter is positive for all conic sections. We can calculate the semi-
major axis of the hyperbolic trajectory from its energy

ξ= −
μ

2a
a= −

μ

2ξ
= – 43,199 31 km

We see that a < 0 for a hyperbola because energy is positive. Finally, we employ
Eq. (2.49) to determine eccentricity:

p= a 1−e2 e= 1−
p
a
= 1 1518

Using Eq. (2.93), we find that the true anomaly of the departure asymptote is

θ +
∞ = cos−1

−1
e

= 150 25

Example 2.10 In early 2007, the New Horizons spacecraft approached Jupiter on a
hyperbolic trajectory with an asymptotic arrival velocity of v−∞ = 18.427 km/s. The space
probe followed a “hyperbolic flyby trajectory” with a closest-approach distance of 32.25
RJ from the center of Jupiter where RJ = 71,492 km is Jupiter’s equatorial radius.
Calculate the spacecraft’s velocity at periapsis and the turning angle δ from the
hyperbolic flyby of Jupiter.
We can use the energy equation to determine the velocity at periapsis (or “perijove” for

a trajectory about Jupiter):

ξ=
v2∞
2

=
v2p
2
−
μJ
rp

= 169 7772 km2/s2
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Note that the hyperbolic excess speed (v∞ ) solely determines the total energy of a hyper-
bolic trajectory. The perijove radius is rp = 32.25 RJ = 2.3056(106) km. Using the energy
equation, we determine the flyby velocity at perijove

vp = 2 ξ+
μJ
rp

= 21 2001 km/s

Note that because Jupiter is the gravitational body we must use its gravitational param-
eter μJ = 1.266865(108) km3/s2.
We need to determine the eccentricity of the hyperbolic trajectory in order to compute

the turning angle. First, we compute the semimajor axis from the energy equation

ξ= −
μJ
2a

a= −
μJ
2ξ

= – 373,096 4 km

We can manipulate an expression for periapsis radius, Eq. (2.51), and solve it for
eccentricity:

rp = a 1−e e= 1−
rp
a
= 7 1797

The turning angle is calculated using Eq. (2.91)

δ= 2sin−1 1
e

= 16 0126

Figure 2.18 shows the Jupiter flyby (not to scale) as a “flat” hyperbolic trajectory with very
little curvature and a small turning angle. It is rather intuitive that a very large periapsis

δ

Departure 
asymptote

Arrival 
asymptote

Jupiter

rp = 32.25 RJ

+
∞v

−
∞v

Figure 2.18 The New Horizons hyperbolic flyby of Jupiter (Example 2.10).
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radius (as in this case) will result in a “flat” hyperbola with a small turning angle. Con-
versely, a very small periapsis radius will result in a “skinny” hyperbola with a large
turning angle (in other words, flying deeper in the “gravity well” or closer to a planet
will produce larger turning or angular motion). It is the “turning motion” of the
hyperbolic flyby that produces the so-called gravity assist maneuver that alters the
satellite’s interplanetary trajectory without expending propellant. The New Horizons
spacecraft used the Jupiter gravity assist outlined in this example to increase its speed
(relative to the sun) and therefore reduce the flight time to its target (Pluto). We will
discuss gravity assists in more detail in Chapter 10 in the context of interplanetary
trajectories.

2.8 Summary

In this chapter, we developed the fundamental relationships for two-body motion. We
did so by applying Newton’s laws to a two-body system comprising a celestial gravita-
tional body (e.g., the Earth) and a much smaller body (e.g., a satellite). Our result is a
nonlinear vector differential equation that governs two-body motion. It is extremely
important to reiterate the fundamental assumptions that lead to the two-body equation
of motion: (1) the two bodies are point masses; (2) the mutual gravitational forces are the
only forces acting on the two-body system; and (3) the mass of the smaller body (i.e., the
satellite) is negligible relative to the central gravitational body. We demonstrated that
total mechanical energy and angular momentum are constant for the two-body problem.
These constants of motion lead to the so-called trajectory equation, which shows that the
satellite’s orbital path is a conic section: an ellipse, parabola, or hyperbola. In the end, we
can relate the motion constants (energy and angular momentum) to geometric conic-
section constants (i.e., semimajor axis, eccentricity, and parameter) for the orbit.
Consequently, we can determine the satellite’s radial position and velocity at any point
in its orbit. As we will soon see in the subsequent chapters, the two-body orbital relation-
ships developed in this chapter provide the foundation for analyzing and designing space
missions.

Further Reading
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1971, Chapter 1.
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NJ, 1976, Chapters 1 and 2.

Thomson, W.T., Introduction to Space Dynamics, Dover, New York, 1986, Chapter 4.
Vallado, D.A., Fundamentals of Astrodynamics and Applications, 4th edn, Microcosm Press,
Hawthorne, CA, 2012, Chapter 1.

Wiesel, W.E., Spaceflight Dynamics, 3rd edn, Aphelion Press, Beavercreek, OH, 2010,
Chapter 2.
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Problems

For Earth-orbiting satellites, use RE = 6,378 km for the radius of the Earth and
μ = 3.986(105) km3/s2 for the gravitational parameter. For problems involving other
celestial bodies (the moon, Mars, etc.) see Appendix A for their respective radii and
gravitational parameters.

Conceptual Problems

2.1 An Earth-orbiting satellite has the following position and velocity vectors
expressed in polar coordinates:

r= 8,250ur km v = 1 2054ur + 7 0263uθ km/s

Determine the following:
a) Angular momentum (magnitude), h
b) Specific energy, ξ
c) Semimajor axis, a
d) Parameter, p
e) Eccentricity, e
f) Perigee and apogee radii, rp and ra
g) Flight-path angle, γ, at this instant
h) True anomaly, θ, at this instant.

2.2 Repeat Problem 2.1 for an Earth-orbiting satellite with the following
position and velocity vectors expressed in polar coordinates:

r= 9,104ur km v = −0 7004ur + 6 1422uθ km/s

2.3 Compute the eccentricity vector e using the Earth-orbiting satellite data in
Problem 2.2 and show that its norm (magnitude) matches the eccentricity e as com-
puted using the geometric parameters p and a.

2.4 An Earth-orbiting satellite has the following position and velocity vectors
expressed in polar coordinates:

r= 1,2426ur km v = 4 78uθ km/s

Determine the following parameters when the satellite is 2,000 km above the
Earth’s surface and approaching the Earth:
a) Orbital velocity
b) Flight-path angle, γ
c) True anomaly, θ.

2.5 An Earth-orbiting satellite has semimajor axis a = 9,180 km and eccentricity
e = 0.12. Determine the radial position r, velocity v, and flight-path angle γ when
the satellite is approaching Earth and 80 from perigee passage.

2.6 Develop an expression for eccentricity e in terms of specific energy ξ and angular
momentum h.
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2.7 At a particular instant in time, a tracking station determines that a space vehicle is
at an altitude of 390.4 km with an inertial velocity of 9.7023 km/s and flight-path
angle of 1.905 . Is this space vehicle in a closed orbit about the Earth or is it
following an open-ended trajectory that will eventually “escape” Earth? Justify
your answer.

2.8 An Earth-orbiting satellite has semimajor axis a = 8,230 km and eccentricity
e = 0.12. Determine the satellite’s maximum altitude above the Earth’s surface.

2.9 Two satellites are being tracked by ground-based radar stations. Their altitusdes,
inertial velocities, and flight-path angles at a particular instant in time are sum-
marized in the following table:

Object Altitude (km) Velocity (km/s) Flight-path angle

Satellite A 1,769.7560 6.8164 4.9665

Satellite B 676.3674 7.8504 –6.8903

Are these two satellites in the same orbit? Explain your answer.

2.10 An Earth-orbiting satellite has the following position and velocity vectors
expressed in polar coordinates:

r= 7,235ur km v = −0 204ur + 8 832uθ km/s

Determine the orbital period in minutes.

2.11 A tracking station determines that an Earth-observation satellite has perigee and
apogee altitudes of 350 and 1,206 km, respectively. Determine the orbital period
(in minutes) and the parameter p.

2.12 An Earth-orbiting satellite is at an altitude of 700 km with inertial velocity
v = 7.3944 km/s and flight-path angle γ = 0. Is the satellite at perigee or apogee?
Justify your answer.

2.13 The ratio of apoapsis and periapsis radii for a particular satellite orbit is ra/rp = 1 6.
Determine the eccentricity of the orbit.

2.14 Derive an expression for the orbital period of a circular orbit in terms of its cir-
cular velocity speed vc.

2.15 An Earth-observation satellite’s closest approach is at an altitude of 300 km. If the
satellite returns to its perigee position every 2 h determine the apogee altitude and
the orbital eccentricity.

2.16 A launch vehicle experiences a malfunction in its guidance system. At burnout
of its upper rocket stage, the vehicle is at an altitude of 250 km with an inertial

Space Flight Dynamics48



velocity of 7.791 km/s and flight-path angle of 4.5 . Has the vehicle achieved a
stable orbit? Explain your answer.

2.17 Figure P2.17 shows two satellites in Earth orbits: Satellite A is in a circular orbit
with an altitude of 800 km, while Satellite B is in an elliptical orbit with a perigee
altitude of 800 km. At the instant shown in Figure P2.17, Satellite B is passing
through perigee while Satellite A lags behind Satellite B with an angular separa-
tion of 60 . Determine the apogee altitude of the elliptical orbit so that Satellites
A and B occupy the same radial position after one revolution of Satellite B (in
other words, Satellites A and B perform a rendezvous maneuver when Satellite
B returns to perigee after one orbital revolution).

2.18 Derive an expression for the time rate of true anomaly, θ, as a function of param-
eter p, eccentricity e, and true anomaly θ.

2.19 A satellite is on a parabolic trajectory about the Earth. At 4,000 km above the
Earth’s surface, it has a flight-path angle of 25 . Determine the velocity and true
anomaly of the satellite at this instant.

2.20 A satellite is approaching Earth on a parabolic trajectory with a velocity
of 5.423 km/s. If the projected perigee altitude of the parabolic trajectory
is 800 km, determine the radius, flight-path angle, and true anomaly at this
instant.

2.21 An interplanetary spacecraft fires an onboard rocket in order to depart a low-
Earth orbit. At engine cutoff (at an altitude of 200 km), the spacecraft has an
inertial velocity of 11.814 km/s and zero flight-path angle. Determine:
a) Eccentricity of the hyperbolic departure trajectory
b) Velocity when the spacecraft is at a radial distance of 400,000 km
c) Flight-path angle when the spacecraft is at a radial distance of 400,000 km
d) True anomaly when the spacecraft is at a radial distance of 400,000 km
e) Hyperbolic excess speed, v+

∞ .

60ο

Satellite A

Satellite B

Satellite B 
orbit

Figure P2.17
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2.22 An interplanetary spacecraft is departing Earth on a hyperbolic trajectory with
eccentricity e = 1.4 and semimajor axis a = –16,900 km. Determine:
a) Perigee altitude
b) Radial and transverse velocity components at true anomaly θ = 100
c) True anomaly of the departure asymptote, θ +

∞
d) Hyperbolic turning angle, δ.

2.23 In March 2016, a spacecraft launched in early 2014 is approaching Earth on a
hyperbolic trajectory for a gravity assist maneuver. Its hyperbolic excess speed
on the arrival asymptote is v−∞ = 2.78 km/s and its projected perigee velocity is
estimated by mission operators to be 10.9 km. Determine the perigee altitude
and turning angle δ of the hyperbolic flyby.

MATLAB Problems

2.24 Write an M-file that will that will calculate the following characteristics of an
Earth orbit (with the desired units):

Angular momentum, h (km2/s)
Energy, ξ (km2/s2)
Semimajor axis, a (km)
Parameter, p (km)
Eccentricity, e
Period, Tperiod (h)
Perigee and apogee radii, rp and ra (km)
Flight-path angle, γ (deg)
True anomaly, θ (deg)

The inputs to the M-file are orbital radius r (in km), radial velocity vr (in km/s),
and transverse velocity vθ (in km/s). The M-file should return an empty set
(use open brackets []) for characteristics that do not exist, such as period for
a parabolic or hyperbolic trajectory. Test your M-file by solving Problem 2.1.

2.25 Write an M-file that will calculate a satellite’s orbital “state” for a particular loca-
tion in an Earth orbit. The desired outputs are radial position r (in km), velocity
magnitude v (in km/s), and flight-path angle γ (in deg). The M-file inputs are
semimajor axis a (in km), eccentricity e, and true anomaly θ (in deg). Test your
M-file by solving Problem 2.4.

2.26 The second stage of a launch vehicle is approaching its main-engine cutoff
(MECO). Suppose the vehicle’s guidance system has the following simplified equa-
tions for orbital radius and velocity at MECO as a function of flight-path angle

r = 6,878 + 12γ km, v= 7 613−1 5γ km/s

where flight-path angle γ is in radians. Plot perigee altitude, semimajor axis, and
eccentricity as a function of MECO flight-path angle for the range −10 ≤ γ ≤ 10 .
Using these plots, determine the MECO flight-path angle that results in the max-
imum-energy elliptical orbit with a 200 km altitude perigee.
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Mission Applications

2.27 GeoEye-1 is an Earth-observation satellite that provides high-resolution images
for Google. The orbital period and eccentricity of GeoEye-1 are 98.33 min
and 0.001027, respectively. Determine the perigee and apogee altitudes of
GeoEye-1.

2.28 The Chandra X-ray Observatory (CXO) used a sequence of two transfer orbits
to increase orbital energy (additional subsequent transfer orbits were used to
eventually achieve the highly elliptical operational CXO orbit presented in
Example 2.3). Figure P2.28 shows that the two transfer orbits are tangent at
the perigee altitude of 300 km above the surface of the Earth. Determine the
eccentricity and orbital period of each transfer orbit.

2.29 A US reconnaissance satellite is in an elliptical orbit with a period of 717.8 min.
Ground-tracking stations determine that its perigee altitude is 2,052 km. What is
the apogee altitude of this satellite?

2.30 The Apollo 17 command and service module (CSM) orbited the moon in a
116 km altitude circular orbit while two astronauts landed on the lunar surface.
Determine the orbital velocity and period of the CSM.

2.31 The Meridian 4 is a Russian communication satellite that was launched in May
2011 on a Soyuz-2 rocket. The operational (target) orbit of theMeridian 4 satellite
is an elliptical orbit with perigee and apogee altitudes of 998 and 39,724 km,
respectively. The Meridian 4 satellite reached its target by following an elliptical
transfer orbit that is tangent to the target orbit at apogee (Figure P2.31; not to
scale). The perigee altitude of the transfer orbit is 203 km. Determine:
a) The perigee velocity on the transfer orbit
b) The transit time from perigee to apogee on the transfer orbit
c) The apogee velocity on the transfer orbit
d) The apogee velocity on the Meridian 4 target orbit.

Transfer orbit 1:
Apogee altitude = 13,200 km 

Perigee altitude = 300 km 

Transfer orbit 2:
Apogee altitude = 72,000 km 

Figure P2.28
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2.32 Lunar Orbiter 1 (1966) was the first US spacecraft to orbit the moon. It was
initially inserted into a lunar orbit with angular momentum h = 3,509.8 km2/s
and specific energy ξ = –0.886641 km2/s2. Determine the following:
a) Periapsis (“perilune”) and apoapsis (“apolune”) altitudes
b) Velocity at perilune and apolune
c) Radial and transverse velocity components at true anomaly θ = 220 .
d) Orbital period (in min).

2.33 The Apollo lunar module (LM) used its ascent propulsion system (APS) to depart
the moon’s surface. After over 7 min of powered flight, the APS engine was shut
down and the LM was at an altitude of 18 km above the moon with velocity
v = 1.687 km/s and flight-path angle γ = 0.4 . Determine the periapsis (“perilune”)
and apoapsis (“apolune”) altitudes of the LM’s orbit after engine cutoff.

Problems 2.34–2.36 involve the Mars Reconnaissance Orbiter (MRO) space-
craft which approached the target planet in March 2006 and subsequently per-
formed a propulsive maneuver to slow down and enter a closed orbit about Mars.

2.34 The MRO spacecraft approached Mars on a hyperbolic trajectory with eccentric-
ity e = 1.7804 and asymptotic approach speed v−∞ = 2.9572 km/s. Determine the
altitude, velocity, and flight-path angle of the MRO spacecraft at its closest
approach to Mars.

2.35 The MRO spacecraft fired its rocket engines at periapsis of the hyperbolic
approach to slow the spacecraft’s velocity to 4.5573 km/s for insertion into a
closed orbit about Mars. Using the MRO hyperbolic trajectory information in
Problem 2.34, determine the orbital period and eccentricity of the MRO space-
craft after the orbit-insertion burn (the rocket burn did not change the periapsis
radius – it is the same as the periapsis radius of the hyperbolic approach trajectory
as determined in Problem 2.34).

2.36 The MRO used atmospheric drag at each periapsis pass (“aerobraking”) to slow
down and reduce the orbital energy. After the aerobraking phase (and a small pro-
pulsive maneuver), the operational orbit for theMRO spacecraft has periapsis and
apoapsis altitudes of 250 and 316 km above the surface of Mars, respectively.
Determine the following:

vp

va

Meridian 4 target orbit:
998 km perigee altitude
39,724 km apogee altitude

Transfer orbit:
203 km perigee altitude
39,724 km apogee altitude

Figure P2.31
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a) Semimajor axis, a
b) Eccentricity, e
c) Orbital period (in min)
d) True anomaly, θ, when the altitude is 300 km
e) Flight-path angle, γ, when the altitude is 300 km.

Problems 2.37 and 2.38 involve the Lunar Atmosphere and Dust Environment
Explorer (LADEE) spacecraft, which was launched in September 2013 (see Exam-
ple 2.6).

2.37 The LADEE spacecraft was launched into a highly elliptical orbit about the Earth
by aMinotaur V booster with perigee and apogee altitudes of 200 and 278,000 km,
respectively (see Figure 2.14 and Example 2.6). Determine the altitude, velocity,
and flight-path angle of the LADEE spacecraft at true anomaly θ = 300 .

2.38 After a coasting translunar trajectory, the LADEE spacecraft was inserted into an
elliptical orbit about the moon by performing a series of retrorocket propulsive
burns. The orbital period of the LADEE spacecraft was 4 h and its orbital eccen-
tricity was e = 0.2761 (Figure P2.38; not to scale). Determine the periapsis and
apoapsis altitudes (or “perilune” and “apolune” altitudes) of the LADEE spacecraft
in its lunar orbit.

Problems 2.39 and 2.40 involve the Stardust capsule which returned to Earth in
January 2006 on a hyperbolic approach trajectory after sampling particles from the
comet Wild-2.

2.39 When the Stardust capsule arrived at the “edge” of the Earth’s atmosphere (the so-
called “entry interface” altitude of 122 km), it had inertial velocity v = 12.9 km/s
and flight-path angle γ = –8.21 . Determine the following:
a) Specific energy, ξ
b) Semimajor axis, a
c) Eccentricity, e
d) True anomaly, θ, at entry interface
e) Arrival hyperbolic excess speed, v−∞
f) Arrival asymptotic true anomaly, θ−

∞ .

moon

Period = 4 hr

e = 0.2761

Figure P2.38
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2.40 Using the entry-interface state of the Stardust capsule from Problem 2.39, deter-
mine the velocity, flight-path angle, and true anomaly of the capsule when it was at
radius r = 384,400 km (roughly the distance from the Earth to the moon).

2.41 The Pegasus launch vehicle reaches its second-stage burnout at an altitude of
192 km, inertial velocity v = 5.49 km/s, and flight-path angle γ = 25.8 . The launch
vehicle then coasts in this orbit until it ignites its third stage when flight-path
angle decreases to 2.2 . Determine:
a) Semimajor axis of the Pegasus orbit after second-stage burnout.
b) Eccentricity of the Pegasus orbit after second-stage burnout.
c) The altitude and velocity of the Pegasus launch vehicle when the third stage is

ignited.

Problems 2.42 and 2.43 involve the Juno spacecraft which departed Earth in
early August 2011 and arrived at Jupiter in early July 2016.

2.42 The Juno spacecraft approached Jupiter on a hyperbolic trajectory with eccentric-
ity e = 1.0172 and semimajor axis a = –4.384(106) km. Determine the asymptotic
approach speed v−∞ and radial distance from Jupiter at its closest approach.

2.43 The Juno spacecraft fired a retrorocket at its periapsis (“perijove”) position to slow
down and establish a highly elliptical orbit about Jupiter with semimajor axis
a = 4,092,211 km and eccentricity e = 0.981574. Determine the orbital period
and apoapsis (“apojove”) radius of Juno’s orbit.
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3

Orbit Determination

3.1 Introduction

Orbit determination involves computing the defining characteristics of a satellite’s orbit
through observations. In Chapter 2, we introduced three of these defining orbital char-
acteristics: semimajor axis a, eccentricity e, and true anomaly θ. Semimajor axis allows us
to compute the total energy of the orbit whereas a and e allow us to calculate angular
momentum magnitude. True anomaly θ defines the satellite’s position in the orbit at
a given instant. Hence, a, e, and θ provide information about the size and shape of
the orbit and the satellite’s location in the orbital plane. However, these three parameters
provide no information regarding the three-dimensional orientation of the orbit. Clearly,
the successful operation of an Earth-orbiting satellite requires careful planning of its
orbit so that it passes over the desired geographic locations on Earth. One way to char-
acterize an orbit in three dimensions is to determine the satellite’s position and velocity
vectors r and v in a Cartesian frame centered at the attracting gravitational body. Of
course, the r and v vectors continuously change with time as the satellite moves in its
orbit. Another way to fully characterize an orbit is to determine the so-called classical
orbital elements (a, e, and θ are three of the orbital elements). We will see that knowledge
of the orbital elements allows us to better visualize the orbit compared with knowledge of
the vectors (r,v).
This chapter begins by discussing how we can determine an orbit’s defining character-

istics (the orbital elements) from the satellite’s Cartesian vectors (r,v) at a given instant.
The primary assumption for this orbit-determination problem, of course, is that the vec-
tors (r,v) are somehow available to us. The latter part of this chapter describes methods
that use multiple satellite observations (or measurements) to determine the position and
velocity vectors (r,v) corresponding to a particular instant in time.

3.2 Coordinate Systems

In Chapter 2, we developed the two-body problem by using a Cartesian coordinate sys-
tem fixed to the center of the gravitational body. Furthermore, we required that the body-
centered XYZ coordinate system be an inertial frame (no rotation or acceleration) so that
we could apply Newton’s laws. We did not, however, specify a reference direction or
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orientation of the Cartesian coordinates. Obviously, it is useful (and necessary) to define
standard coordinate systems so that the space flight community has a common point of
reference for defining a satellite’s orbit.
In this textbook, we will primarily analyze satellite motion where the Earth and sun are

the central gravitation bodies. We can make a long list of Earth-orbiting satellites used
for communication, navigation, weather monitoring, and Earth science. Earth-orbiting
satellites require an inertial Cartesian system fixed at the Earth’s center. Interplanetary
spacecraft, on the other hand, spend themajority of their transit time under the influence
of the sun’s gravity. Therefore, interplanetary missions require an inertial Cartesian sys-
tem fixed at the center of the sun. We present the sun-centered coordinate system first
because it establishes a standard reference direction that is also used for the Earth-
centered system.
Figure 3.1 shows the heliocentric-ecliptic coordinate system. The origin of the Carte-

sian (XYZ)H axes is at the center of the sun. Earth’s orbital plane about the sun is called
the ecliptic and it defines the XH–YH plane. The +ZH axis is normal to the ecliptic and
completes the right-handed Cartesian frame. The XH axis is the intersection of the
Earth’s equatorial plane and the ecliptic, and its positive direction is from the Earth’s cen-
ter to the sun’s center on the March (vernal) equinox as shown in Figure 3.1. The vernal
equinox direction is shown in Figure 3.1 by the symbol for the constellation Aries ( ).
The vernal equinox direction varies slightly due to third-body gravitational perturba-
tions; therefore, it is not truly a fixed reference direction. For this reason, the +XH axis
is fixed at the vernal equinox direction for a particular moment in time or epoch.
A common heliocentric-ecliptic frame is the mean equator and equinox of January 1,
2000 or the J2000 system.
Figure 3.2 shows the geocentric-equatorial coordinate system for Earth-orbiting satel-

lites. The Earth’s equatorial plane is the fundamental X–Y plane where the +X axis points
in the vernal equinox direction (i.e., the same direction as the +XH axis in the

sun

XH

YH

ZH

Ecliptic

Earth on March 
equinox

Earth on September 
equinox

Earth on June 
solstice

Earth on 
December 
solstice

Vernal equinox 
direction ( )

Figure 3.1 Heliocentric-ecliptic coordinate system.
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heliocentric-ecliptic system). The +Z axis is along the direction of the North Pole. The
geocentric-equatorial system is often called the Earth-centered inertial (ECI) frame. We
will use unit vectors IJK to designate the directions of the XYZ axes as shown in
Figure 3.2. It is important for the reader to remember that the ECI system, while it moves
with the Earth’s center, does not rotate.
The angle of obliquity (~23.4 ) is the angle between the Earth’s equatorial plane and

the ecliptic plane. If we were to superimpose the ECI system (Figure 3.2) onto the Earth’s
center in Figure 3.1, the +XH and I directions would coincide. Rotating the ECI system
about its I axis by the angle of obliquity would align the ECI and heliocentric-ecliptic
frames.

3.3 Classical Orbital Elements

Recall that two-body orbital motion is governed by Eq. (2.12), which is a second-order
vector differential equation. We can express the two-body equations of motion in state-
variable form by using six scalar differential equations and therefore the complete solu-
tion requires six initial conditions: three initial position coordinates (r0) and three initial
velocity coordinates (v0). Knowledge of a satellite’s r and v vectors at any instant of time
thus allows us to compute the orbital solution at any past or future time. We will call the
collection of the position and velocity vectors (r,v) the satellite’s state vector. For exam-
ple, the state vector of a spacecraft on an interplanetary trajectory would consist of its
position and velocity vectors expressed in the heliocentric-ecliptic coordinate system
(Figure 3.1). Figure 3.3 shows the state vector (r,v) for an Earth-orbiting satellite. The
satellite’s r and v vectors are expressed as components along the IJK axes shown in
Figure 3.3. It is very important for the reader to see that the state vector (r,v) contains
six elements: three position coordinates and three velocity coordinates.
Although the state vector (r,v) completely characterizes the orbital motion, it does not

provide an intuitive feel for the orbit. Obviously, all six elements of the state vector
change as the satellite moves along its orbital path. It is easier to characterize and visu-
alize an orbit by a set of six constants known as the classical orbital elements. Two orbital
elements define the size and shape of the orbit; three orbital elements define the

Y

K

X
I J

Vernal equinox 
direction ( )

Z

Figure 3.2 Geocentric-equatorial or Earth-centered inertial coordinate system.
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three-dimensional orientation of the orbit in space; the sixth element defines the position
of the satellite in the orbit at a particular instant of time (or epoch). The six classical
orbital elements are:

• semimajor axis, a

• eccentricity, e

• inclination, i

• longitude of the ascending node, Ω

• argument of periapsis, ω

• true anomaly at epoch, θ0

As we discussed in Chapter 2, semimajor axis a and eccentricity e define the orbit’s size
(or energy) and shape. The next three orbital elements (i,Ω, andω) define the orientation
of the orbit in three-dimensional (IJK) space as seen in Figure 3.4. Inclination i is the
angle between theK unit vector and the angular momentum vector h. Recall that angular
momentum h is normal to the orbital plane. Inclination is the tilt of the orbital plane with
respect to the equatorial (IJ) plane, and it varies from 0 to 180 . For 0 ≤ i < 90 , the orbit
is said to be direct or prograde (easterly direction), for 90 < i ≤ 180 , the orbit is said to be
retrograde (westerly orbit), and for i= 90 the orbit is polar. The intersection between the
orbital plane and the equatorial plane is called the line of nodes (see Figure 3.4), and the
nodal line where the satellite is moving from the southern to northern hemisphere is
called the ascending node, n, as shown in Figure 3.4. The longitude of the ascending node
(Ω) is measured counterclockwise in the equatorial plane from the vernal equinox
direction (I) to the ascending node n. The argument of periapsis (perigee, for Earth orbits)
ω is measured in the orbital plane in the direction of satellite motion from the ascending
node n to the periapsis (perigee) direction. The eccentricity vector, e, points from the
focus to the periapsis direction as shown in Figure 3.4. True anomaly at epoch, θ0, is
the sixth orbital element, and it defines the angular location of the satellite in its orbit

r

I J

K

Satellite

Vernal equinox 
direction ( )

Orbit

rZ

v

Figure 3.3 State vector (r,v) in the ECI coordinate system.
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at epoch t0. For two-body motion, the six classical orbital elements (a, e, i, Ω, ω, θ0) are
constants. The reader should keep in mind that true anomaly at epoch θ0 is a constant
because it defines the angular position of the satellite at the epoch time t0. Clearly, true
anomaly θ varies continuously from 0 to 2π for a closed orbit. As we shall see in
Chapter 4, the location of the satellite (true anomaly θ) at any past or future instant
of time can be obtained by using Kepler’s time-of-flight equation.
The six elements (a, e, i,Ω,ω, θ0) do not comprise the definitive set of orbital elements.

Because semimajor axis a is infinite for a parabolic trajectory, the parameter p may be
used as the first orbital element (note that p > 0 for all conic sections). The longitude
of periapsis, ϖ, is sometimes used in place of argument of periapsis ω; it is defined as

ϖ ≡Ω+ω (3.1)

The longitude of periapsis is measured in two planes: first in the equatorial plane from
the I axis to the ascending node n, and then in the orbital plane to the periapsis direction
e. If the orbit is equatorial (i = 0), the ascending node n does not exist and longitude of
periapsis ϖ is the angle from I to periapsis direction e.
For an inclined circular orbit, the eccentricity vector e does not exist. Hence, ω is not

defined and true anomaly does not have a line of reference. We may use the argument of
latitude in place of ω and θ. Argument of latitude u is the angle measured in the orbital
plane from the ascending node n to the radius vector r. For an elliptical orbit, the argu-
ment of latitude at epoch is

u0 ≡ω+ θ0 (3.2)

The true longitude at epoch is defined as

l0 ≡Ω+ω+ θ0 (3.3)

andmay be used as the sixth element in place of true anomaly at epoch. True longitude is
also measured in two planes from the I axis to the satellite’s position vector r0. Note that
for an equatorial orbit (i = 0), the angle Ω is undefined and hence l0 is the angle in the

Vernal equinox 
direction ( )

n
Ascending node

Line of nodes e, Periapsis direction

I

J

K

Satellite

hAngular 
momentum

r0

Ω

ω

θ 0

i

Equatorial plane

Figure 3.4 The four angular classical orbital elements: inclination i, longitude of the ascending nodeΩ,
argument of periapsis ω, and true anomaly θ0.
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equatorial plane from I to position vector r0. True longitude is always defined because
the vectors I and r0 always exist.

3.4 Transforming Cartesian Coordinates to Orbital Elements

Observational data from measurements lead to the satellite’s state vector (r,v) in the ECI
frame (these ground-based sensors may use radar, laser, or optical measurements; see
Vallado [1; pp. 241–275] for an excellent summary of satellite observation techniques).
While the Cartesian state vector completely defines a satellite’s orbit, the (r,v) coordinates
do not aid in visualizing the orbit. In general, it is beneficial to obtain the classical orbital
elements (a, e, i, Ω, ω, θ0) from the state vector (r,v) so that we may visualize a satellite’s
orbit. As an example, consider the highly elliptical, 12-hMolniya orbit used by Russia for
communication satellites. Suppose the orbital elements for a particular Molniya orbit are

a= 26,565 km

e= 0 7411

i= 63 4

Ω= 50

ω= −90

θ0 = 180

Figure 3.5 shows aMolniya orbit with these orbital elements. The orbital elements a and
e tell us that the Molniya orbit is a “long and skinny” ellipse (we can compute the perigee
and apogee radii using Eqs. (2.51) and (2.53) to find rp = 6,878 km and ra = 46,252 km). The

Ascending node, 
n

J

Perigee , e
I

K

Ω

Satellite at
epoch t0

Figure 3.5 Molniya orbit.
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large inclination (i = 63.4 ) tells us that the orbital plane is tilted away from the equatorial
(IJ) plane. Because the argument of perigee ω is –90 (or 270 ), the perigee of the Molniya
orbit is in the southern hemisphere. Finally, because the true anomaly at epoch is θ0 = 180 ,
we know that the satellite is at apogee; because ω = –90 , the satellite’s apogee is at its
“highest point” (geographic latitude) on its passage through the northern hemisphere.
Now consider the state vector (in IJK coordinates) that corresponds to the satellite’s

position at epoch t0 (apogee in this case):

r0 =

−15,865

13,312

41,357

km, v0 =

−0 9601

−1 1443

0

km/s

It is very difficult to visualize or ascertain the characteristics of the Molniya orbit directly
from the state vector (r0,v0). Therefore, computing the six orbital elements from the six-
dimensional state vector (r0,v0) is crucial to the orbit-determination process.
Before we proceed, it is important to stress that the state vector (r0,v0) expressed in a

body-centered Cartesian frame and the six orbital elements (a, e, i, Ω, ω, θ0) both com-
pletely define the two-body orbit. In other words, there is a unique mapping between the
six-element state vector (r,v) and the six classical orbital elements. Furthermore, all six
coordinates of the state vector (r,v) will change as the satellite moves from epoch t0 to t1
(unless time t1 is k periods after epoch t0). In contrast, the five orbital elements (a, e, i,Ω,
ω) will remain constant for two-body motion and only the true anomaly θ will change as
the satellite moves in its orbit.
Let us develop a systematic process for determining the classical orbital elements (a, e,

i,Ω,ω, θ0) from the state vector (r0,v0) at epoch t0.We will follow the processes presented
in Vallado [1; pp. 95–100] and Bate et al. [2; pp. 61–63]. The first step is to determine
total energy from the magnitudes of the position and velocity vectors r0 and v0

ξ=
v20
2
−
μ

r0
(3.4)

where r0 = r0 and v0 = v0 . Recall from Chapter 2 that semimajor axis is solely a func-
tion of energy:

a=
−μ

2ξ
(3.5)

Next, we compute the eccentricity vector e directly from state vector (r0,v0) by
using Eq. (2.57):

e=
1
μ

v20−
μ

r0
r0− r0 v0 v0 (3.6)

We derived this expression for the eccentricity vector in Chapter 2 when we developed
the trajectory equation (2.45). The vector e points from the center of the gravitational
body to periapsis (see Figure 3.4) and its magnitude is the eccentricity of the orbit:

e= e (3.7)

Figure 3.4 shows that inclination is the angle between vectors K and h and therefore it
can be computed from the dot (or scalar) product:
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cosi=
K h
h

(3.8)

where the angular momentum vector h is computed from r0 and v0

h= r0 × v0 (3.9)

Equation (3.8) is derived from the dot-product definition A B=AB cos α where α is the
angle between vectors A and B and A and B are their respective magnitudes. Note that
the unity magnitude of vectorK is not explicitly shown in Eq. (3.8). Because the range for
inclination is 0 ≤ i ≤ 180 , we may simply apply the inverse cosine operation to Eq. (3.8)
without an additional quadrant check.
Longitude of the ascending nodeΩ is the angle between I and ascending node vector n

(see Figure 3.4), and therefore its cosine is

cosΩ=
I n
n

(3.10)

(again, note that I = 1). The node vector n is the cross product of vectors K and h (see
Figure 3.4):

n=K×h (3.11)

We cannot determine Ω by simply taking the inverse cosine of Eq. (3.10) because the
resulting angle will always be in the first or second quadrant (i.e., between 0 and 180 ).
Longitude of ascending node Ω ranges from 0 to 360 ; therefore, we need a quadrant
check. From Figure 3.4, we see that a unit vector in the direction of node vector n
may be expressed in terms of I and J components:

n
n

= cosΩI+ sinΩJ (3.12)

Note that dotting all terms in Eq. (3.12) with vector I yields Eq. (3.10) because I I= 1 and
I J= 0. Similarly, we can dot all terms in Eq. (3.12) with vector J to yield

sinΩ=
J n
n

(3.13)

Wemust use Eqs. (3.10) and (3.13) together to determine the proper quadrant forΩ. For
computer applications (such as MATLAB), the atan2 function with input arguments
sinΩ and cosΩ will place angle Ω in the proper quadrant. When using a hand-held
calculator, the signs of sinΩ and cosΩ will determine the proper quadrant. For example,
if sinΩ= −0 5 and cosΩ= −0 866025, we know that the longitude of the ascending node
must be in the third quadrant, orΩ = 210 . This simple example should serve as a strong
warning to the reader: do not simply press the inverse-cosine (or inverse-sine) button on
a calculator and assume that you have determined the correct angle!
Figure 3.4 shows that the argument of periapsis ω is the angle between n and e and

therefore its cosine is

cosω=
n e
n e

(3.14)
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For reasons previously mentioned, we cannot determine ω by simply taking the inverse
cosine of Eq. (3.14). The quadrant check for ω depends on the sign of eZ, which is the K
component of eccentricity vector e. If eZ > 0 (as shown in Figure 3.4), the vector e is in the
northern hemisphere (“above” the equatorial plane) and argument of periapsis ranges
from 0 to 180 . In this case, the “calculator” inverse-cosine operation of Eq. (3.14) pro-
duces the correct answer. If eZ < 0 (periapsis is below the equatorial plane), the argument
of periapsis is between 180 and 360 . In this case, the correct argument of periapsis is

If eZ < 0 ω= 360o−cos−1
n e
n e

(3.15)

The sixth orbital element is the true anomaly at epoch t0 that corresponds to the state
vector (r0,v0). The cosine of θ0 is determined by the dot product of the eccentricity vector
e and the satellite’s position vector r0 (see Figure 3.4)

cosθ0 =
e r0
er0

(3.16)

True anomaly ranges from 0 to 360 ; hence, we cannot rely solely on the inverse cosine
function. The easiest quadrant check utilizes the sign of the dot product r0 v0. Recall
from Chapter 2 that r0 v0 = r0r0 where r0 is the radial velocity component. Therefore,
if r0 v0 > 0 the radius is increasing (r0 > 0) and the satellite is moving toward apoapsis
and true anomaly is between 0 and 180 . On the other hand, if r0 v0 < 0 the radius is
decreasing and the satellite is moving toward periapsis and θ0 is between 180 and
360 . In this case, we must use

If r0 v0 < 0 θ0 = 360
o−cos−1

e r0
er0

(3.17)

It is worth repeating that orbital elements Ω, ω, and θ0 can range from 0 to 360 and
therefore an inverse cosine operation alone will not correctly determine the orbital ele-
ment if the angle is between 180 and 360 . The correct quadrant must be determined by
applying the quadrant checks denoted by Eqs. (3.13), (3.15), and (3.17). When determin-
ing inclination, one may simply take the inverse cosine of Eq. (3.8) because inclination is
always between 0 and 180 .
It is easy to recognize that a computer program will readily perform these steps.

MATLAB is well suited to carry out the vector manipulations (cross product, dot prod-
uct, and vector norm) and the inverse-angle calculations with the atan2 function. The
reader is encouraged to develop a general-purpose M-file that computes the classical
orbital elements given the state vector (r,v) as an input (see Problem 3.18). The following
example illustrates this orbit-determination process.

Example 3.1 A tracking station determines the following state vector for an Earth-
orbiting satellite in ECI coordinates:

r0 =

9,031 5

−5,316 9

−1,647 2

km, v0 =

−2 8640

5 1112

−5 0805

km/s
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Determine the classical orbital elements at this epoch. Is this satellite in a Mol-
niya orbit?
We will use μ = 3.986(105) km3/s2 for Earth-satellite example problems in this chapter.

The reader can consult Appendix A for a more precise numerical value if desired. First,
we determine the magnitude of the position and velocity vectors:

r0 = 9,031 52 + −5,316 9 2 + −1,647 2 2 = 10,609 km

v0 = −2 8640 2 + 5 11122 + −5 0805 2 = 7 7549 km/s

Energy is

ξ=
v20
2
−
μ

r0
= – 7 5027 km2/s2 = −

μ

2a

Therefore, semimajor axis is a= 26,563 6 km

Using Eq. (3.6), the eccentricity vector is

e=
1
μ

v20−
μ

r0
r0− r0 v0 v0

The dot product r0 v0 is

r0 v0 = 9,031 5 –2 8640 + – 5,316 9 5 1112 + – 1,647 2 – 5 0805

= – 44,673 4 km2/s

The eccentricity vector is

e=

0 1903

0 2718

−0 6627

Eccentricity is the vector norm, e= e = 0 19032 + 0 27182 + −0 6627 2 = 0 7411

Computing inclination requires the angular momentum vector:

h= r0 × v0 =

I J K

9,031 5 −5,316.9 −1,647.2

−2 8640 5 1112 −5 0805

=

35,432

50,602

30,934

km2/s

Using Eq. (3.8), the cosine of inclination is

cosi=
K h
h

=
30,934
69,086

= 0 4478

where the dot product K h= hZ . Taking the inverse cosine, we obtain i= 63 4
Computing the longitude of the ascending node (Ω) and argument of perigee (ω)

requires the ascending node vector:
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n=K×h=

I J K

0 0 1

35,432 50,602 30,934

=

−50,602

35,432

0

Equations (3.10) and (3.13) allow us to compute the cosine and sine of Ω

cosΩ=
I n
n

=
−50,602
61,774

= −0 8192 sinΩ=
J n
n

=
35,432
61,774

= 0 5736

Because cosΩ < 0 and sinΩ > 0, the ascending node is in the second quadrant. The lon-

gitude of ascending node is Ω= 145
Using Eq. (3.14), the cosine of ω is

cosω=
n e
n e

=
0 8570

61,774 0 7411
= 10– 5

The inverse cosine of 10–5 is 90 . However, we must check the K component of the
eccentricity vector e in order to determine whether ω is +90 or –90 . Because
eZ = −0 6627 < 0, the perigee is in the southern hemisphere and Eq. (3.15) shows that
the argument of perigee is

ω= 360o−90o = 270 or−90

Finally, we compute the cosine of true anomaly at epoch using Eq. (3.16)

cosθ0 =
e r0
er0

=
0 1903 9,031 5 + 0 2718 −5,316 9 + −0 6627 −1,647 2

0 7411 10,609

=
1,365
7,863

= 0 1736

Because r0 v0 < 0 (see computations for e), the satellite is approaching perigee and we
must use Eq. (3.17) to compute true anomaly:

θ0 = 360o−cos−1
e r0
er0

= 360 −80 = 280

If we compare these calculated orbital elements to the description of theMolniya orbit
at the beginning of this section, we see that the orbit in this example is indeed a Molniya
orbit. The critical orbital features for a Molniya orbit are a = 26,564 km (i.e., the period is
about 12 h), e = 0.7411, i = 63.4 , and ω = –90 (perigee in southern hemisphere). The
argument of perigee must be –90 so that the Molniya apogee is at the highest possible
northern latitude for good observation of Russia. Because the apogee altitude is very large
(~39,874 km) and the perigee altitude is low (~500 km), the apogee speed is relatively
slow (~1.5 km/s) and the perigee speed is very fast (~10 km/s). Therefore, a satellite
in a Molniya orbit will spend most of its time near apogee where it can send and receive
signals with ground stations in Russia.
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3.5 Transforming Orbital Elements to Cartesian Coordinates

The previous section presented a systematic process for determining the orbital elements
from the Cartesian coordinates. This process represents the initial orbit-determination
problem where ground-based observations yield the state vector (r0,v0) and the desired
end result is the set of orbital elements (a, e, i,Ω,ω, θ0) at epoch t0. As we shall see in later
chapters, it is sometimes advantageous to perform orbital calculations using a satellite’s
Cartesian coordinates (r,v) instead of orbital elements. One important example is the
orbit-transfer problem; that is, determining the orbit that passes from initial position
vector r1 to a desired terminal position vector r2 with a specified flight time. For this rea-
son, wemust develop an inverse process that transforms the orbital elements (a, e, i,Ω,ω,
θ) to the Cartesian state vector (r,v).
We will demonstrate the transformation process using an Earth-orbiting satellite and

the ECI coordinate system (Figures 3.2 and 3.3). Hence, we will denote the satellite’s ECI
Cartesian coordinates as rECI and vECI for added clarity. The procedure we develop, how-
ever, may be applied to the heliocentric-ecliptic Cartesian frame shown in Figure 3.1.
Converting orbital elements to (rECI,vECI) requires a two-step process:

1) Use the orbital elements to develop a state vector (rPQW,vPQW) expressed in the peri-
focal coordinate system, PQW.

2) Transform the perifocal state vector (rPQW,vPQW) to the ECI state vector (rECI,vECI).

Figure 3.6 shows the perifocal coordinate system. “Perifocal” indicates that the prin-
ciple axis points from the focus to the periapsis direction and Figure 3.6 shows that
the xe axis (with unit vector P) does indeed point toward perigee. The orbital plane is
the fundamental (xeye) plane and the ye axis (with unit vector Q) is 90 from perigee
in the direction of the satellite’s motion. The ze axis (with unit vectorW) is perpendicular
to the orbital plane (or, along the angular momentum vector h). The reader should note
that the PQW frame is an orthogonal Cartesian system.
Figure 3.7 shows the PQ plane (i.e., orbital plane) and the satellite at an arbitrary posi-

tion rPQW corresponding to true anomaly θ. The W axis (not shown in Figure 3.7) is
equal to the cross productP×Q and points out of the page. Because the satellite’smotion

Q

Perigee 
direction

W

P

Orbit

xe

ye

ze

Figure 3.6 Perifocal coordinate system, PQW.
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is contained in the orbital plane, its position and velocity vectors rPQW and vPQW are
composed of P and Q components only. The position vector in PQW coordinates is

rPQW =

r cos θ

r sin θ

0

= r cosθP+ r sinθQ (3.18)

where we can determine the satellite’s current radius from the trajectory equation (2.45):

r =
p

1 + ecosθ
(3.19)

Note that the parameter p is determined from the first two classical orbital elements [i.e.,
p= a 1−e2 ]. The velocity vector in PQW can be obtained by taking the first time deriv-
ative of Eq. (3.18)

vPQW = rPQW =

r cosθ−rθ sinθ

r sinθ + rθcosθ

0

= r cosθ−rθ sinθ P+ r sinθ + rθcosθ Q

(3.20)

The derivatives of unit vectors P andQ are zero because they have fixed magnitudes and
directions. Recall that in Chapter 2 we developed expressions for radial and transverse
velocity components r and r θ; see Eqs. (2.69) and (2.71). These velocity component
expressions are repeated below:

Radial velocity r =
μ

h
e sinθ (3.21)

Transverse velocity rθ =
μ

h
1 + ecosθ (3.22)

P

Q

θ
rPQWvPQW

Satellite

Figure 3.7 State vector (rPQW,vPQW) in the perifocal coordinate system.
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We can substitute Eqs. (3.21) and (3.22) for the velocity components in Eq. (3.20). After
some simplification, we obtain

vPQW =

−μ

h
sinθ

μ

h
e+ cosθ

0

=
−μ

h
sinθP+

μ

h
e+ cosθ Q (3.23)

At this point we have completed step 1: using three orbital elements (a, e, and θ) in Eqs.
(3.18), (3.19), and (3.23) determines the satellite’s state vector in the PQW coordinate
system (of course, angular momentum is solely a function of the parameter, i.e.,
h= pμ, and p is determined by elements a and e).
The second (and final) step involves a coordinate transformation from the PQW frame

to the IJK (or ECI) frame. Here we use the three angular orbital elements (i, Ω, and ω)
that define the orientation of the perifocal frame relative to the ECI frame. The resulting
coordinate transformation (from PQW to IJK) will have the form

rECI =RrPQW (3.24)

vECI =RvPQW (3.25)

whereR is a 3 × 3 rotation matrix that transforms a vector in the perifocal PQW frame to
the geocentric-equatorial IJK frame. It is useful to summarize a few key points associated

with the coordinate transformation performed by matrix R and Eqs. (3.24) and (3.25):

1) Rotation matrix R transforms any vector expressed in PQW coordinates to IJK coor-
dinates, whether that vector is position rPQW or velocity vPQW.

2) The rotation matrix R does not change the magnitude of the vector after the trans-
formation; that is, rECI = rPQW and vECI = vPQW .

3) The rotation matrix R depends on a sequence of three angular rotations required to
align the two coordinate systems. The order of the sequence of rotations is important.

We will present the basic steps for developing the rotation matrix R. For additional
details, the reader may consult the excellent discussions in Vallado [1; pp. 159–174]
and Bate et al. [2; pp. 74–83].

3.5.1 Coordinate Transformations

Let us begin with an example of a simple transformation where the two coordinate
frames differ by a single rotation about a primary axis. Figure 3.8 shows the rotation
of orthogonal axes XYZ about its +Z axis through angle χ to produce the orthogonal
“primed” axes X Y Z . The angular rotation χ is positive as defined by the “right-hand
rule”; that is, curling the fingers of the right hand about the Z axis so that the thumb
points “up” in Figure 3.8. Therefore, the new Z is aligned with the original Z axis and
the new X and Y axes are in the same plane as the original X–Y plane. Now, suppose
we have the position vector rXYZ = 5I+ 5K as shown in Figure 3.8 where IJK are unit vec-
tors along the originalXYZ coordinate system. The same position vector expressed in the
X Y Z coordinate system is
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rX Y Z =

cosχ sinχ 0

−sinχ cosχ 0

0 0 1

rXYZ (3.26)

Using the position vector rXYZ = 5I+ 5K shown in Figure 3.8, we have

rX Y Z =

cosχ sinχ 0

−sinχ cosχ 0

0 0 1

5

0

5

Carrying out the matrix-vector multiplication, we obtain rX Y Z = 5cosχI −5sinχJ + 5K
where I J K are unit vectors along the new “primed” coordinate system X Y Z . The
Z-components of rX Y Z and rXYZ are identical because the rotation to establish X Y Z
was about the +Z axis [note that the elements of the third row and third column of the
rotation matrix in Eq. (3.26) are zero except for the “1” in the lower right corner that
preserves the Z component]. The reader should note that the vector norms of rXYZ
and rX Y Z are both 50 which shows that the magnitude of the position vector did
not change after the coordinate transformation.
Let us rewrite the coordinate transformation denoted by Eq. (3.26) as

rX Y Z =C χ rXYZ (3.27)

where C(χ) is the rotation matrix associated with a positive rotation about the +Z axis
through angle χ

C χ =

cosχ sinχ 0

−sinχ cosχ 0

0 0 1

(3.28)

Rotation matrix C(χ) is an orthogonal matrix; that is, its rows and columns are orthog-
onal unit vectors [the rows (or columns) are orthogonal because the dot product of any
two rows (or columns) is zero]. Because matrix C(χ) is orthogonal, it has the properties

X
Y

Z Z ′

X ′

Y ′

χ

 χ

  χ

rXYZ = 5I + 5K

5
5 0

Figure 3.8 Coordinate transformation: positive rotation about the Z axis.
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C χ CT χ =CT χ C χ = I (3.29)

C−1 χ =CT χ (3.30)

where superscript T indicates the transpose of matrix C(χ) and I is the 3 × 3 identity
matrix. Multiplying both sides of Eq. (3.27) by C−1 χ =CT χ yields

rXYZ =CT χ rX Y Z (3.31)

which is the transformation from the X Y Z frame to the XYZ frame.
A coordinate transformation may involve a positive rotation about the +X axis.

Figure 3.9 shows the rotation of Cartesian frame XYZ about its +X axis through angle
α to produce the frame X Y Z . A position vector rXYZ expressed in the XYZ coordinate
system may be transformed using the rotation matrix

rX Y Z =

1 0 0

0 cosα sinα

0 −sinα cosα

rXYZ

=A α rXYZ

(3.32)

The rotation matrix A(α) is orthogonal and the X component of rXYZ is unaltered by the
transformation.
Figure 3.10 shows the rotation of Cartesian frame XYZ about its +Y axis through angle

β to produce the frame X Y Z . Transformation of vector rXYZ from the XYZ coordinate
system to X Y Z is

rX Y Z =

cosβ 0 −sinβ

0 1 0

sinβ 0 cosβ

rXYZ

=B β rXYZ

(3.33)

Equations (3.32), (3.33), and (3.27) are the coordinate transformations from the XYZ
frame to a new frame X Y Z created after a single positive rotation about a principle axis.

X Y

ZZ ′

X ′

Y ′α α

α

0

Figure 3.9 Coordinate transformation: positive rotation about the X axis.
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Remember that our goal is to develop a transformation between the ECI (or IJK) coor-
dinate system and the perifocal PQW system. In general, the IJK system can be aligned
with the PQW system after three successive rotations, as Figure 3.11 illustrates. The first
rotation is about the K (or +Z) axis through the ascending node angle Ω (Figure 3.11a).
After this first rotation, the I (or +X) axis becomes the X axis (i.e., the ascending node
vector n) and the X Y axes remain in the equatorial plane. The second rotation is about
the intermediate X axis through the inclination i (Figure 3.11b). This rotation establishes
the angular momentum vector h (note that the Z axis in Figure 3.11b is aligned with the
W axis of the perifocal system). The third and final rotation is about the Z (or W) axis
through the argument of perigee ω (Figure 3.11c) in order to establish the P axis (perigee
direction) and the perifocal PQW coordinate system. Next, let us apply the appropriate
rotation matrices to the position vector rECI that is expressed in IJK coordinates:

First rotation about +Z axis rX Y Z =C Ω rECI (3.34)

Second rotation about +X axis rX Y Z =A i rX Y Z (3.35)

Third rotation about +Z axis rPQW =C ω rX Y Z (3.36)

Note that there is no Y-axis rotation in our sequence of rotations from IJK to PQW.
Finally, we can combine Eqs. (3.34)–(3.36) to yield the direct computation of rPQW from
IJK coordinates rECI:

rPQW =C ω A i C Ω rECI (3.37)

Equation (3.37) transforms the position vector rECI (expressed in IJK coordinates) to
position vector rPQW (expressed in PQW coordinates). The order of multiplying the
rotation matrices is important and must be preserved: the first rotation C(Ω) is the last
matrix in the left-to-right matrix multiplication presented in Eq. (3.37).
Remember that our overall goal is to derive the state vector (r,v) in the ECI (or IJK)

coordinate system from the orbital elements. Our first step involved computing the posi-
tion and velocity vectors rPQW and vPQW in perifocal coordinates [see Eqs. (3.18) and
(3.23)]. Therefore, we know the left-hand side of Eq. (3.37). We can solve Eq. (3.37)
for rECI by multiplying both sides by the matrix inverse of C(ω)A(i)C(Ω)

X
Y

Z
Z ′

X ′
Y ′

  β

 β

   β

0

Figure 3.10 Coordinate transformation: positive rotation about the Y axis.
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establish the PQW frame.



rECI = C ω A i C Ω −1rPQW (3.38)

Comparing Eq. (3.38) with Eq. (3.24) we see that the inverse ofmatrixC(ω)A(i)C(Ω) is the
overall rotation matrix R that transforms any vector expressed in the PQW frame to the
ECI (IJK) frame. Because the product of three orthogonal matrices is also orthogonal,
the inverse of matrix C(ω)A(i)C(Ω) is its transpose. Hence, the overall rotation matrix is

R=

cosω sinω 0

−sinω cosω 0

0 0 1

1 0 0

0 cosi sini

0 −sini cosi

cosΩ sinΩ 0

−sinΩ cosΩ 0

0 0 1

T

Carrying out the matrix multiplications and transposing the result, we obtain the overall
rotation matrix from PQW to IJK:

R=

cΩcω−sΩsωci −cΩsω−sΩcωci sΩsi

sΩcω + cΩsωci −sΩsω + cΩcωci −cΩsi

sωsi cωsi ci

(3.39)

We have used the short-hand notation cα = cosα and sα = sinα for the cosine and sine of

the three rotation angles. Multiplying rotation matrix R and any vector expressed in the
PQW frame will transform it to IJK coordinates.
Let us summarize the steps for transforming the classical orbital elements to the state

vector (r,v) in the ECI (or IJK) frame:

1) Using Eqs. (3.18) and (3.23), determine the satellite’s position and velocity vectors in
the PQW frame, rPQW and vPQW.

2) Use Eq. (3.39) to determine the overall rotation matrix from PQW to IJK and then

use R in Eqs. (3.24) and (3.25) to compute the state vector (rECI,vECI) in the ECI coor-
dinate system.

This process is a bit cumbersome for calculations with a hand-held calculator. However,
it is easy to see that MATLAB is well-suited to carry out the matrix-vector multiplica-
tions. We encourage the reader to develop a general-purpose M-file that will compute
(rECI,vECI) given an arbitrary set of six classical orbital elements.

Example 3.2 Let us consider again the Molniya orbit presented in Example 3.1.
A satellite in a Molniya orbit has the following orbital elements at epoch time t0

a= 26,564 km

e= 0 7411

i= 63 4

Ω= 200

ω= −90

θ0 = 30

Determine the satellite’s state vector at this epoch in the Earth-centered inertial (ECI)
coordinate system.
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First, we use semimajor axis a and eccentricity e to compute parameter p and angular
momentum h:

p= a 1−e2 = 11,974 3 km, h= pμ= 69,086 5 km2/s

Orbital radius at θ0 = 30 is determined by the trajectory equation

r =
p

1 + ecosθ
= 7,293 3 km

The satellite’s position vector in the PQW frame is computed using Eq. (3.18)

rPQW =

r cosθ0

r sinθ0

0

=

6,316 21

3,646 67

0

km=6,316 21P+ 3,646 67Q km

Equation (3.23) allows us to calculate the satellite’s velocity vector in PQW

vPQW =

−μ

h
sinθ0

μ

h
e+ cosθ0

0

=

−2 8848

9 2724

0

km/s = −2 8848P+ 9 2724Q km/s

The first step is complete. Next, use Eq. (3.39) to determine the overall rotation matrix
from PQW to IJK

R=

cΩcω−sΩsωci −cΩsω−sΩcωci sΩsi

sΩcω + cΩsωci −sΩsω + cΩcωci −cΩsi

sωsi cωsi ci

=

−0 1531 −0 9397 −0 3058

0 4208 −0 3420 0 8402

−0 8942 0 0 4478

where we have used cΩ = cosΩ= –0.9397, sω = sinω= −1, ci = cosi= 0.4478, and so on.
Finally, the position and velocity vectors in ECI coordinates are

rECI =RrPQW =

−0 1531 −0 9397 −0 3058

0 4208 −0 3420 0 8402

−0 8942 0 0 4478

6,316 21

3,646 67

0

=

−4,394 0

1,410 3

−5,647 7

km

Or, rECI = – 4,394 0I+ 1,410 3J– 5,647 7K km

vECI =RvPQW =

−0 1531 −0 9397 −0 3058

0 4208 −0 3420 0 8402

−0 8942 0 0 4478

−2 8848

9 2724

0

=

−8 2715

−4 3852

2 5794

km/s
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Or, vECI = – 8 2715I– 4 3852J+ 2 5794K km/s
As a check, the reader can compare the vector norms of rECI and rPQW (both should

equal r = 7,293.3 km) and the vector norms of vECI and vPQW (both should equal
9.7108 km/s).

3.6 Ground Tracks

The ground track of a satellite is the locus of points where the position vector r intersects
the surface of the planet. For an Earth-orbiting satellite, the ground track is the projection
of the orbit onto the surface of the rotating Earth. Ground tracks are obviously useful in
that they clearly show the geographic regions where the satellite passes overhead.
Figure 3.12 shows a ground track for an inclined geocentric satellite. If the Earth did
not rotate, the ground track would be a great circle formed by the intersection of the
orbital plane and the stationary Earth. Hence, for a non-rotating Earth, the ground track
would retrace its path and pass over the same geographic regions every orbital revolu-
tion. For two-body motion, the orbital plane remains inertially fixed and therefore the
ground track passes over a different geographic region each orbit because the Earth
rotates beneath it. Figure 3.12 shows the orbital inclination i (i.e., the angle of the ground
track at the equatorial crossing) and the azimuth angle β of the satellite’s velocity vector v
at its current location in the orbit. Azimuth angle (or heading angle) β is measured clock-
wise from north to the projection of the velocity vector v. Angle ϕ in Figure 3.12 is the
latitude of the satellite at the given instant. Latitude is zero when the satellite crosses
the equator and is at its maximum magnitude when the satellite is moving due east
(i.e., β = 90 ). The ascending node vector n points from the Earth’s center to the point
where the ground track crosses the equatorial plane as the satellite is moving in a north-
erly direction.

Equator

Meridian
(line of longitude)

β

iAscending node,
n 90o

v Ground 
track

ϕ

Figure 3.12 Satellite ground track.
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We may apply Napier’s rules to the right spherical triangle shown in Figure 3.12 to
obtain the relationship

cosi= sinβcosϕ (3.40)

The reader should note that the left-hand side of Eq. (3.40) is constant (inclination is a
constant) while both azimuth β and latitude ϕ change as the satellite traces its ground
track. We may summarize a few key points surrounding Eq. (3.40) and the relationship
between inclination, latitude, and azimuth:

1) When ϕ = 0 (equatorial crossing), azimuth angle β = 90o – i for an ascending pass;
β = 90o + i for a descending pass.

2) Azimuth angle is in the first quadrant (0 < β < 90 ) for an ascending equatorial cross-
ing and in the second quadrant (90 < β < 180 ) for a descending equatorial crossing.

3) When the satellite is moving easterly (β = 90 ), the magnitude of the latitude is equal
to the inclination, or ϕ = i. At this point the satellite is either at its maximum north-
ern latitude (ϕ = i) or its maximum southern latitude (ϕ = –i).

4) For a polar orbit (i = 90 ), β = 0 when the satellite is moving northerly and β = 180
when the satellite is moving southerly. Latitude ranges from –90 (South Pole) to 90
(North Pole) for each pass.

Item 3 is of particular interest for launching rockets to a prograde (easterly) orbit.
Launch sites have an easterly velocity component due to the Earth’s rotation rate:

vsite =ωE × rsite =

I J K

0 0 ωE

rsiteX rsiteY rsiteZ

(3.41)

whereωE is the Earth’s angular velocity vector, rsite is the Earth-surface position vector of
the launch site (in IJK), and vsite is the inertial velocity of the launch site in IJK coordi-
nates. Using a spherical Earth, the easterly velocity of the Earth’s surface is

vsite =ωERE cosϕ (3.42)

where RE is the radius of the Earth. Obviously, the surface velocity of the Earth due to its
rotation is greatest at the equator (ϕ = 0) and zero at the poles (ϕ= ± 90 ). For US launch
vehicles departing from Cape Canaveral (ϕ = 28.5 ), the easterly direction of the launch
site is about 0.41 km/s. Satellites intended for a direct (prograde) orbit are launched due
east in order to take maximum advantage of the Earth’s surface velocity. Equation (3.40)
shows that inclination of the satellite’s orbit is equal to the latitude of the launch site ϕ if
the rocket is launched east and completes its powered ascent with azimuth β = 90 .
Equation (3.40) also shows that the orbital inclination isminimized when the launch azi-
muth is 90 (east) and that inclination can never be less than the latitude of the launch
site. Therefore, the minimum inclination for US satellites launched fromCape Canaveral
is 28.5 . A geostationary-equatorial orbit (GEO) was identified in Chapter 2 as a circular
orbit with zero inclination and an angular velocity that matches the Earth’s spin rate ωE.
Consequently, GEO satellites launched from Cape Canaveral ultimately require a 28.5
“plane-change”maneuver involving a propulsive rocket burn. We shall see in Chapter 7
that changing orbital inclination is expensive in terms of propellant mass. It is for these
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reasons that the European Space Agency has established its launch facility near Kourou
in French Guiana where the latitude is 5.2 .
As a quick example of azimuth and inclination effects, launch from Cape Canaveral

with azimuth β = 120 (southeast) leads to an orbital inclination of 40.4 . Launching with
azimuth β = 60 (northeast) also produces i = 40.4 . However, a satellite launched with
β = 120 will begin its ground track on a descending arc (moving north to south), while a
satellite launched with β = 60 will be on an ascending arc (south to north) toward its
peak latitude ϕmax = i = 40.4 .

Example 3.3 A Falcon 9 rocket is launched fromCape Canaveral (latitude ϕ = 28.5 ) in
order to send supplies to the International Space Station (ISS). The ISS has an orbital
inclination i = 51.65 . Determine the launch azimuth of the Falcon 9 so that its upper
stage is placed in an orbit with the correct inclination and initially moving toward the
equator after orbital insertion.
To begin, solve Eq. (3.40) for the sine of azimuth angle β

sinβ =
cosi
cosϕ

=
cos 51 65o

cos 28 5o
= 0 7060

Therefore, azimuth is β = sin−1 0 7060 = 44.912 or 135.088 . Remember that we
measure azimuth β clockwise from north to the velocity vector (see Figure 3.12). There-
fore, launching with β = 44.912 (northeast) places the satellite on an ascending arc that is
away from the equator. For launch with β = 135.088 , the satellite is initially moving on a
descending arc toward the equator as required in the problem statement.

Hence, the proper launch azimuth is β = 135 088

As previously mentioned at the beginning of this section, plotting a satellite’s ground
track is a useful representation of its geographic coverage. Figure 3.13 shows three
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Figure 3.13 Satellite ground tracks on a Mercator map.
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ground tracks of a circular Earth orbit projected on to aMercator map. Note that the first
ground track originates at Cape Canaveral (eastern coast of the Florida peninsula at lat-
itude 28.5o N, 80.5o W) with a 90 azimuth angle. Each ground track represents a single
orbital revolution of the satellite about the Earth. Remember that a two-body orbit is
fixed relative to an inertial (non-rotating) frame and therefore the ground track would
retrace its path if the Earth did not rotate. The effect of Earth’s rotation is apparent in
Figure 3.13: the Earth rotates easterly beneath the satellite’s orbit and therefore the
ground track is displaced westward on the Mercator map. The westward longitude
displacement between two successive ground tracks can be used to estimate the
orbital period:

Tperiod =
Δλ
ωE

(3.43)

where Δλ is the ground track’s longitude displacement after one orbital revolution and
ωE is Earth’s rotation rate (approximately 360 /24 h or 15 /h). It is probably easiest to
measure the longitude shiftΔλ by observing successive ground tracks at equatorial cross-
ings (ascending or descending nodes). Figure 3.13 shows that the longitude displacement
at equatorial crossings is approximately Δλ = 23 and therefore the orbital period is
approximately Tperiod = 23 /(15 /h) = 1.5333 h = 92 min. Using Eq. (2.80), we can com-
pute the semimajor axis from the approximate period to find a≈6,750 km (recall that
the precise value for Earth’s inertial rotation rate is one revolution every sidereal day,
or ωE = 15.041 deg/h).
Increasing the semimajor axis (and orbital period) increases the westward longitude

displacement Δλ. An Earth orbit with semimajor axis a≈26,610 km has a 12-h period
and longitude shift Δλ = 180 . If semimajor axis is greater than 26,610 km, the period
exceeds 12 h and consequently Δλ > 180 and successive ground tracks actually appear
to be displaced to the east! We can continue to increase the semimajor axis until the
period is approximately 24 h (a > 42,000 km) and Δλ = 360 . An Earth orbit with its
period equal to the Earth’s rotation rate is called a geosynchronous orbit. Figure 3.14
shows the ground track of a circular geosynchronous orbit with inclination i = 28.5 .
The ground track is a “figure 8” where the ascending and descending nodes are located
at the same geographic longitude on the equator. Because the geosynchronous orbit has
inclination i = 28.5 , its latitude ranges from 28.5o N to 28.5o S as seen in Figure 3.14. The
geosynchronous orbit retraces the figure-8 pattern and always crosses the equator at the
same geographic longitude. Recall that GEO is a geosynchronous orbit with zero incli-
nation and therefore the figure-8 pattern in Figure 3.14 is collapsed to a single point on
the equator. A satellite in GEO will appear to an Earth-based observer to “hover” over a
particular longitude on the equator. Achieving geosynchronous orbit typically begins
with a launch phase that establishes a low-Earth orbit (LEO) followed by an orbital
maneuver that significantly increases the semimajor axis (orbital maneuvers will be pre-
sented in Chapter 7). Because the orbital maneuver requires time, the geosynchronous
ground track is displaced from the launch site. Figure 3.14 could represent an inclined
geosynchronous orbit established after an easterly launch from Cape Canaveral. Placing
a satellite in GEO, on the other hand, either requires a launch site on the equator or an
orbital maneuver that changes the inclination to zero. As we have previously noted,
inclination-change maneuvers involve rocket burns that require substantial propellant
mass that ultimately diminishes the payload mass delivered to the target orbit.
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3.7 Orbit Determination from One Ground-Based
Observation

The overall objective of this chapter is to introduce the reader to preliminary orbit-
determination methods. The two-body orbit is completely characterized by the classical
orbital elements (a, e, i, Ω, ω, θ0) at epoch t0. Section 3.4 has shown that we can system-
atically determine the six classical orbital elements from the six-element state vector (r0,v0)
corresponding to epoch t0. Therefore, the orbit-determination problem for an Earth sat-
ellite relies on obtaining the satellite’s position and velocity vectors expressed in the ECI
coordinate system.Observational data fromground-based sensors (such as radar or optical
measurements) are used to compute the state vector (r0,v0) in the ECI frame.

3.7.1 Topocentric-Horizon Coordinate System

In this section, we will present the most straightforward (and perhaps least realistic)
orbit-determination method that relies on six independent Earth-based measurements
taken together at one time instant. The basic idea is that an Earth-based stationmeasures
the position and velocity vectors of a satellite relative to a moving coordinate system
fixed with the station. This relative state vector is then transformed to the ECI coordinate
system to produce the desired (rECI,vECI). Figure 3.15 shows the station-based topo-
centric-horizon coordinate system which consists of three orthogonal axes: the S axis
points south along a local meridian, E points east along a line of latitude, and Z points
straight up (in the opposite direction of Earth’s center). The horizon plane formed by the
S and E axes is the fundamental plane. We will refer to the topocentric-horizon coordi-
nate system as the SEZ frame (just as we refer to the ECI coordinate system as the IJK
frame). The fictitious tracking station shown in Figure 3.15 is located in Eastern Europe
and the SEZ frame is fixed to the geographic location of the station. Hence, the SEZ
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Figure 3.14 Ground track of a geosynchronous orbit (i = 28.5 ) on a Mercator map.
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frame rotates andmoves relative to the inertial IJK coordinate system. The latitude of the
tracking station in Figure 3.15 is the fixed angle ϕ whereas the station’s longitude angle λ
is continuously changing due to the Earth’s rotation:

λ t = λ0 +ωE t− t0 (3.44)

We measure angle λ0 from the inertial I axis in the equatorial plane to the local meridian
of the tracking station at epoch t0. It is important for the reader to note that the longitude
angle λ defined by Eq. (3.44) is not the geographic longitude of the ground station meas-
ured east or west of the Greenwichmeridian (the geographic latitude and longitude of our
fictitious station shown in Figure 3.15 is approximately 47o N, 20o E).
Figure 3.15 shows the satellite’s position vector ρ relative to the SEZ frame whose ori-

gin is fixed at the tracking station. Let us assume that the ground-based radar station can
measure the magnitude of the line-of-sight (LOS) range to the satellite and the elevation
and azimuth angles that define the LOS direction to the satellite. Figure 3.16 shows the
ground-fixed station at the origin of the SEZ frame. Elevation angle σ is measured from
the horizontal plane to the LOS vector ρ. The elevation angle is always between zero (i.e.,
the satellite is on the horizon) and +90 (i.e., the satellite is directly overhead). Azimuth
angle β is measured clockwise from north to the projection of vector ρ onto the horizon-
tal plane (note that azimuth angle for a satellite ground track in Section 3.6 is also meas-
ured clockwise from north). When the satellite is directly overhead, we have σ = 90 and
azimuth is undefined. The position of the satellite relative to the tracking station is

ρ= ρ −cosσ cosβS+ cosσ sinβE+ sinσZ (3.45)

where ρ is the magnitude of the LOS range vector ρ as measured by the radar site. In
summary, the radar station makes three independent measurements (ρ, σ, and β) and
Eq. (3.45) allows the computation of ρ, the position vector of the satellite relative to
the ground-based station.
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Figure 3.15 Topocentric-horizon (SEZ) coordinate system.
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3.7.2 Inertial Position Vector

Referring back to Figure 3.15, we can see that the position vector from the center of the
Earth to the satellite is the vector sum

rECI = rsite + ρ (3.46)

where rsite is the position vector from the Earth’s center to the tracking station and ρ is
the position vector of the satellite relative to the station (note that rECI is not shown in
Figure 3.15 so that the figure can remain uncluttered). Ultimately, we want the satellite
position vector rECI in IJK (inertial) coordinates. From Figure 3.15, it is easy to see that
the inertial position of the radar site in ECI coordinates is

rsite =RE cosϕcosλI+ cosϕsinλJ+ sinϕK (3.47)

where RE is the radius of a spherical Earth. Of course, the Earth is not a perfect sphere and
tracking stations are located at various altitudes relative to sea level. For now, we will
proceed with this spherical-Earth model for computing the ground-station vector rsite.
Later in this section, we will introduce an ellipsoid-Earth model and redefine vector rsite.
We cannot yet use Eq. (3.46) to determine rECI because rsite is expressed in IJK coor-

dinates [see Eq. (3.47)] and ρ is expressed in SEZ coordinates [see Eq. (3.45)]. One solu-
tion is to transform ρ from the SEZ frame to the IJK frame. The IJK frame in Figure 3.15
can be brought in alignment with the SEZ frame using two successive rotations: (1) first,
rotate the IJK frame about its K axis by +λ to align the I axis with the ground station’s
local meridian; and (2) secondly, rotate the intermediate coordinate system about its
intermediate y-axis through angle (90o – ϕ) to establish the SEZ frame. Therefore,
the transformation of vector ρECI from the IJK frame to the SEZ frame is

ρSEZ =B 90o−ϕ C λ ρECI (3.48)

where C(λ) is the z-axis rotation matrix and B 90o−ϕ is the y-axis rotation matrix.
Equation (3.48) transforms a station-relative position vector expressed in the IJK
frame (ρECI) to the SEZ frame. However, we already have the relative position vector
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Figure 3.16 Line-of-sight range measured in the SEZ coordinate system.
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ρ expressed in the SEZ frame; see Eq. (3.45). Therefore, we need to apply the matrix
inverse to Eq. (3.48) to obtain ρECI

ρECI = B 90o−ϕ C λ −1ρSEZ (3.49)

Because the rotation matrices are orthogonal, the matrix transpose is equal to the
matrix inverse. Using Eqs. (3.28) and (3.33) for the two rotation matrices in
Eq. (3.49), the overall SEZ-to-IJK rotation matrix becomes

D=

cos 90o−ϕ 0 −sin 90o−ϕ

0 1 0

sin 90o−ϕ 0 cos 90o−ϕ

cosλ sinλ 0

−sinλ cosλ 0

0 0 1

T

(3.50)

Carrying out the matrix multiplication and transposing the result, we obtain

D=

sinϕcosλ −sinλ cosϕcosλ

sinϕsinλ cosλ cosϕsinλ

−cosϕ 0 sinϕ

(3.51)

Equation (3.51) presents the rotation matrixD that transforms any vector expressed in
the SEZ frame to the IJK coordinate system. Applying the D matrix to the station-
relative position vector, we obtain

ρECI =DρSEZ (3.52)

where ρSEZ is determined by Eq. (3.45).
Let us summarize the entire process for determining a satellite’s ECI position vector

rECI from three independent ground-station measurements taken at time t:

1) Use Eq. (3.44) to determine the current longitude angle λ(t) of the ground station rel-
ative to the inertial I axis. This step requires knowledge of the station’s longitude
angle λ0 at reference time t0.

2) Use Eq. (3.47) along with the tracking station’s longitude and latitude (λ, ϕ) to deter-
mine the position vector of the station rsite in the IJK frame [remember that Eq. (3.47)
assumes that the station is located on a spherical Earth with radius RE].

3) With knowledge of the station’smeasurements for rangemagnitude ρ, elevation angle
σ, and azimuth angle β, use Eq. (3.45) to determine vector ρ in the SEZ frame.

4) Compute the SEZ-to-IJK rotation matrix D using Eq. (3.51).
5) Use Eq. (3.52) to transform position vector ρ to the IJK frame.
6) Finally, use Eq. (3.46) to compute the satellite’s Earth-centered position vector rECI

from the vector addition of rsite and ρECI.

Processing these steps solves half of the orbit-determination problem in that we now
have a single ECI position vector rECI corresponding to epoch t. We need the satellite’s
velocity vector vECI in order to complete the orbit-determination process.

3.7.3 Inertial Velocity Vector

The satellite’s inertial velocity vector can be determined from its relative velocity vector
and its inertial position. Let us assume that the ground-fixed station can provide three
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additional independent rate measurements: LOS range-rate ρ, and the angular rates σ
and β. Stations can determine the magnitude of range rate using the frequency shift
(or Doppler effect) between the transmitted and received signals. The elevation and azi-
muth angular rates can be determined from the mechanical servo-drives mounted on the
tracking antenna. The satellite’s velocity vector relative to the station is

ρ= ρSS+ ρEE+ ρZZ (3.53)

where the SEZ velocity components are obtained by differentiating all terms in Eq. (3.45):

ρS = −ρcosσ cosβ + ρσ sinσ cosβ + ρβcosσ sinβ (3.54)

ρE = ρcosσ sinβ−ρσ sinσ sinβ + ρβcosσ cosβ (3.55)

ρZ = ρsinσ + ρσ cosσ (3.56)

Clearly, ρ is the satellite’s velocity relative to the rotating SEZ frame. Because we want
the inertial velocity of the satellite relative to the fixed IJK frame, wemust add the inertial
velocity of the satellite’s location in the moving frame:

vECI = ρ+ωE × rECI (3.57)

Equation (3.57) is an application of the Coriolis theorem [see Eq. (C.17) in Appendix C]
and may be rewritten as

vECI = rECI =
drECI
dt fix

=
drECI
dt rot

+ ωE × rECI (3.58)

where drECI/dt|fix is the time derivative of position vector rECI with respect to the inertial
(non-rotating) IJK frame and drECI/dt|rot is the time derivative of rECI with respect to the
rotating SEZ frame. Taking the time derivative of Eq. (3.46), we obtain drECI/dt rot = ρ
because the radar station’s position vector expressed in the rotating SEZ frame,
rsite =REZ, is constant.
We can summarize the process for determining a satellite’s ECI velocity vector vECI

from three independent ground-station rate measurements taken at time t:

1) With knowledge of the LOS range and range rate (ρ and ρ) and the LOS angles and
their rates (σ, β, σ, and β), use Eqs. (3.54)–(3.56) to compute the relative velocity vec-
tor ρSEZ in SEZ coordinates.

2) Using the SEZ-to-IJK rotation matrix D, transform ρSEZ to the IJK frame:

ρECI =DρSEZ
3) Using Eq. (3.57) and position vector rECI (in IJK coordinates), compute the satellite’s

inertial velocity vector in the IJK frame

vECI = ρECI +ωE × rECI

where the Earth’s angular velocity vector is ωE = ωEK.
In summary, we use the six independent ground-station measurements (ρ, σ, β, ρ, σ,

and β) to compute the station-relative vectors ρ and ρ expressed in the SEZ frame. The
satellite’s geocentric inertial vectors rECI and vECI are determined by utilizing the SEZ-to-
IJK rotation matrix D and the term ωE × rECI that is associated with the rotating SEZ
frame. Finally, we should reiterate that the rotation matrix D depends on the station’s
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current longitude λ relative to the fixed I axis. Furthermore, the inertial position of the
ground station, rsite, is modeled using a spherical Earth.

Example 3.4 The New Boston Air Force Station (NBAFS) in New Hampshire is
located at latitudeϕ = 42.9o N. At epoch t0 the NBAFSmeasures the LOS range, elevation
and azimuth angles, and their rates:

ρ= 668 3 km, σ = 62 5 , β = 135 4 , ρ= 2 39 km/s, σ = −0 65 deg/s, β = −0 38 deg/s

The longitude of the NBAFS as measured from the inertial I axis is 240.7 at epoch t0.
Determine the satellite’s state vector at this epoch in the ECI coordinate system.
First, we determine the ECI position vector using the steps following Eq. (3.52) with

longitude λ = 240.7 . Using the spherical Earth model (3.47) with RE = 6,378.137 km,
the geocentric position of the NBAFS at this instant is

rsite =RE cosϕcosλI+ cosϕsinλJ+ sinϕK =

−2,286 522

−4,074 533

4,341 731

km

The satellite’s position vector relative to the station is computed using Eq. (3.45)

ρSEZ = ρ −cosσ cosβS+ cosσ sinβE+ sinσZ

= 219 723S+ 216 675E+ 592 789Z km

Next, we use the SEZ-to-IJK rotation matrix D to transform ρSEZ to the ECI frame.
Using Eq. (3.51), the D matrix is

D=

sinϕcosλ −sinλ cosϕcosλ

sinϕsinλ cosλ cosϕsinλ

−cosϕ 0 sinϕ

=

−0 33313 0 87207 −0 35849

−0 59364 −0 48938 −0 63883

−0 73254 0 0 68072

The station-relative position vector in IJK coordinates is

ρECI =DρSEZ =
−96 752

−615 162

242 569

km

Finally, add rsite to ρECI to compute the satellite’s inertial geocentric position vector:

rECI = rsite + ρECI =
−2,383 274

−4,689 696

4,584 299

km

Next, we use Eqs. (3.54)–(3.56) to determine the SEZ components of the station-
relative velocity:

ρS = −ρcosσ cosβ + ρσ sinσ cosβ + ρβcosσ sinβ = 4 1371 km/s

ρE = ρcosσ sinβ−ρσ sinσ sinβ + ρβcosσ cosβ = 6 9541 km/s

ρZ = ρsinσ + ρσ cosσ = −1 3808 km/s
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Using the rotation matrix D, transform ρSEZ to the IJK frame:

ρECI =DρSEZ =
5 1813

−4 9770

−3 9706

km/s

Finally, use Eq. (3.57) withωE = 7.29212(10−5)K rad/s to compute the satellite’s inertial
velocity in the IJK frame:

vECI = ρECI +ωE × rECI

=

5 1813

−4 9770

−3 9706

+

I J K

0 0 7 29212 10−5

−2,383.274 −4,689.696 4,584.299

Carrying out the cross product and adding vectors we obtain

vECI =

5 5233

−5 1508

−3 9706

km/s

The satellite’s state vector at epoch t0 is (rECI, vECI).

3.7.4 Ellipsoidal Earth Model

Accurately determining the geocentric position vector of the ground station (rsite) is cru-
cial to computing the satellite’s geocentric position vector rECI. Recall that Eq. (3.47) uses
a spherical-Earth model with constant radius RE. While a spherical model is simple to
use, it will result in position errors on the order of 10 km. Our Earth is a “flattened”
sphere where its equatorial radius is about 21 km greater than its polar radius. An ellip-
soid of revolution about the polar axis is a simple but more accurate representation of the
shape of the Earth. Figure 3.17 shows the geometry of the ellipsoidal Earth model where
aE is the semimajor (equatorial) axis and bE is the semiminor (polar) axis. We may think
of the ellipse in Figure 3.17 as the plane produced by a vertical slice of the solid ellipsoid
along the meridian that contains the ground station. Therefore, theK axis points toward
the North Pole and the ζ axis lies in the equatorial plane and points from the Earth’s
center to ground station’s meridian intersection with the equator. Figure 3.17 also shows
two distinct definitions of latitude. The geocentric latitude ϕ is measured from the equa-
torial plane to the line from the Earth’s center to the point on the surface of the ellipsoid.
The geodetic latitude ϕ is measured from the equatorial plane to the line normal to the
ellipsoid’s surface as shown in Figure 3.17. When we use “latitude” in common language
and as a coordinate on a map, it is the geodetic latitude ϕ. The reference ellipsoid shown
in Figure 3.17 represents the Earth’s “mean sea level,” and therefore the topographic
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location of a ground station will include its altitude above sea level (or, altitude above the
reference ellipsoid).
We will use the following values for the ellipsoidal Earth model: semimajor axis

aE = 6,378.137 km and semiminor axis bE = 6,356.752 km. We compute the eccentricity
of the Earth ellipse eE using the ratio of the minor and major axes:

bE
aE

= 1−e2E (3.59)

Therefore, the eccentricity of the Earth ellipse is eE = 0.08182.
Recall that our overall objective in this subsection is to determine the geocentric posi-

tion vector of the ground station rsite (in IJK coordinates) using an oblate ellipsoid
to model the Earth’s mean sea level. The solution to this problem requires that we
determine the K-axis and ζ-axis projections of a point on the ellipsoid that is defined
by (geodetic) latitude ϕ. We will only present the result here; the interested reader
may consult Vallado [1; pp. 134–138] or Bate et al. [2; pp. 93–98] for the complete der-
ivation. The geocentric vector to a ground station located relative to an ellipsoidal Earth
model is

rsite =
aE

1− e2Esin
2ϕ

+ hsite cosϕ cosλI+ sinλJ +
aE 1− e2E

1− e2Esin
2ϕ

+ hsite sinϕK

(3.60)

where hsite is the altitude of the ground station above the reference ellipsoid (i.e.,
mean sea level). Remember that longitude λ is the angle in the equatorial plane
from the inertial I axis to the ground station’s meridian at the epoch when the measure-
ments are taken (see Figure 3.15). Note that if eE = 0, the ellipsoid becomes a sphere
and Eq. (3.60) is reduced to the spherical Earth model, Eq. (3.47), with radius
RE = aE + hsite.

K

ζ
ϕϕEquator

bE

aE

Tangent to 
surface

Normal to 
surface

′

Figure 3.17 Ellipsoidal Earth model.
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Example 3.5 Repeat Example 3.4 using an ellipsoidal Earth. The New Boston Air Force
Station is 390 m above sea level.
The ground station’s ECI position vector is computed using Eq. (3.60) with

hsite = 0.39 km, aE = 6,378.137 km, eE = 0.08182, λ = 240.7 , and ϕ = 42.9 :

rsite =
aE

1− e2Esin
2ϕ

+ hsite cosϕ cosλI+ sinλJ +
aE 1− e2E

1− e2Esin
2ϕ

+ hsite sinϕK

Or,

rsite =

−2,290 216

−4,081 117

4,319 635

km

Comparing this result with the ground station vector from Example 3.4, we observe
component differences on the order of 4–22 km. Recall that in Example 3.4 the ground
station is assumed to be located at sea level on a spherical Earth.
The satellite’s position vector relative to the station (expressed in the IJK frame)

depends on the measurements ρ, σ, and β and the latitude and longitude of the station.
Therefore, ρECI is unchanged from the value computed in Example 3.4 and the ECI posi-
tion vector of the satellite is the vector sum of rsite (ellipsoid model) and ρECI:

rECI = rsite + ρECI =
−2,386 968

−4,696 279

4,562 204

km

The component differences between the inertial position vectors computed using the
ellipsoidal and spherical Earth models differ by 4–23 km and these dispersions are solely
due to the computation of the ground station vector rsite.
The relative velocity vector ρ (in either frame) is unchanged from the value computed

in Example 3.4. However, the cross product ωE × rECI differs from its computation in
Example 3.4 because the inertial position vector rECI (computed above) is slightly differ-
ent. Carrying out the vector operations in Eq. (3.57) yields

vECI = ρECI +ωE × rECI

=

5 1813

−4 9770

−3 9706

+

I J K

0 0 7 29212 10−5

−2,386 968 −4,696 279 4,562 204

Or,

vECI =

5 5237

−5 1511

−3 9706

km/s
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Comparing the inertial velocities computed in Examples 3.4 and 3.5, we see that the
largest component difference is less than 0.5 m/s.

3.8 Orbit Determination from Three Position Vectors

The previous section presented an orbit-determination method that uses six independ-
ent measurements at a single observation time to compute the six elements of the state
vector (r,v). Three time-rate measurements (range rate ρ, and angular rates σ, β) are
required to determine the inertial velocity vector v in the ECI frame. Oftentimes the
angular rate measurements are unreliable which degrades the orbit-determination
process.
In this section, we present a geometric method for orbit determination that is based on

three successive inertial position vectors. This method utilizes concepts from vector cal-
culus pioneered by Josiah Willard Gibbs at the end of the nineteenth century and is
therefore known as the Gibbs method. Figure 3.18 shows the basic premise of the Gibbs
method: using three successive geocentric position vectors (r1, r2, r3) determine the satel-
lite’s inertial geocentric velocity vector v2. Each position vector ri shown in Figure 3.18 is
in the ECI frame and can be computed from three topocentric-horizon measurements
(ρi, σi, βi) at observation time ti (of course, we also need to know the ground station’s
latitude ϕ and longitude λi at each observation time ti). After we determine the ECI veloc-
ity vector v2 corresponding to the middle observation, we can determine the orbital ele-
ments from the state vector (r2,v2) using the methods we previously described in this
chapter.

r1

r2

r3

Satellite

I
J

K

Figure 3.18 The Gibbs method of orbit determination.
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The derivation of the Gibbs method presented here follows Bate et al. [2; pp. 109–115].
The basis of the Gibbs method is that the three position vectors (r1, r2, r3) must lie in the
same plane. Therefore, the third position vector r3 must be a linear combination of the
two previous vectors r1 and r2. This linear dependence may be written as

c1r1 + c2r2 + c3r3 = 0 (3.61)

where c1, c2, and c3 are constants. Next, take the cross product of Eq. (3.61) with each of
the three position vectors to produce three vector equations:

0rrrrrr =×+×+× 133122111 ccc
0

3 62a

0rrrrrr =×+×+× 233222211 ccc
0

3 62b

0rrrrrr =×+×+× 333322311 ccc
0

3 62c

Of course, the cross product ri × ri = 0. Rearranging Eq. (3.62a)–(3.62c) and noting that
ri × rj = −rj × ri, we obtain

c2r1 × r2 = c3r3 × r1 (3.63a)

c1r1 × r2 = c3r2 × r3 (3.63b)

c1r3 × r1 = c2r2 × r3 (3.63c)

The next step involves the projection of each position vector ri onto the periapsis
direction. Figure 3.4 shows that the dot product of position vector r and eccentricity
vector e is

r e= recosθ (3.64)

We can also obtain the result recos θ from the trajectory equation:

r =
p

1 + ecosθ
or r + re cos θ = p (3.65)

Therefore, r e= recosθ = p−r. Taking the dot product of each term in Eq. (3.61) with the
eccentricity vector e and substituting ri e= p−ri, we obtain

c1 p−r1 + c2 p−r2 + c3 p−r3 = 0 (3.66)

Multiplying all terms in Eq. (3.66) by the vector product r3 × r1 yields

r3 × r1 c1 p−r1 + r3 × r1 c2 p−r2 + r3 × r1 c3 p−r3 = 0 (3.67)

Finally, we make use of equation set (3.63) by substituting Eq. (3.63c) for the term
c1r3 × r1 and Eq. (3.63a) for the term c3r3 × r1. After these substitutions, Eq. (3.67) only
involves one unknown constant c2

r2 × r3 c2 p−r1 + r3 × r1 c2 p−r2 + r1 × r2 c2 p−r3 = 0 (3.68)
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Or, after factoring out the single constant c2 from Eq. (3.68), we obtain

c2 r2 × r3 p−r1 + r3 × r1 p−r2 + r1 × r2 p−r3 = 0 (3.69)

Constant c2 can be ignored in Eq. (3.69) because the bracketed term must equal the zero
vector. Finally, we can group all terms involving parameter p on the left-hand side and all
terms involving positions ri on the right-hand side to yield

p r2 × r3 + r3 × r1 + r1 × r2 = r1 r2 × r3 + r2 r3 × r1 + r3 r1 × r2 (3.70)

Equation (3.70) allows us to compute the parameter p from the three position vectors.
Let us define the auxiliary vectors D andN as the left- and right-hand sides of Eq. (3.70):

D= r2 × r3 + r3 × r1 + r1 × r2 (3.71)

N= r1 r2 × r3 + r2 r3 × r1 + r3 r1 × r2 (3.72)

Therefore, Eq. (3.70) becomes pD=N and the parameter is p=N/D where N = N
and D= D .
The next steps involve determining expressions for the perifocal-frame unit vectors P,

Q, and W. Note that vectors N and D both involve the two cross products (r1 × r2 and
r2 × r3) that are in the direction of the angular momentum vector h, and one cross prod-
uct (r3 × r1) that is opposite of h. Therefore, bothN andD are in the direction of vector h
and the perifocal W axis can be defined as

W =
N
N

(3.73)

The periapsis direction is the unit vector along the eccentricity vector, P= e/e, and the
Q axis is defined by the cross product of unit vectors W and P

Q =W ×P=
N× e
Ne

(3.74)

Or,

NeQ =N× e (3.75)

Substituting Eq. (3.72) for vector N in Eq. (3.75), we obtain

NeQ = r1 r2 × r3 × e+ r2 r3 × r1 × e+ r3 r1 × r2 × e (3.76)

Each right-hand side term in Eq. (3.76) is a vector triple product:

a× b × c= a c b− b c a

Using the vector triple product, Eq. (3.76) becomes

NeQ = r1 r2 e r3−r1 r3 e r2 + r2 r3 e r1−r2 r1 e r3 + r3 r1 e r2−r3 r2 e r1 (3.77)

Recalling Eqs. (3.64) and (3.65), the six dot products in Eq. (3.77) are ri e= p−ri;
Eq. (3.77) becomes

NeQ = r1 p−r2 r3−r1 p−r3 r2 + r2 p−r3 r1−r2 p−r1 r3 + r3 p−r1 r2−r3 p−r2 r1
(3.78)

Space Flight Dynamics90



After some algebra, Eq. (3.78) becomes

NeQ = p r2−r3 r1 + r3−r1 r2 + r1−r2 r3 (3.79)

Let us define the right-hand side bracketed vector in Eq. (3.79) as auxiliary vector S

S= r2−r3 r1 + r3−r1 r2 + r1−r2 r3 (3.80)

Hence, unit vector Q = S/S. The magnitude of each side of Eq. (3.79) is

Ne= pS (3.81)

Substituting p=N/D into Eq. (3.81), we obtain

e=
S
D

(3.82)

Now we have obtained the orbit’s size and shape (parameter p and eccentricity e) in
terms of the magnitudes of the three auxiliary vectors N, D, and S. However, we can
use these three vectors to determine the ECI velocity vector corresponding to the middle
observation. To show this, we recall an intermediate step in our derivation of the trajec-
tory equation in Chapter 2. Repeat Eq. (2.40) with the middle observation position and
velocity vectors r2 and v2

v2 ×h= μ
r2
r2

+ e (3.83)

Next, cross Eq. (3.83) with angular momentum h

h× v2 ×h = μ
h× r2
r2

+h× e (3.84)

The left-hand side is a vector triple product and the result is h2v2 because h and v2 are
orthogonal. Next, we substitute h = hW and e = eP into Eq. (3.84) to yield

h2v2 = μ
hW × r2

r2
+ hW × eP (3.85)

Substituting Q =W ×P and solving Eq. (3.85) for velocity yields

v2 =
μ

h
W × r2

r2
+ eQ (3.86)

The final substitutions involve h= pμ= Nμ/D, e= S/D, and unit vectors W =D/D
and Q = S/S. Applying these substitutions Eq. (3.86) becomes

v2 =
1
r2

μ

ND
D× r2 +

μ

ND
S (3.87)

Equation (3.87) is our final result: the ECI velocity vector of the middle observation as a
function of vectors r2, N, D, and S. Of course, N, D, and S are determined by the three
ECI position vectors r1, r2, and r3.
The Gibbs method fails if the three position vectors are not coplanar. We may use the

following test:

ε=
r1 r2 × r3
r1 r2 × r3

(3.88)
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Scalar quantity ε is the cosine of the angle between position vector r1 and the cross-
product result r2 × r3. Because r2 × r3 is along the angular momentum vector h (which
is orthogonal to r1), the scalar ε should be exactly zero if all three vectors are coplanar.
However, measurement errors and/or sensor noise will lead to three position vectors that
are not exactly coplanar. A reasonable test is to ensure that ε < cos88o (or ε < 0 0349)
for coplanar position vectors.
TheGibbsmethod has numerical instability if the position vectors are too closely spaced.

Vallado [1; p. 459] recommends a 1 angular separation as a lower threshold.We can easily
compute the angular separation using the dot product and inverse cosine function:

θ12 = cos
−1 r1 r2

r1r2
and θ23 = cos

−1 r2 r3
r2r3

(3.89)

We may think of the separation angles θ12 and θ23 as the changes in true anomaly
between two successive position vectors.
We may now summarize the Gibbs method as follows:

1) Compute ε using Eq. (3.88) and the three position vectors r1, r2, and r3. If ε < 0 0349,
then the three position vectors are essentially coplanar and the Gibbs method can
be used.

2) Using Eq. (3.89), compute the angular separations between position vectors. If either
θ12 or θ23 is less than 1 , the Gibbs method may produce inaccurate results.

3) Using the three position vectors r1, r2, and r3, compute the auxiliary vectorsD,N, and
S using Eqs. (3.71), (3.72), and (3.80).

4) Compute the ECI velocity vector of the middle observation, v2, using Eq. (3.87).
5) Use the techniques of Section 3.4 to compute the orbital elements from the state vec-

tor (r2,v2).

The following example illustrates the Gibbs method for orbit determination.

Example 3.6 A ground station makes LOS measurements of a satellite at three obser-
vation times and determines the following three ECI position vectors:

r1 =

−11,052 902

−12,938 738

8,505 244

km r2 =

−10,378 257

−15,955 205

14,212 351

km r3 =

−9,336 222

−17,747 079

18,337 068

km

The ground-station operators suspect that this satellite is in a Molniya orbit. Compute
the satellite’s state vector for the middle observation and determine if the satellite is
indeed in a Molniya orbit.
The Gibbs method relies on the magnitudes of each position vector and the three cross

products. The three magnitudes are

r1 = 19,024 110 km, r2 = 23,754 320 km, and r3 = 27,173 000 km

The three cross products are

r1 × r2 =

−48,186,974 358

68,818,114 713

42,069,769 035

km2
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r2 × r3 =

−40,343,963 066

57,617,140 253

35,222,410 926

km2

r3 × r1 =

86,315,281 358

−123,270,969 423

−75,357,794 605

km2

First, we must use Eq. (3.88) to check the coplanar condition:

ε=
r1 r2 × r3
r1 r2 × r3

= −8 54 10−9

The magnitude of the ε parameter is extremely small and hence the three position vec-
tors are coplanar. The next step is to determine the angular spacing between the position
vectors. Using Eq. (3.89), we obtain

θ12 = cos
−1 r1 r2

r1r2
= cos−1

442,029,587 85
451,904,790 21

= 12 00

θ23 = cos
−1 r2 r3

r2r3
= cos−1

640,664,841 65
645,476,124 86

= 7 00

The angular separations are greater than 1 and therefore the Gibbs method should
provide sufficient accuracy. Next, we compute the auxiliary vectors D, N, and S using
Eqs. (3.71), (3.72), and (3.80):

D= r2 × r3 + r3 × r1 + r1 × r2 =

−2,215,656 066

3,164,285 542

1,934,385 356

km2

N= r1 r2 × r3 + r2 r3 × r1 + r3 r1 × r2 =

−26,531,841,547 5

37,891,405,572 8

23,163,695,418 9

km3

S= r2−r3 r1 + r3−r1 r2 + r1−r2 r3 =

−2,622,648 754

−1,836,395 621

−3 881

km2

Finally, use Eq. (3.87) to compute the ECI velocity vector corresponding to the middle
observation:

v2 =
1
r2

μ

ND
D× r2 +

μ

ND
S=

0 7610

−1 8108

3 8337

km/s
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Hence, the state vector for the middle observation is

r2 =

−10,378 257

−15,955 205

14,212 351

km, v2 =

0 7610

−1 8108

3 8337

km/s

We can now compute the six orbital elements from this state vector using the methods
of Section 3.4. However, the Gibbs method allows us to take a few short cuts. For exam-
ple, parameter p can be computed from magnitudes N and D

p=
N
D

= 11,974 710 km

Eccentricity is the ratio of S and D; see Eq. (3.82)

e=
S
D
= 0 7411

Semimajor axis can be computed from p and e

a=
p

1−e2
= 26,565 km

Referring back to Section 3.4, we see that these values of semimajor axis a and eccen-
tricity ematch the values for aMolniya orbit. To complete the orbit-determination proc-
ess, we can use Eq. (3.8) to compute inclination:

cosi=
K h
h

where the angular momentum is h= r2 × v2. Carrying out the calculations, we find that
cosi= 0.447759, or i = 63.4 which is the inclination of a Molniya orbit.
The last critical element is the argument of perigee as computed by Eq. (3.14)

cosω=
n e
n e

We must compute the ascending node vector using Eq. (3.11)

n=K×h

and the eccentricity vector using Eq. (3.6) and state vector (r2,v2)

e=
1
μ

v22−
μ

r2
r2− r2 v2 v2

The reader can carry out these vector manipulations to find that

n=

−50,603 214

−35,432 759

0

and e=

−0 1903

0 2718

−0 6627

Hence, cosω= −1 45 10−6 ≈0. The argument of perigee is either +90 or –90 . Because
the K component of the eccentricity vector e is negative, the perigee is south of the
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equatorial plane and the argument of perigee is ω = –90 . We have now determined that
the satellite is indeed in a Molniya orbit (the reader should note that the longitude of the
ascending nodeΩ is not needed to define a specific Molniya orbit unless we are given the
epoch time t2 and requirements for the orbit’s apogee to pass over a particular geographic
longitude).

3.9 Survey of Orbit-Determination Methods

The two previous sections have presented two orbit-determination methods. The first
method relied on six independent measurements at one time instant (three position
and three time-rate measurements). The result was a one-to-one mapping from the
six measurements to the six-element state vector. The second method (the Gibbs
method) used three ECI position vectors taken at three observation times to obtain
the ECI velocity vector corresponding to the middle observation.
Our discussion of orbit-determination methods has only scratched the surface because

a multitude of other methods exist. Vallado [1; pp. 433–498], Bate et al. [2; pp. 117–131],
and Tapley et al. [3] provide excellent, detailed descriptions of alternate orbit-
determination methods. They also provide algorithms for various orbit-determination
techniques. We conclude this chapter with a survey of these methods for solving the
orbit-determination problem.

3.9.1 Orbit Determination Using Angles-Only Measurements

Early orbit-determination techniques relied on optical tracking with telescopes. A single
observation consists of two angular measurements that define the LOS vector from the
observation site to the satellite. Figure 3.19 shows the two LOS angles: the right ascension
α and declination δ measured in the topocentric-equatorial coordinate system. The ori-
gin of the topocentric-equatorial system is fixed to the ground-based observation site

I J

K Satellite

δ

α

ρ = ρL

Equatorial 
plane

Figure 3.19 Line-of-sight angles measured in topocentric-equatorial system.
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(like the topocentric-horizon or SEZ system) but its fundamental plane is the equatorial
plane. Hence, we may think of the topocentric-equatorial system as the geocentric ECI
system translated to the observation site’s location on the Earth’s surface. Right ascen-
sion α is measured in the equatorial plane from the inertial I axis (vernal equinox direc-
tion) to the projection of the LOS vector. Declination δ is measured from the equatorial
plane to the LOS vector. Figure 3.19 shows that the observation site can compute the
LOS unit vector L (in IJK coordinates) from angles α and δ

L=

cosδ cosα

cosδ sinα

sinδ

(3.90)

The reader should note that L is the LOS unit vector to the satellite and is not the site-
relative position vector ρ. As the name implies, “angles-only” methods do not rely on
range measurements (however, if range were available the relative position vector would
be ρ = ρL as shown in Figure 3.19).
Because a single observation consists of two angular measurements (αi, δi), a minimum

of three “angles-only”measurements at three different epochs are required to provide six
independent quantities needed for the orbit solution. Figure 3.20 shows three LOS unit
vectors L1, L2, and L3 to a satellite at three observation times (again it is important for the
reader to note that vectors Li in Figure 3.20 are LOS unit vectors and not position vec-
tors). Of course, the three LOS vectors can be computed using Eq. (3.90) with three sets
of angular measurements (α1, δ1), (α2, δ2), and (α3, δ3).
Laplace developed the first angles-only orbit-determination method in 1780 and his

method uses a series of successive differentiations of the LOS data to determine the state
vector (r2,v2) corresponding to the middle observation. To show the basis of Laplace’s

L2

L3
Satellite

K

I
J

rsite L1

Figure 3.20 Three angles-only observations L1, L2, and L3.
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method, we can express the satellite’s geocentric position vector r in terms of LOS unit
vector L

r= rsite + ρL (3.91)

where rsite is the ECI position vector of the observation site (see Figure 3.20). Of course,
range ρ is not measured and is not known. Two time derivatives of Eq. (3.91) yield the
two-body equation of motion r = −μr/r3 as a function of the first and second time deri-
vatives of rsite, ρ, and L. The first and second time derivatives of LOS vector L are
obtained by differentiating interpolating formulas for L(t). Hence, we also require the
“time tags” t1, t2, and t3 associated with the three observations to compute L and L.
By using the three LOS vectors Li and their time tags to compute L and L, we are able
to solve for the unknowns ρ, ρ, and ρ and eventually obtain the ECI state vector (r2,v2) for
the middle observation. Vallado [1; pp. 433–439] and Bate et al. [2; pp. 117–122] present
the details of Laplace’s angles-only method.

3.9.2 Orbit Determination Using Three Position Vectors

Radar and laser tracking stations can provide range information and this additional
measurement (along with the LOS angles) allows the calculation of the site-relative posi-
tion vector ρ. Adding the station’s geocentric position vector rsite to the relative position
ρ (transformed to the ECI frame) produces the satellite’s geocentric position vector r.
Section 3.8 presented the Gibbs method for orbit determination. The Gibbs method
requires three sequential observations (three ECI position vectors r1, r2, and r3) along
an orbital pass as inputs and obtains the orbit by enforcing a geometric constraint requir-
ing all three vectors to be coplanar. As noted in Section 3.8, the Gibbs method becomes
inaccurate and unreliable for closely spaced observations. The Herrick–Gibbs method
alleviates this problem by computing the approximate velocity vector corresponding
to the middle observation using a Taylor series expansion. Because an expansion is used
for r(t), the Herrick–Gibbsmethod requires the three “time tags” (t1, t2, and t3) associated
with each observation. Furthermore, this method is most accurate for closely spaced
observations (less than 3 apart), but produces erroneous results for widely spaced posi-
tion vectors. Vallado [1; pp. 461–467] presents the details of the Herrick–Gibbs method.

3.9.3 Orbit Determination from Two Position Vectors and Time

The orbit can be determined from the knowledge of two position vectors (r1 and r2) and
the time interval (or “time-of-flight”) between the two observations. Figure 3.21 shows
the orbit-determination scenario. Johann Heinrich Lambert first solved this problem in
1761; today we call it Lambert’s problem. Because Lambert’s problem relies on time-of-
flight calculations between two positions in an orbit, we shall postpone a detailed discus-
sion until Chapter 4.
Several solution techniques for Lambert’s problem have been discovered and pre-

sented in the literature since Lambert’s original formulation in 1761. Many solutions
to Lambert’s problem rely on computation of the so-called Lagrangian coefficients that
relate the position and velocity vectors between two time instants:
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r2 = f r1 + gv1 (3.92a)

v2 = f r1 + gv1 (3.92b)

The four scalar coefficients f, g, f , and g in Eq. (3.92) are the Lagrangian coefficients, and
they are used to propagate the position and velocity vectors ahead in time. These four
coefficients are expressed as functions of known values (position vectors r1 and r2,
and flight time t2 – t1) and an unknown orbital parameter (such as semimajor axis a
or parameter p). Iterating on the unknown orbital parameter determines the appropriate
numerical values of f, g, f , and g. Detailed equations for the Lagrangian coefficients are
derived and presented in Chapter 4 (Section 4.5). In Chapter 4 (Section 4.6), we present
one iterative method for solving Lambert’s problem.
Solving Lambert’s problem (by some iterative technique) is a fundamental problem in

orbital mechanics. The orbital solution to Lambert’s problem has many important appli-
cations such as orbit determination, orbital maneuvering (Chapter 7), and interplanetary
mission design (Chapter 10).

3.9.4 Statistical Orbit Determination

The orbit-determination methods discussed thus far compute the state vector (r,v) from
a minimal set of observations that include LOS angles, position vectors, and time. How-
ever, a large number of observations are recorded during the operation of a satellite. The
accuracy of the orbit solution is improved by considering all observations instead of a
small subset (such as three sets of LOS angles or three position vectors). Carl Friedrich
Gauss developed a method to determine the theoretical orbit passing through all obser-
vation data such that the sum of squares of the residuals (the difference between the

r1

r2

Satellite at time t2

I
J

K

Satellite at time t1

Time of flight t2 – t1

Figure 3.21 Orbit determination using two position vectors and flight time.
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actual observations and the theoretical orbit) is minimized. This technique, known as the
method of least squares, is the basis of estimation theory. In 1959, Peter Swerling devel-
oped a sequential algorithm for orbit determination. This technique is based on the least-
squares method and uses multiple satellite observations to estimate its orbit. In 1960,
Rudolf E. Kalman developed a recursive algorithm that produces optimal estimates of
a system’s state vector over time. Kalman’s method also utilizes a least-squares approach.
These estimation algorithms use a series of measurements that are corrupted by sensor
noise and other stochastic (random) inaccuracies that can be quantified by statistical
parameters. This algorithm has come to be known as the Kalman filter and is used to
provide the “best” estimate of a satellite’s state vector (r,v) given a series of noisy observa-
tions. The Kalman filter also provides a statistical measure of confidence in the estimated
state via the covariance matrix, which contains statistical information for the closeness of
fit between the observations and the estimated orbit. Both the state estimate and covar-
iance matrix are propagated ahead in time by the Kalman filter through a recursive
scheme that does not require reprocessing all past measurement information. Therefore,
the Kalman filter has been used to perform onboard navigation duties for spacecraft
including the US Space Shuttle. Tapley et al. [3] provide an in-depth discussion of Kal-
man filtering and the statistical orbit-determination problem.

3.10 Summary

This chapter has presented the six constant classical orbital elements that completely
define or determine a two-body orbit: (1) semimajor axis a; (2) eccentricity e; (3) incli-
nation i; (4) longitude of the ascending node Ω; (5) argument of periapsis ω; and (6) true
anomaly at epoch θ0. Semimajor axis, eccentricity, and true anomaly were discussed in
Chapter 2; the first two elements determine the size and shape of the conic
section whereas true anomaly θ0 pinpoints the satellite’s position in the orbit at a par-
ticular time instant (or epoch). Orbital elements i, Ω, and ω determine the orbit’s
three-dimensional orientation in a Cartesian coordinate frame. The six classical orbital
elements have a unique mapping with the satellite’s position and velocity vectors
expressed in an inertial Cartesian frame, that is, the so-called state vector (r0,v0). The
satellite’s state vector (r0,v0) at epoch t0 can be transformed to the corresponding orbital
elements (a, e, i, Ω, ω, θ0) by computing the total energy, angular momentum vector,
eccentricity vector, and ascending node vector. Similarly, we can transform the six orbital
elements to the six-dimensional state vector in the Cartesian frame. It is very important
for the reader to note that a two-body orbit is uniquely defined by the six classical orbital
elements or the six-dimensional state vector (r0,v0).
The classical orbital elements allow us to visualize the size and shape of an orbit and

the orientation of its orbital plane and periapsis direction. These characteristics offer a
distinct advantage over the Cartesian state vector (r0,v0). However, the orbit-
determination process begins by obtaining the satellite’s position and velocity vectors
from observational data derived from ground-based sensor measurements. In this
chapter, we presented two orbit-determination methods. The first method derives the
state vector (r0,v0) from six simultaneous ground-based measurements (three position
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coordinates and three time-rate coordinates). The second method determines the state
vector by using three position vectors taken at three observation times. Finally, we ended
this chapter with a brief survey of orbit-determinationmethods that use a combination of
observations that include position vectors, LOS angles, and observation times.
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Problems

Conceptual Problems

3.1 An Earth-orbiting satellite has the following position and velocity vectors in the
ECI frame

r=

−6,796

4,025

3,490

km, v =

−3 7817

−6 0146

1 1418

km/s

Determine the six classical orbital elements.

3.2 A geocentric satellite has the following ECI position and velocity vectors at epoch t0

r= 8,207I+ 7,114J+ 5,253K km, v = −3 0347I+ 2 7144J+ 3 2901K km/s

Determine the classical orbital elements.

3.3 A geocentric satellite has the following ECI position and velocity vectors at epoch t0

r= 6,93I+ 5,696J−4,586K km, v = −7 8456I−2 0905J−2 1124K km/s

Determine the classical orbital elements.

3.4 An Earth-orbiting satellite has the following ECI position and velocity vectors at
epoch t0

r= 6,678J km, v = −7 725835I km/s

Determine the semimajor axis a, eccentricity e, and inclination i. In addition, show
that longitude of the ascending node Ω and argument of perigee ω are undefined
and compute an appropriate angle that defines the location of the satellite in
its orbit.
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3.5 A geocentric satellite has the following ascending node and eccentricity vectors
expressed in the ECI frame:

n= −19,858I−9,260J, e= 0 0854I−0 0441J+ 0 0277K

When the satellite is at perigee, its position vector in the ECI frame is

r= 7,993I−4,124J+ 2,590K km

Determine:
a) Semimajor axis, a
b) Velocity at perigee, vp
c) Longitude of the ascending node, Ω
d) Argument of perigee, ω.

3.6 An Earth-orbiting satellite has semimajor axis a = 12,400 km and eccentricity
e = 0.14. Determine its position and velocity vectors in the perifocal frame for true
anomaly θ = 200 .

3.7 A geocentric satellite has orbital elements i = 28.5 ,Ω = 152 , andω = 180 . Deter-
mine its position and velocity vectors in the perifocal frame if it is currently at
apogee with an altitude of 2,337 km and inertial velocity of 6.592 km/s.

3.8 A reconnaissance satellite is in an elliptical orbit about the Earth with a period of
717.8 min, perigee altitude of 2,052 km, and inclination of 63.0 . Its longitude of the
ascending node and argument of perigee are 116.2 and 270 , respectively. Deter-
mine the ECI state vector (r,v) of the satellite when its true anomaly is 200 . Use the
magnitudes of the r and v vectors to compute the orbital energy, semimajor axis,
and orbital period of the satellite in order to verify your calculations.

3.9 A geocentric satellite has the following orbital elements:

a= 9,056 km

e= 0 142

i= 7 2

Ω= 200

ω= 60

θ0 = 320

Determine:
a) The satellite’s position and velocity vectors in the perifocal frame at this

instant.
b) The satellite’s state vector (r,v) at this epoch in ECI coordinates.

3.10 Prove that any geocentric satellite with an argument of perigee ω= ± 90 that
is currently at perigee or apogee must have a zero K-axis velocity component.

3.11 At time t0, an Earth-orbiting satellite has position vector r0 = 7,643K km in an ECI
coordinate frame. Prove that the satellite must be in polar orbit.
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3.12 At a particular instant, an Earth-orbiting satellite has position vector r = 7,705I +
4448J km in ECI coordinates and its inertial velocity vector has azimuth angle
β = 120 . Determine the satellite’s inclination and longitude of the ascending node.

3.13 A geocentric satellite has the following orbital elements: a = 6,778 km, e = 0,
i = 54 , Ω = 78 , and argument of latitude at epoch u0 = 180 . Compute the
azimuth angle β corresponding to the satellite’s velocity vector at this instant.

3.14 A satellite is in a circular orbit about the Earth. At a particular instant, the azimuth
(or heading) angle of the satellite’s inertial velocity vector is β = 102 and the satellite
is directly over Columbia, Missouri (longitude = 92.33ο W, latitude = 38.95ο N).
Compute the maximum and minimum latitudes of the satellite’s ground track.

3.15 A satellite is in an inclined circular orbit about the Earth. The geographic longi-
tude of the satellite’s equatorial crossing on an ascending arc for its 126th orbit is
λ126 = 56.31ο E. The geographic longitude of its 128th ascending-arc equatorial
crossing is λ128 = 31.76ο W. Determine the altitude of the circular orbit.

3.16 An engineer receives four position vectors in the ECI frame:

r1 =

1,044 1

7,539 6

1,731 8

km, r2 =

−229 6

7,389 3

2,491 0

km, r3 =

−577 6

7,540 5

1,908 7

km, r4 =

−3,658 7

6,553 0

2,002 8

km

Three of these position vectors represent Satellite A at three instants of time while
one position vector represents Satellite B. Which is the position vector for Satel-
lite B?

3.17 A ground-based tracking station determines three ECI position vectors for a geo-
centric satellite:

r1 =

−2,858 9

−6,310 2

−204 3

km, r2 =

−1,401 4

−6,832 1

−918 7

km, r3 =

−46 1

−6,978 8

−1,508 8

km

Use Gibbs’method to determine the satellite’s inertial velocity v2 associated with
the middle observation.

MATLAB Problems

3.18 Write an M-file that will calculate the six orbital elements (a, e, i, Ω, ω, θ0) given
the satellite’s current geocentric state vector (r0,v0) as the input. The input
position and velocity vectors are in the ECI frame with units of kilometers and
kilometers per second, respectively. The semimajor axis a output should have
units of kilometers, while all output angles should have units of degrees. If the
orbit is equatorial, then the M-file should return an empty set for longitude of
the ascending node; that is, Ω = []. For elliptical equatorial orbits, the M-file
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should return the longitude of perigee (ϖ) in place of the argument of perigee. For
inclined circular orbits, the M-file should return the argument of latitude (u) in
place of true anomaly θ0 (in this case the argument of perigee is undefined, i.e.,
ω = []). Finally, for circular equatorial orbits set Ω = [] and ω = [] (undefined)
and replace true anomaly with true longitude at epoch l0. Test your M-file by sol-
ving Problem 3.1.

3.19 Write an M-file that will calculate the geocentric state vector (r,v) given the six
orbital elements (a, e, i, Ω, ω, θ) as inputs. The input semimajor axis a is in kilo-
meters and all four input angles are in degrees. The output position and velocity
vectors are in the ECI frame with units of kilometers and kilometers per second,
respectively. Test your M-file by solving Problem 3.9.

3.20 Write an M-file that computes the satellite’s state vector (r,v) given the six mea-
surements in the topocentric-horizon (SEZ) frame: line-of-sight (LOS) range ρ,
elevation angle σ, azimuth angle β, and the three time derivatives of these para-
meters. LOS range should be in units of kilometers, the two input angles are in
degrees, and the three input rates should be in kilometers per second and degrees
per second, respectively. Other inputs to M-file include geodetic latitude and lon-
gitude of the ground-based tracking station (in degrees), altitude of the tracking
station above sea level (in m), and a flag that allows the user to choose between the
spherical or ellipsoidal Earth model. The six outputs should be the satellite’s r and
v vectors expressed in the ECI frame in kilometers and kilometers per second,
respectively. Test your M-file by solving Examples 3.4 and 3.5.

3.21 Write an M-file that performs Gibbs’ method of orbit determination. The three
inputs are three successive satellite position vectors r1, r2, and r3 expressed in
the ECI frame with units of kilometers. The single output is the satellite’s
inertial velocity vector v2 associated with the middle observation (expressed in
the ECI frame with units of kilometers per second). Test your M-file by solving
Example 3.6.

Mission Applications

Problems 3.22 and 3.23 involve the Stardust capsule, which returned to Earth in Jan-
uary 2006 on a hyperbolic approach trajectory after sampling particles from the comet
Wild-2.

3.22 A ground-based tracking station determined the Stardust capsule’s position and
velocity vectors (in the ECI frame) as it approached Earth:

r=

219,469

99,139

−87,444

km, v =

−5 7899

−2 2827

2 3722

km/s

Determine the six orbital elements of the Stardust capsule’s orbit at this epoch.
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3.23 A ground-based tracking station determines the three ECI position vectors of the
Stardust capsule during its return to Earth:

r1 =

208,668 2

94,880 1

−83,019 1

km, r2 =

63,942 2

37,491 1

−23,787 6

km, r3 =

35,211 9

25,745 8

−12,098 5

km

Use Gibbs’ method to determine the semimajor axis, eccentricity, and (theoreti-
cal) perigee altitude of the Stardust capsule (note that the Stardust capsule entered
the Earth’s atmosphere before it reached its perigee altitude).

3.24 The orbital elements of the Hubble Space Telescope (HST) at a particular
epoch are

a= 6,922 3 km, e= 0 001143, i= 50 75

Ω= 193 89 , ω= 85 41 , θ = 10 23

Determine the state vector (r,v) of the HST (in ECI coordinates) at this instant.

Problems 3.25–3.27 involve the Lunar Atmosphere and Dust Environment
Explorer (LADEE) spacecraft, which was launched in September 2013 and was
eventually placed in an orbit about the moon.

3.25 A ground-tracking station determines the position and velocity vectors of the
LADEE spacecraft on the first leg of its orbit transfer to the moon (see
Figure 2.14 and Example 2.6). These vectors (in the ECI frame) are

r=

−201,283

−107,796

−37,306

km, v =

−0 6325

−0 5385

0 1252

km/s

a) Prove that the LADEE spacecraft is between perigee and apogee at this instant
of time.

b) Determine the six classical orbital elements of LADEE’s orbit at this epoch.

3.26 When the LADEE spacecraft reached the vicinity of the moon, it was placed in a
highly elliptical lunar orbit by firing its onboard rocket. Some time after the orbit-
insertion burn, LADEE’s orbital elements (measured relative to a Cartesianmoon-
centered inertial frame) were determined to be

a= 9,732 km, e= 0 7803, i= 15 7

Ω= 137 7 , ω= 324 3 , θ = 183 3

Determine the state vector (r,v) of the LADEE spacecraft in amoon-centered iner-
tial coordinate system (let ImJmKm be unit vectors along the moon-centered
inertial frame).
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3.27 After coasting in a highly elliptical lunar orbit for three revolutions, the LADEE
spacecraft again fired its onboard rocket to decrease its orbital energy and eccen-
tricity. The resulting orbital elements (measured relative to a Cartesian moon-
centered inertial frame) after the rocket burn are

α= 2,953 km, e= 0 2761, i= 15 7

Ω= 137 7 , ω= 324 3 , θ = 0

Determine the state vector (r,v) of the LADEE spacecraft in amoon-centered iner-
tial coordinate system (let ImJmKm be unit vectors along the moon-centered
inertial frame).

3.28 A French military micro-satellite is part of its early warning missile-detection sys-
tem. The satellite has perigee and apogee altitudes of 434 and 17,430 km, respec-
tively, an inclination of 2.0 , a longitude of the ascending node of 190.6 , and an
argument of perigee of –89.4 . Determine the satellite’s state vector (r0,v0) in ECI
coordinates at the epoch when the satellite is at apogee.

3.29 The Baikonur Cosmodrome launch facility in Kazakhstan has a latitude of
45.9o N and longitude of 63.3o E. It has been used to launch Proton rockets that
have delivered payloads to the International Space Station (ISS). The ISS has an
orbital inclination of 51.65 .
a) Determine the Proton rocket’s azimuth angle if the engine cutoff conditions

after launch result in a descending arc.
b) Compute the azimuth angle of the velocity vector of the ISS as it crosses the

equator on a descending arc (moving from north to south).

Problems 3.30–3.32 involve the Very Long Baseline Array (VLBA) tracking station
that is part of the Mauna Kea Observatory in Hawaii. The VLBA is located at latitude
ϕ = 19.8o N.

3.30 At instant t0, the longitude of the VLBA as measured from the inertial I axis is
283.5 . The VLBA tracks a satellite and determines its line-of-sight range and ele-
vation and azimuth angles at epoch t0:

ρ= 1,298 4 km, σ = 62 7 , β = 158 2

Determine the inertial position vector of the satellite at instant t0 in ECI coordi-
nates. Use a spherical Earth model.

3.31 The VLBA station is tracking a high-altitude satellite. At instant t0, it measures the
line-of-sight range and the elevation and azimuth angles:

ρ= 36,669 78 km, σ = 57 037 , β = 227 915

The values of ρ, σ, and β are constant (i.e., relative velocity vector ρSEZ is zero). The
VLBA is at longitude λ = 32.1 at t0. Show that the VLBA station is currently
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tracking a satellite in a geostationary-equatorial orbit (GEO). Assume that the
Earth is a perfect sphere.

3.32 The VLBA station is tracking the Hubble Space Telescope (HST). At epoch t0, the
VLBA station measures the line-of-sight range, elevation and azimuth angles, and
their rates:

ρ= 807 7 km, σ = 44 4 , β = 148 5

ρ= 0 4027 km/s, σ = – 0 0331deg/s, β = – 0 703deg/s

The longitude of the VLBA as measured from the inertial I axis is 120.4 at epoch
t0. Determine the state vector of the HST at this epoch in the ECI coordinate sys-
tem using an ellipsoidal Earth model (the VLBA is at an altitude of 3,719 m above
sea level). In addition, compute the orbital period, eccentricity, and inclination of
the HST from this single observation.
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4

Time of Flight

4.1 Introduction

The previous chapters dealt with the fundamental characteristics of a two-body orbit
(energy and angular momentum). In addition, we showed how to determine a satellite’s
radius and velocity given its angular position (true anomaly) in the orbit. Chapter 3
focused on orbit determination; that is, how to compute the orbital elements given a
set of observations or measurements. However, we chose to present the orbit-
determination methods that did not rely on the elapsed time or “flight time” between
observations.
This chapter introduces and discusses the “time of flight” (TOF); that is, computation

of the transit time between two positions in an orbit. Kepler determined the fundamental
relationship between orbital position and TOF. This relationship is known as Kepler’s
equation and it serves as the starting point for this chapter. Kepler’s equation allows
us to propagate a two-body orbit, or predict a satellite’s orbital position at an arbitrary
time in the future. Finally, the ability to relate TOF to orbital position leads to additional
orbit-determination methods as we shall see in the latter part of this chapter when we
present Lambert’s problem.

4.2 Kepler’s Equation

It is possible to derive an expression that relates TOF and orbital position by using either
analytical techniques (e.g., calculus) or geometrical methods. Kepler developed a TOF
expression by using a geometric approach (of course, calculus did not exist in Kepler’s
time). We will present the basis of Kepler’s geometric TOF derivation here but we will
eventually develop a flight-time equation using integral calculus. Of course, both meth-
ods lead to the same result: Kepler’s equation for TOF.

4.2.1 Time of Flight Using Geometric Methods

Recall that in Chapter 2 we showed that the rate of area swept out by the radius vector is a
constant:

dA
dt

=
h
2

(4.1)
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Hence, the ratio of “swept area” and the corresponding TOF is always equal to the con-
stant h/2. Referring to Figure 4.1, we can form the ratio of swept area A1 and the TOF
t1− tp and equate it to the ratio of total area of an ellipse Aellipse and orbital period Tperiod

h
2
=

A1

t1− tp
=
Aellipse

Tperiod
(4.2)

Solving Eq. (4.2) for the TOF during the sweep of area A1, we obtain

t1− tp =
A1

Aellipse
Tperiod (4.3)

InEq. (4.3), t1− tp is the satellite’s transit time fromperiapsis to position 1 on the elliptical
orbit shown in Figure 4.1. Clearly, the area ratioA1/Aellipse is less than one and therefore the
TOF t1− tp is less than one period. It should also be clear to the reader that determining
the swept area A1 in Figure 4.1 establishes the TOF from periapsis to point 1.
Kepler defined an auxiliary angle that allows the calculation of the swept area A1 in

Figure 4.1. Figure 4.2 shows an elliptical orbit circumscribed with an “auxiliary circle”with
radius awhere the center of the circle is pointO (intersection of themajor andminor axes).
The attracting body is at point F (the focus) and the satellite’s position in the orbit is pointY
(its angular position is denoted by true anomaly θ). If we extend a vertical line (perpendic-
ular to themajor axis) through the satellite’s position Y, this vertical line intersects the aux-
iliary circle at point X as seen in Figure 4.2. The angle E in Figure 4.2 is the eccentric
anomaly and is measured from the major axis in the direction of motion in the sameman-
ner as true anomaly θ. Kepler used eccentric anomaly E to compute the swept area A1 (the
reader can likely see how area A1 in Figure 4.2 can be calculated from the circular sector
and triangular areas). Bate et al. [1; pp. 182–185] and Vallado [2; pp. 43–45] present the
geometrical TOF derivation in terms of swept area A1.

4.2.2 Time of Flight Using Analytical Methods

Our analytical TOF derivation begins with the cosine of eccentric anomaly E. Referring
again to Figure 4.2, we see that cos E is

A1

1
t1 – tp

TOF from periapsis to 1

θ1

r1

Periapsis

Figure 4.1 Swept area A1 after time-of-flight from periapsis to position 1.
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cosE =
ae+ r cosθ

a
(4.4)

Multiplying Eq. (4.4) by e/e, we obtain

cosE =
ae2 + recosθ

ae
(4.5)

The trajectory equation (2.45) provides the position of the satellite

r =
p

1 + ecosθ
=

a 1−e2

1 + ecosθ
(4.6)

Equation (4.6) shows that r + recosθ = a−ae2, or ae2 + recosθ = a−r. Using this last
result to replace the numerator of Eq. (4.5), we obtain

cosE =
a−r
ae

(4.7)

Next, take the time derivative of Eq. (4.7) to yield

−aeE sinE = −r (4.8)

Of course, we remember that orbital elements a and e are constants. Recall that in
Chapter 2 we developed an expression for the satellite’s radial velocity component

r =
μ

h
esinθ (4.9)

where angular momentum is h= μp= μa 1−e2 . Using Eq. (4.9) in Eq. (4.8) (and can-
celing e from both sides), we obtain

aE sinE =
μ

μa 1−e2
sinθ (4.10)

θ

A1

P

Y

X

Auxiliary 
circle

Major axis

Minor axis

a

Periapsis
O

E

ae

F

Elliptical orbit

b
r

Figure 4.2 Eccentric anomaly, E, for an elliptical orbit.
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We are almost at the point where we can separate variables and integrate Eq. (4.10).
However, true anomaly θ is a function of eccentric anomaly E. Referring again to
Figure 4.2, we can write an expression for the length of the dashed vertical line:

asinE =
a
b

r sinθ (4.11)

where the ellipse-to-circle vertical ratio is b/a= 1−e2. Next, solve Eq. (4.7) for the
satellite’s radial position

r = a 1−ecosE (4.12)

Using these substitutions, we can solve Eq. (4.11) for the sine of true anomaly

sinθ =
1−e2 sinE
1−ecosE

(4.13)

Substituting Eq. (4.13) into Eq. (4.10) (and some algebra) yields

E =
dE
dt

=
μ

a3
1

1−ecosE
(4.14)

Separating variables (and placing dt on the left-hand side), Eq. (4.14) becomes

dt =
a3

μ
1−ecosE dE (4.15)

Equation (4.15) is easily integrated from periapsis to the satellite’s orbital position.
Therefore, the lower integration bounds at periapsis are time tp and eccentric anomaly
Ep = 0. Integrating Eq. (4.15), we obtain

t1− tp =
a3

μ
E−esinE (4.16)

Equation (4.16) is Kepler’s equation and it determines the TOF from periapsis to the
satellite’s current position (position 1 in Figure 4.1) as a function of semimajor axis a,
eccentricity e, and eccentric anomaly E. Kepler introduced another angle called themean
anomaly, M, defined as the parenthetical term in the TOF equation (4.16):

M =E−esinE (4.17)

The reader should note that mean anomaly M is indeed an angle (with units of radians)
but it is defined by the nonlinear function (4.17). Hence, mean anomaly is not a physical
angle that can be visualized in any way. Using mean anomaly, we express Eq. (4.16) as

M = n t1− tp =E−esinE (4.18)

Equation (4.18) is another form of Kepler’s equation. The dimensions of Eq. (4.18) are
easy to identify: angle M (in rad) is the product of the constant angular rate n (in rad/s)
and TOF t1− tp (in s). Although we cannot visualize mean anomaly M, Figure 4.2 and
Eq. (4.17) show that at periapsis θp = Ep =Mp = 0 and at apoapsis θa = Ea =Ma = 180 .
The angular velocity term n in Eq. (4.18) is called the mean motion. Comparing Eqs.
(4.16) and (4.18), we see that mean motion is
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n=
μ

a3
(4.19)

The constant mean motion n is the time rate of mean anomaly, or n= dM/dt. One way
to think of the mean motion n is to divide one orbital revolution (dM = 2π) by the orbital
period (dt = Tperiod):

n=
dM
dt

=
2π

Tperiod
=

2π
2πa3/2/ μ

=
μ

a3
(4.20)

This simple calculation verifies Eq. (4.19).
Equation (4.16) or (4.18) determines the TOF from periapsis to a prescribed angular

position defined by eccentric anomaly E. Figure 4.3 shows a more general case where we
desire the elapsed TOF between positions 1 and 2. Using Kepler’s equation (4.18), the
TOF from position 1 to position 2 is

TOF1−2 = t2− t1 =
1
n

M2−M1 (4.21)

where the two mean anomalies are M1 = E1−esinE1 and M2 = E2−esinE2, respectively.
Here we use TOF1–2 to denote TOF from position 1 to position 2. One way to interpret
Eq. (4.21) is the difference in the elapsed times from periapsis to each respective position,
that is,

TOF1−2 = t2− tp − t1− tp = t2− t1 (4.22)

Note that Eq. (4.21) results in the orbital period when M1 = 0 (periapsis) and M2 = 2π
(one revolution):

One revolution TOF1−2 =
1

μ/a3
2π−0 =

2π
μ
a3/2 =Tperiod (4.23)

In order to use Kepler’s equation in the form of Eq. (4.21) with t2 > t1, mean anomalyM2

must be greater than mean anomaly M1. Figure 4.4 shows a counter scenario where

1

r1

2

r2

TOF1-2 = t2 – t1

Periapsis

Figure 4.3 Time of flight from position 1 to position 2.
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M2 <M1: the initial eccentric anomaly E1 (and hence M1) is greater than 180 (when
expressed as a positive angle) and the terminal eccentric anomaly E2 (andM2) is less than
180 . For scenarios where the satellite passes through periapsis en route from position 1
to 2, the simple solution is to add 2π to mean anomaly M2 so that it is greater than M1.

4.2.3 Relating Eccentric and True Anomalies

Kepler’s TOF equation requires the eccentric anomaly E. True anomaly θ is a known
quantity if we have knowledge of the six orbital elements or the position and velocity
vectors r and v. Therefore, we must establish the relationship between true anomaly
θ and eccentric anomaly E. Let us repeat Eq. (4.4), the cosine of E

cosE =
ae+ r cosθ

a

Substituting Eq. (4.12) for radial position r, we obtain

cosE =
ae+ a 1−ecosE cosθ

a
= e+ cosθ−ecosE cosθ (4.24)

Solving Eq. (4.24) for cosine of E yields

cosE =
e+ cosθ
1 + ecosθ

(4.25)

We cannot rely on Eq. (4.25) alone to compute E because the inverse cosine operation
always places the angle in the first or second quadrant, that is, between periapsis and
apoapsis. The sine of eccentric anomaly can be calculated using Eq. (4.11); substituting

b/a= 1−e2 and the trajectory equation r = a 1−e2 1 + ecosθ into Eq. (4.11), we
obtain

asinE =
1

1−e2
a 1−e2

1 + ecosθ
sinθ (4.26)

1

r1

2

r2

TOF1-2 = t2 – t1

Periapsis

Figure 4.4 Time of flight with passage through periapsis.
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Simplifying Eq. (4.26) yields

sinE =
1−e2 sinθ
1 + ecosθ

(4.27)

The reader should carefully and correctly use Eqs. (4.25) and (4.27) to determine the
proper quadrant for E. Recall that the inverse cosine function on a calculator always
places the angular solution in the range [0, π] (first and second quadrants) while the
inverse sine function places the solution in [–π/2, π/2] (first and fourth quadrants).
As a quick example, consider the case where cosE = −0 8660 and sinE = −0 5. Because
cos E is negative, the eccentric anomaly is in the second or third quadrant, or
90 <E < 270 . Because sin E is negative, E is in the third or fourth quadrant, or
180 <E < 360 . Hence, the third quadrant satisfies both cosE < 0 and sinE < 0 and there-
fore the correct eccentric anomaly is E = 210 . When using computer programs such as
MATLAB, the atan2 function will determine the correct quadrant for E given sin E and
cos E as the two inputs.
As we shall soon see, there is a need to determine true anomaly θ from eccentric anom-

aly E. We can multiply both sides of Eq. (4.25) by the denominator term 1+ ecosθ to
obtain

cosE 1 + ecosθ = e+ cosθ (4.28)

Solving for cosine of true anomaly yields

cosθ =
cosE−e
1−ecosE

(4.29)

We have already derived an expression for the sine of true anomaly; Eq. (4.13) is
repeated below:

sinθ =
1−e2 sinE
1−ecosE

(4.13)

Equations (4.29) and (4.13) establish the proper quadrant for true anomaly θ given eccen-
tric anomaly E.
It is possible to develop a single equation that converts θ to E (and vice versa) without

any quadrant ambiguity. To begin, write the tangent half-angle formula and use Eqs.
(4.29) and (4.13) to substitute for cos θ and sin θ

tan
θ

2
=

sinθ
1 + cosθ

=
1−e2sinE
1−ecosE

1 + cosE−e
1−ecosE

(4.30)

=
1−e2 sinE

1−ecosE + cosE−e
(4.31)

Because the denominator of Eq. (4.31) is 1−e 1 + cosE , the right-hand side of
Eq. (4.31) includes the tangent of E/2

tan
θ

2
=

1 + e
1−e

tan
E
2

(4.32)
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Of course, we can solve Eq. (4.32) for the tangent half-angle of eccentric anomaly:

tan
E
2
=

1−e
1 + e

tan
θ

2
(4.33)

Equations (4.32) and (4.33) can be used to convert between true and eccentric anoma-
lies without a quadrant check. Because Eqs. (4.32) and (4.33) both require a single
inverse-trigonometric calculator operation, these equations are likely the preferred
option for converting eccentric anomaly to (or from) true anomaly. The reader should
note, however, that the inverse tangent operation places the angular solution in [–π/2,
π/2]. Therefore, when either true or eccentric anomaly is in the third or fourth quadrant,
the inverse-tangent “calculator” operation using either Eq. (4.32) or (4.33) will result in a
negative angle between –π and 0 rad.

Example 4.1 Figure 4.5 shows a Molniya orbit; a 12-h, highly eccentric orbit used by
Russia for communication satellites. Perigee and apogee altitudes of the Molniya orbit
are 500 km and 39,873 km, respectively. Determine the satellite’s TOF from perigee to
an altitude of 30,000 km for two cases: (a) Case 1: flight-path angle γ > 0 at 30,000 km alti-
tude; and (b) Case 2: flight-path angle γ < 0 at 30,000 km altitude.
Kepler’s equation requires knowledge of mean motion n (which is determined from

semimajor axis) and eccentricity. The orbit’s perigee and apogee radii are

rp = 500km +RE = 6,878 km and ra = 39,873 km +RE = 46,251 km

where RE = 6,378 km. The semimajor axis of the Molniya orbit is

a=
1
2

rp + ra =
1
2
6,878 km + 46,251 km = 26,564 5 km

The mean motion is n= μ/a3 = 1.4582(10–4) rad/s
Eccentricity is

e=
ra−rp
ra + rp

= 0 7411

r1 = r2 = 30,000 km + RE

r2

r1

θ1θ2

Figure 4.5 Molniya orbit (Example 4.1).
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a) Case 1: positive flight-path angle at 30,000 km altitude
Because flight-path angle is positive, the satellite has positive radial velocity and is
between perigee and apogee (r1 in Figure 4.5). We can use the trajectory equation
to solve for the cosine of true anomaly, θ1

r =
p

1 + ecosθ1
= 30,000 km +RE = 36,378 km

Using p= a 1−e2 = 11,975.2 km, we obtain

cosθ1 =
1
e

p
r
−1 = – 0 9052

Because the satellite has not yet reached apogee, true anomaly is in the second quad-
rant and therefore θ1 = 154.85 .
Next, determine the eccentric anomaly using Eq. (4.33):

tan
E1
2
=

1−e
1 + e

tan
θ1
2
= 1 7286, so E1 = 119 90 = 2 0927 rad

Finally, use Kepler’s equation (4.18) to obtain the TOF to position 1:

t1− tp =
1
n

E1−esinE1 = 9,945 2 s = 2 763h

Remember thatE1must be in radians in Kepler’s equation (note that nhas units of rad/s).

b) Case 2: negative flight-path angle at 30,000 km altitude
Because flight-path angle is negative, the satellite has passed apogee and therefore its
true anomaly is between 180 and 360 (i.e., r2 in Figure 4.5). The altitudes of posi-
tions 1 and 2 are the same (30,000 km), and therefore the trajectory equation yields
cosθ2 = −0 9052. However, true anomaly is in the third quadrant: θ2 = 205.15 (see
Figure 4.5). Eccentric anomaly of position 2 is

tan
E2
2
=

1−e
1 + e

tan
θ2
2
= – 1 7286, so E2 = – 119 90 = 240 10 = 4 1905 rad

Note that we added 360 to our inverse-tangent (calculator) result so that E2 is pos-
itive (of course E2 = –119.90 is the same angle as E2 = 240.10 ).
Using Kepler’s equation with E2, we obtain the TOF from perigee to position 2:

t2− tp =
1
n

E2−esinE2 = 33,143 5 s = 9 207h

Example 4.2 Figure 4.6 shows the Molniya orbit discussed in Example 4.1. Determine
the TOF from position r1 (θ1 = 230 ) to position r2 (θ2 = 120 ).
Kepler’s equation (4.21) provides the flight time between two arbitrary positions in

the orbit:

TOF1−2 = t2− t1 =
1
n

M2−M1
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Weknow from Example 4.1 that meanmotion for theMolniya orbit is n = 1.4582(10–4)
rad/s. The mean anomalies are

M1 =E1−esinE1 and M2 =E2−esinE2

We also know from Example 4.1 that eccentricity is e = 0.7411. Using Eq. (4.33), we
find that the eccentric anomaly of position 1 is

tan
E1
2
=

1−e
1 + e

tan
θ1
2
= – 0 8270, so E1 = – 79 18 = 280 82 = 4 9012 rad

Hence the mean anomaly of position 1 is M1 =E1−esinE1= 5.6291 rad.
The eccentric anomaly of position 2 is

tan
E2

2
=

1−e
1 + e

tan
θ2
2
= 0 6679, so E2 = 67 48 = 1 1778 rad

However, because the satellite passes through perigee on the way to position 2 (see
Figure 4.6), we must add 2π to eccentric anomaly E2 so that E2 > E1 (andM2 >M1). Using
E2 = 1.1778 rad + 2π = 7.4609 rad, the associated mean anomaly is M2 =E2−esinE2 =
6.7764 rad.
Finally, the flight time from 1 to 2 is

TOF1−2 = t2− t1 =
1
n

M2−M1 = 7,867 5 s = 2 185h

As a side note, the TOF calculations are correct if we express eccentric anomaly E1
as a negative angle (E1 = –79.18 = –1.3820 rad) with the second eccentric anomaly
E2 = 67.48 = 1.1778 rad. With this convention, we maintain E2 > E1 (andM2 >M1) with-
out adding 2π to E2. However, it is this author’s opinion that maintaining positive
eccentric and mean anomalies in all calculations (and hence adding 2π when the
satellite passes through periapsis) is a systematic approach that will not yield negative
flight times.

r2

r1

θ1

θ2

2

TOF1-2 = t2 – t1

1

Figure 4.6 Molniya orbit (Example 4.2).
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4.3 Parabolic and Hyperbolic Time of Flight

4.3.1 Parabolic Trajectory Flight Time

We can determine transit time on a parabolic trajectory by using integral calculus. Our
analytical derivation begins with the angular momentum expressed as the product of
radial position r and transverse velocity vθ = rθ

h= r2θ = r2
dθ
dt

(4.34)

Separating variables and substituting the trajectory equation r = h2/μ / 1 + ecosθ
yields

hdt =
h4/μ2

1 + ecosθ 2dθ (4.35)

or,

μ2

h3
dt =

1

1 + ecosθ 2dθ (4.36)

Integrating both sides of Eq. (4.36) from periapsis (θ = 0) to position 1 on the orbit yields

t

tp

μ2

h3
dt =

θ

0

1

1 + ecosθ 2dθ (4.37)

Note that the lower bound on the left-hand side integral is tp because we are computing
TOF from periapsis to a position on the parabola. For a parabola, we have e = 1 and
Eq. (4.37) becomes

t

tp

μ2

h3
dt =

θ

0

1

1 + cosθ 2dθ (4.38)

The analytical integral of Eq. (4.38) is a relatively simple expression:

μ2

h3
t− tp =

1
2
tan

θ

2
+
1
6
tan3

θ

2
(4.39)

Let’s define the parabolic anomaly B≡ tan θ/2 and express angular momentum in
terms of parameter by using h= pμ. With these substitutions, Eq. (4.39) becomes

2
μ

p3
t− tp =B+

1
3
B3 (4.40)

Equation (4.40) is called Barker’s equation. It determines the TOF from periapsis to a
position on the parabolic trajectory denoted by true anomaly θ. Note that parabolic
anomaly B is not an angle (unlike eccentric anomaly E or mean anomaly M) but that

it is dimensionless. The reader should also note that the term μ/p3 in Barker’s equation
(4.40) has the appropriate units of per second and has a similar form as mean motion

n= μ/a3 in Kepler’s equation.
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Figure 4.7 shows the TOF between two arbitrary positions on a parabolic trajectory.
For this scenario, we may express Eq. (4.40) as

t2− t1 =
1
2

p3

μ
B2 +

1
3
B3
2 − B1 +

1
3
B3
1 (4.41)

where parabolic anomalies B1 and B2 are computed from their respective true anomalies.
When the satellite is approaching periapsis (π < θ < 2π, or the “arrival branch”), parabolic
anomaly B is always negative.When the satellite is moving away from periapsis (0 < θ < π,
or the “departurebranch”), parabolic anomalyB is alwayspositive.Ofcourse,B = 0when the
satellite is at periapsis. The following example illustrates TOF calculations for a parabola.

Example 4.3 Figure 4.8 shows a geocentric satellite on a parabolic trajectory with a
perigee altitude of 25,500 km. Compute the TOF between position vectors r1 and r2 with
true anomalies θ1 = 315 and θ2 = 90 , respectively.

TOF1-2 = t2 – t1

r2

Arrival 
branch

r1

Departure 
branch

1

2

Figure 4.7 Time of flight on a parabolic trajectory.

Perigee

TOF1-2 = t2 – t1
r2

r1

2

1

Figure 4.8 Time of flight on a parabolic trajectory (Example 4.3).
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Barker’s equation (4.41) provides the transit time between two positions on a parabolic
orbit. First, we determine the parameter p from the perigee radius:

rp =
p

1 + e
=
p
2
= 25,500 km +RE = 31,878 km

Therefore, p = 63,756 km.
Next, compute the two parabolic anomalies from the respective true anomalies:

Position 1 θ1 = 315 B1 = tan
θ1
2
= −0 4142

Position 2 θ2 = 90 B2 = tan
θ2
2
= 1

Note that because parabolic anomaly B is computed using a tangent half-angle we are
assured that B2 > B1. This condition is guaranteed whether or not the satellite passes
through periapsis.
Finally, use Eq. (4.41) to compute the parabolic flight time between r1 and r2:

t2− t1 =
1
2

p3

μ
B2 +

1
3
B3
2 − B1 +

1
3
B3
1 = 22,581 8 s = 6 273h

4.3.2 Hyperbolic Trajectory Flight Time

It is possible to derive a TOF equation for a hyperbolic trajectory using either analytical
or geometrical methods. We will not present either derivation here; the interested reader
can consult Vallado [2; pp. 52–57] and Curtis [3; pp. 165–169] for details.
Flight time from periapsis to an arbitrary position on a hyperbola (defined by true

anomaly θ) is

t− tp =
−a3

μ
esinhF −F (4.42)

where F is the hyperbolic anomaly. Recall that semimajor axis a is negative for a hyper-

bolic trajectory (energy is positive) and therefore the term −a3/μ in Eq. (4.42) is a real
number.
Hyperbolic sine of F can be expressed as a function of true anomaly and eccentricity:

sinhF =
e2−1sinθ
1 + ecosθ

(4.43)

We can compute hyperbolic anomaly F by simply applying the inverse hyperbolic sine
operation to Eq. (4.43) because there is no quadrant ambiguity. However, if a calculator
does not possess the inverse hyperbolic sine function, the following expression may
be used

F = ln z + 1 + z2 (4.44)
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where z = sinhF . Whenever a satellite is on the “departure branch” of a hyperbola
(0 < θ < π), hyperbolic anomaly F is positive; whenever a satellite is on the “arrival branch”
(π < θ < 2π), F is negative. The reader should recall that true anomaly on a hyperbolic
trajectory has asymptotic limits:

θ∞ = cos−1
−1
e

(4.45)

Hence, on the departure branch we have 0 < θ < θ∞ (and F > 0), and on the arrival branch
we have −θ∞ < θ < 0 (and F < 0).
Time of flight between two arbitrary positions on a hyperbola is

t2− t1 =
−a3

μ
esinhF2−F2 − esinhF1−F1 (4.46)

Equation (4.46) is reduced to the hyperbolic flight time from periapsis equation (4.42)
because sinhF1 = F1 = 0 when θ1 = 0.

Example 4.4 TheMars Exploration Rover-A (MER-A) spacecraft Spirit departed Earth
on June 10, 2003 on a hyperbolic trajectory. An upper-stage rocket was fired to increase
the geocentric velocity to 11.4 km/s at an altitude of 225 km above the Earth. Figure 4.9
shows that the flight-path angle is zero after upper-stage burnout (Figure 4.9 is not to
scale). Determine the flight time from upper-stage burnout to the lunar-orbit crossing
at a geocentric radius of 384,400 km.
Because flight-path angle is zero, the upper-stage burnout point in Figure 4.9 is perigee

(note that in Example 2.9 the burnout flight-path angle for the MER-A spacecraft was
γbo = 5 ; in this example we assume that the upper-stage burnout is at perigee). We can

vp = 11.4 km/s

Earth

γp = 0

rp = 225 km +RE

Upper-stage burnout:
Lunar 
orbit

MER-A at lunar-orbit crossing 
(r = 384,400 km)

Hyperbolic 
departure

vp

Figure 4.9 MER-A hyperbolic departure trajectory (Example 4.4).
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denote velocity and radius at perigee as vp = 11.4 km/s and rp = 225 km + RE = 6,603 km.
Next, we compute the characteristics of the MER-A hyperbolic departure trajectory:

Energy ξ=
v2p
2
−
μ

rp
= 4 6135 km2/s2 =

−μ

2a

Semimajor axis a=
−μ

2ξ
= – 43,199 3 km

Angular momentum h= rpvp = 75,274 2 km2/s = pμ

Parameter p=
h2

μ
= 14,215 3 km= a 1−e2

Eccentricity e= 1−
p
a
= 1 1528

These calculations confirm that the orbit is a hyperbola.
We need the true anomaly at lunar-orbit crossing in order to determine the hyperbolic

anomaly F in the TOF equation (4.42). Using the trajectory equation evaluated at the
lunar-orbit radial distance,

r =
p

1 + ecosθ
= 384,400 km

we find that true anomaly is θ = 146.65 (see Figure 4.9). Using Eq. (4.43) to compute
sinh F and F yields

sinhF =
e2−1 sinθ
1 + ecosθ

= 8 5275 and F = 2 8399

Using a, e, sinh F, and F in the hyperbolic TOF equation, we obtain

t− tp =
−a3

μ
esinhF −F = 99,423 6 s = 27 62h = 1 15days

These calculations show that the MER-A spacecraft required slightly more than one day
to cross the moon’s orbit on its Earth-departure hyperbolic trajectory.

Example 4.5 The Mars Exploration Rover-A (MER-A) spacecraft Spirit approached
Mars on a hyperbolic trajectory. Figure 4.10 shows the hyperbolic approach where posi-
tion 1 has a radial distance r1 = 60,000 km fromMars and position 2 has a radial distance
r2 = 3,521 km. Position 2 is the so-called “entry interface” (EI) where the spacecraft
begins to enter the upper Martian atmosphere at an altitude of approximately 125 km
(of course, two-body motion does not hold for flight beyond EI; comparing
Figure 4.10 with Figure 2.17 shows that we are only considering the arrival branch of the
hyperbola). The velocity and flight-path angle of MER-A at position 2 are v2 = 5.4 km/s
and γ2 = –11.5 , respectively. Determine the flight time from r1 to r2 (EI).
As with Example 4.4, we begin by computing the characteristics of the hyperbolic

trajectory from the given data (note that the gravitational parameter for Mars is
μM = 42,828 km3/s2).
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Energy ξ=
v22
2
−
μM
r2

= 2 4164km2/s2 =
−μM
2a

Semimajor axis a=
−μM
2ξ

= – 8,861 9km

Angular momentum h= r2v2 cosγ2 = 18,631 7 km2/s = pμM

Parameter p=
h2

μM
= 8,105 5 km= a 1−e2

Eccentricity e= 1−
p
a
= 1 3837

In order to determine the hyperbolic anomalies at positions 1 and 2, we need the respec-
tive true anomalies at these locations in the trajectory. Using the trajectory equation at
position 1, we find

Position 1 r1 =
p

1 + ecosθ1
= 60,000 km θ1 = cos−1

1
e

p
r1
−1 = – 128 69

Note that θ1 is negative because the spacecraft is approachingMars. The trajectory equa-
tion is applied at position 2 (entry interface) to yield

Position 2 r2 =
p

1 + ecosθ2
= 3,522 km θ2 = cos

−1 1
e

p
r2
−1 = – 19 78

As before, θ2 is negative because the MER-A spacecraft is approaching Mars (recall that
flight-path angle γ2 is negative).
Using Eq. (4.43) to compute sinh F and F at both locations yields

Position 1 sinhF1 =
e2−1sinθ1
1 + ecosθ1

= – 5 5260 and F1 = – 2 4107

TOF1-2 = t2 – t1

r2

r1

Entry interface (EI)

Mars’ atmosphere

MER-A at r1 = 60,000 km

Theoretical extension of 
hyperbolic trajectory

Periapsis

Figure 4.10 MER-A hyperbolic arrival trajectory (Example 4.5).
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Position 2 sinhF2 =
e2−1 sinθ2
1 + ecosθ2

= – 0 1406 and F2 = – 0 1402

Finally, using the hyperbolic TOF equation (4.46), we obtain

t2− t1 =
−a3

μM
esinhF2−F2 − esinhF1−F1 = 20,886 s = 5 8h

TheMER-A spacecraft required nearly 6 h to reachMars’ atmospheric entry point from a
radial distance of 60,000 km.
As a side note, we can use the energy equation to compute the hyperbolic arrival veloc-

ity “at infinity”

Energy ξ=
v2∞
2

= 2 4164km2/s2 v∞ = 2 20km/s

This is the Mars-relative velocity of the MER-A spacecraft as it enters Mars’ gravity field.
In Chapter 10, we will address this issue further when we discuss interplanetary
trajectories.

4.4 Kepler’s Problem

The previous sections and example problems have demonstrated that TOF between two
points on a conic section (ellipse, parabola, or hyperbola) is relatively easy to compute if
the orbital characteristics (a and e) and orbital positions (θ1 and θ2) are known. For
example, the right-hand side of Kepler’s equation (4.21)

t2− t1 =
a3

μ
E2−esinE2 − E1−esinE1 (4.47)

is completely determined if we know a, e, E1, and E2. Of course, eccentric anomalies E1
and E2 can be computed from true anomalies θ1 and θ2 and eccentricity e.
The inverse problem is not so straightforward. Suppose we know the orbital elements a

and e and the initial orbital position indicated by true anomaly θ1. We wish to determine
the future (or propagated) angular position of the satellite θ2 after transit time t2− t1.
Equation (4.21) presents the flight time in terms of the change in mean anomaly

t2− t1 =
1
n

M2−M1 (4.48)

Solving Eq. (4.48) for mean anomaly M2 yields

M2 =M1 + n t2− t1 (4.49)

Because we know the initial mean anomaly M1 (determined using true anomaly θ1) and
flight time t2− t1, we can use Eq. (4.49) to calculate the propagated mean anomaly M2.
Recall that mean anomaly is a function of eccentric anomaly

M2 =E2−esinE2 (4.50)
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Equation (4.50) is, of course, a form of Kepler’s equation. However, we cannot solve
Eq. (4.50) for eccentric anomaly E2 because it is a transcendental equation [i.e., we cannot
manipulate Eq. (4.50) so that E2 appears by itself on one side of the equals sign]. Solving
Eq. (4.50) is known asKepler’s problem: determining eccentric anomaly E (position in the
orbit) from a known value of mean anomaly M.
Because no closed-form solution to Eq. (4.50) exists, we must resort to an iterative

numerical search. To begin, let us pose Eq. (4.50) as a root-solving problem (in addition,
let us drop the subscript 2 for convenience):

f E = E−esinE−M = 0 (4.51)

Perhaps the most straightforward approach is to use Newton’s method to iteratively
search for the root of Eq. (4.51):

Ek + 1 =Ek −
f Ek
f Ek

(4.52)

where f (Ek) is the derivative of Eq. (4.51) with respect to E

f E =
df
dE

= 1−ecosE (4.53)

We can now summarize an iterative algorithm for solving Kepler’s problem:

1) Determine a, e, and n from the orbit characteristics. Compute the propagated mean
anomaly M using Eq. (4.49) and the known initial mean anomaly and TOF.

2) Guess a trial (starting) value of eccentric anomaly Ek. Set the iteration index at k = 1.
3) Use Eq. (4.51) to evaluate f(Ek) and check for convergence: if f Ek < ε, then the iter-

ation has converged and skip to step 5.
4) Use Eq. (4.52) to select a new trial value for eccentric anomaly [making use of

Eq. (4.53) to evaluate the derivative f (Ek)]. Update the iteration index k = k + 1 and
return to step 3.

5) Compute the true anomaly θ of the propagated position from the converged value of
eccentric anomaly E.

The tolerance for convergence may be set at ε = 10−8 and convergence typically occurs
after three to five iterations for orbits with e < 0.8.
A good initial guess for E (step 2) will reduce the total number of iterations. Figure 4.11

shows mean anomalyM as a function of eccentric anomaly E for a range of eccentricity.
Figure 4.11 and Eq. (4.50) show that for nearly circular orbits (e≈0), E =M is a good start-
ing guess for Newton’s method. In fact, Newton’s method will always converge from the
starting guess E =M. Battin [4; pp. 199–200] presents a power-series solution for eccen-
tric anomaly that was originally developed by Lagrange. The power series to second
order is

E =M + esinM +
e2

2
sin2M (4.54)

Equation (4.54) provides a better starting guess (compared with E =M) for elliptical
orbits and typically reduces the numerical search by one to two iterations. As a quick
example, consider the case where eccentric anomaly E = 5 rad, eccentricity e = 0.7, and
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the corresponding mean anomaly is M =E−esinE= 5.6712 rad. Hence, the initial guess
E =M (=5.6712 rad) exhibits a 13% error. The initial guess using Eq. (4.54) is E = 5.0387
rad, which corresponds to an error of less than 1%.

Example 4.6 Consider again the Molniya orbit discussed in Examples 4.1 and 4.2. If a
satellite is located at true anomaly θ1 = 260 at time t1, determine the position r2 and true
anomaly θ2 of the satellite 50 min later.
From Example 4.1, we know the semimajor axis, mean motion, and eccentricity of the

Molniya orbit:

a= 26,564 5 km, n= μ/a3 = 1 4582 10– 4 rad/s, e= 0 7411

Using Eq. (4.33), we obtain the initial eccentric anomaly E1 from θ1 and e

tan
E1
2
=

1−e
1 + e

tan
θ1
2
= – 0 4596, so E1 = – 49 36 , or E1 = – 0 8615 rad

Hence, the corresponding initial mean anomaly is M1 =E1−esinE1= –0.2992 rad. The
propagated mean anomaly is

M2 =M1 + n t2− t1 = – 0 2992 rad + 1 4582 10– 4 rad/s 50 min 60 s/min

= 0 1383 rad

Therefore, we can now express Kepler’s equation in terms of the propagated position 2:

M2 =E2−esinE2

0 2π
Eccentric anomaly, E 

0

2π

M
ea

n 
an

om
al

y,
 M

 

e = 0

e = 0.2

e = 0.4

e = 0.6

e = 0.8

e = 0.99

π

π

Figure 4.11 Mean anomaly as a function of eccentric anomaly.
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Newton’s method will be used to numerically search for the eccentric anomaly E2 that
satisfies Kepler’s equation. We use Eq. (4.54) to determine an initial guess for the pro-
pagated eccentric anomaly

E 1
2 =M2 + esinM2 +

e2

2
sin2M2 = 0 3155 rad

Here the superscript (1) indicates the iteration index while the subscript 2 indicates the

propagated position (point 2) in the orbit. Next, we use Eq. (4.51) to test if E 1
2 is a solu-

tion (or root):

f E 1
2 = E 1

2 −esinE 1
2 −M2 = – 0 0528

Clearly, E 1
2 is not the solution. Equation (4.53) is used to compute the derivative

f E 1
2 = 1−ecosE 1

2 = 0 2955

and Newton’s method, Eq. (4.52), is used to compute the next trial value of E2

E 2
2 =E 1

2 −
f E 1

2

f E 1
2

= 0 4940 rad

The error function using the updated E2 is

f E 2
2 = E 2

2 −esinE 2
2 −M2 = 0 0043

The error function f(E2) has been significantly reduced after the first Newton-iteration
step. Newton’s method is repeated until convergence is achieved in four iterations.
Table 4.1 summarizes the numerical search.
The eccentric anomaly of the satellite 50 min after the given initial position is E2 =

0.4815 rad. Because we want true anomaly of the propagated position, we employ
Eq. (4.32) to convert E2 to θ2

tan
θ2
2
=

1 + e
1−e

tan
E2
2
= 0 6367 θ2 = 2tan−1 0 6367 = 1 1339 rad

Table 4.1 Numerical solution of Kepler’s problem (Example 4.6).

Iteration, k
Trial eccentric anomaly, E k

2

(rad) Error function, f E k
2

1 0.315452 –0.052767

2 0.494041 0.004325

3 0.481597 2.7001(10−5)

4 0.481518 1.0623(10−9)
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Therefore, θ2 = 64 97

Radius at the propagate position is determined using the trajectory equation:

r2 =
p

1 + ecosθ2
=

a 1−e2

1 + ecosθ2
= 9,116 1 km

4.5 Orbit Propagation Using Lagrangian Coefficients

The previous sections have presented TOF expressions for elliptical orbits and parabolic
and hyperbolic trajectories. These equations have assumed that the orbit’s energy and
angular momentum (i.e., a and e) are known. A more fundamental problem is determin-
ing the orbit, given two known position vectors r1 and r2 and the TOF between them. As
mentioned in Chapter 3, this important problem was first solved by Johann Heinrich
Lambert in 1761 and is known as Lambert’s problem. Solving Lambert’s problem leads
to methods for orbit determination (Chapter 3), orbital maneuvering (Chapter 7), and
interplanetary mission design (Chapter 10). We will discuss Lambert’s problem in more
detail in the following section of this chapter.
In this section, we present amethod for propagating an orbit ahead in time by using the

so-called Lagrangian coefficients. This technique is important because it is frequently
used in algorithms that solve Lambert’s problem. We will present one solution method
that uses Lagrangian coefficients in Section 4.6.
It may be useful to begin with the intended result: we wish to compute the position and

velocity vectors of a satellite at a future time t as a linear combination of the position
and velocity vectors at some initial time t0 = 0, that is,

r t = f r0 + gv0 (4.55a)

v t = f r0 + gv0 (4.55b)

In Eq. (4.55), the initial state of the satellite is (r0,v0) and the propagated (predicted) state
at time t is (r(t),v(t)). Recall from Chapter 3 that the six coordinates of the combined (r,v)
vectors can be transformed into the six classical orbital elements, including the true
anomaly that pertains to the particular instant in time. The four scalar coefficients f,

g, f , and g in Eq. (4.55) are the Lagrangian coefficients. Clearly, the coefficients f and
g are time derivatives of f and g because the time derivative of Eq. (4.55a) yields
Eq. (4.55b), or r t = v(t). We will now derive equations for these four coefficients.
It turns out that the four Lagrangian coefficients are not independent. To show this,

use Eq. (4.55) to compute the cross product of r(t) and v(t)

r t × v t = f r0 + gv0 × f r0 + gv0 (4.56)

The left-hand side of Eq. (4.56) is h; the right-hand side is expanded below

h= f f r0 × r0 + f gr0 × v0− f gr0 × v0 + ggv0 × v0 (4.57)

Because the right-hand side cross products are r0 × r0 = 0, r0 × v0 =h, and v0 × v0 = 0,
Eq. (4.57) becomes
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h= f gh− f gh (4.58)

Hence, the scalar coefficients of h in Eq. (4.57) must satisfy

1 = f g− f g (4.59)

Therefore, we can use Eq. (4.59) and three known Lagrangian coefficients to determine
the fourth coefficient.
To begin our analysis, let us express the initial position and velocity vectors in the peri-

focal (or PQW) frame [see Eqs. (3.18) and (3.23)]:

r0 = r0 cosθ0P+ r0 sinθ0Q (4.60a)

v0 =
−μ

h
sinθ0P+

μ

h
e+ cosθ0 Q (4.60b)

Recall that the unit vector P is along the periapsis direction,Q is in the orbital plane and
90 from periapsis in the direction of motion, and W is normal to the orbit (along the
angular momentum vector h). We wish to invert Eq. (4.60) and solve for unit vectors P
andQ in terms of the initial state (r0, v0). One way to do this is to group the four terms on
the right-hand side of Eq. (4.60) in a two-dimensional matrix:

C=
r0 cosθ0 r0 sinθ0
−μ

h
sinθ0

μ

h
e+ cosθ0

(4.61)

The inverse of matrix C is

C−1 =
1

det C

μ

h
e+ cosθ0 −r0 sinθ0

μ

h
sinθ0 r0 cosθ0

(4.62)

where the determinant of C is angular momentum h [the reader should note that the
cross product r0 × v0 with r0 and v0 expressed in terms of their P and Q components
leads to r0 × v0 =h= det C W]. Using Eq. (4.62), we can write the P and Q unit vectors
in terms of r0 and v0:

P=
μ

h2
e+ cosθ0 r0−

r0
h
sinθ0v0 (4.63a)

Q =
μ

h2
sinθ0r0 +

r0
h
cosθ0v0 (4.63b)

Now, write an expression for r(t) and v(t) vectors at an arbitrary future time using peri-
focal coordinates

r t = r cosθP+ r sinθQ (4.64a)

v t =
−μ

h
sinθP+

μ

h
e+ cosθ Q (4.64b)

Equation (4.64) has the same format as Eq. (4.60); however, Eq. (4.64) uses the propa-
gated radius and true anomaly r and θ, respectively. Substituting Eq. (4.63) for P and
Q in Eq. (4.64) and collecting terms yields
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r t =
μr cosθ e+ cosθ0 + μr sinθ sinθ0

h2
r0 +

−r cosθ r0 sinθ0 + r sinθ r0 cosθ0
h

v0

(4.65a)

v t =
−μ2 sinθ e+ cosθ0 + μ2 e+ cosθ sinθ0

h3
r0

+
μr0 sinθ sinθ0 + μr0 e+ cosθ cosθ0

h2
v0

(4.65b)

Comparing Eqs. (4.65) and (4.55), we can identify the four Lagrangian coefficients:

f =
μrcosθ e+ cosθ0 + μrsinθ sinθ0

h2
(4.66)

g =
−r cosθ r0 sinθ0 + r sinθ r0 cosθ0

h
(4.67)

f =
−μ2 sinθ e+ cosθ0 + μ2 e+ cosθ sinθ0

h3
(4.68)

g =
μr0 sinθ sinθ0 + μr0 e+ cosθ cosθ0

h2
(4.69)

Note that all four Lagrangian coefficients depend on products of sine and cosine of θ0 and
θ. Therefore, these combinations may be written as trigonometric functions of differ-
ences in true anomaly (i.e., Δθ = θ−θ0). Furthermore, we may substitute h= pμ,
e= p/r−1 /cosθ, and e= p/r0−1 /cosθ0 (from the trajectory equation) in order to
express the Lagrangian coefficients in terms of p. Using these substitutions, Eqs.
(4.66)–(4.69) are reduced to (somewhat) simpler expressions:

f = 1−
r
p

1−cosΔθ (4.70)

g =
rr0 sinΔθ

pμ
(4.71)

f =
μ

p
1−cosΔθ

p
−
1
r
−
1
r0

tan
Δθ
2

(4.72)

g = 1−
r0
p

1−cosΔθ (4.73)

where Δθ = θ−θ0 is the change in true anomaly between position vectors r and r0. Note
that when Δθ = 0 (i.e., no propagation ahead in time), Eqs. (4.70)–(4.73) show that f = 1,
g = 0, f = 0, and g = 1. Hence, when Δθ = 0 we obtain r t = f r0 + gv0 = r0 and

v t = f r0 + gv0 = v0 as expected.
We can now summarize our orbit-propagation method:

1) Given the initial state (r0, v0), compute the parameter p from angular momentum
(h= r0 × v0) and semimajor axis a from energy (ξ= v20/2−μ/r0 = −μ/2a). Determine
eccentricity e from p and a (e= 1−p/a).

2) Determine the initial true anomaly θ0 from the trajectory equation r0 = p/ 1 + ecosθ0 .
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3) Select the propagated (future) true anomaly
θ and compute the propagated radius using
the trajectory equation r = p/ 1 + ecosθ .

4) Compute the four Lagrangian coefficients
using Eqs. (4.70)–(4.73) with knowledge of
the four values Δθ = θ−θ0, r0, r, and p.

5) Calculate the propagated state (r, v) using
the Lagrangian coefficients in Eq. (4.55).

Figure 4.12 shows orbit propagation from
(r0, v0) to (r, v) using the Lagrangian coefficients.
It is useful to step back and reexamine the

propagation method previously summarized.
Because we know the initial state (r0, v0), we
can compute the corresponding six orbital ele-
ments (a, e, i,Ω, ω, θ0). When we select the pro-

pagated (future) true anomaly θ (step 3), we can simply compute the propagated (r, v)
vectors by using the six orbital elements (a, e, i,Ω,ω, θ) and the transformation methods
outlined in Chapter 3. So, orbit propagation using the Lagrangian coefficients provides
an alternative technique (and perhaps a more compact method) for determining the
future state (r, v) from the initial state (r0, v0) for a selected orbit position θ. The key here
is that the orbit is known and we have selected the future angular position θ. The more
fundamental (and more difficult) problem is Lambert’s problem: determine the orbit
given two position vectors r0 and r and the corresponding TOF.
As previously mentioned, Lambert’s problem will be addressed in the next section.

One way to formulate Lambert’s problem is to express the Lagrangian coefficients in
terms of change in eccentric anomaly ΔE and TOF. To do so, we start by rewriting
the initial position vector in perifocal coordinates, Eq. (4.60), in terms of initial eccentric
anomaly E0

r0 = acosE0−ae P+ a 1−e2 sinE0Q (4.74)

where the P coordinate (r0 cos θ0) is obtained from Eq. (4.4) and the Q coordinate
(r0 sin θ0) is the product of Eqs. (4.12) and (4.13). Next, take the time derivative
of Eq. (4.74)

v0 = r0 = −aE0 sinE0P+ aE0 1−e2cosE0Q (4.75)

Recall that we determined the time rate of eccentric anomaly in the derivation of Kepler’s
equation in Section 4.2. Equation (4.14) is repeated below (with the appropriate
subscript)

E0 =
μ

a3
1

1−ecosE0
(4.76)

r0
r

v ∆θ

v0
00

00

vrv

vrr

gf
. .

gf

+=
+=

Figure 4.12 Orbit propagation from state
(r0,v0) to (r,v).
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Equation (4.12) shows that 1−ecosE0 = r0/a. Substituting this result into Eq. (4.76), we
obtain a simple expression for E0

E0 =
1
r0

μ

a
(4.77)

Substituting Eq. (4.77) for E0 in Eq. (4.75) yields

v0 =
− μa

r0
sinE0P+

μa

r0
1−e2 cosE0Q (4.78)

The propagated state (r, v) at a future eccentric anomaly E is computed using Eqs. (4.74)
and (4.78)

r= acosE−ae P+ a 1−e2 sinEQ (4.79a)

v =
− μa

r
sinEP+

μa

r
1−e2 cosEQ (4.79b)

The subsequent steps follow the same procedure that was outlined at the beginning
of this section: (1) invert Eqs. (4.74) and (4.78) and solve for the P and Q unit vectors;
(2) substitute the P and Q vectors into Eq. (4.79); and (3) express the trigonometric
products as sine and cosine of the difference in eccentric anomaly ΔE =E−E0. We will
not present the details of these steps. The resulting Lagrangian coefficients in terms of
ΔE are

f = 1−
a
r0

1−cosΔE (4.80)

g = t− t0 −
a3

μ
ΔE−sinΔE (4.81)

f =
− μasinΔE

rr0
(4.82)

g = 1−
a
r
1−cosΔE (4.83)

where ΔE = E−E0 is the change in eccentric anomaly between position vectors r and r0.
Equations (4.80)–(4.83) determine the Lagrangian coefficients in terms of the difference
in eccentric anomalyΔE. Note that the g coefficient, Eq. (4.81), depends on the flight time
t− t0 from position r0 to r. In addition, note that when ΔE = 0 and t− t0 = 0 (i.e., no prop-

agation), Eqs. (4.80)–(4.83) show that f = 1, g = 0, f = 0, and g = 1 as expected.
In summary, we may compute the four Lagrangian coefficients using the eccentric

anomaly difference ΔE [i.e., Eqs. (4.80)–(4.83)], or the true anomaly difference Δθ
[i.e., Eqs. (4.70)–(4.73)]. Both sets of equations yield identical results as long as ΔE
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corresponds to Δθ and eccentricity e. The following two examples illustrate orbit prop-
agation with the Lagrangian coefficients computed using Δθ and ΔE.

Example 4.7 A satellite has the following initial position and velocity vectors in the
Earth-centered inertial (ECI) frame:

r0 =

−15,634

4,689

7,407

km, v0 =

−4 6954

−2 3777

0 6497

km/s

Propagate the orbit and determine the position and velocity vectors (r, v) corresponding
to a change in true anomaly of Δθ = 80 .
We can compute the Lagrangian coefficients using Eqs. (4.70)–(4.73) and true anomaly

difference Δθ. To do so, we need to calculate the parameter p and radii r0 and r. Because
the radius is computed from the trajectory equation, we require eccentricity e and the
initial and propagated true anomalies, θ0 and θ. Therefore, we begin by computing
the basic orbital characteristics (energy and angular momentum) from the initial state
(r0, v0):

Initial radius r0 = r0 = 17,924 1 km

Initial velocity v0 = v0 = 5 3031km/s

Energy ξ=
v20
2
−
μ

r0
= −8 1771 km2/s2

Semimajor axis a=
−μ

2ξ
= 24,373 0 km

Angular momentum h= r0 × v0 = 20,658 −24,621 59,190 T km2/s

Parameter p=
h2

μ
= 11,380 8 km

Eccentricity e= 1−
p
a
= 0 7301

We need to compute the propagated radius (magnitude r) using the trajectory equation
and propagated true anomaly θ = θ0 +Δθ. Because we know r0, p, and e, we can compute
the initial true anomaly from the trajectory equation:

r0 =
p

1 + ecosθ0
cosθ0 =

1
e

p
r0
−1 = −0 5

Because cosθ0 < 0, the initial true anomaly θ0 could be in the second or third quadrant.
The position and velocity dot product yields r0 v0 = r0r0 = 67,071 km2/s > 0, and there-
fore θ0 is in the second quadrant because radial velocity is positive. Therefore, initial true
anomaly is θ0 = cos−1 −0 5 = 120 and propagated true anomaly is θ = θ0 +Δθ = 200 .
Propagated radius is r = p/ 1 + ecosθ = 36,253.4 km.
Now we have all four values required for the Lagrangian coefficients. Using Eqs.

(4.70)–(4.73), we can calculate
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f = 1−
r
p

1−cosΔθ = – 1 632334

g =
rr0 sinΔθ

pμ
= 9,501 2766 s

f =
μ

p
1−cosΔθ

p
−
1
r
−
1
r0

tan
Δθ
2

= – 5 345888 10– 5 s– 1

g = 1−
r0
p

1−cosΔθ = – 0 301453

Finally, the propagated state is computed by using the Lagrangian coefficients
in Eq. (4.55):

r= f r0 + gv0 =

−19,092

−30,245

−5,918

km

v = f r0 + gv0 =

2 2512

0 4661

−0 5918

km/s

The reader should note that the Lagrangian coefficients f and g are dimensionless by
observing their respective defining equations and the propagation equations shown

above. Furthermore, the units of the Lagrangian coefficient f are per second, which is
the time derivative of coefficient f. The units of g are seconds, which is the time integral
of coefficient g .
As a final note, the interested reader can determine the classical orbital elements by

transforming either state (r0, v0) or (r, v) using the methods presented in Chapter 3.
This particular orbit is (approximately) a geostationary transfer orbit (GTO) with a
perigee altitude of 200 km and apogee altitude reaching geostationary orbit (note that
e = 0.7301). The remaining classical orbital elements are i = 28.5 , Ω = 40 , and ω = 0
(i.e., the perigee direction is along the ascending node). Figure 4.13 shows the GTO
for this example. Note the initial position at θ0 = 120 and propagated position at
θ = 200 .

Example 4.8 Repeat the orbit-propagation problem outlined in Example 4.7 using the
Lagrangian coefficients defined by the change in eccentric anomaly, ΔE.
Here the Lagrangian coefficients are determined by Eqs. (4.80)–(4.83) and hence we

need a, r0, r, ΔE, and TOF t− t0. We calculated the first three parameters in Example
4.7. Equation (4.33) will yield the eccentric anomalies corresponding to the initial and
propagated true anomalies, θ0 = 120 and θ = 200 :

Initial position tan
E0
2
=

1−e
1 + e

tan
θ0
2
= 0 684102 E0 = 1 1200 rad

Propagated position tan
E
2
=

1−e
1 + e

tan
θ

2
= – 2 239944 E = 3 9814 rad
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Note that the “calculator” inverse-tangent operation for the propagated position would
yield E = −2 3018 rad (third quadrant) which is less than E0. Because ΔE =E−E0 > 0, we
added 2π to obtain E = 3.9814 rad (third quadrant). Using these values, the difference in
eccentric anomaly is ΔE =E−E0 = 2.7814 rad (or 159.4 ).
Next, we use Kepler’s equation (4.21) to compute the TOF from r0 to r

t− t0 =
1
n

M−M0

The mean motion is n= μ/a3= 1.6592(10–4) rad/s, and the two mean anomalies are

Initial mean anomaly M0 = E0−esinE0 = 0 5195 rad

Propagated mean anomaly M = E−esinE = 4 5249 rad

and, therefore, the flight time is t− t0 = 24,140.5 s (or 6.7 h). Using Eqs. (4.80)–(4.83), we
obtain the four Lagrangian coefficients:

f = 1−
a
r0

1−cosΔE = – 1 632334

g = t− t0 −
a3

μ
ΔE−sinΔE = 9,501 2766 s

f =
− μasinΔE

rr0
= – 5 345888 10– 5 s– 1

g = 1−
a
r
1−cosΔE = – 0 301453

The above Lagrangian coefficients are identical to the f, g, f , and g coefficients computed
in Example 4.7 using the difference in true anomaly. Of course, this result should have
been anticipated because ΔE = 159.4 was computed using the true anomalies corre-
sponding toΔθ = 80 in Example 4.7. In other words, bothΔE = 159.4 andΔθ = 80 rep-
resent the same change in orbital position from r0 to r. The propagated position and
velocity vectors (r, v) are computed using the Lagrangian coefficients in Eq. (4.55) and
the results are identical to the solution of Example 4.7.

Examples 4.7 and 4.8 show that orbit propagation is probably easier to perform by
using the Lagrangian coefficients defined in terms of difference in true anomaly Δθ. Cal-
culating the coefficients in terms of ΔE requires the extra steps of computing eccentric

θ
r

θ0r0

v0

v

Figure 4.13 Geostationary transfer orbit propagation from state (r0,v0) to (r,v) (Example 4.7).
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anomalies from true anomalies and the TOF. The real advantage of theΔE formulation is
the case where flight time between r0 and r is known. This scenario is Lambert’s problem,
which we describe in the next section.

4.6 Lambert’s Problem

Figure 4.14a presents the scenario for Lambert’s problem: given two position vectors r1
and r2 and the flight time between them, determine the orbit. Of course, we can deter-
mine all orbital characteristics if we can compute the appropriate velocity vector v1 or v2.
Most solutions to Lambert’s problem use the Lagrangian coefficients and Eq. (4.55a) and
(4.55b), which are repeated here with the slight change in subscripts to match
Figure 4.14a

r2 = f r1 + gv1 (4.84a)

v2 = f r1 + gv1 (4.84b)

The reader should note the difference between the orbit-propagation method pre-
sented in Section 4.5 and Lambert’s problem. In Section 4.5, the initial state (r1, v1) is
known and hence all orbital elements can be determined from energy, the angular
momentum vector, and the eccentricity vector. For Lambert’s problem, the two position
vectors r1 and r2 and corresponding TOF are known and the orbit must be determined.
As we shall see, solving Lambert’s problem requires an iterative search because the
expressions for the Lagrangian coefficients are transcendental functions of the unknown
parameters.
Two possible paths (with the same flight time) exist between position vectors r1 and r2.

Figure 4.14a shows the “short-way” transfer from r1 to r2 where the transfer angle Δθ is
less than 180 . It is possible to determine a different orbit from r1 to r2 (in the opposite
direction of the short-way transfer) where the transfer angle is greater than 180 .
Figure 4.14b shows the “long-way” transfer from r1 to r2 with the same TOF as the
short-way transfer in Figure 4.14a. Figure 4.15 combines Figures 4.14a and 4.14b and
presents the short-way and long-way orbits on the same diagram. The short-way path
is in the counter-clockwise direction while the long-way path is clockwise. Figure 4.15

12

TOF1-2 = t2 – t1

(a)

r1∆θr2 ∆θ < 180° ∆θ > 180°

1
r1r2

(b) TOF1-2 = t2 – t1

2

Figure 4.14 Lambert’s problem: (a) “short-way” transfer Δθ < 180 and (b) “long-way” transfer
Δθ > 180 .

Time of Flight 135



shows that two very different orbits provide a transfer from r1 to r2 with the same TOF
t2− t1. The short-way orbit has less energy (smaller semimajor axis) than the long-way
orbit (dashed line) because a satellite on the short-way path travels a shorter distance
in the same flight time. In some scenarios, the long-way path may become a hyperbolic
trajectory in order to complete the transfer in the same flight time as the short-way path.
The reader should also note that the short-way path is not always in the counter-
clockwise direction (as shown in Figures 4.14a and 4.15); the directions of the short-
way and long-way transfers depend on the position vectors r1 and r2.
We can compute the transfer angle or difference in true anomaly from the dot product

of the two position vectors:

cosΔθ =
r1 r2
r1r2

(4.85)

The “calculator” inverse cosine operation always places the angle in the first or second
quadrant (i.e., a short-way transfer). If the long-way path is desired, then the inverse-
cosine operation of Eq. (4.85) must be subtracted from 2π. The reader should also note
that the angular momentum vector h for the short-way path in Figure 4.15 is directed out
of the page while the angular momentum vector of the long-way path is into the page.
Many different techniques for solving Lambert’s problem have been developed, includ-

ing Lambert’s original formulation, Gauss’ method, and Battin’s method. Vallado [2;
pp. 467–498] presents a very good overview of these various methods including algo-
rithms for solving Lambert’s problem. Here we will formulate Lambert’s problem and
show one iterative technique for obtaining the solution. Using the orbit-propagation

12

r1
r2

TOF1-2 = t2 – t1

TOF1-2 = t2 – t1

“Long-way” orbit
∆θ > 180°

“Short-way” orbit
∆θ < 180°

Figure 4.15 Short-way and long-way transfers between r1 and r2 with the same time of flight.
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equations (4.84a) and (4.84b), we can write expressions for the unknown initial and ter-
minal velocity vectors in terms of r1 and r2

v1 =
1
g
r2− f r1 (4.86)

v2 = f r1 +
g
g
r2− f r1 (4.87)

Clearly, determining the Lagrangian coefficients is the key to obtaining v1 and v2. Next,
equate the two equation sets that define the Lagrangian coefficients in terms of Δθ and
ΔE; that is, Eqs. (4.70)–(4.73) and Eqs. (4.80)–(4.83) with a change in subscript notation
to indicate positions 1 and 2:

f = 1−
r2
p

1−cosΔθ = 1−
a
r1

1−cosΔE (4.88)

g =
r1r2 sinΔθ

pμ
= t2− t1 −

a3

μ
ΔE−sinΔE (4.89)

f =
μ

p
1−cosΔθ

p
−
1
r1
−
1
r2

tan
Δθ
2

=
− μasinΔE

r1r2
(4.90)

g = 1−
r1
p

1−cosΔθ = 1−
a
r2

1−cosΔE (4.91)

Equations (4.88)–(4.91) are composed of seven variables: r1, r2, a, p, Δθ, ΔE, and t2 – t1.
Of these seven variables, four are known: r1, r2, Δθ, and TOF t2 – t1. Therefore, we have
three unknown values: semimajor axis a, parameter p, and difference in eccentric anom-
aly ΔE. At first glance, it appears that we have an overdetermined system of four equa-
tions and three unknowns. However, recall that the four Lagrangian coefficients are not

independent because of the condition f g− f g = 1 that was obtained by computing the
angular momentum vector of the propagated state (r, v) [see Eqs. (4.56)–(4.59) for
details]. In truth, we have three independent Lagrangian-coefficient equations and three
unknowns. The difficulty is that these equations are transcendental functions of the
unknown quantities. Therefore, a closed-form solution cannot be determined. We
require an iterative search method for solution.
A basic iterative algorithm for solving Lambert’s problem follows:

1) Given position vectors r1 and r2 (and direction of travel, i.e. short-way or long-way
path), determine the radius magnitudes r1 and r2 and transfer angle Δθ
using Eq. (4.85).

2) Guess a trial value of one of the three unknown quantities (a, p, or ΔE).
3) Use the f and f equations (4.88) and (4.90) to determine the other two remaining

unknown values.
4) Use the g equation (4.89) to determine the TOF for the trial value.
5) Adjust the iteration parameter (go back to step 3) until the computed flight time in

step 4 matches the actual TOF.

As previously stated, we will present one method for solving Lambert’s problem.
Before demonstrating one solution technique, it is very important to note that the
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Lagrangian-coefficient expressions (4.80)–(4.83) hold for elliptical orbits only (note the
existence of eccentric anomaly ΔE which only pertains to ellipses). In order to accom-
modate hyperbolic orbits, we require equations for the Lagrangian coefficients in terms
of change in hyperbolic anomaly ΔF [the expressions in terms of Δθ, Eqs. (4.70)–(4.73),
hold for all orbits]. It is for this reason that a universal-variable formulation is often
employed in order to develop Lagrangian-coefficient equations that are valid for ellipti-
cal, parabolic, and hyperbolic orbits. We will not pursue universal variables here; the
interested reader may consult References [1–3] for methods that solve Lambert’s prob-
lem using universal variables.
One technique for solving Lambert’s problem is the p-iteration method. As the name

implies, we guess a trial value of parameter and iterate on p until the computed TOF
matches the actual flight time. Although a complete p-iteration algorithm must accom-
modate hyperbolic orbits (and hence express the Lagrangian coefficients in terms ofΔF),
our discussion here will only consider elliptical orbits. The p-iteration method is selected
because it is somewhat more intuitive than other methods and therefore relatively easy to
comprehend. Again, the objective here is to present an introduction to Lambert’s solu-
tion. The formulation of the p-iteration method is from Bate et al. [1; pp. 241–251].
Because p is our iteration variable, we must determine the two other unknown vari-

ables, a and ΔE, from the Lagrangian-coefficient equations. To do so requires manipu-

lation of the f and f equations (4.88) and (4.90). These steps are not shown here (see Bate
et al. [1] for details). Semimajor axis a can be determined from a trial value of p using

a=
mkp

2m− l2 p2 + 2klp−k2
(4.92)

where the auxiliary variables k, l, and m are constants that are functions of the known
values

k = r1r2 1−cosΔθ (4.93)

l = r1 + r2 (4.94)

m= r1r2 1 + cosΔθ (4.95)

Clearly, the constants k, l, and m can be computed directly from r1 and r2, that is, the
given information for Lambert’s problem. Equation (4.92) shows that semimajor axis
becomes infinite (i.e., a parabolic orbit) when the denominator term is zero. The two
roots of the quadratic denominator in Eq. (4.92) are

pmin =
k

l + 2m
(4.96)

pmax =
k

l− 2m
(4.97)

Here we use the “min” and “max” subscripts to denote the parameter limits for elliptical
transfers. Therefore, if pmin < p < pmax, semimajor axis (4.92) is positive and the orbit
between r1 and r2 is an ellipse. As p approaches the limits pmin or pmax, the transfer
approaches a parabolic trajectory. For p > pmax, the transfer is hyperbolic (however,
we will not consider hyperbolic transfers here). Because we are only considering elliptical
transfers, we can restrict our p-iteration search between pmin and pmax (of course, a gen-
eral p-iteration method must consider elliptical and hyperbolic transfers).
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Next, we compute the f, g, and f coefficients using Eqs. (4.88)–(4.90) for the trial value
of p and the known difference in true anomaly Δθ

f = 1−
r2
p

1−cosΔθ

g =
r1r2 sinΔθ

pμ

f =
μ

p
1−cosΔθ

p
−
1
r1
−
1
r2

tan
Δθ
2

We can determine cosΔE and sinΔE using the right-hand sides of Eqs. (4.88) and (4.90)

with the numerical values of the f and f coefficients (computed above) and the trial semi-
major axis a that has been computed using Eq. (4.92)

cosΔE = 1−
r1
a

1− f (4.98)

sinΔE =
−r1r2f

μa
(4.99)

Both sine and cosine of ΔE are required to resolve the correct quadrant (e.g., using
MATLAB’s atan2 function). The reader should ensure that ΔE is always positive,
0 <ΔE < 2π, so that the TOF calculation is correct. The trial TOF is computed from
the g coefficient and Eq. (4.89)

t2− t1 = g +
a3

μ
ΔE−sinΔE (4.100)

If the trial flight time computed using Eq. (4.100) matches the actual TOF, then the trial
value of p is correct and we have determined the correct orbit from r1 to r2. If there is any
error in flight time, then parameter p must be adjusted until the flight-time error is
driven to a negligible value. One way to adjust p between iterations is to use the secant
search method:

pi+1 = pi−τi
pi−pi−1
τi−τi−1

(4.101)

where pi is the parameter for the ith iteration, and τi is the difference between the flight
time computed using Eq. (4.100) and the actual (or desired) flight time. Note that the
fraction term on the right-hand side of Eq. (4.101) is the inverse of the finite-difference
approximation of the derivative dτ/dp. Therefore, the secant method is essentially New-
ton’s root-solving algorithm where the derivative term is replaced by a finite difference.
After p is updated using Eq. (4.101), the p-iteration algorithm must update a [Eq. (4.92)],
ΔE [Eqs. (4.98) and (4.99)], and TOF [Eq. (4.100)]. Convergence to the correct orbit
occurs when τi < ε where ε is an acceptable (small) TOF error. When the converged
solution is obtained, we can compute the two velocity vectors using the Lagrangian coef-
ficients and Eqs, (4.86) and (4.87). The following example illustrates the solution to Lam-
bert’s problem using the p-iteration method.
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Example 4.9 A ground station determines two position vectors for a weather-
forecasting satellite operated by the National Oceanic and Atmospheric Administration
(NOAA). The two position vectors in the ECI frame are

r1 =

−5,655 144

−3,697 284

−2,426 687

km, r2 =

5,891 286

2,874 322

−2,958 454

km

The flight time between position vectors is 63 min. Use the p-iteration method to deter-
mine the NOAA satellite’s orbit.
The difference in true anomaly is computed using Eq. (4.85)

cosΔθ =
r1 r2
r1r2

= −0 712062

Therefore, the two possible values are Δθ = 135.40 (short way) or Δθ= 224.60 (long
way). Because the flight time is relatively “large” (63 min) and both arcs are significant,
it is not apparent which path is correct (as a counter example, it would be easy to select
the short-way path if the flight time was 6 min and we had to choose betweenΔθ = 20 or
Δθ = 340 ). Let us begin with the short-way path, Δθ = 135.40 . The auxiliary constants
are computed using Eqs. (4.93)–(4.95):

k = r1r2 1−cosΔθ = 8 839433 107 km2

l = r1 + r2 = 14,370 85 km

m= r1r2 1 + cosΔθ = 1 486631 107 km2

We see that k, l, andm are the same constants, whether we use the short-way or long-way
path. Equations (4.96) and (4.97) provide the lower and upper bounds on p for an ellip-
tical transfer:

pmin =
k

l + 2m
= 4,459 042 km

pmax =
k

l− 2m
= 9,911 799 km

We can select the first trial value of parameter closer to pmin

p1 = 0 7pmin + 0 3pmax = 6,094 869 km

Using Eq. (4.92), the corresponding trial semimajor axis is

a=
mkp

2m− l2 p2 + 2klp−k2
= 7,255 803 km

The three independent Lagrangian coefficients are computed using r1, r2, Δθ, and the
trial value of p

f = 1−
r2
p

1−cosΔθ = – 1 020182

g =
r1r2 sinΔθ

pμ
= 735 466534 s
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f =
μ

p
1−cosΔθ

p
−
1
r1
−
1
r2

tan
Δθ
2

= 5 049967 10−5 s−1

Coefficients f, f , and the trial value of a are used to solve for change in eccentric anomaly:

cosΔE = 1−
r1
a

1− f = – 0 998824 and sinΔE =
−r1r2f

μa
= – 0 048482

Using atan2 and ensuring a positive value, we obtain ΔE = 3.190094 rad. The trial TOF
is computed using Eq. (4.100) and g, ΔE, and a

t2− t1 = g +
a3

μ
ΔE−sinΔE = 3,905 86 s = 65 0977 min

Hence the TOF error is τ1 = 2.0977 min for the current iterate. We cannot use the secant
method for the second iteration (we do not yet have past-iteration data), so we select a
second trial value of p that is closer to pmax:

p2 = 0 3pmin + 0 7pmax = 8,275 972 km

The p-iteration algorithm recalculates a, f, g, f , ΔE, and the trial flight time using the
above sequence of equations. The trial flight time is 27.52 min and the corresponding
error is τ2 = –35.48 min which is significantly worse than the first trial. However, the
two trial values of p were chosen arbitrarily. The third trial value of p is computed using
the secant search (4.101)

p3 = p2−τ2
p2−p1
τ2−τ1

= 6,216 625 km

This procedure repeats until the flight-time error is less than 10−4min (0.006 s). Table 4.2
summarizes the p-iteration scheme for the short-way transfer with Δθ = 135.40 . The
converged value for parameter is p = 6,144.013 km and the corresponding semimajor
axis is a = 7,193.6 km. We can compute the eccentricity of the short-way solution:

Table 4.2 p-iteration trials for the short-way transfer (Example 4.9).

Iteration
Trial p
(km)

Trial t2 – t1
(min)

Flight-time error
(min)

1 6,094.869 65.0977 2.0977

2 8,275.972 27.5198 –35.4802

3 6,216.626 60.1459 –2.8541

4 6,036.473 67.7868 4.7868

5 6,149.333 62.7814 –0.2186

6 6,144.404 62.9840 –0.0160

7 6,144.013 63.0001 5.82(10−5)
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e= 1−
p
a
= 0 3820

Hence, the short-way orbit is not circular. Furthermore, the perigee radius of the short-
way orbit is rp = p/(1 + e) = 4,445.8 km which is less than the radius of the Earth. Clearly,
the short-way orbit is not feasible.
We can repeat the p-iteration steps for the long-way path where Δθ= 224.60 . As pre-

viously stated, the k, l, andm constants and limits pmin and pmax remain the same as those
computed for the short-way path. The iterations corresponding to the long-way path are
summarized in Table 4.3. The semimajor axis and eccentricity of the converged orbit
solution are a = 7,184.60 km and e = 0.001, respectively, which indicate a near-circular
orbit. Hence, the NOAA satellite follows the long-way path between positions r1 and
r2. Figure 4.16 shows the long-way transfer on the nearly circular orbit.
The Lagrangian coefficients associated with the converged long-way orbit are

Table 4.3 p-iteration trials for the long-way transfer (Example 4.9).

Iteration
Trial p
(km)

Trial t2 – t1
(min)

Flight-time error
(min)

1 6,094.869 37.4175 –25.5825

2 8,275.972 134.6874 71.6874

3 6,668.512 48.3316 –14.6684

4 6,941.555 55.3307 –7.6693

5 7,240.742 65.0128 2.0128

6 7,178.545 62.7892 –0.2108

7 7,184.442 62.9948 –0.0052

8 7,184.592 63.0000 1.40(10−5)

1

2
r1

r2

TOF1-2 = t2 – t1 = 63 min

∆θ = 224.6°

Perigee

Figure 4.16 Long-way transfer for a NOAA weather satellite (Example 4.9).
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f = – 0 713771, g = – 677 398216 s, f = 7 273210 10−4 s−1, and g = – 0 710752

We can use Eqs. (4.86) and (4.87) to determine the initial and terminal velocity vectors in
the ECI frame:

v1 =
1
g
r2− f r1 =

−2 7381

−0 3474

6 9244

km/s

v2 = f r1 +
g
g
r2− f r1 =

−2 1670

−2 4422

−6 6865

km/s

Finally, we can use either state, (r1, v1) or (r2, v2), to determine the remaining orbital ele-
ments. We find that the initial and terminal true anomalies are θ1 = –40 and θ2 = 184.6
as shown in Figure 4.16. The inclination of the NOAA satellite is i = 98.77 , which is a
nearly polar orbit.
As a final note for this example, let us observe the trends in the flight time and orbital

path at the limiting values of parameter. Figure 4.17 shows TOF error (trial flight time
minus actual flight time) for short-way and long-way paths with pmin < p < pmax. For
short-way paths with p pmin, the transfer becomes a very thin, long ellipse with a very
large apogee distance as shown in Figure 4.18a. Because the satellite passes through apo-
gee on the short-way path with p pmin (a “lofted” transfer; see Figure 4.18a), the flight
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Figure 4.17 Time-of-flight errors vs. parameter (Example 4.9).
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time is very long and hence the TOF error is very large as seen in Figure 4.17. As p
becomes larger and approaches pmax, the satellite passes through perigee on its short-
way path and hence the flight time becomes smaller. When p = pmax, the transfer is a
parabola and the short-way path passes through perigee as shown in Figure 4.18b.
For p > pmax, the short-way transfer becomes hyperbolic and the flight time continues
to diminish. Figure 4.19 shows the long-way paths for p = pmin (parabola) and
p pmax (elliptical transit through apogee). When using the limiting values for p, the
apse directions and flight times of the long-way paths are essentially reversed when com-
pared with the short-way paths.

Short-way
p pmin

Short-way
p = pmax

(a)

(b)

r1

r2 r2
r1

Figure 4.18 Short-way paths: (a) p pmin and (b) p = pmax (Example 4.9).

Long -way
p = pmin

(b)

r2

Long -way
p pmax

r1

(a)

r2
r1

Figure 4.19 Long-way paths: (a) p = pmin and (b) p pmax (Example 4.9).
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Example 4.9 used a secant search to iterate on p; other root-solving methods (such as
the bisection method or Brent’s method) may be used. As a practical matter, it may be
useful to check the flight time at the limiting values of p (e.g., p= 1 001pmin and
p= 0 999pmax) to ensure that the actual flight time is bracketed. Another search option
is to employ a preliminary “brute-force” search where the flight-time error is computed
for a small number of equally spaced values of p between pmin and pmax. A good initial
guess for p can then be determined by interpolating the TOF error data and the subse-
quent secant search should rapidly converge to the solution.
It is important to restate that this section has presented an algorithm for solving Lam-

bert’s problem when the orbit transfer is an ellipse. Extending these results to hyperbolic
trajectories requires expressing the Lagrangian coefficients in terms of difference in
hyperbolic anomaly ΔF or using universal variables to accommodate all possible orbits
with one set of equations. We will solve Lambert’s problem to obtain interplanetary
transfers. As we shall see in Chapter 10, the transfer between two planetary orbits (such
as an Earth–Mars transfer) is an ellipse with the sun as the primary gravitational body.
Therefore, we may use our “ellipse-only” formulation of Lambert’s problem (and the
p-iteration method) to design trajectories for interplanetary missions.

4.7 Summary

In this chapter, we formulated the relationship between flight time and position in an
orbit. This relationship, first developed by Johann Kepler, is known as Kepler’s equation.
For elliptical orbits, TOF is related to eccentric anomaly, which is an auxiliary angle
developed by Kepler. Eccentric anomaly is a function of the satellite’s angular position
in the orbit (true anomaly) and the orbital eccentricity. Therefore, if we know the orbital
characteristics (semimajor axis and eccentricity) and two angular positions, we can com-
pute the corresponding flight time using Kepler’s equation. However, if we want to deter-
mine the angular position of a satellite at a future time, the solution is not so
straightforward because Kepler’s equation is transcendental in eccentric anomaly and
no closed-form solution exists. This orbit-propagation scenario is known as Kepler’s
problem and it must be solved using a numerical iteration scheme such as Newton’s
method. We also developed the so-called Lagrangian coefficients that can be used to
propagate an orbit that is expressed in terms of position and velocity vectors. The real
advantage of the Lagrangian coefficients is that they serve as a foundation for solving
Lambert’s problem, which involves determining the orbit that passes between two known
position vectors with a specified flight time. As with Kepler’s problem, the solution to
Lambert’s problem requires numerical iteration. The ability to solve Lambert’s problem
provides an invaluable tool for orbit determination and interplanetary mission design
(Chapter 10).
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Problems

Conceptual Problems

4.1 A geocentric satellite is at perigee where its altitude is 250 km and its velocity is
9.045 km/s. Determine the flight time to reach true anomaly θ1 = 100 .

4.2 An Earth-observation satellite has perigee and apogee altitudes of 350 and 1,206
km, respectively. Determine the satellite’s flight time from true anomaly θ1 = 270
to θ2 = 90 .

4.3 A launch vehicle experiences a partial failure during the ascent phase and conse-
quently its upper-stage engine is shut down 94 s too soon. The premature engine
shutdown occurs at an altitude of 185 km with an inertial velocity v = 7.226 km/s
and flight-path angle γ = 1.5 . Determine the flight time from engine shutdown to
the entry-interface altitude of 122 kmwhen the vehicle begins to reenter the Earth’s
atmosphere.

4.4 A space probe is departing Earth orbit on a parabolic trajectory. Determine the
flight time from perigee (where the altitude is 350 km) to the position on the par-
abolic path where it crosses geostationary orbit (i.e., the radial distance is
42,164 km).

4.5 Repeat Problem 4.4 for the case where the space probe is departing Earth orbit on a
hyperbolic trajectory. The hyperbolic excess speed of the departure asymptote is
v+
∞ = 2 51 km/s. Determine the flight time from perigee (where the altitude is

350 km) to the position on the hyperbolic path where it crosses geostationary orbit
(i.e., the radial distance is 42,164 km).

4.6 A geocentric satellite is following a parabolic trajectory with a perigee altitude
of 800 km. The true anomaly of the satellite at its current position is θ1 = 300 .
Determine the satellite’s flight time from its current position to a radial distance
of 500,000 km.

4.7 An interplanetary spacecraft is returning to Earth for a “gravity-assist maneuver”
(to be analyzed in Chapter 10). The spacecraft is approaching Earth and at
time t1 its radial position, velocity, and flight-path angle are r1 = 88,071 km,
v1 = 4.107 km/s, and γ1 = –77.1 , respectively. Determine the flight time from its
current position to perigee.
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4.8 An Earth-observation satellite is in an orbit with perigee and apogee altitudes
of 500 and 1,600 km, respectively. If the satellite is currently at true anomaly
θ1 = 320 , determine its true anomaly 30min later.

4.9 An Earth-orbiting satellite is currently at perigee (altitude = 350 km) with a veloc-
ity of 8.12 km/s. Determine its radius, velocity, and flight-path angle 4.2 h after
perigee passage.

4.10 A geocentric satellite orbit has semimajor axis a = 9,875 km and eccentricity
e = 0.305. If the satellite is currently at true anomaly θ1 = 200 , determine its true
anomaly 7.3 h later.

Problems 4.11–4.13 involve a geocentric satellite with the following position
and velocity vectors (in the ECI frame) at epoch time t0:

r0 =

−6,796

4,025

3,490

km, v0 =

−3 7817

−6 0146

1 1418

km/s

4.11 Determine the flight time from the state vector (r0,v0) to state vector (r1,v1) for a
200 increase in true anomaly (i.e., Δθ = 200 ).

4.12 Propagate the orbit using the Lagrangian coefficients and determine the position
and velocity vectors (r, v) corresponding to a change in true anomaly ofΔθ = 200 .

4.13 Repeat Problem 4.12 by propagating the orbit using the Lagrangian coefficients
that are defined by the change in eccentric anomaly, ΔE.

4.14 A ground station determines two position vectors of a geocentric satellite. The
two position vectors in the ECI frame are

r1 =

−6,241 629

−1,434 658

2,745 447

km, r2 =

2,833 781

−7,414 259

2,568 063

km

The flight time between the position vectors is t2 – t1 = 27min. Carry out the
calculations of the p-iteration method to show that p = 7,778.228 km satisfies
Lambert’s problem for a short-way transfer. Determine the satellite’s velocity vec-
tors v1 and v2, eccentricity e, and inclination i.

4.15 Repeat Problem 4.14 for the long-way transfer, and show that p = 3,305.535 km satis-
fies Lambert’s problem. Explain why the 27min long-way transfer is not feasible.

MATLAB Problems

4.16 Write anM-file that will solve Kepler’s problem and determine a geocentric satel-
lite’s propagated position in an elliptical orbit for a desired time of flight. The
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inputs to the M-file are semimajor axis a (in km), eccentricity e, current true
anomaly θ1 (in degrees), and flight time t2 – t1 (in min). The outputs are the states
at the propagated orbital position: radius r2 (in km), velocity v2 (in km/s), flight-
path angle γ2 (in degrees), and true anomaly θ2 (in degrees). Test your M-file by
solving Example 4.6.

4.17 Write anM-file that will propagate an orbit using the Lagrangian coefficients. The
inputs to the M-file are the satellite’s initial state vector (r0,v0) in the ECI frame
(with units of kilometers and kilometers per second, respectively) and the change
in true anomaly Δθ (in degrees). The outputs are the satellite’s propagated state
vector (r,v) in the ECI frame (in km and km/s), the initial and propagated true
anomalies (θ0 and θ, in degrees), and the corresponding time of flight (in min).
The M-file should be able to accommodate elliptical and hyperbolic orbits. Test
your M-file by solving Example 4.7.

4.18 Write an M-file that will solve Lambert’s problem using the p-iteration method.
The inputs are the satellite’s initial and target position vectors in ECI coordinates
(r1 and r2, in km), the flight time between r1 and r2 (in min), and a flag that indicates
either the short-way or long-way transfer. The outputs are the corresponding veloc-
ity vectors v1 and v2 (in km/s), the converged parameter p (in km), eccentricity e,
and semimajor axis a (in km). Test your M-file by solving Example 4.9.

Mission Applications

4.19 The Pegasus launch vehicle reaches its second-stage burnout at an altitude of 192
km, inertial velocity v = 5.49 km/s, and flight-path angle γ = 25.8 . The launch
vehicle then coasts in this orbit for 432 s (7.2 min) at which point it ignites its third
stage. Determine the altitude, velocity, and flight-path angle of the Pegasus vehicle
at third-stage ignition.

4.20 Figure P4.20 shows an intermediate transfer orbit used by the Chandra X-ray
Observatory (CXO). Perigee and apogee altitudes of the CXO transfer orbit
are 300 and 72,000 km, respectively. If the CXO is currently at true anomaly
θ1 = 45 , determine the flight time for it to return to perigee.

Transfer orbit:
Apogee altitude = 72,000 km 

Current position: 
θ1 = 45°

Perigee altitude
300 km

Figure P4.20
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Problems 4.21 and 4.22 involve the Stardust capsule, which returned to Earth in
January 2006 on a hyperbolic approach trajectory after sampling particles from
the comet Wild-2.

4.21 A ground-based station is tracking the Stardust capsule during its return to Earth.
The station determines the capsule’s position and velocity vectors in the ECI
frame at epoch time t0:

r0 =

219,469

99,139

−87,444

km, v0 =

−5 7899

−2 2827

2 3722

km/s

Propagate the Stardust capsule’s trajectory using the Lagrangian coefficients and
determine its ECI position and velocity vectors (r, v) corresponding to a change in
true anomaly of Δθ = 90 . What is the altitude of the Stardust capsule at the pro-
pagated orbital position? In addition, compute the time of flight between these
two positions.

4.22 When the Stardust capsule arrived at the “edge” of the Earth’s atmosphere (the so-
called “entry interface” altitude of 122 km), it had inertial velocity v = 12.9 km/s
and flight-path angle γ = –8.21 . Determine the flight time of the Stardust capsule
from a radial position of 300,000 km to entry interface (i.e., 122 km altitude).

4.23 A ground-based station is tracking a military satellite that is in a near-equatorial,
high-eccentricity orbit. At epoch time t1, the satellite’s ECI position vector is

r1 =

6,379 7

−3,504 9

−207 7

km

The station determines the satellite’s ECI position vector 67min later:

r2 =

3,854 4

18,422 6

519 2

km

Carry out the p-iteration algorithm calculations to show that p = 10,596.1 km
satisfies Lambert’s problem for the flight time between these two position vectors.
In addition, compute the satellite’s eccentricity, semimajor axis, and period.

Problems 4.24 and 4.25 involve the translunar trajectory of the Lunar Atmos-
phere and Dust Environment Explorer (LADEE) spacecraft (see Figure 2.14 and
Example 2.6). Shortly after departing Earth orbit, a ground-based tracking station
determines LADEE’s state vector in ECI coordinates at epoch time t0

r0 =

2,449 5

5,822 9

−5,020 5

km, v0 =

−6 0947

1 9272

−7 4294

km/s
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4.24 Determine LADEE’s radial distance, velocity, and flight-path angle 24 h after
epoch time t0.

4.25 Determine LADEE’s geocentric position and velocity vectors (r,v) after a change
in true anomaly of Δθ = 120 and compute the corresponding flight time.

Problems 4.26 and 4.27 involve the Mars Reconnaissance Orbiter (MRO)
spacecraft that was placed in a near-circular orbit about Mars in late 2006. At
epoch time t0, the MRO state vector is

r0 =

544 0

1,855 4

3,138 2

km, v0 =

2 0700

−2 4510

1 1081

km/s

The state vector is measured relative to aMars-centered inertial coordinate system.

4.26 Determine the flight time for the MRO spacecraft to transit from (r0,v0) to true
anomaly θ = 60 .

4.27 Determine the MRO state vector (r,v) 8 h after epoch t0.

Problems 4.28–4.30 involve the Juno spacecraft, which departed Earth in early
August 2011 and arrived at Jupiter in early July 2016.

4.28 The Juno spacecraft approached Jupiter on a hyperbolic trajectory with eccentric-
ity e = 1.0172 and semimajor axis a = –4.384(106) km. Determine the flight time
from a radial distance of 1.07(106) km (roughly the orbit of Jupiter’s moon
Ganymede) to periapsis (“perijove”) passage.

4.29 The Juno spacecraft fired a retrorocket at its periapsis (“perijove”) position to slow
down and establish a highly elliptical (and nearly polar) orbit about Jupiter with
semimajor axis a = 4,092,211 km and eccentricity e = 0.981574 (the period of this
orbit is 53.5 days). Juno used a highly elliptical orbit so that it was well above Jupi-
ter’s harsh radiation environment for the majority of its orbit. Determine the total
flight time that the Juno spacecraft’s altitude is less than 100,000 km in a single
orbit (Jupiter’s polar radius is 66,854 km).

4.30 Mission operators planned a second retrorocket burn at perijove for October
2016. This burn would slow down Juno and reduce its orbital period from 53.5
to 14 days (however, the rocket burn was canceled due to a valve malfunction).
The (planned) smaller orbit has semimajor axis a = 1,674,498 km and eccentricity
e = 0.954970. Determine the total flight time that the Juno spacecraft’s altitude
is less than 100,000 km in a single orbit (Jupiter’s polar radius is 66,854 km).
Compare this total radiation exposure time for the 14-day orbit to the exposure
time in Problem 4.29 for a 53.5-day orbit.
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5

Non-Keplerian Motion

5.1 Introduction

Chapters 2–4 presented the fundamentals of two-body orbital motion. Recall that two
major assumptions lead to the two-body problem: (1) the gravitational body is spherically
symmetric; and (2) no forces other than gravity act on the satellite. The principle con-
clusions gleaned from the two-body problem are:

1) A satellite’s path is a conic section (circle, ellipse, parabola, or hyperbola) with the
gravitational body at the focus.

2) A satellite’s total energy and angular momentum relative to the central body remain
constant along its orbital path.

3) The satellite’s motion is contained in a plane that is fixed in inertial space.
4) The classical orbital elements (a, e, i, Ω, ω) are constants.

Unfortunately, the two-body problem only exists in theory. It is rather easy to “poke
holes” in the assumptions for two-body motion. For example, the Earth is not a perfect
sphere with homogenous mass distribution. Furthermore, it is clear that third-body grav-
itational forces (due to the sun, moon, and planets) always act on a satellite. Finally, other
forces arising from atmospheric drag, solar radiation pressure, and onboard thrust may
act on the satellite. These effects are perturbations that cause the satellite’s motion to
deviate from the theoretical two-body motion. In many cases, the perturbing forces
are small relative to the central body’s gravity and therefore the satellite’s orbit slowly
deviates from the theoretical two-body motion over a long time scale. However, in other
scenarios (such as an Earth orbit with a perigee pass through the atmosphere), the per-
turbing forces may be large enough to produce rapid changes in the orbital elements.
It is useful to define a few terms for this chapter. We will call a satellite’s orbital path

that is governed by the two-body problem Keplerian motion. Therefore, Keplerian
motion has the characteristics previously listed (i.e., the orbit is a conic section; the
orbital plane is fixed in space, etc.). A satellite follows non-Keplerian motion if the
two-body problem does not hold because of the presence of a non-spherical central body
or additional forces due to other gravitational bodies, drag, or rocket thrust. It is impor-
tant to note that theoretical Keplerian motion is an idealization that does not exist.
This preliminary discussion is not intended to disregard our “analytical tool-kit” that

has been developed in Chapters 2–4. Quite the contrary, the two-body problem leads
to extremely useful analytical expressions that allow rapid orbital calculations. We will
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continue to use Keplerian motion for evaluating orbital maneuvers (Chapters 7, 8) and
analyzing interplanetary missions (Chapter 10). For many space mission scenarios, two-
body motion provides an excellent approximation of the satellite’s true motion. The goal
of this chapter is to present an introduction to orbital perturbations and their effects on
the theoretical Keplerian motion. For some particular perturbing forces, we will develop
analytical expressions for changes in the orbital elements over time.

5.2 Special Perturbation Methods

Let us begin our discussion of orbital perturbations by repeating the governing equation
of motion for the two-body problem:

r +
μ

r3
r= 0 (5.1)

where r is the position vector of the satellite relative to an inertial frame fixed to the cen-
ter of the gravitational body. Writing the two-body equation in terms of absolute accel-
eration, we obtain

r = −
μ

r3
r=

μ

r2
−r
r

(5.2)

Equation (5.2) reflects the two major assumptions of the two-body problem, that is, the
only force acting on the satellite is the gravity of the central body with (acceleration) mag-
nitude μ/r2 and unit-vector direction −r/r. The magnitude and direction of the gravi-
tational acceleration are consistent with a spherically symmetric gravitational body.
Next, let us consider the two-body equation (5.2) with a perturbing vector

r = −
μ

r3
r+ aP (5.3)

where aP is the perturbing acceleration acting on the satellite. For an Earth-orbiting sat-
ellite, aP could be computed from the vector sum of the appropriate perturbing forces
(third-body gravity, atmospheric drag, onboard thrust, etc.) divided by the satellite’s
mass. Of course, the perturbation acceleration aP must be expressed in a non-rotating
coordinate system such as the Earth-centered inertial (ECI) frame. Once we have deter-
mined the perturbing acceleration aP, we may obtain the “true” non-Keplerian motion of
the satellite by two successive integrations: integrating Eq. (5.3) produces the velocity
vector r= v; integrating velocity v produces the satellite’s position vector r.
Special perturbation methods numerically integrate the perturbed two-body equations

of motion in order to determine the satellite’s position r and velocity v at later times. This
method is conceptually simple and relatively easy to implement with today’s computers.
However, the perturbed orbit obtained through numerical integration is a specific (or
special) case that is only valid for the given initial conditions and parameters that model
the perturbing acceleration aP.Cowell’s formulation (orCowell’s method) is a special per-
turbation method and obtains the perturbed orbit by direct numerical integration of
Eq. (5.3). General perturbation methods reformulate the perturbed equations of motion
using simplifying approximations so that they may be analytically integrated. We treat
special perturbations in this section and discuss general perturbations in Section 5.3.
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It is useful to briefly define conservative andnon-conservative forces (youmay know these
terms from a university physics course). Total energy is constant for a satellite that is solely
under the influence of a conservative force. Gravitational forces from the central body and
perturbing third bodies (sun, moon, etc.) are conservative forces. We can determine the
absolute acceleration of a conservative force fromthe gradient of a scalar potential function.
Non-conservative forces increase or decrease the satellite’s total energy. Atmospheric drag,
solar radiation pressure, and thrust are examples of non-conservative forces.

5.2.1 Non-Spherical Central Body

The first perturbation we will consider is the non-spherical shape of the central gravi-
tational body. Recall that in Chapter 3, we used an ellipsoidal model for the Earth: that
is, a “flattened” sphere where the equatorial radius is about 21 km greater than the polar
radius. In addition, the Earth has uneven mass distribution that varies with latitude and
longitude. Spherical harmonics are used tomodel a planet’s surface and subsequent grav-
itational field. We will provide a brief introduction to this topic by focusing on the spher-
ical harmonics that represent the “oblate ellipsoid” shape of the Earth.
We may model the Earth’s (or any planet’s) gravitation field using a scalar potential

function U(r, λ, ϕ ) that depends on radius r, longitude λ, and geocentric latitude ϕ (recall
that geocentric latitude is measured from the equatorial plane to a line from the center
of the gravitational body to the surface; see Figure 3.17). For the Earth, we will call
U(r, λ, ϕ ) the geopotential function. The gravitational acceleration of an Earth-orbiting
satellite is the gradient of the geopotential function. To show this, let us consider the two-
body geopotential function

U2b r =
μ

r
(5.4)

Note that we have used the subscript “2b” to indicate a “two-body” potential function.
The two-body geopotential function U2b is the negative potential energy and only
depends on radius r (there is no dependence on latitude or longitude because the
two-body problem assumes that the Earth is a homogeneous sphere). The absolute accel-
eration due to gravity is the gradient of the geopotential function

r =∇U2b r (5.5)

where the “del” or vector differential operator for the ECI Cartesian frame is

∇=
∂

∂x
I+

∂

∂y
J+

∂

∂z
K (5.6)

Recall that IJK are unit vectors associated with the ECI coordinate system. The satellite’s
position vector r has ECI components (x, y, z), or

r= xI+ yJ+ zK (5.7)

and the magnitude of the position vector is r = x2 + y2 + z2. Therefore, the two-body
geopotential (5.4) is rewritten as

U2b =
μ

x2 + y2 + z2
(5.8)
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The gradient of the two-body geopotential is computed by applying the “del” operator
defined by Eq. (5.6):

∇U2b =
−μx

x2 + y2 + z2 3/2 I+
−μy

x2 + y2 + z2 3/2 J+
−μz

x2 + y2 + z2 3/2K (5.9)

Note that the common denominator term in Eq. (5.9) is r3. Furthermore, we can substi-
tute r= xI+ yJ+ zK so that Eq. (5.9) becomes

∇U2b = −
μ

r3
r (5.10)

Using this result as the right-hand side of Eq. (5.5), we obtain

r = −
μ

r3
r (5.11)

Equation (5.11) is the governing equation of motion for the two-body problem. This
simple exercise shows that the governing equation for two-body (Keplerian) motion can
be derived from the two-body geopotential function U2b = μ/r.
We desire a more accurate representation of the Earth’s gravitational field (in partic-

ular, the gravitational field of an oblate, flattened sphere). Let us express the total
geopotential function U(r, λ, ϕ ) as the sum of a two-body potential function and a
disturbing potential function

U r,λ,ϕ =
μ

r
+R r,λ,ϕ (5.12)

It should be clear that μ/r is the two-body potential in Eq. (5.12) and R(r, λ, ϕ ) is the dis-
turbing potential function. The disturbing potential function R(r, λ, ϕ ) represents per-
turbations due to a non-spherical Earth with an uneven mass distribution. Hence, it
depends on radius, longitude, and geocentric latitude. It is possible to express the dis-
turbing potential function R in terms of spherical harmonics or periodic functions on
the surface of a unit sphere. These spherical harmonics consist of zonal harmonics
(bands of latitude), sectoral harmonics (sections of longitude), and tesseral harmonics
(“checkerboard tiles” that depend on latitude and longitude). Characterizing the disturb-
ing potential R using a complete set of spherical harmonic functions is beyond the scope
of this textbook (the interested reader may consult Vallado [1; pp. 538–550] for details).
Instead, let us focus on a total geopotential function that is axially symmetric about theK
axis and therefore only depends on radius and latitude:

U r,ϕ =
μ

r
1−

∞

k =2

Jk
RE

r

k

Pk sinϕ (5.13)

where Jk are the zonal harmonic coefficients, RE is the equatorial radius of the Earth, and
Pk is a Legendre polynomial of order k. The input to the Legendre polynomial is
sinϕ = z/r. The Legendre polynomials represent the “harmonic fluctuations” of the
Earth’s surface relative to a spherical shape as latitude varies. The dimensionless zonal
coefficients Jk represent the “dips” and “bulges” of the Earth’s surface (relative to a sphere)
and they are empirically determined from satellite observations. Zonal coefficient J2
models the Earth’s “bulge” at its equator and it is nearly 1000 times larger than all other
Jk coefficients. Therefore, if we only consider the J2 coefficient, Eq. (5.13) becomes
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U r,ϕ =
μ

r
1− J2

RE

r

2

P2 sinϕ (5.14)

Equation (5.14) is the total geopotential function for an oblate Earth or a “flattened” sphere.
This geopotential function has axial symmetry about the Earth’s polar axis (i.e., the Earth’s
mass is equally distributed with longitude), and the second-order Legendre polynomial
P2(sinϕ ) models the Earth’s mass bulge at its equator. The reader should note that
Eq. (5.14) represents the simplestpossiblenon-sphericalmodelof theEarthbecausewehave
neglectedzonalharmonics greater thanorder2aswell as all sectoral and tesseral harmonics.
Finally, the reader should note that if we set J2 = 0 (no oblateness) in Eq. (5.14), thenwe have
U r = μ/r and we are back to a spherical Earth and two-body (Keplerian) motion.
The reader may have some difficulty comprehending or visualizing the geopotential

function Eq. (5.14) that models Earth’s equatorial bulge. In order to enhance our under-
standing of the geopotential function, let us plotU(r, ϕ ) for various radial distances from
the Earth’s center. First, we must present the second-order Legendre polynomial

P2 u =
1
2

3u2−1 (5.15)

where the input is u= sinϕ . In order to evaluate Eq. (5.14), we also need numerical values
for Earth’s equatorial radius and Earth’s second zonal harmonic coefficient J2. Let us use
RE = 6,378.14 km, J2 = 0.0010826267, and μ = 3.986(105) km3/s2 (Earth’s gravitational
parameter). Using these values in Eq. (5.14), we can evaluate the geopotential function
U(r, ϕ ) for a fixed radius r and geocentric latitude ϕ ranging from –90 (South Pole) to
+90 (North Pole) [of course we must use Eq. (5.15) to evaluate the second-order
Legendre polynomial as latitude varies]. Figure 5.1 shows how the oblate geopotential
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Figure 5.1 Oblate geopotential function [Eq. (5.14)] vs. latitude: polar low-Earth orbit.
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function varies with latitude for a polar low-Earth orbit (LEO). It is clear that U(r, ϕ )
exhibits a “bulge” at the equator (ϕ = 0) and a minimum value at the poles. Figure 5.1
also shows that the “strength” of the oblate geopotential function diminishes as radial
distance increases. The two-body geopotential function evaluated at rLEO = RE +
300 km [i.e., U rLEO = μ/rLEO] is shown in Figure 5.1 as the dashed line. Because the
two-body geopotential corresponds to a spherical, homogeneous Earth, it does not
exhibit any variation with latitude. Figure 5.2 shows the oblate geopotential function
for circular polar orbits with radii approximately equal to the radius of geostationary
orbit, that is, 42,164 km. Note that the geopotential function’s “equatorial bulge” is sig-
nificantly reduced for near-geostationary orbits (i.e., the geopotential function appears to
behave more like the two-body potential). Therefore, we can expect that an oblate-Earth
gravity model will exhibit a more pronounced effect on satellites in low-altitude orbits as
compared with high-altitude orbits.
The next step is to take the gradient of Eq. (5.14) in order to determine the satellite’s

absolute acceleration in an oblate-Earth gravity field. After substituting Eq. (5.15) for the
Legendre polynomial, Eq. (5.14) becomes

U r,ϕ =
μ

r
1−

J2
2

RE

r

2 3z2

r2
−1 (5.16)

Note that we have used u= sinϕ = z/r in the Legendre polynomial (5.15). We must also
substitute r = x2 + y2 + z2 and r2 = x2 + y2 + z2 into Eq. (5.16) so that the geopotential
function U is in terms of Cartesian coordinates (x,y,z). The satellite’s absolute accelera-
tion due to the oblate-Earth gravity field is the gradient of Eq. (5.16):
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Figure 5.2 Oblate geopotential function [Eq. (5.14)] vs. latitude: geostationary orbital radius.
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r =∇U r,ϕ =
∂U
∂x

I+
∂U
∂y

J+
∂U
∂z

K (5.17)

After taking the partial derivatives (and performing some algebra), we can write the three
acceleration components in the ECI frame:

x =
∂U
∂x

=
−μx
r3

1− J2
3
2

RE

r

2 5z2

r2
−1 (5.18)

y =
∂U
∂y

=
−μy
r3

1− J2
3
2

RE

r

2 5z2

r2
−1 (5.19)

z =
∂U
∂z

=
−μz
r3

1− J2
3
2

RE

r

2 5z2

r2
−3 (5.20)

Equations (5.18)–(5.20) are the absolute acceleration components of a satellite orbiting
an oblate spheroid Earth. These equations fit the form of Eq. (5.3), the perturbed two-
body equations of motion. Note that the terms outside the brackets in Eqs. (5.18)–(5.20)
are the two-body gravitational components of −μr/r3. The terms involving J2 are the
components of the perturbing acceleration aP.
Now we can apply the special perturbation method to a satellite orbiting a non-

spherical (oblate) Earth. Numerically integrating Eqs. (5.18)–(5.20) will yield the velocity

components, v = x y z T , and numerically integrating v will yield the position vector,

r= x y z T . The following example demonstrates the special perturbation technique
for determining the non-Keplerian motion of an Earth satellite.

Example 5.1 Use the special perturbation method to obtain the non-Keplerian motion
of a LEO that is perturbed by Earth-oblateness (J2) effects. The initial orbital elements at
time t = 0 are

Semimajor axis a0 = 8,059 km
Eccentricity e0 = 0.15
Inclination i0 = 20
Longitude of the ascending node Ω0 = 60
Argument of perigee ω0 = 30
True anomaly θ0 = 50

The special perturbation method requires that we numerically integrate the satellite’s
perturbed equations of motion. Equations (5.18)–(5.20) are the satellite’s absolute accel-
eration components due to central-body gravity perturbed by the Earth-oblateness (or J2)
effect. We can use a numerical integration algorithm (such as a Runge–Kutta scheme) to
integrate Eqs. (5.18)–(5.20) from time t = 0 to an arbitrary final time t = t1. Of course, we
must integrate these three acceleration equations to obtain the ECI velocity vector v, and
integrate the three velocity components to obtain the ECI position vector r. The numer-
ical integration must begin at the initial ECI state vector (r0,v0) associated with the initial
LEO orbital elements. Using the coordinate transformation algorithm presented in
Section 3.5, the initial Cartesian coordinates are
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r0 =

−5,134 41

4,405 01

2,420 05

km , v0 =

−5 5265

−5 5142

0 7385

km/s

Here we use MATLAB’s M-file ode45.m to numerically integrate Eqs. (5.18)–(5.20)
starting from the initial state vector (r0,v0). The final end time is set at 10 h (note that
because semimajor axis is 8,059 km, the orbital period is 120 min = 2 h). The numerical
values of the constants used here are J2 = 0.0010826267, RE = 6,378.14 km, and
μ = 3.986004(105) km3/s2. Numerical integration produces ECI vectors r(t) and v(t).
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Figure 5.3 LEO with J2 perturbation: (a) semimajor axis; (b) eccentricity; (c) inclination; (d) longitude of
the ascending node; and (e) argument of perigee (Example 5.1).
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Because the histories of these Cartesian coordinates provide very little insight into how
the orbit is affected by the J2 perturbation, the state vector (r,v) simulation data are trans-
formed to orbital elements using the methods presented in Section 3.4.
Figure 5.3 presents the time histories of the five classical orbital elements after numerical

integration of the perturbed equations of motion. Figure 5.3a shows that semimajor axis a
is perturbed by the Earth’s oblateness and varies during an orbital revolution (recall that the
orbital period is 2 h). However, semimajor axis returns to its initial value (a0 = 8,059 km)
at the end of every 2 h orbit. This behavior shows that the J2 perturbation is conservative
because its net effect on energy is zero over an orbital revolution. Figure 5.3b shows that
eccentricity also exhibits oscillations during each 2-h orbit and Figure 5.3c shows that incli-
nation has two periodic cycles each revolution. Figures 5.3a–c show that Earth’s oblateness
causes very small periodic variations in semimajor axis, eccentricity, and inclination and
that the net change is zero for these three elements over each orbital revolution. The obl-
ateness perturbation, however, causes the longitude of the ascending node Ω and argu-
ment of perigee ω to drift over time as illustrated in Figures 5.3d and 5.3e. Periodic
fluctuations inΩ and ω are evident, but these oscillations are superimposed on to a linear
function with time. The secular changes inΩ and ω are the linear variations with time and
are illustrated by the dashed lines in Figures 5.3d and 5.3e. Figure 5.3d shows that Ω
diminishes by about 1.8 over 10 h and hence the ascending node vector n is drifting
westward at an average rate of 0.18 deg/h or 4.32 deg/day. Figure 5.3e shows that the
argument of perigee ω increases by about 3.25 over 10 h. Therefore, the perigee direction
e is drifting away from the ascendingnoden at an average rate of 0.325deg/hor 7.8 deg/day.

Example 5.1 is a demonstration of the special perturbation method where the only per-
turbation is due to a non-spherical (oblate) Earth. Numerical integration of the perturbed
equations of motion illustrates that Earth oblateness causes periodic variations in the
orbital elements a, e, and i but with a net zero change after a full revolution. The longi-
tude of ascending nodeΩ and argument of perigee ω show periodic and secular changes.
The dashed lines in Figures 5.3d and 5.3e show the secular changes (or linear drift) in Ω
and ω. Because Ω shows a steady drift rate, the orbital plane is rotating about the Earth’s
pole. The linear drift inω indicates that the apse line is rotating in the orbital plane about
the angular momentum vector h.
We should reiterate that Example 5.1 has demonstrated non-Keplerian motion where

the only perturbation is due to an oblate Earth. Furthermore, this example illustrates the
“special” part of the special perturbation method; that is, we gleaned the oblateness effect
only after performing numerical integration and plotting the results. The secular changes
in Ω and ω pertain to the “specific” or “special” initial orbit presented in Example 5.1. At
this point, we cannot make general statements regarding the secular drift rates forΩ and
ω. General perturbation methods use analytical techniques to develop “general” expres-
sions that convey the effects of perturbations. We will revisit and characterize the Earth-
oblateness effect with general perturbation methods in the next section.

5.3 General Perturbation Methods

General perturbation methods seek analytical solutions for a perturbed orbit. Analytical
solutions are tractable if a series expansion replaces the perturbing acceleration.
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Therefore, the non-Keplerian motion produced by general perturbations is an approx-
imate solution. However, the advantage of general perturbations is that the analytical
expressions allow us to rapidly compute the perturbed orbit instead of relying on numer-
ical integration. In addition, general perturbation methods give us insight to how a par-
ticular perturbation (such as an oblate Earth) alters the Keplerian (or two-body) motion.

5.3.1 Lagrange’s Variation of Parameters

Wewill present a brief overview of a method known as the variation of parameters. Orig-
inally developed by Leonhard Euler and improved by Joseph-Louis Lagrange, the varia-
tion of parameters (or variation of orbital elements) consists of six first-order differential
equations

dα
dt

= f α, t (5.21)

where α is the 6 × 1 vector of the orbital elements

α= a e i Ω ω σ T (5.22)

The sixth orbital element is angle σ = −ntp, where tp is the time instant (a constant) when
the satellite is at periapsis. Recall from Chapter 4 that n is the angular velocity known as
the mean motion

n=
μ

a3
(5.23)

We use σ as the sixth orbital element instead of θ0 (true anomaly at a known instant of
time). For the two-body problem, all orbital elements are constant. Hence, the right-hand
side of Eq. (5.21) is zero (i.e., dα/dt = 0). When perturbations are present, the right-hand
side vector f(α,t) in Eq. (5.21) is not a null vector, and we have non-Keplerian motion
where the orbital elements vary with time. Lagrange developed the variation of para-
meters for conservative perturbations.
We will only show an outline of the variation of parameters approach based on its dis-

cussion in Battin [2; pp. 476–483]. Our goal is to develop the right-hand sides of the first-
order differential equations for dα/dt. To begin, let us rewrite the satellite’s absolute
acceleration using the geopotential function U

r =∇U (5.24)

Recall for a non-spherical central body, the geopotential is the sum of the two-body
potential function U2b and the disturbing function R

U =
μ

r
+R (5.25)

Next, apply the del operator to U and substitute the result in Eq. (5.24) to yield

r = −
μ

r3
r+∇R (5.26)
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Equation (5.26) is the satellite’s acceleration due to a two-body gravity field that is dis-
turbed by the function R. It should be clear that Eq. (5.26) becomes the two-body prob-
lem when the disturbing function R vanishes (i.e., no perturbations).
The position and velocity vector solutions for either perturbed or unperturbed (two-

body) motion can be expressed as

r= r t,α (5.27)

v = v t,α (5.28)

In other words, position and velocity vectors are functions of the six orbital elements
(collected in vector α) and time t. We know that the velocity vector v is the time deriv-
ative of the position vector r. The time derivative of Eq. (5.27) is

Non-Keplerian motion v =
dr
dt

=
∂r
∂t

+
∂r
∂α

dα
dt

(5.29)

Equation (5.29) allows for non-Keplerian motion because it contains the perturbation
term dα/dt. For two-body motion, dα/dt = 0 and Eq. (5.29) becomes

Two-body motion v =
∂r
∂t

(5.30)

Now let us introduce the concept of osculating orbital elements. Consider a satellite with
non-Keplerian motion caused by perturbations (e.g., an oblate Earth). Suppose at time
instant t1 we can determine the satellite’s ECI state vector (r1,v1). Given the state vector
(r1,v1), we can compute the classical orbital elements. These elements would describe
the satellite’s two-body motion that would exist if suddenly all perturbations vanished
at time t1. The instantaneous elements are called the osculating orbital elements. Because
the perturbations persist, the orbital elements change with time. However, at time t1 the
non-Keplerian orbit and the fictitious two-body orbit (the osculating orbit) both contain
the state vector (r1,v1). Using the osculating orbit concept, we can equate the perturbed and
unperturbed velocity vectors, Eqs. (5.29) and (5.30), to obtain the following condition

∂r
∂α

dα
dt

= 0 (5.31)

Equation (5.31) must hold on the osculating orbit. This expression does not imply that
dα/dt = 0 (we know that the orbital elements vary with time). Equation (5.31) states that
multiplying the 3 × 6 matrix of partial derivatives (∂r/∂α) by the 6 × 1 vector dα/dtmust
produce a 3 × 1 null vector.
In a similar fashion, let us take the time derivative of Eq. (5.28)

r =
dv
dt

=
∂v
∂t

+
∂v
∂α

dα
dt

(5.32)

For two-body motion, α is constant and Eq. (5.32) becomes

Two-body motion r =
dv
dt

=
∂v
∂t

= −
μ

r3
r (5.33)

Substituting Eq. (5.33) for ∂v/∂t in Eq. (5.32) and comparing the result with Eq. (5.26), we
determine a second condition:
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∂v
∂α

dα
dt

=∇R (5.34)

We should reiterate that our goal is to determine the six time derivatives of the orbital
elements, dα/dt, as functions of the disturbing potential R. Equations (5.31) and (5.34)
each provide three conditions, and therefore they must be solved simultaneously in order
to determine the 6 × 1 vector dα/dt. We can combine these two equations with a few
additional matrix manipulations. First, multiply Eq. (5.31) by the 6 × 3 matrix

∂v/∂α T to form six equations:

∂v
∂α

T ∂r
∂α

dα
dt

= 0 (5.35)

The right-hand side of Eq. (5.35) is a 6 × 1 null vector. Next, multiply Eq. (5.34) by the

6 × 3 matrix ∂r/∂α T to form six additional equations:

∂r
∂α

T ∂v
∂α

dα
dt

=
∂r
∂α

T ∂R
∂r

(5.36)

Note that we have expressed ∇R as ∂R/∂r in Eq. (5.36). We can use the chain rule to
express the right-hand side of Eq. (5.36) as ∂R/∂α. Subtracting Eq. (5.35) from
Eq. (5.36) yields

L
dα
dt

=
∂R
∂α

(5.37)

where the 6 × 6 Lagrangian matrix L is

L=
∂r
∂α

T ∂v
∂α

−
∂v
∂α

T ∂r
∂α

(5.38)

Finally, multiply both sides of Eq. (5.37) by the inverse of the Lagrangian matrix

dα
dt

=L−1 ∂R
∂α

(5.39)

Equation (5.39) provides the means to determine each time derivative of the orbital
elements. Recall that the 6 × 1 vector dα/dt is

dα
dt

=

da/dt

de/dt

di/dt

dΩ/dt

dω/dt

dσ/dt

(5.40)

Battin [2; pp. 477–479] and Vallado [1; pp. 621–626] use the so-called Lagrange brackets
to determine the ith row and jth column of the Lagrangian matrix L

αi,αj = Lij =
∂r
∂αi

∂v
∂αj

−
∂r
∂αj

∂v
∂αi

(5.41)
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The Lagrange brackets exhibit the properties αi,αi = 0 (i.e., diagonal elements of L are
zero) and αi,αj = − αj,αi (i.e., skew symmetry). Therefore, only 15 (out of 36)
Lagrange brackets must be computed. The key to obtaining the Lagrange brackets
(and ultimately Lagrange’s variation of parameters) is the calculation of the partial
derivatives of the ECI vectors r and v with respect to the six orbital elements, or
∂r/∂αi and ∂v/∂αi. This step requires us to express position and velocity vectors in terms
of orbital elements. Recall that in Section 3.5, we developed the transformation from
orbital elements to the ECI state vector (r,v). The transformation begins with the calcu-
lation of the position and velocity vectors in the perifocal (PQW) frame, Eqs. (3.18)
and (3.23):

rPQW =
a 1−e2

1 + ecosθ

cosθ

sinθ

0

(5.42)

vPQW =
μ

μa 1−e2

−sinθ

e+ cosθ

0

(5.43)

Multiplying Eqs. (5.42) and (5.43) by the rotation matrix transforms the state vector to
ECI coordinates

r=RrPQW (5.44)

v =RvPQW (5.45)

Using Eq. (3.39) for the 3 × 3 rotation matrix R, the ECI state vector is

r=
a 1−e2

1 + ecosθ

cΩcω−sΩsωci −cΩsω−sΩcωci sΩsi

sΩcω + cΩsωci −sΩsω + cΩcωci −cΩsi

sωsi cωsi ci

cosθ

sinθ

0

(5.46)

v =
μ

μa 1−e2

cΩcω−sΩsωci −cΩsω−sΩcωci sΩsi

sΩcω + cΩsωci −sΩsω + cΩcωci −cΩsi

sωsi cωsi ci

−sinθ

e+ cosθ

0

(5.47)

Recall that Eqs. (5.46) and (5.47) use a short-hand notation for sines and cosines of the
three rotation angles i, Ω, and ω (e.g., cΩ = cosΩ and sΩ = sinΩ).
We will not pursue the explicit calculation of the partial derivatives ∂r/∂αi and ∂v/∂αi

any further. Although the partial-derivative process is tedious, it is fairly straightforward:
perform thematrix-vector multiplication, Eqs. (5.46) and (5.47), to produce the 3 × 1 vec-
tors r and v in terms of six orbital elements; compute the 15 Lagrange brackets using
Eq. (5.41) and the appropriate partial derivatives; assemble the 6 × 6 Lagrangian matrix
L; invert the Lagrangian matrix; multiply L−1 by the 6 × 1 disturbance vector ∂R/∂α to
determine the variations of parameters dα/dt. The interested reader may consult Vallado
[1] and Battin [2] for details of this process. The end result is Lagrange’s planetary
equations:

Non-Keplerian Motion 163



da
dt

=
2
na

∂R
∂σ

(5.48)

de
dt

=
1−e2

na2e
∂R
∂σ

−
1−e2

na2e
∂R
∂ω

(5.49)

di
dt

=
1

na2 1−e2sini
cosi

∂R
∂ω

−
∂R
∂Ω

(5.50)

dΩ
dt

=
1

na2 1−e2sini

∂R
∂i

(5.51)

dω
dt

=
1−e2

na2e
∂R
∂e

−
cosi

na2 1−e2sin i

∂R
∂i

(5.52)

dσ
dt

= −
2
na

∂R
∂a

−
1−e2

na2e
∂R
∂e

(5.53)

Equations (5.48)–(5.53) are Lagrange’s variation of parameter equations, and they are
in terms of the partial derivatives of the disturbance potential R. Recall that R must be a
conservative disturbing function such as a non-spherical gravitational body or third-
body gravity. Close inspection of Lagrange’s equations shows that the disturbing poten-
tial R must be expressed in terms of the orbital elements so that we can compute the
partial derivatives.
At this point, the reader may have lost sight of the fact that the original objective of this

section is to develop a general perturbation method that results in analytical expressions
for the effects of perturbations. Lagrange’s variation of parameter equations (5.48)–
(5.53) are highly nonlinear first-order differential equations – finding analytical solutions
for each orbital element does not appear to be an easy task! The next subsection presents
analytical expressions for the “mean” or “averaged” effect of Earth’s oblateness.

5.3.2 Secular Perturbations due to Oblateness (J2)

Recall that Example 5.1 illustrated the special perturbation method of numerically inte-
grating the absolute acceleration of a satellite in the Cartesian (ECI) frame. The satellite’s
absolute acceleration is expressed as the gradient of the total geopotential function
U = U2b + R [see Eq. (5.12)]. In Example 5.1, we only considered the zonal harmonic
coefficient J2 (oblateness). Hence, the disturbing function is

R r,ϕ = −
μ

r
J2

RE

r

2

P2 sinϕ (5.54)

Recall that P2 is the second-order Legendre polynomial and ϕ is geocentric latitude.
Note that we can repeat Example 5.1 by numerically integrating the Lagrange variation
of parameter equations (5.48)–(5.53) as long as we can compute the required partial deri-
vatives of R with respect to the orbital elements. This approach would also be a special
perturbation method but we would directly obtain time histories of the orbital elements,
that is, a(t), e(t), and so on [remember that Example 5.1 required coordinate transforma-
tions from (r,v) to the orbital elements]. Successfully completing this process would
reproduce Figures 5.3a–e, the time histories of elements a, e, i, Ω, and ω. Recall that
Figures 5.3a–c showed that semimajor axis, eccentricity, and inclination exhibited

Space Flight Dynamics164



periodic changes due to J2, but in all three cases the net changes were zero after an orbital
revolution. Figures 5.3d and 5.3e showed that elements Ω and ω exhibited periodic var-
iations about a “mean” or secular change that is linear with time.
It is possible to analytically derive the secular changes in the orbital elements due to

Earth’s oblateness (or J2) effect. To begin, we must express the disturbing function R,
Eq. (5.54), in terms of the orbital elements. The sine of the geocentric latitude is com-
puted from spherical trigonometry

sinϕ = sin ω+ θ sin i (5.55)

Using this expression for sin ϕ in Eq. (5.15), the second-order Legendre polynomial is

P2 sinϕ =
1
2

3sin2 ω+ θ sin2i−1 (5.56)

Substituting Eq. (5.56) into the oblateness disturbing function, Eq. (5.54) becomes

R= −
μ

2r
J2

RE

r

2

3sin2 ω+ θ sin2i−1 (5.57)

Finally, we must substitute the trajectory equation

r =
p

1 + ecosθ
=

a 1−e2

1 + ecosθ

into Eq. (5.57) to obtain the disturbing function

R= −
μ

2a3 1−e2 3 J2R
2
E 1 + ecosθ 3 3sin2 ω+ θ sin2i−1 (5.58)

Equation (5.58) presents R as a function of the orbital elements. We could take partial
derivatives of R and use them in Lagrange’s variation of parameter equations. However,
this step would not result in analytical expressions because the first-order differential
equations would remain highly nonlinear. Because we want the secular changes in the
elements, we need to “average out” the “fast” variable that causes periodic fluctuations
during an orbital revolution. The “fast” variable is the angular position of the satellite.
The “mean” disturbance function is its average value over one orbit, that is,

R=
1
2π

2π

0

RdM (5.59)

where the over-bar indicates the “mean” or “average” value. Here the “averaging” inte-
gration is performed using mean anomaly M as the angular variable. Recall from
Chapter 4 that the time-rate of mean anomaly is the mean motion, or

dM
dt

= n (5.60)

Therefore, the differential in the mean anomaly is

dM = ndt (5.61)
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The differential time dt can be found using the angular momentum relationship
expressed as the product of radial position r and transverse velocity vθ = rθ

h= r2θ = r2
dθ
dt

(5.62)

Therefore, dt = r2dθ/h, and Eq. (5.61) becomes

dM =
nr2

h
dθ (5.63)

Substituting Eqs. (5.63) and (5.58) into the mean disturbance function (5.59) yields

R=
1
2π

2π

0

−nr2μ

2ha3 1−e2 3J2R
2
E 1 + ecosθ 3 3sin2 ω+ θ sin2i−1 dθ (5.64)

Finally, we substitute h= μa 1−e2 and the trajectory equation for r in Eq. (5.64) and
perform the integration to obtain

R=
n2J2 R2

E

4 1−e2 3/2 2−3sin2i (5.65)

Equation (5.65) is themean disturbance function where the periodic fluctuations (due
to angular position θ) have been averaged out. If we use the partial derivatives of R in
Lagrange’s planetary equations (5.48)–(5.53), we get the mean or averaged rates for
the orbital elements over one revolution. Because R is not a function of elements Ω,
ω, or σ, the corresponding partial derivatives ∂R/∂Ω, ∂R/∂ω, and ∂R/∂σ are zero. Con-
sequently, Eqs. (5.48)–(5.50) show that the mean rates for semimajor axis, eccentricity,
and inclination are zero:

da
dt

= 0 (5.66)

de
dt

= 0 (5.67)

di
dt

= 0 (5.68)

Equations (5.66)–(5.68) confirm the numerical results presented in Example 5.1: the
orbital elements a, e, and i exhibit zero change when averaged over a single orbital rev-
olution when J2 is the only perturbation (again, see Figures 5.3a–c). Equations (5.66)–
(5.68) are results we obtained from our general perturbation analysis: that is, the secular
change in elements a, e, and i due to Earth oblateness is zero.
Note that Lagrange’s planetary equations for the longitude of the ascending node and

argument of perigee, Eqs. (5.51) and (5.52), contain the partial derivatives ∂R/∂i and
∂R/∂e. Taking the partial derivative of Eq. (5.65) with respect to inclination yields

∂R
∂i

=
−3n2J2 R2

E

2 1−e2 3/2 sinicosi (5.69)
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Substituting Eq. (5.69) into Eq. (5.51), yields themean rate in the longitude of the ascend-
ing node:

dΩ
dt

=
−3nJ2

2 1−e2 2

RE

a

2

cosi (5.70)

Equation (5.70) is the secular rate of change for longitude of the ascending node. This
average or mean rate is the linear “drift” shown by the sloping dashed line in Figure 5.3d.
Equation (5.70) is sometimes called the nodal regression because the oblateness (J2) effect
causes the ascending node vector to regress or rotate from east to west for a direct orbit
(i.e., inclination i < 90 ). Figure 5.4 shows a direct Earth orbit where the zonal harmonic J2
is causing the ascending node n to rotate westward. Of course, the nodal regression indi-
cates that the orbital plane is rotating clockwise about the polar axis as viewed from
above the North Pole.
Figure 5.5 shows the secular drift rate dΩ/dt as computed by Eq. (5.70) for circular

Earth orbits. Here the dimensionless zonal harmonic coefficient is J2 = 0.0010826267
and the equatorial Earth radius is RE = 6,378.14 km. The reader should note that the
dimensions of Eq. (5.70) are radians per second because the ratio RE/a is dimensionless
and the mean motion n is an angular velocity in radians per second [mean motion n
solely depends on semimajor axis a as shown by Eq. (5.23); do not confuse mean motion
nwith themagnitude of the ascending node vector n!]. The nodal regression presented in
Figure 5.5 has been converted to units of degrees per day. Figure 5.5 and Eq. (5.70) show
that dΩ/dt is negative for direct orbits, zero for polar orbits (i = 90 ), and positive for
retrograde orbits (i > 90 ). Furthermore, the nodal drift rate is significant for LEOs.

n
Ascending node

Nodal regression

I

J

K

h
i

Ω

        
dt

dΩ < 0 

Figure 5.4 Nodal regression due to zonal harmonic J2 (Earth oblateness).
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For example, a 325-km altitude circular LEOwith inclination i = 28.5 will exhibit a nodal
regression of –7.4 deg/day. This motion of the orbital plane must be taken into account
when planning orbital transfers or orbital rendezvous maneuvers.
Because Earth oblateness has a net zero effect on a, e, and i, we can consider the nodal

regression dΩ/dt as constant for a given Earth orbit. Therefore, Eq. (5.70) can be inte-
grated to yield

Ω t =Ω0 +
dΩ
dt

t (5.71)

Equation (5.71) is the time history of themean (or average) longitude of the ascending
node. The initial valueΩ0 is the longitude of the ascending node at time t = 0. It should be
clear that Eq. (5.71) only accounts for the secular drift in Ω and does not include the
periodic variations during each orbital revolution. The following example illustrates
nodal regression for an Earth orbit.

Example 5.2 The International Space Station (ISS) has the following orbital elements
at time t = 0

Semimajor axis a = 6,790.6 km
Eccentricity e = 0.0005
Inclination i = 51.65
Longitude of the ascending node Ω0 = 295

Compute the longitude of the ascending node for the ISS 7 days after this epoch.

0 30 60 90 120 150 180

Inclination, deg

–10

–8

–6

–4

–2

0

2

4

6

8

10
N

od
al

 r
eg

re
ss

io
n 

ra
te

, d
eg

/d
ay

325 km

1000 km

1500 km

3000 km

Labels are altitudes of
circular Earth orbits

Figure 5.5 Nodal regression dΩ/dt vs. inclination for circular Earth orbits.
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The ISS orbit is nearly circular at an altitude of about 412 km. Mean motion n is the
critical value needed in the nodal-regression equation (5.70). Using Eq. (5.23), the mean
motion is

n=
μ

a3
= 0 001128 rad/s

Using Eq. (5.70) with J2 = 0.0010826267 and RE = 6,378.14 km, we obtain the mean
nodal regression

dΩ
dt

=
−3nJ2

2 1−e2 2

RE

a

2

cosi = −1 0029 10−6 rad/s

Converting the nodal regression to degrees per day yields dΩ/dt = –4.965 deg/day.
Therefore, the longitude of the ascending node at time t = 7 days is

Ω t =Ω0 +
dΩ
dt

t = 295 + – 4 965 deg/day 7days = 260 245

The orbital plane of the ISS has rotated nearly 35 westward in 1 week. This simple exam-
ple shows that two-body (Keplerian) motion does not hold for a LEO such as the ISS. The
orbital plane is not fixed in inertial space; in reality the plane rotates westward because
the Earth is not a perfect sphere.

The Earth-oblateness effect may be used advantageously to design a sun-synchronous
orbitwhere the orbital plane rotates at the same rate as the Earth’s rotation rate about the
sun. Figure 5.6a shows a “top-down” view of the Earth’s orbit about the sun. Earth’s mean
motion (or “average” angular velocity) is one revolution every year or (360 )/(365.25 days)
= 0.986 deg/day (of course, the Earth’s heliocentric orbit is elliptical and hence its angular
velocity slightly varies with time). Figure 5.6a also shows a top-down view of a nearly
polar Earth orbit with a mean nodal rate dΩ/dt that matches Earth’s mean motion about
the sun (because the Earth orbit is nearly polar it appears as an “edge” in Figure 5.6a). The
Earth orbit shown in Figure 5.6a is a sun-synchronous orbit because its orbital plane
rotates at the same rate as Earth’s mean motion about the sun, that is, dΩ/dt = 0.986
deg/day. If the orbital plane is initially orientated so that it is perpendicular to the
sun–Earth line (as in Figure 5.6a), then the Earth orbit will maintain this orientation with
respect to the sun as the Earth follows its heliocentric path. Hence, a satellite in a sun-
synchronous orbit shown in Figure 5.6a will always be in sunlight and will never expe-
rience an Earth eclipse. Figure 5.6b shows an Earth satellite in a polar orbit (i = 90 ) where
the J2 zonal harmonic has a zero net effect on the orientation of the orbital plane (i.e.,
dΩ/dt = 0). An Earth satellite in a polar orbit may initially experience all-sunlight con-
ditions (see time t = 0 in Figure 5.6b), but 3 months later nearly half of its orbit will be in
the Earth’s shadow (see time t = 91 days in Figure 5.6b).
Equation (5.70) shows that we have the freedom to select semimajor axis a, eccentricity

e, and inclination i in order to establish a sun-synchronous orbit with a mean ascending
node rate dΩ/dt = 0.986 deg/day. First, Eq. (5.70) and Figure 5.5 show that a sun-
synchronous orbit must be slightly retrograde (i > 90 ) so that the nodal rotation rate
is positive (eastward). The following example involves computing the orbital elements
for a sun-synchronous orbit.
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Example 5.3 Determine the orbital inclination required for a circular sun-
synchronous orbit. Plot inclination vs. orbital altitudes (up to 1,500 km) for circular
sun-synchronous orbits.
We know that the mean rate of the longitude of the ascending node must match the

Earth’smeanmotion about the sun (i.e., 360 deg/year = 0.9856 deg/day). Using Eq. (5.70),
we have

dΩ
dt

=
−3nJ2

2 1−e2 2

RE

a

2

cos i = 0 9856 deg/day = 1 991021 10−7 rad/s

Because we are interested in circular orbits, we can set e = 0 and a = r (radius). Sub-

stituting n= μ/a3 = μ/r3 (for a circular orbit) and solving for inclination, we obtain
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Earth at
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0.986 deg/day
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Ω
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Figure 5.6 (a) Sun-synchronous orbit and (b) polar orbit with a stationary orbital plane.
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i= cos−1
−2Ω
3J2 R2

E

r7

μ

Using J2 = 0.0010826267, RE = 6,378.14 km, and Ω = 1.991021(10−7) rad/s, we can
determine the sun-synchronous orbital inclination for a given radius r. Figure 5.7 shows
sun-synchronous orbit inclination for circular altitudes ranging from 325 km (LEO) to
1,500 km. We see that inclination must be retrograde for a sun-synchronous orbit (as
expected) and that inclination increases with altitude. The sun-synchronous orbit shown
in Figure 5.6a has inclination i = 98 , and therefore its circular orbital altitude must be
about 654 km (see Figure 5.7).

The previous analysis has identified the secular change in longitude of the ascending
node due to oblateness. Earth oblateness also causes a secular drift rate in argument of
perigee. Equation (5.52) shows that the time-rate of ω depends on partial derivatives of
the disturbance function with respect to eccentricity and inclination. Equation (5.69)
provides the partial derivative ∂R/∂i. The partial derivative of Eq. (5.65) with respect
to eccentricity is

∂R
∂e

=
3n2J2 R2

Ee

4 1−e2 5/2 2−3sin2i (5.72)

Substituting Eqs. (5.69) and (5.72) into Eq. (5.52) yields themean rate in the argument of
perigee:

dω
dt

=
3nJ2

4 1−e2 2

RE

a

2

4−5sin2i (5.73)
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Figure 5.7 Inclination required for a circular sun-synchronous orbit (Example 5.3).
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Equation (5.73) is the secular rate of change for argument of perigee caused by Earth
oblateness. This mean rate is the linear “drift” shown by the dashed line in Figure 5.3e
(Example 5.1). Equation (5.73) is the apsidal rotation because the oblateness (J2) effect
causes the eccentricity vector e (or apse line) to rotate in the orbital plane. Integrating
Eq. (5.73) yields the time history of the mean argument of perigee ω.

ω t =ω0 +
dω
dt

t (5.74)

Figure 5.8 shows a direct Earth orbit (i < 90 ) where the zonal harmonic J2 is causing
the eccentricity vector e to rotate about the angular momentum vector h in the direction
of orbital motion. Equation (5.73) shows that the mean argument of perigee rate is pos-
itive when the sine of the inclination satisfies the condition sini < 4/5. This condition is
satisfied for direct orbits with inclination i < 63.4 and retrograde orbits with inclination
i > 116.6 . Because the direct elliptical Earth orbit shown in Figure 5.8 has inclination
i < 63.4 , the secular change dω/dt is positive and vector e rotates counter-clockwise
in the orbital plane.
Figure 5.9 shows the apsidal rotation rate, Eq. (5.73), as a function of inclination for

elliptical Earth orbits. The four elliptical orbits presented in Fig. 5.9 have a common per-
igee altitude of 325 km. Figure 5.9 clearly shows that Earth oblateness causes positive
apsidal rotation (dω/dt > 0) for inclinations i < 63.4 and i > 116.6 , and negative apsidal
rotation when 63.4 < i < 116.6 . Equation (5.73) and Figure 5.9 show that the apsidal
rotation is maximized (and positive) for equatorial orbits (i = 0 and i = 180 ). Apsidal
rotation is zero at i = 63.4 (direct) and i = 116.6 (retrograde) because both inclinations

e, Perigee direction 

Apsidal rotation

> 0

I

J

K

h i < 63.4ο

n   
Ascending node

ω dt

dω

Figure 5.8 Apsidal rotation due to zonal harmonic J2 (Earth oblateness).
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satisfy the condition sini= 4/5 (or 4−5sin2i= 0). Figure 5.10 shows the Molniya orbit
used by Russia for communication satellites (see Section 3.4 in Chapter 3). This highly
elliptical orbit has i = 63.4 and argument of perigee ω = –90 . Therefore, the apse line
does not rotate within the orbital plane and apogee of a Molniya orbit remains at the
highest possible latitude (63.4o N in this case).
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Figure 5.9 Apsidal rotation dω/dt vs. inclination for elliptical Earth orbits.
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Example 5.4 Compute the secular drift rates for the longitude of the ascending node
and argument of perigee for the satellite orbit in Example 5.1. Compare the analytical
secular change in Ω and ω with the numerical simulation results presented in
Figures 5.3d and 5.3e.
Recall that the orbital elements from Example 5.1 are

Semimajor axis a = 8,059 km
Eccentricity e = 0.15
Inclination i = 20

The mean motion of this orbit is

n=
μ

a3
= 0 000872664 rad/s

Using this mean motion with J2 = 0.0010826267 and RE = 6,378.14 km in Eq. (5.70), the
secular change in ascending node is

dΩ
dt

=
−3nJ2

2 1−e2 2

RE

a

2

cosi= – 8 7297 10−7 rad/s

Or, in degrees per day we have dΩ/dt = −4 32 deg/day

Recall that Figure 5.3d (Example 5.1) shows the periodic and secular changes in the lon-
gitude of the ascending node resulting from numerical integration (i.e., special perturba-
tionmethods). The dashed line in Figure 5.3d is the secular drift inΩ. The longitude of the
ascending node decreases approximately –1.8 over 10 h (or 0.4167 days) so the approx-
imate secular rate is (–1.8 )/(0.4167 days) = –4.32 deg/day. Hence, an approximate
linear fit through the numerically simulated response Ω(t) shows a good match with
the analytically determined mean drift rate dΩ/dt.
Equation (5.73) gives us the secular change in argument of perigee

dω
dt

=
3nJ2

4 1−e2 2

RE

a

2

4−5sin2i = 1 5863 10−6 rad/s

Or, in degrees per day dω/dt = 7 85 deg/day

Figure 5.3e shows that argument of perigee increases by about 3.25 over 10 h or
7.8 deg/day. Again, the analytical secular change exhibits a good match with the approx-
imate linear fit through the simulation results.

5.4 Gauss’ Variation of Parameters

It is useful to summarize our perturbation analysis thus far. We began with a discussion
of special perturbation methods where we numerically integrate the satellite’s absolute
acceleration (including the perturbing accelerations) in a Cartesian frame. Because the
resulting time histories of r(t) and v(t) provide no insight to orbital variations, we must
transform the state vector (r,v) to orbital elements so that we may observe periodic and

Space Flight Dynamics174



secular changes in the elements. Example 5.1 demonstrated this approach, where the
total acceleration is the gradient of a geopotential function that includes a single zonal
harmonic term (J2) associated with Earth’s oblateness. Next, we presented a general per-
turbationmethod where the goal is to derive analytical expressions for the non-Keplerian
motion. We outlined Lagrange’s variation of parameters which culminated with six first-
order differential equations for the orbital elements. Here the time-rates of the elements
are in terms of a disturbing function R, and therefore Lagrange’s variation of parameters
applies to conservative perturbations such as a non-spherical central body and third-
body accelerations. We applied orbital averaging techniques to Lagrange’s equations
and developed analytical expressions for the secular (ormean) changes in the orbital ele-
ments due to oblateness. The zonal harmonic J2 has a zero net effect on semimajor axis,
eccentricity, and inclination but produces a secular change in the longitude of ascending
node Ω and argument of perigee ω.
Gauss developed a form of the variation of parameters where the perturbing accelera-

tions are expressed in a satellite-based coordinate frame that moves with the vehicle.
Gauss’ variation of parameters can handle conservative and non-conservative perturba-
tions; the only constraint is that the perturbing accelerations must be expressed in terms
of a satellite-fixed frame. The general form for Gauss’ variation of parameters is

dα
dt

= f α,aP , t (5.75)

Recall that α is the 6 × 1 vector of the orbital elements and aP is the 3 × 1 vector of per-
turbing accelerations in a convenient satellite-based frame. Although it is possible to
derive all six variational equations, we will only present derivations for da/dt, de/dt,
and di/dt. These three equations will be used in Chapter 9 when we analyze low-thrust
orbit transfers, where the low-thrust propulsion force (divided by satellite mass) is trea-
ted as the perturbing acceleration aP.
We will derive Gauss’ variation of parameters by using basic concepts frommechanics

and by applying calculus to the orbital relationships developed in Chapter 2. Let us begin
with the time-rate of semimajor axis, da/dt. Because semimajor axis is directly related to
total energy, we start with an expression for power or the time-rate of energy:

dξ
dt

=
FP v
m

= aP v (5.76)

Equation (5.76) is a familiar result from basic mechanics: the time-rate of energy is the
dot product of the perturbing force vector FP and the satellite’s velocity v (the reader
should note that if the perturbing force is zero, then we have Keplerian motion where
energy is constant). Because ξ is total energy per unit mass, its time-rate is specific power
where the perturbing acceleration vector is aP = FP/m. Now relate energy to semima-
jor axis

ξ=
−μ

2a
(5.77)

Using the chain rule and Eq. (5.77), the time-rate of energy is

dξ
dt

=
dξ
da

da
dt

=
μ

2a2
da
dt

(5.78)
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Substituting Eq. (5.76) for the left-hand side, Eq. (5.78) becomes

μ

2a2
da
dt

= aP v (5.79)

Therefore, we can derive the time-rate da/dt if we find an expression for the dot prod-
uct of the perturbing acceleration aP and velocity v. Gauss used the orthogonal RSW
coordinate frame where the R unit vector is along the radius vector, S is in the orbital
plane and along the local horizon in the direction of motion, andW is along the angular
momentum vector h. We will use the normal-tangent coordinate frame NTW.
Figure 5.11 shows the RSW and NTW frames; these frames are fixed to the satellite.
The T (tangent) unit vector is always tangent to the orbit in the direction of motion,
theN axis is in the orbital plane and normal to the T axis (pointing away from the central
body) and the commonW axis is along h, orN×T=W. The RSW andNTW frames can
be aligned by a rotation through the flight-path angle γ. For circular orbits, the RSW
frame is always aligned with the NTW frame. Suppose we express the perturbing accel-
eration vector aP in the NTW frame

aP = anN+ atT+ awW (5.80)

where an, at, and aw are components along the orthogonal NTW axes. It should be clear
that the velocity vector v has a single component when expressed in theNTW frame (i.e.,
v = vT). Hence, the dot product is

aP v = atv (5.81)

Substituting Eq. (5.81) into Eq. (5.79) and solving for the time-rate of semimajor axis
yields

da
dt

=
2a2v
μ

at (5.82)

Equation (5.82) is Gauss’ variation of parameter equation for semimajor axis where the
perturbing acceleration is expressed in the NTW frame. Component at is the sum of all
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γ

γ
R × S = W
N × T = W

Figure 5.11 NTW and RSW satellite-based frames.
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perturbing force/mass vectors resolved into the local T-axis direction (tangent to the
orbital path). Therefore, at may be due to conservative forces (e.g., gravity) or non-
conservative forces (e.g., aerodynamic drag, solar radiation pressure, or thrust).
Next, we seek the time-rate de/dt. We begin with the orbital relationship for para-

meter p

p=
h2

μ
= a 1−e2 (5.83)

Solving Eq. (5.83) for eccentricity yields

e= 1−
h2

μa
(5.84)

Taking the time derivative of Eq. (5.84), we obtain

de
dt

=
−h

μa 1−h2/ μa

dh
dt

+
h2

2μa2 1−h2/ μa

da
dt

(5.85)

We can substitute Eq. (5.84) for the common denominator term in Eq. (5.85) to
produce

de
dt

=
h
μae

−
dh
dt

+
h
2a

da
dt

(5.86)

We can use Eq. (5.82) for the time-rate da/dt. In addition, we need the time rate of
change of the magnitude of angular momentum dh/dt. From a basic dynamics course,
we know that the time-rate of the angular momentum vector is the moment or torque.
This is equal to the cross product of position r and applied force F. Recall that h is the
total angular momentum per unit mass, and therefore its time-rate is

h= r× aP (5.87)

where aP = FP/m is the perturbing acceleration (we already know that two-body gravity
does not change angular momentum because the gravity force is aligned with r). For
now, let us express the perturbing acceleration aP as components ar, as, and aw in the
RSW frame (see Figure 5.11 for the RSW directions). It should be clear that radial pertur-
bation arwill not change angular momentum because it is aligned with radial position vec-
tor r. A transverse perturbation as will increase the magnitude of the angular momentum
vector. The orbit-normal perturbation aw will cause the angular momentum vector h to
rotate and change direction. Using these arguments, the time-rate of themagnitude of the
angular momentum dh/dt is solely due to the in-plane perturbation along the S axis, or

dh
dt

= ras (5.88)

Because we want to develop the variation equations with perturbations expressed in
the NTW frame, we can replace as in Eq. (5.88) with the in-plane perturbing accelera-
tions an and at

dh
dt

= r at cosγ−an sinγ (5.89)
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The reader should be able to easily identify the projections of the T and N components
onto the S axis by reviewing Figure 5.11. Equation (5.89) shows that we need expressions
for the cosine and sine of the flight-path angle γ. Equations (2.69) and (2.71) present the
radial and transverse velocity components, r and rθ, in terms of e, h, and true anomaly θ

r =
μ

h
esinθ (5.90)

rθ =
μ

h
1 + ecosθ (5.91)

We know that sinγ = r/v and cosγ = rθ/v. Using Eqs. (5.90) and (5.91), we obtain the
expressions for the sine and cosine of the flight-path angle

sinγ =
μesinθ
hv

(5.92a)

cosγ =
μ 1 + ecosθ

hv
(5.92b)

Substituting Eqs. (5.92a) and (5.92b) into Eq. (5.89), we obtain

dh
dt

=
rμ
hv

1 + ecosθ at −esinθan (5.93)

Finally, substitute Eqs. (5.93) and (5.82) into Eq. (5.86) to yield an expression for the
time-rate de/dt in terms of NTW perturbations an and at

de
dt

=
h
μae

−rμ
hv

1 + ecosθ at −esinθan +
hav
μ

at (5.94)

The final steps involve substitutions of orbital relationships (such as the trajectory
equation) and simplifications. These algebraic steps are omitted here. Equation (5.94)
can be simplified to yield

de
dt

=
1
v

2 e+ cosθ at +
r sinθ
a

an (5.95)

Equation (5.95) is Gauss’ variational equation for eccentricity in terms of perturbing
accelerations expressed in the satellite-based NTW frame. Only perturbations in the
orbital plane cause eccentricity to change over time.
The variational equation for inclination can be obtained using calculus and geomet-

rical methods. We start with the expression for the cosine of inclination, Eq. (3.8)

cosi=
K h
h

(5.96)

where K is the unit vector along the Z axis of the ECI frame. Taking a time derivative
yields

−sin i
di
dt

=
h K h −h K h

h2
(5.97)

We may use Eq. (5.87) to compute the time-rate of vector h in terms of perturbation
accelerations in the RSW frame
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h= r× aP =

R S W

r 0 0

ar as aw

= −rawS+ rasW (5.98)

Wemay use Eq. (5.96) to substituteK h= hcosi in Eq. (5.97). The dot productK hwill
involve the following dot products between K and unit vectors S and W:

K S= sin icos ω+ θ (5.99)

K W = cos i (5.100)

The angle ω+ θ (the argument of latitude; see Section 3.3) is measured in the orbital
plane from the ascending node to the satellite. Making these substitutions (along with
h= ras), Eq. (5.97) becomes

−sin i
di
dt

=
h −raw sin icos ω+ θ + ras cosi −rashcosi

h2
(5.101)

Canceling the two terms hras cos i in Eq. (5.101), we obtain

di
dt

=
r cos ω+ θ

h
aw (5.102)

Equation (5.102) is Gauss’ variational equation for inclination. Only perturbations that
are normal to the orbital plane (aw) will change inclination.
We can follow the same basic procedures and derive the remaining Gauss variational

equations. These steps will not be presented here. The interested readermay consult Val-
lado [1; pp. 633–636] or Bate et al. [3; pp. 402–406]. Gauss’ variational equations in
NTW coordinates are

da
dt

=
2a2v
μ

at (5.103)

de
dt

=
1
v

2 e+ cosθ at +
r sinθ
a

an (5.104)

di
dt

=
r cos ω+ θ

h
aw (5.105)

dΩ
dt

=
r sin ω+ θ

hsini
aw (5.106)

dω
dt

=
1
ev

2sinθat − 2e+
r cosθ
a

an −
r sin ω+ θ cosi

hsin i
aw (5.107)

dθ
dt

=
h
r2

−
1
ev

2sinθat − 2e+
r cosθ
a

an (5.108)

Note that, when all perturbing acceleration components vanish (an = at = aw = 0),
Gauss’ variational equations show that the five elements (a, e, i, Ω, ω) remain constant
while the time-rate of true anomaly is governed by conservation of angular momentum,
or h= r rθ = r2θ. It is also interesting to note that the orbit-normal perturbation aw only
affects the orientation of the orbital plane in three-dimensional space (i.e., orbital ele-
ments i, Ω, and ω).
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Gauss’ variation of parameters (5.103)–(5.108) may be used in special (numerical) or
general (analytical) perturbation methods. Gauss’ variational equations provide two dis-
tinct advantages for a special perturbation method: (1) numerical integration provides
the time histories of the orbital elements without a coordinate transformation step;
and (2) a relatively large time step may be used in the numerical integration process.
Referring back to Example 5.1, we see that the special perturbation method was applied
to a perturbed system in Cartesian coordinates [see Eqs. (5.18)–(5.20)], and therefore a
coordinate transformation was required to obtain time histories of the orbital elements.
In order to use Gauss’ equations, we must provide the perturbing accelerations (third-
body gravity, drag, thrust, etc.) as components in the satellite-based NTW frame. In
Chapter 9 we will apply a general perturbation method to develop analytical solutions
for low-thrust transfers where the small perturbing acceleration aP is produced by an
onboard propulsion system.
Finally, we should note that Gauss’ variational equations possess singularities for equa-

torial orbits (Ω is not defined) and circular orbits (ω and θ are not defined). As inclination
approaches zero, the time-rate dΩ/dt becomes infinite even if the perturbations are
small. The same problem occurs for the time-rates dω/dt and dθ/dt as eccentricity
approaches zero. One solution is to use a non-singular set of elements that are nonlinear
functions of the classical orbital elements. The non-singular element for angular position
is measured from the inertial I axis to the satellite. Gauss’ variational equations may be
written in terms of non-singular elements (the so-called equinoctial elements). The inter-
ested reader may consult Battin [2; pp. 490–494] for the definition and use of non-
singular orbital elements.

5.5 Perturbation Accelerations for Earth Satellites

The previous sections have presented special and general perturbation methods. The
only perturbation that we have investigated in any detail has been the non-spherical
Earth oblateness (J2) effect. During our discussion of perturbations, we have noted that
other perturbing forces (or accelerations) exist. In this section we will briefly describe the
characteristics of orbital perturbations for an Earth satellite. This discussion will not
delve into detailed calculations; instead the objective here is to quantify the effect of per-
turbations on “typical” Earth orbits such as LEO and GEO.

5.5.1 Non-Spherical Earth

The major effects of a non-spherical or oblate Earth (or any non-spherical central body)
have been discussed in Section 5.3. We will provide a brief summary of the principle
characteristics of non-Keplerian motion caused by a non-spherical gravity field. The
Earth resembles a “flattened ellipsoid” with an additional “bulge” of mass at its equator.
This equatorial bulge is modeled by a second-order spherical harmonic function with
zonal coefficient J2. The Earth-oblateness effect is a conservative perturbation that does
not change the energy of the satellite’s orbit. While the J2 perturbation causes periodic
variations in the orbital elements over each revolution (see Figures 5.3a–e), the secular or
mean changes are zero for semimajor axis a, eccentricity e, and inclination i. The major
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effect of Earth oblateness is the secular changes in the longitude of the ascending nodeΩ
and argument of perigee ω. The secular “drift” time-rates for Ω and ω are repeated here:

ΩJ2 =
−3nJ2

2 1−e2 2

RE

a

2

cos i (5.109)

ωJ2 =
3nJ2

4 1−e2 2

RE

a

2

4−5sin2i (5.110)

Recall that the over-bar indicates the mean or average value and that for Earth, the
second zonal harmonic coefficient is J2 = 0.0010826267. Clearly, the secular drift rates

ΩJ2 and ωJ2 diminish as the orbital energy (i.e., a) increases (remember that meanmotion

n= μ/a3 also diminishes as a increases). Equations (5.109) and (5.110) show that the
secular drift for Ω is zero for polar orbits (i = 90 ) and the secular change in ω is zero at
inclination i = 63.4 and 116.6 .
Table 5.1 presents the secular drift rates due to oblateness effects for a few selected

Earth orbits. The LEO exhibits a significant nodal regression rate ΩJ2 that causes the
orbital plane to regress westward. Many spacecraft are launched into a LEO “parking
orbit” before injection into a trajectory leading to their target orbit or target planet. Mis-
sion planners must carefully consider the nodal regression due to J2 even if the spacecraft
loiters for a few hours in LEO before its departure rocket burn. The second orbit in

Table 5.1 is for the Global Positioning System (GPS). Note that the drift rate ΩJ2 is very
small for GPS satellites due to the large semimajor axis a and relatively large inclination i.
The third entry in Table 5.1 is the geostationary transfer orbit (GTO), which is a highly
elliptical orbit with a perigee altitude of 185 km and apogee altitude of 35,786 km. Thus,
the GTO perigee is tangent to a 185-km circular LEO and its apogee is tangent to GEO.
The argument of perigee for a GTO is zero (or 180 ) so that its perigee direction e is in
the equatorial plane and aligned with the line of nodes. The apogee of GTO must be in
the equatorial plane so that it is tangent to its target, a circular geostationary equatorial
orbit. During a 5-h transit (perigee to apogee), the GTO apse line will rotate more than
0.13 due to oblateness effects. Despite this small angular displacement, an unplanned
0.13 rotation in themajor axis will cause a 96-km error north (or south) of the equatorial
plane when the satellite reaches its apogee.
As a final note, the secular oblateness effect for any gravitational body can be quanti-

fied using Eqs. (5.109) and (5.110). All that is required is the zonal harmonic coefficient J2

Table 5.1 Secular rates due to Earth oblateness (J2).

Orbit Semimajor axis, a (km) Eccentricity, e Inclination, i
ΩJ2

(deg/day)
ωJ2

(deg/day)

LEO 6,728 0.0 28.5 –7.26 No perigee

GPS 26,558 0.0 55.0 –0.04 No perigee

GTO 24,364 0.731 28.5 –0.37 0.60
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and equatorial radius for the body of interest. For example, our moon is less oblate than
the Earth (the moon’s zonal coefficient is J2 = 0.0002027). A satellite in a 100-km altitude
circular low-lunar orbit with an inclination of 10 will exhibit a nodal regression rate of

ΩJ2 = −1 18 deg/day. Hence, the nodal regression for a satellite in LEO is six to seven
times greater than the nodal regression for a satellite in a low-lunar orbit.

5.5.2 Third-Body Gravity

The moon and sun are the two obvious gravitational bodies that perturb Earth-orbiting
satellites. Let us develop an expression for the perturbing acceleration due to a third
gravitational body that is present in the two-body (Earth and satellite) system.
Figure 5.12 shows a three-body system comprising the Earth, moon, and satellite where
the respective (absolute) position vectors are rE, rm, and rsc. The relative position vectors
shown in Figure 5.12 are

moon-to-spacecraft rm-sc = rsc−rm (5.111)

moon-to-Earth rm-E = rE −rm (5.112)

Earth-to-spacecraft rE-sc = rsc−rE (5.113)

Applying Newton’s second law and the law of gravitation to the spacecraft and Earth,
we obtain

Spacecraft mrsc = −
GMEm
r3E-sc

rE-sc−
GMmm
r3m-sc

rm-sc (5.114)

Earth MErE =
GMEm
r3E-sc

rE-sc−
GMEMm

r3m-E

rm-E (5.115)

The acceleration of the spacecraft relative to the Earth is the second time derivative of
Eq. (5.113), which can be obtained by subtracting Eq. (5.115) from (5.114) (with the
appropriate divisions by masses ME and m, respectively); the result is

rm

rE

rsc

rm-sc

rE-sc
rm-E

moon, Mm

Earth, ME

Satellite, m

Inertial XYZ frame

Figure 5.12 Three-body system.
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rE-sc = rsc−rE

= −
GME

r3E-sc
rE-sc−

GMm

r3m-sc
rm-sc−

Gm
r3E-sc

rE-sc +
GMm

r3m-E

rm-E (5.116)

Grouping like terms, we obtain

rE-sc = −
G ME +m

r3E-sc
rE-sc−GMm

rm-sc

r3m-sc
−
rm-E

r3m-E

(5.117)

Note that if we define r = rE-sc and use the approximation G ME +m ≈GME = μ
(Earth’s gravitational parameter), then Eq. (5.117) matches Eq. (5.3). In this case, the first
term on the right-hand side of Eq. (5.117) is central-body acceleration and the second
term is the perturbation acceleration due to lunar gravity:

Lunar am = −μm
rm-sc

r3m-sc
−
rm-E

r3m-E

(5.118)

where μm = GMm is the moon’s gravitational parameter. Kaplan [4; pp. 357–358] calls
this perturbing acceleration the effective attraction of the moon on the satellite. Closer
inspection of Eq. (5.118) shows that the so-called effective attraction is the difference
between the lunar gravity acting on the satellite and the lunar gravity acting on the Earth.
If we redraw Figure 5.12 with the sun as the third body and repeat the previous der-

ivation, we obtain its perturbation acceleration acting on the satellite

Solar as = −μs
rs-sc
r3s-sc

−
rs-E
r3s-E

(5.119)

where rs-sc is the sun-to-spacecraft position vector, rs-E is the sun-to-Earth position vec-
tor, and μs is the sun’s gravitational parameter. Equation (5.119) is the effective attraction
of the sun on the satellite [4; p. 359]. Lunar and solar gravitational accelerations (5.118)
and (5.119) may now be added as perturbation acceleration aP to the central-body grav-
itational acceleration [see Eq. (5.3) or Cowell’s formulation of the special perturbation
method]. Table 5.2 presents the Earth, lunar, and solar gravitational acceleration mag-
nitudes that act on an Earth-orbiting satellite. Equations (5.118) and (5.119) are used to
compute the perturbing accelerations using the closest-approach distance between the
third body and the satellite. Table 5.2 shows that the moon’s perturbing acceleration is
generally more than twice as large as the sun’s perturbing acceleration for satellites in the
vicinity of Earth. In both cases, however, the third-body gravitational acceleration is
extremely small compared with central-body gravity.

Table 5.2 Third-body gravitational accelerations.

Orbit
Earth gravitational
acceleration (m/s2)

Lunar gravitational
acceleration (m/s2)

Solar gravitational
acceleration (m/s2)

LEOa 8.938 1.18(10−6) 5.29(10−7)

GEO 0.224 8.65(10−6) 3.34(10−6)

a LEO: 300-km altitude circular orbit.
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Lunar and solar gravity cause a secular drift rate in a satellite’s ascending node and
argument of perigee (we have already noted that third-body gravity is a conservative
force that does not change the satellite’s total energy). Larson andWertz [5; p. 142] pres-
ent expressions for the approximate secular drift inΩ andω due to third-body gravity for
nearly circular orbits

Lunar Ωm =
−0 00338

Nrev
cosi deg/day (5.120)

Solar Ωs =
−0 00154

Nrev
cosi deg/day (5.121)

Lunar ωm =
0 00169
Nrev

4−5sin2i deg/day (5.122)

Solar ωs =
0 00077
Nrev

4−5sin2i deg/day (5.123)

where Nrev is the number of orbital revolutions per day. Note that when i = 63.4 the
argument of perigee is unaltered by third-body gravity (just as in the case of Earth’s
oblateness). The reader should also note that the ratio of the lunar/solar drift-rate
magnitudes is roughly 2.2, which is on the same order as the ratios of the respective
gravitational accelerations presented in Table 5.2.

Example 5.5 Compute the secular drift rates inΩ andω caused by lunar and solar grav-
ity for the Earth-orbiting satellite in Example 5.1. Compare these gravity-induced secular
changes with the nodal regression and apsidal rotation caused by Earth oblateness (J2).
Recall that the orbital elements from Example 5.1 are

Semimajor axis a = 8,059 km
Eccentricity e = 0.15
Inclination i = 20

The orbital period is

Tperiod =
2π
μ
a3/2 = 7,200s = 2h

Therefore, the number of revolutions per day is Nrev = 12.
Using Eqs. (5.120) and (5.121), the nodal drift rates due to lunar and solar gravity are

Lunar Ωm =
−0 00338

Nrev
cosi= – 0 0002647 deg/day

Solar Ωs =
−0 00154

Nrev
cosi= – 0 0001206 deg/day

Recall from Example 5.4 that the nodal regression due to Earth oblateness is

ΩJ2 = −4 32 deg/day.
Using Eqs. (5.122) and (5.123), the apsidal rates due to lunar and solar gravity are

Lunar ωm =
0 00169
Nrev

4−5sin2i = 0 0004810deg/day
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Solar ωs =
0 00077
Nrev

4−5sin2i = 0 0002191deg/day

The apsidal rotation rate caused by Earth oblateness is ωJ2 = 7 85 deg/day.
These calculations show that the nodal regression and apsidal rotation due to lunar-

solar gravity are miniscule compared with the secular drift rates caused by Earth
oblateness. For this particular low-Earth orbit, the moon causes the largest perturbation
(apsidal rotation); however, even after 1 year in orbit, lunar gravity will increase the
argument of perigee by less than 0.2 .

5.5.3 Atmospheric Drag

Satellites in low orbits (or orbits with a low perigee) will encounter particles of the upper
atmosphere. This interaction is manifested as an aerodynamic drag force that can be cal-
culated from the same basic equation used for airplane drag. Atmospheric drag acceler-
ation is the drag force divided by the satellite’s mass m

aD =
1
2
ρv2rel

SCD

m
(5.124)

The drag force always opposes the satellite’s velocity vector vrel that is relative to the
Earth’s atmosphere

vrel = v−ωE × r (5.125)

where v is the satellite’s inertial velocity in the ECI frame,ωE is the angular velocity vector
of the Earth (not to be confused with argument of perigee ω), and r is the satellite’s ECI
position vector. Equation (5.125) assumes that the atmosphere rotates with the Earth.
The other terms in the drag acceleration equation (5.124) include atmospheric density
ρ, satellite cross-sectional area S, and drag coefficient CD. All three terms are difficult to
determine accurately. We may model atmospheric density as an exponential function of
altitude h

ρ= ρ0 exp −β h−h0 (5.126)

where ρ0 is the atmospheric density at reference altitude h0, and β is the “inverse scale
height.” Larson and Wertz [5] present values of ρ0 and β at discrete references altitudes
h0 ranging from 0 (sea level) to 1,500 km. Density of the upper atmosphere is strongly
affected by the 11-year solar cycle. High solar flux will greatly increase the density of the
upper atmosphere by a factor of 5 from its mean value. Low solar flux will reduce density.
Larson and Wertz [5] present values of ρ0 for three solar flux levels: “high,” “mean,” and
“low.” Table 5.3 provides atmospheric density values for mean solar activity at various
altitudes above the Earth’s surface [5].
Drag coefficient CD and cross-sectional area S are difficult to determine because they

depend on the satellite’s orientation relative to the velocity vector. One solution is to
group the terms CD, S, and m into a single parameter called the ballistic coefficient

CB =
m
SCD

(5.127)
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The ballistic coefficient has units of kilograms per meter squared. Typical values of CB

will be on the order of 10–100 kg/m2.
Let us compute the drag acceleration for a representative Earth-orbiting satellite with

ballistic coefficientCB=85kg/m
2.Wewill assume that the satellite is ina circularequatorial

orbit and therefore the relative velocity is vrel = μ/r−ωEr where ωE = 7.292(10–5) rad/s
(one revolution per sidereal day). Drag acceleration is computed using Eq. (5.124) for the
circular altitudes and densities listed in Table 5.3 [the reader should note that vrel must be
expressed in base units of meters per second when using Eq. (5.124) so that the resulting
acceleration is in meters per second squared]. Table 5.4 presents the inertial velocity
μ/r, relative velocity vrel, and corresponding drag acceleration aD. Table 5.4 shows

that while the atmospheric-relative velocity vrel only varies by about 7%, the drag
acceleration varies by 5 orders of magnitude for circular orbits between 200 and
1,000 km altitude. Comparing Tables 5.3 and 5.4, we see that drag acceleration is
greater than third-body gravitational accelerations for LEOs with altitudes less than
350 km. However, we must remember that drag is a non-conservative force that always
diminishes orbital energy while third-body gravity is a conservative force.

Table 5.3 Density of the Earth’s upper atmosphere [5].

Altitude (km)
Mean atmospheric density
(kg/m3)

200 2.53(10–10)

350 6.98(10–12)

500 4.89(10–13)

650 5.15(10–14)

800 9.63(10–15)

1,000 2.79(10–15)

Table 5.4 Drag acceleration on Earth-orbiting satellite with CB = 85 kg/m2.

Circular altitude
(km)

Inertial velocity
(km/s)

Relative velocity
(km/s)

Drag acceleration
(m/s2)

200 7.7843 7.3046 7.94(10–5)

350 7.6971 7.2064 2.13(10–6)

500 7.6127 7.1111 1.45(10–7)

650 7.5310 7.0185 1.49(10–8)

800 7.4519 6.9284 2.72(10–9)

1,000 7.3502 6.8122 7.62(10–10)
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We end this brief subsection with a summary of the general effects of atmospheric drag
on Earth-orbiting satellites. Because drag always acts in the opposite direction of the
atmospheric-relative velocity vrel, it constantly reduces orbital energy. For a near-circular
LEO, atmospheric drag will cause the satellite to slowly spiral inward (thus decreasing
altitude and increasing atmospheric density) until it enters the dense atmosphere and
either burns up or decelerates and eventually crashes into the Earth’s surface.
Figure 5.13a illustrates this scenario (of course, this figure is not to scale). Therefore,
satellites operating in LEO must be periodically re-boosted using onboard propulsion
in order to increase orbital altitude. Atmospheric drag (enhanced by higher than
expected solar activity) caused the first US space station Skylab to slowly spiral inward
from its 430-km orbit. After 6 years in orbit, Skylab entered the dense atmosphere and
disintegrated due to extreme aerodynamic heating (some orbital debris crashed inWest-
ern Australia). Figure 5.13b shows an Earth-orbiting satellite in an elliptical orbit where
its perigee is within the upper atmosphere. Passage through the upper atmosphere will
reduce the satellite’s speed and consequently reduce its apogee altitude as shown in
Figure 5.13b. Over many orbital revolutions, the satellite’s eccentricity is continually
reduced until the orbit is nearly circular and entirely within the upper atmosphere; after
this point the satellite follows the slow inward spiral presented in Figure 5.13a.

Example 5.6 The Space Shuttle is in a 300-km altitude circular orbit. The Space Shut-
tle has mass m = 90,000 kg and is oriented so that its maximum cross-sectional area is
normal to the atmospheric-relative velocity vector vrel. Using S = 367 m2 and CD = 2,
compute the drag acceleration and estimate the loss of altitude after 1 day in orbit.
First, let us compute the Shuttle’s ballistic coefficient using Eq. (5.127)

CB =
m
SCD

= 122 62 kg/m2

Next, we will estimate the atmospheric-relative velocity as vrel = μ/r−ωEr even
though the Shuttle’s orbit is not equatorial. Using r = 6,678 km, we determine vrel =
7,239 m/s. The mean atmospheric density at 300-km altitude is ρ = 1.95(10–11) kg/m3

[5]. Using Eq. (5.124), the drag acceleration is

aD =
1
2
ρv2rel

SCD

m
= 4 1667 10– 6 m/s2

LEO
Upper 
atmosphere

(a)

Upper 
atmosphere

(b)

Initial elliptical orbit

Perturbed 
orbit

Figure 5.13 Atmospheric drag effects on an Earth-orbiting satellite: (a) “spiral in” from circular low-
Earth orbit (LEO); and (b) eccentricity reduction of an elliptical orbit.
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Drag will cause the Shuttle’s circular orbit to slowly shrink over time. Gauss’ variational
equation for semimajor axis, Eq. (5.103), provides the rate of altitude change because the
orbit is circular (i.e., a = r = h + RE):

da
dt

=
2a2v
μ

at

By definition, the perturbing acceleration at is along the inertial velocity direction (T
axis), whereas drag acceleration aD opposes the relative velocity vector. Neglecting this
slight difference in direction, we set at = –aD and compute da/dt using a = r = 6,678 km
and v= μ/r = 7.7258 km/s [note that we express drag acceleration as aD = 4.1667(10–9)
km/s2 so that we obtain da/dt in kilometers per second]. The time-rate of semimajor axis
due to drag is

da
dt

=
−2a2v
μ

aD = – 7 2032 10– 6 km/s

This time-rate of semimajor axis is essentially the time-rate of radius (and the time-rate
of altitude) because the inward spiraling orbit remains nearly circular. The change in
semimajor axis after 1 day (86,400 s) is approximately

Δa≈
da
dt

Δt = – 7 2032 10– 6 km/s 86,400 s = – 0 622 km

Hence, drag causes the Shuttle’s orbital altitude to decrease by about 622 m after 1 day.
This result is approximate because we assumed that the rate da/dt remained constant
during Δt = 1 day (=86,400 s). This approximation is valid because orbital velocity
and atmospheric density will change very little for a small change in altitude.
We can estimate the orbital lifetime of the Space Shuttle by numerically integrating

Gauss’ variational equation da/dt with drag as the sole perturbation. A simple Euler-
integration scheme may be used:

a ti +Δt = a ti +
da
dt

Δt

where the Gauss variational equation (5.103) is used to update da/dt as semimajor axis
decreases. Of course, the drag acceleration is computed at every time step using
Eq. (5.124) with the updated values for vrel and atmospheric density ρ (both are functions
of orbital radius or a). Atmospheric density is calculated using the exponential model
(5.126) with the reference values h0 and ρ0 defined in Larson and Wertz [5]. The Euler
integration is carried out with a fixed time step Δt = 0.25 days (6 h) starting from the
300-km altitude circular orbit. Figure 5.14 shows the time history of the circular orbital
altitude (h = a – RE). Note that the altitude time-rate dh/dt (= da/dt) caused by drag is
essentially constant for the first 30 days in orbit. The average altitude rate over the first
30 days is (–25 km)/(30 days) = –0.833 km/day. The rate of altitude loss becomes larger
as the Shuttle’s orbit becomes lower and enters the denser atmosphere. Once the satellite
reaches an altitude of about 150 km, the altitude rate increases dramatically (the integra-
tion time step must be reduced to less than 1 h). The satellite crashes into the Earth’s
surface about 8.5 h (approximately six orbital revolutions) after reaching h = 150 km.
Figure 5.14 shows that the lifetime of a Space Shuttle orbit is about 62.3 days.
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5.5.4 Solar Radiation Pressure

Satellites in sunlight are perturbed by a force from solar radiation pressure (SRP). The
magnitude of the SRP force depends on the intensity of the solar energy (i.e., distance
from the sun and solar activity), the satellite’s area exposed to the sun, and the satellite’s
reflectivity characteristics. Like drag, solar radiation pressure is a non-conservative per-
turbation. However, because the SRP force acts in a direction opposite the satellite-to-
sun vector, a perturbing SRP force can increase or decrease the energy of a satellite’s
orbit. Figure 5.15 shows a satellite initially
in a circular orbit about the Earth. For sim-
plicity, let us assume that the sun’s rays are
parallel to the orbital plane. When the satel-
lite is near point A (right-hand side of the
orbit in Figure 5.15), the SRP force will
“push” in the same direction as the satellite’s
velocity vector and increase its speed and
orbital energy. The perturbed orbit will have
an apogee near point B in Figure 5.15. As
the satellite transits point B, the SRP force
is opposite the satellite’s velocity vector
causing deceleration (energy loss) and
decreasing the perigee altitude near point
A. Therefore, Figure 5.15 implies that over
time, the SRP perturbation creates an
elliptical orbit with continually increasing
eccentricity but with essentially constant
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Figure 5.14 Circular orbit decay due to atmospheric drag: altitude vs. time (Example 5.6).
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Figure 5.15 Solar-radiation pressure effects
on a geocentric satellite.

Non-Keplerian Motion 189



semimajor axis (energy). This conclusion is a bit simplistic because the direction of the
sun’s rays will change as the Earth moves in its orbit. In addition, Earth eclipses (i.e.,
shadow conditions where SRP force is zero) must be included when analyzing the per-
turbed orbit.
The solar intensity (or solar flux) for the mean Earth–sun distance is Is = 1,361 W/m2.

Note that solar intensity Is is energy flux (power) per unit area. From basic mechanics, we
know that power is the product of force and velocity. Dividing solar power per unit area
by the speed of light [c = 3(108) m/s] yields

PSRP =
Is
c
= 4 54 10−6 N/m2 (5.128)

Equation (5.128) is the solar radiation pressure PSRP experienced by an Earth-orbiting
satellite. Note that the units are pascals (or N/m2) because solar intensity Is has units of
W/m2 = N-m/(s-m2) = N/(s-m); hence, dividing Is by velocity (m/s) yields force per unit
area. The perturbation acceleration from SRP is

aSRP =
PSRPAsCR

m
(5.129)

where As is area of the satellite exposed to the sun and CR is the reflectivity. It should be
clear that the product PSRPAs in Eq. (5.129) has units of force. Reflectivity CR = 0 for a
translucent body (i.e., light passes through the body), and hence there is no momentum
transfer from the radiation and the SRP force is zero. ReflectivityCR = 1 for a “black body”
(i.e., all light is absorbed), andCR = 2 for a “pure mirror” that reflects all radiation. Hence,
a pure mirror doubles the momentum transfer (and force) when compared with a
black body.
Equation (5.129) shows that the SRP perturbation acceleration is very difficult to

accurately predict due to the uncertainty of the satellite’s exposed area As and its
reflectivity CR. Let us attempt to quantify the SRP acceleration by considering a “typ-
ical” geocentric satellite with an area-to-mass ratio of 0.01 m2/kg and reflectivity
CR = 1.4. Using Eq. (5.129) with PSRP = 4.54(10–6) N/m2, we obtain aSRP = 6.36(10–8)
m/s2. We can compare the SRP and drag accelerations by interpolating the drag data
in Table 5.4. Doing so, we find that aSRP and aD are equal for a 592-km altitude cir-
cular orbit (the reader should note that drag accelerations in Table 5.4 assumed a
ballistic coefficient of 85 kg/m2 which may not exactly match the assumed area-to-
mass ratio of 0.01 m2/kg used for the SRP acceleration calculation). Therefore, as
a rough rule-of-thumb, drag will dominate SRP for circular orbits below 600 km,
while SRP will dominate drag for altitudes above 600 km. Table 5.4 shows that drag
acceleration is dramatically reduced to negligible values by modest increases in
altitude above a 600-km LEO; SRP acceleration is essentially constant with orbital
altitude for geocentric satellites that maintain a fixed orientation relative to the
sun-pointing vector.
As a final demonstration, let us compute the magnitudes of the various perturbing

accelerations on a geocentric satellite for a range of circular orbital altitudes. Third-
body gravitational accelerations (moon and sun) are computed using Eqs. (5.118) and
(5.119) with rm-E = 384,400 km (mean moon–Earth distance), rs-E = 1.496(108) km
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(mean sun–Earth distance), and the appropriate gravitational parameters summarized
in Table A.1 in Appendix A. We compute the maximum possible gravitational pertur-
bations by assuming that the satellite is located on the line connecting the Earth and
third body (moon or sun). Unlike calculating gravitational perturbations, computing
drag and SRP accelerations require specific satellite characteristics. Here we will use a
spherical satellite based on Sputnik 1 with mass m = 83.6 kg, diameter = 0.58 m, drag
coefficient CD = 2, and reflectivity CR = 1.7. Drag acceleration is computed using
Eqs. (5.124)–(5.126), where atmospheric density is determined by using ρ0, h0, and
β values from Larson and Wertz [5] (recall that Table 5.3 presents density at repre-
sentative altitudes). The perturbing acceleration from solar radiation pressure is
computed using Eq. (5.129) with PSRP = 4.54(10–6) N/m2. Figure 5.16 shows the
various perturbing accelerations acting on the spherical satellite vs. circular orbital
altitudes (note that Figure 5.16 is plotted on a log–log scale so that we can show a
very wide range of perturbation accelerations and orbital altitudes). The Earth’s
gravitational acceleration μ/r2 is also included in Figure 5.16 (of course, it is by far
the dominant acceleration for orbits in the vicinity of Earth). Figure 5.16 clearly
shows that drag acceleration is the dominant perturbation for circular orbits with
altitudes between 100 and 300 km (i.e., the left-hand side of Figure 5.16). For altitudes
between 350 and 400 km, drag acceleration and third-body accelerations (moon
and sun) are approximately equal (note that the ratio between lunar and solar grav-
itational accelerations is nearly constant for orbits up to GEO). SRP acceleration
is constant at 4.9(10–8) m/s2 for all altitudes; drag and SRP accelerations are equal
at an altitude of 530 km. Figure 5.16 also shows that the Earth and moon gravitational
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Figure 5.16 Magnitude of accelerations acting on a geocentric satellite.
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accelerations are equal at two altitudes: roughly 340,000 km (in “front” of the moon)
and 426,000 km (“behind” the moon). When the satellite is in the narrow altitude band
near lunar orbit (between 340,000 km and 426,000 km), the moon is the dominant
acceleration (again, we assume that the satellite is on the line connecting the Earth
and moon). Figure 5.16 also shows that the Earth and sun gravitational accelerations
are equal at an altitude of about 1.7 million km; beyond that distance the sun is
the dominant acceleration. Extrapolating the Earth’s gravitational acceleration in
Figure 5.16 shows that it will be exceeded by SRP when the satellite is about 100 mil-
lion km from Earth.

5.6 Circular Restricted Three-Body Problem

Some space mission scenarios involve a satellite moving in the vicinity of two gravita-
tional bodies where their combined gravitational effect must be accounted for. One obvi-
ous example is an Earth–moon trajectory (such as the Apollo lunar missions), where the
spacecraft’s motion is simultaneously influenced by the Earth and lunar gravitational
forces. We can imagine a point in a translunar trajectory where the magnitudes of the
Earth and moon gravitational forces acting on the spacecraft are approximately equal
(e.g., see Figure 5.16). Clearly, in this scenario we cannot treat either gravitational accel-
eration as a perturbation.
A spacecraft moving in Earth–moon space is an example of a general three-body prob-

lem. As previously mentioned, there is no closed-form solution of the N-body (or three-
body) problem. However, we are able to develop some analytical expressions for the
satellite’s motion if we consider the circular restricted three-body problem (CR3BP).
Two major assumptions are required for the CR3BP: (1) the two gravitational bodies
move in circular orbits about their center of mass; and (2) the mass of the third body
(the satellite) is negligible and does not influence the motion of the two primary bodies.
While the second assumption seems reasonable, the first assumption causes some loss of
accuracy for translunar trajectories (note that the moon’s orbit about the Earth has an
eccentricity of about 0.055). However, the CR3BP serves as a useful method for devel-
oping preliminary cislunar trajectories.
Figure 5.17 shows the geometry of the CR3BP (the Earth–moon system is used as

an example throughout this section). The common origin of the inertial (non-rotat-
ing) Cartesian axes (xIyI) and the rotating axes (xrotyrot) is located at the center of
mass (c.m.) or barycenter of the Earth–moon system (Figure 5.17 is not to scale;
the Earth–moon barycenter is actually below the Earth’s surface). The rotating axis
xrot always points from the barycenter to the moon (the secondary gravitational
body), and the rotating axis yrot always points in a direction perpendicular to the
Earth–moon line. Angular velocity of the (xrotyrot) frame is ωr. Although
Figure 5.17 only shows the xrot-yrot (or xI–yI) plane, both coordinate frames share
a common z axis that points in a direction out of the page. The gravitational and cen-
trifugal forces balance so that

GM1M2

D2
=M1D1ω

2
r =M2D2ω

2
r (5.130)

Space Flight Dynamics192



where G is the universal gravitational constant, M1 and M2 are the masses of the grav-
itational bodies, D1 and D2 are the distances of each body from the barycenter, and
D=D1 +D2 is the separation distance between the bodies. Manipulating Eq. (5.130)
using gravitational parameter μi =GMi, we obtain

ω2
r =

μ1 + μ2
D3

(5.131)

We begin our analysis of the CR3BP with the absolute acceleration of the satellite [see
Eq. (C.16) in Appendix C]:

r = a= aO + rr + 2ωr × rr +ωr × r+ωr × ωr × r (5.132)

where r is the satellite’s acceleration relative to the inertial (fixed) axes xI yI zI, r is the
position of the satellite from the barycenter origin O, rr and rr are the satellite’s accel-
eration and velocity relative to the rotating frame xrotyrotzrot, andωr is the constant angu-
lar velocity vector of the rotating frame. We can eliminate the acceleration of the
barycenter aO and the term involving angular acceleration ωr because both are zero.
Defining unit vectors ux, uy, and uz along the rotating frame xrotyrotzrot allow us to express
the appropriate vectors as

r= xux + yuy + zuz (5.133)

rr = xux + yuy + zuz (5.134)

rr = xux + yuy + zuz (5.135)

ωr =ωruz (5.136)

Note that the time derivative of Eq. (5.133) does not produce Eq. (5.134), that is,
dr/dt rr , because Eq. (5.134) does not account for the directional change of the rotat-
ing-frame unit vectors (see Appendix C for details). Carrying out the cross products for
the Coriolis and centrifugal terms in Eq. (5.132) yields

2ωr × rr = −2ωryux + 2ωrxuy (5.137)

ωr × ωr × r = −ω2
r xux−ω

2
r yuy (5.138)

xI

yI

x rot

yrot

Earth, M1 O
c.m.

moon, M2

r1

r2

r

Satellite, m

Angular velocity, r

D1

D2

ω

Figure 5.17 Geometry of the CR3BP for the Earth–moon system.

Non-Keplerian Motion 193



In Section 5.2 we showed that the satellite’s absolute acceleration due to gravity is equal
to the gradient of a total potential function [see Eq. (5.5) for two-body motion]. For a
system with two gravitational bodies, the total acceleration of the third body is

r =∇
μ1
r1

+
μ2
r2

(5.139)

whereμ1 andμ2 are thegravitational parameters of theEarth andmoon, respectively, and r1
and r2 are the distances from the Earth andmoon to the satellite (see Figure 5.17). Remem-
ber that “del” is a vector operator of partial derivatives; see Eq. (5.6). Next, let us equate the
satellite’s absolute acceleration defined by kinematics, Eq. (5.132), with the absolute accel-
eration resulting from the gravitational forces, Eq. (5.139). Using Eqs. (5.135), (5.137), and
(5.138), we may express the absolute acceleration in the component form:

x−2ωry−ω
2
r x=

∂

∂x
μ1
r1

+
μ2
r2

(5.140)

y + 2ωrx−ω
2
r y=

∂

∂y
μ1
r1

+
μ2
r2

(5.141)

z =
∂

∂z
μ1
r1

+
μ2
r2

(5.142)

Equations (5.140)–(5.142) are the governing equations for the satellite’s motion in the
CR3BP and are expressed in the rotating-frame coordinates.

5.6.1 Jacobi’s Integral

Next, we will define an integral (constant) of the CR3BP. This integral will define allow-
able and forbidden regions for satellite motion. To start, let us multiply each acceleration
component equation (such as the x equation) by twice the corresponding velocity com-
ponent (2x in this case) and add the three equations. The result is

2xx+ 2yy+ 2zz−2ω2
r xx−2ω

2
r yy=

∂

∂x
μ1
r1

+
μ2
r2

2x+
∂

∂y
μ1
r1

+
μ2
r2

2y+
∂

∂z
μ1
r1

+
μ2
r2

2z

(5.143)

Integrating Eq. (5.143) with respect to time, we obtain

x2 + y2 + z2−ω2
r x2 + y2 =

2μ1
r1

+
2μ2
r2

−C (5.144)

It should be easy for the reader to verify that the time derivative of the left-hand side of
Eq. (5.144) produces the left-hand side of Eq. (5.143). The time derivatives of the two
right-hand side terms of Eq. (5.144) are determined by applying the chain rule:

d
dt

2μ1
r1

=
∂

∂x
2μ1
r1

dx
dt

+
∂

∂y
2μ1
r1

dy
dt

+
∂

∂z
2μ1
r1

dz
dt

(5.145)

d
dt

2μ2
r2

=
∂

∂x
2μ2
r2

dx
dt

+
∂

∂y
2μ2
r2

dy
dt

+
∂

∂z
2μ2
r2

dz
dt

(5.146)
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Summing Eqs. (5.145) and (5.146) produces the right-hand side of Eq. (5.143).
The integration constant C in Eq. (5.144) is called Jacobi’s integral or Jacobi’s constant.

Note that summing the first three terms on the left-hand side of Eq. (5.144) yields the
relative velocity squared (i.e., x2 + y2 + z2 = v2rel). Using this definition, we can rearrange
Eq. (5.144) to obtain

v2rel
2

−
ω2
r

2
x2 + y2 −

μ1
r1

−
μ2
r2

= −
C
2

(5.147)

Equation (5.147) is similar to the two-body energy equation with a kinetic energy term
v2rel/2 and two potential energy terms (−μ1 r1 and −μ2 r2). Using this analogy, the
term–C/2 is the total energy.Wewill show in the next subsection how the Jacobi integral
C defines regions of allowable satellite motion in the CR3BP space.

5.6.2 Lagrangian Points

The next step is to characterize the CR3BPmotion by investigating equilibrium solutions
or (x,y,z) coordinates where the satellite has zero velocity and zero acceleration in the
rotating frame. Therefore, we must develop explicit equations for the right-hand-side
partial derivatives in Eqs. (5.140)–(5.142). The separation distances between the gravi-
tational bodies and the satellite are

r1 = x+D1
2 + y2 + z2 (5.148)

r2 = x−D2
2 + y2 + z2 (5.149)

Using Eqs. (5.148) and (5.149) in Eqs. (5.140)–(5.142) and carrying out the partial deri-
vatives yields

x−2ωry−ω
2
r x= −

μ1 x+D1

r31
−
μ2 x−D2

r32
(5.150)

y + 2ωrx−ω
2
r y= −

μ1y
r31

−
μ2y
r32

(5.151)

z = −
μ1z
r31

−
μ2z
r32

(5.152)

It is useful at this point to rewrite the governing CR3BP equations (5.150)–(5.152) in
terms of dimensionless variables that have been normalized by the sum of the gravita-
tional parameters (μ1 + μ2) and the constant distance between the gravitational bodies
(D = D1 + D2). First, let us define the mass ratio as

μ=
μ2

μ1 + μ2
=

GM2

GM1 +GM2
(5.153)

Of course, μ is the mass of the (smaller) body M2 normalized by the total system mass
because G cancels out in Eq. (5.153). The mass ratio μmust be less than 0.5 because our
convention is M2 < M1. The normalized mass of the primary body is 1−μ because the
sum of the two normalized masses must equal unity. Balance between gravitational
and centrifugal forces, Eq. (5.130), leads to the dimensionless distances
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D1 =
D1

D
= μ and D2 =

D2

D
= 1−μ (5.154)

Finally, we note that the normalized angular rate ωr is unity. Using these results, we can
express the CR3BP system dynamics in terms of dimensionless variables

x−2y−x= −
1−μ x+ μ

r31
−
μ x−1 + μ

r32
(5.155)

y+ 2x−y= −
1−μ y
r31

−
μ y
r32

(5.156)

z = −
1−μ z
r31

−
μ z
r32

(5.157)

where the tilde denotes dimensionless variables.
Now let us determine the equilibrium solutions of the dimensionless CR3BP dynamics

(5.155)–(5.157). Setting all rotating-frame derivative terms to zero, we immediately see
that the out-of-plane coordinate zmust be zero for equilibrium. We will not present the
equilibrium solution process (see Szebehely [6; pp. 131–138] for details). Five equilib-
rium solutions exist: three collinear points along the xrot axis and two triangular points.
These equilibrium solutions are called Lagrangian points or libration points (Euler dis-
covered the three collinear points and Lagrange determined the two triangular points),
and these points are typically labeled L1–L5. Figure 5.18 shows the five Lagrangian points
in the rotating frame of the Earth–moon system. The five Lagrangian points exist
because of the balance between gravitational and centrifugal forces. The three collinear
Lagrangian points L1, L2, and L3 lie on the Earth–moon line, and points L4 and L5 are
located at vertices of equilateral triangles with length equal to D (i.e., the Earth–moon

L4

L1 L2L3

yrot

xrotO
Earth

moon

L5

Figure 5.18 Lagrangian points for the CR3BP Earth–moon system.
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separation distance). It is important for the reader to note that these Lagrangian points
appear stationary when observed in the rotating xrot–yrot coordinate system. A satellite

placed in any of the five Lagrangian points with zero relative velocity (x= y= z = 0) will
appear to remain stationary in the rotating frame. However, a satellite at a Lagrangian
point has non-zero inertial velocity when viewed from a non-rotating inertial frame.
Table 5.5 presents the locations of the Lagrangian points for the Earth–moon system in

terms of dimensionless coordinates x and y ̃ (remember that z = 0 for all Lagrangian
points). For the Earth–moon system, the mass ratio is μ= 0 01215 and the dimensionless
distances from the barycenter to the gravitational bodies are D1 = 0 01215 (Earth) and

D2 = 0 98785 (moon). Using the mean Earth–moon distanceD = 384,400 km, we see that
the L1 point is about 58,000 km from the center of the moon (the moon’s radius is
1,738 km). The L2 point is about 64,500 km from the moon’s center on its “far side”when
viewed from Earth.
Advanced analysis of the Lagrangian points would include checking the stability of

these five equilibrium solutions. Stability may be evaluated by using a “standard”method
from linear systems theory: (1) write the governing CR3BP dynamics (5.155)–(5.157) as a
(nonlinear) system of six first-order state-variable equations; (2) linearize the system by
computing the first-order partial derivatives of each state-variable equation; (3) compute
the 6 × 6 state matrix by evaluating the partial derivatives at a Lagrangian point; and (4)
compute the eigenvalues of the state matrix. We must perform the linearization process
and corresponding eigenvalue calculation for each Lagrangian point. If any eigenvalue
has a positive real part, then the linearized dynamics are unstable. This process shows
that the three collinear Lagrangian points L1, L2, and L3 are unstable. Therefore, a sat-
ellite that is slightly perturbed from an equilibrium condition at a collinear Lagrangian
point will naturally diverge or drift away to another region of the CR3BP space. The two
triangular Lagrangian points, L4 and L5, are stable. A satellite perturbed from the L4 or L5
point will continue to move in a region that is “close” to the triangular Lagrangian point.
Let us return to Eq. (5.144) and Jacobi’s integral. Using dimensionless variables (e.g.,

ωr = 1), Eq. (5.144) becomes

v2rel = x2 + y2 +
2 1−μ

r1
+
2μ
r2

−C (5.158)

where distances r1 and r2 are determined by using Eqs. (5.148) and (5.149) with the
appropriate dimensionless variables. With the exception of –C, all terms in
Eq. (5.158) are positive. We can use Eq. (5.158) and the Jacobi integral C to determine

Table 5.5 Locations of the Earth–moon Lagrangian points.

Lagrangian point x y ̃

L1 0.83692 0

L2 1.15568 0

L3 –1.00506 0

L4 0.48785 0.86603

L5 0.48785 –0.86603
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Figure 5.19 Allowable motion in CR3BP Earth–moon system for decreasing Jacobi constant C (motion is
forbidden in the shaded regions).



a satellite’s allowable and forbidden regions of motion in the three-body space. As an
example, suppose the (dimensionless) Jacobi constant is C = 3.25 for a satellite in the
Earth–moon system (the mass ratio is μ= 0 01215 for the Earth–moon system). We
can determine position coordinates (x,y) such that Eq. (5.158) is exactly equal to zero,
that is, v2rel = 0. Such coordinates would provide a locus of points that have zero relative
velocity in the rotating frame. For the same constant C = 3.25, it is also possible to deter-
mine coordinates (x,y) such that Eq. (5.158) is negative, or v2rel < 0. Such coordinates
would define regions where satellite motion is infeasible or forbidden. Figure 5.19a illus-
trates this scenario with Jacobi constant C = 3.25. The shaded region in Fig. 5.19a repre-
sents (x,y) coordinates that cause Eq. (5.158) to be negative (or v2rel < 0) and hence the
shaded region is forbidden. When C = 3.25, the satellite may move anywhere outside
the shaded region in Figure 5.19a; hence the satellite can move in a large circular region
near Earth, a small circular region very close to themoon, and a large region very far from
the Earth–moon system. The boundary of the shaded region is a locus of points with zero
relative velocity. For this particular value of C, the satellite cannot reach any of the five
Lagrangian points; nor can it travel from the Earth to the small region near the moon.
As we decrease the Jacobi integral C (or, increase the “energy-like” constant –C/2), the
forbidden region shrinks as seen in Figures 5.19a–d. Figure 5.19b shows that when
C = 3.172, the collinear Lagrangian points L1 and L2 are accessible. Figure 5.19c shows
that when C is further reduced to 3.1, a satellite may follow a trajectory from the Earth
past the moon and reach regions that are well beyond the moon’s orbit. Figure 5.19d
shows that when C = 3.01, a satellite may move outside of the Earth–moon system along
a path in the direction of the moon or in the direction of collinear Lagrangian point L3.
However, the triangular Lagrangian points remain inaccessible for this energy level. The
reader should remember that decreasing the Jacobi integral C corresponds to increasing
the total energy of the satellite’s orbit.

Example 5.7 Consider a satellite that is located at the L1 Lagrangian point in the
CR3BP. Figure 5.20 shows the Earth–moon CR3BP where the origin of the rotating
xrot–yrot system is located at the barycenter. An ECI coordinate system xECI–yECI is also
shown in Figure 5.20, where the +xECI and +xrot axes are aligned at this instant (the ECI
frame does not rotate). Note that Figure 5.20 is not to scale. The non-rotating ECI frame
and the rotating frame share the same +z axis (i.e., the xECI–yECI plane is the plane con-
taining the Earth and moon).

a) Determine the satellite’s position vector in the non-rotating ECI coordinate system
(in km) at this instant.

b) Determine the satellite’s inertial velocity vector in the ECI frame (in km/s) at this
instant.

c) Determine the Jacobi constant C for a satellite located at Lagrangian point L1. Express
C in the dimensionless system of units where D is the reference distance.

a) The position vector of the Lagrangian point L1 in the rotating system is easy to deter-
mine because its coordinates are given in Table 5.5. The non-dimensional xrot coor-
dinate of L1 is x = 0.83692 and its yrot coordinate is y ̃ = 0. Thus, the position vector
from the barycenter to the satellite at L1 is
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r=

0 83692

0

0

Recall that the normalizing distance unit is the mean Earth–moon separation,
D = 384,400 km. Therefore, the satellite’s dimensional position vector relative to
the barycenter is

r=D

0 83692

0

0

=

321,712 05

0

0

km

The satellite’s position vector in the Earth-centered frame is easy to compute because
the +x axes of coordinate systems xECI–yECI and xrot–yrot are aligned at this instant.
We simply add the offset distance D1 to the xrot coordinate. Using the mass ratio
μ= 0 01215 and Eq. (5.154), we determine that the Earth–barycenter distance is
D1 =Dμ = 4,670.46 km and the Earth-to-satellite position vector is

rECI =

D1 +Dx

0

0

= 326,382 51I km

Recall that I is a unit vector in the +xECI direction.

b) The satellite’s inertial velocity is determined using Eq. (C.12) in Appendix C

vECI = vO + vrot +ωr × r

where vO is the inertial velocity of the barycenter (expressed in the ECI frame), vrot is
the satellite’s velocity expressed in the rotating frame, and r is the satellite’s position
vector relative to the rotating frame. Because the barycenter moves in a circle with
constant angular velocity ωr (as seen by an observer at the origin of the ECI frame),
the barycenter velocity is

vO =ωrD1J= 0 0124 J km/s

Recall that J is a unit vector in the +yECI direction. The relative velocity in the rotating
frame, vrot, is zero because the satellite is located at the Lagrangian L1 point. The vec-
tor cross product is

xECI

yECI

xrot

yrot

Earth

O
moon

Satellite at L1

ωr

D1 D2

Figure 5.20 CR3BP for the Earth-moon system (Example 5.7).
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ωr × r=ωrDxJ= 0 8575 J km/s

where the constant rotation rate is ωr = 2.6653(10–6) rad/s and the magnitude of r is
Dx = 321,712 km. The Earth–moon angular velocity ωr is computed using Eq. (5.131)
with μ1 = 3.986(105) km3/s2 (Earth) and μ2 = 4,903 km3/s2 (moon). Adding vO and
ωr × r, we obtain the satellite’s inertial velocity in the ECI frame:

vECI = vO + vrot +ωr × r= 0 8699 J km/s

c) The Jacobi constant can be computed using Eq. (5.158)

v2rel = x2 + y2 +
2 1−μ

r1
+
2μ
r2

−C

Because the satellite is at L1, it is has zero relative velocity, and therefore v2rel = 0.
Hence, the Jacobi constant for L1 is

C = x2 + y2 +
2 1−μ

r1
+
2μ
r2

We know that x = 0.83692 and ỹ = 0. The dimensionless Earth–L1 distance is
r1 = μ+ x = 0.84907, and the dimensionless moon–L1 distance is r2 = 1−μ−x =
0.15093 [see Eq. (5.154) for the dimensionless distances from the barycenter to each
gravitational body]. Using these values, the Jacobi constant is

C = x2 + y2 +
2 1−μ

r1
+
2μ
r2

= 3 1883

Compare this Jacobi constant with the values in Figures 5.19a and 5.19b. Figure 5.19a
shows that when C = 3.25, the Lagrangian point L1 is unreachable, whereas
Figure 5.19b shows that motion near L1 is possible for C = 3.172. Hence,
C = 3.1883 is the maximum Jacobi constant that opens up the forbidden region
and allows a satellite to reach the L1 point.

Example 5.8 Figure 5.21 shows the Earth–moon CR3BP where the +x axis of an ECI
frame is aligned with the rotating xrot–yrot system at this instant. A satellite has the fol-
lowing position and velocity vectors in the ECI frame:

rECI = −50,000 I km, vECI = −3 675 J km/s

Determine if this satellite can access the Lagrangian point L1 and regions near the moon
as shown in Figure 5.19b.
We can determine if L1 and the lunar region is accessible by computing the Jacobi con-

stant C. Equation (5.158) can be manipulated and solved for C

C = −v2rel + x
2 + y2 +

2 1−μ
r1

+
2μ
r2

(5.159)

We need the satellite’s position and velocity coordinates relative to the rotating xrot–yrot
frame. The satellite’s xrot coordinate is

x= −D1−r1 = – 4,670 46 km – 50,000 km= – 54,670 46 km
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where r1 = rECI is the radial distance from the Earth center to the satellite. Normalizing
this xrot coordinate by using the Earth–moon distance D, we obtain

x=
x
D
= – 0 1422

It is clear from Figure 5.21 that y= 0. The normalized Earth–satellite distance is

r1 =
r1
D

= 0 1301

The normalized moon–satellite distance is

r2 =
D1 +D2 + r1

D
= 1 1301

The satellite’s inertial velocity in the ECI frame can be expressed as

vECI = vO + vrot +ωr × r= – 3 675 J km/s

where vO is the inertial velocity of the barycenter (=0.0124 J km/s; see Example 5.7) and
the cross-product term is

ωr × r=ωrxJ= – 0 1457 J km/s

Therefore, the relative velocity vector expressed in the rotating frame is

vrot = vECI−vO−ωr × r= – 3 5417 J km/s

Hence, the magnitude of the relative velocity is vrel = 3.5417 km/s. We must normalize
the velocity using the reference speed, Dωr = 1.0245 km/s; the result is vrel = 3 4569.
Finally, we can substitute the dimensionless values for vrel, x, ỹ, r1, r2, and the mass ratio
μ= 0 01215 into Eq. (5.159) to obtain

C = 3 28

This Jacobi constant is greater than the value used to define the feasible and forbidden
regions in Figure 5.19a (with C = 3.25), and therefore the satellite cannot transit from
near-Earth space to regions surrounding L1 and the moon. The Jacobi constant must
be smaller so that the forbidden region near L1 “opens up” and allows a satellite to move
from near-Earth space to the vicinity of the moon (see Figures 5.19b and 5.19c). Increas-
ing the satellite’s relative velocity (or, increasing the magnitude of the inertial velocity
vECI shown in Figure 5.21) will reduce C and allow the satellite to move in the forbidden
regions shown in Figure 5.19a.

xECI

yECI

xrot

yrot

Earth

O

moon
Satellite

ωr

D1
vECI

rECI

D2

Figure 5.21 CR3BP for the Earth–moon system (Example 5.8).
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The Earth–moon system is not the only example of the restricted three-body problem.
Five Lagrangian points also exist for the sun–Earth system. Several missions have sent
spacecraft to the sun–Earth Lagrangian points. The International Sun-Earth Explorer-3
(ISEE-3) spacecraft (1978) was the first satellite to reach the sun–Earth L1 point. Other
spacecraft sent to sun–Earth L1 include Solar and Heliospheric Observatory (SOHO,
1996), WIND (2004), and Lisa Pathfinder (2015). These L1 spacecraft are orbiting solar
observatories that measure the solar wind, solar activity, and gravitational waves. Space-
craft intended for solar system observations (such as the Planck and Herschel Space
Observatories) operate near the sun–Earth L2 point.

5.7 Summary

In this chapter, we make a distinction between Keplerian and non-Keplerian motion.
Keplerian motion is governed by the two-body problem and consequently the orbital ele-
ments are constant. For non-Keplerian motion, the orbital elements vary with time.
Recall that the two major assumptions that lead to Keplerian motion are: (1) the single
gravitational body is spherically symmetric; and (2) no forces other than the central grav-
ity act on the satellite. In this chapter, we investigated scenarios where both of these
assumptions were violated. The reader should note that all real-world satellite orbits fol-
low non-Keplerian motion. However, in many cases the two-body (Keplerian) solution
accurately represents the satellite’s motion.
In this chapter, we identified perturbations that cause deviations from the theoretical

two-body motion. A non-spherical gravitational body, third-body gravity, atmospheric
drag, and solar radiation pressure all cause orbital perturbations. Accounting for perturba-
tions and obtaining a satellite’s non-Keplerian motion is much more difficult than analyz-
ing two-body motion. Two approaches exist: (1) special perturbation methods involve
direct numerical integration of the perturbed two-body equations of motion; and (2) gen-
eral perturbation methods develop analytical solutions by replacing the perturbations with
a series expansion. We applied the general perturbation method to a non-spherical grav-
itational body to show that an oblate body causes the longitude of the ascending node (Ω)
and argument of perigee (ω) to “drift” at a linear rate over time. This chapter also quantified
the various perturbing forces that act on a satellite (the reader is encouraged to review
Figure 5.16). Finally, we presented the CR3BP where two gravitational bodies simultane-
ously influence the satellite’s motion. The “circular restricted” part of the CR3BP acronym
arises from the assumption that the two gravitational bodies are moving in circular orbits
about their common center of mass.While we cannot obtain closed-form solutions for the
CR3BP, we can use the energy-like Jacobi integral to determine feasible and infeasible
regions for satellite motion in the vicinity of two gravitational bodies.
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Problems

Conceptual Problems

Problems 5.1–5.4 involve special perturbation methods where a geocentric orbit is per-
turbed by Earth’s oblateness (J2). Each problem includes the time history plot of an
orbital element. Use the special perturbations result to determine the requested orbital
characteristic.

5.1 Figure P5.1 presents the time history of the longitude of the ascending node for a
geocentric orbit with eccentricity e = 0.183 and inclination i = 30 . Estimate the
semimajor axis a.

5.2 Figure P5.2 shows the time history of the longitude of the ascending node for a cir-
cular geocentric orbit with radius r = 7,178 km. Estimate the inclination.
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5.3 Figure P5.3 shows the time history of the argument of perigee for a geocentric orbit
with eccentricity e = 0.3 and inclination i = 10 . Estimate the semimajor axis a.

5.4 Figure P5.4 shows the time history of the argument of perigee for a geocentric orbit
with eccentricity e = 0.2 and semimajor axis a = 9,500 km. Estimate the inclination.
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5.5 Carry out the partial derivatives (the “del” operation) of the total geopotential func-
tion for an oblate Earth, Eq. (5.16), and verify the absolute acceleration components
presented by Eqs. (5.18)–(5.20).

5.6 A satellite is in a circular, equatorial low-Earth orbit (LEO) with an altitude of
185 km. The atmospheric density is ρ = 4.65(10–10) kg/m3 at this altitude. After
3 h, the satellite’s orbital radius has decreased by 2.62 km. Estimate the satellite’s
ballistic coefficient CB.

5.7 The special perturbation method is used to obtain the orbital characteristics of a
low-altitude geocentric orbit. Figure P5.7 shows the satellite’s altitude history with
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time. Estimate the satellite’s semimajor axis and eccentricity at time t = 0. Using
Figure P5.7, describe the progression of the satellite’s energy (or semimajor axis)
and eccentricity. Is a perturbation force acting on this satellite? If so, identify the
perturbing force and describe how it is affecting the satellite’s orbit.

5.8 Derive Gauss’ variation of parameter equation for semimajor axis, da/dt,
where the perturbing acceleration aP is expressed in the RSW frame, i.e.,
aP = arR+ asS+ awW (see Figure 5.11).

5.9 Derive Gauss’ variation of parameter equation for eccentricity, de/dt,
where the perturbing acceleration aP is expressed in the RSW frame, i.e.,
aP = arR+ asS+ awW (see Figure 5.11).

5.10 Derive Gauss’ variation of parameter equation for parameter, dp/dt, where the
perturbing acceleration aP is expressed in the NTW frame.

5.11 Derive Gauss’ variation of parameter equation for perigee radius, drp/dt, where
the perturbing acceleration aP is expressed in the NTW frame.

5.12 Derive Gauss’ variation of parameter equation for apogee radius, dra/dt, where the
perturbing acceleration aP is expressed in the NTW frame.

5.13 A geocentric satellite is in an elliptical orbit with a perigee altitude of 500 km and
inclination of 28.5 . Compute its apogee altitude such that the secular drift in
argument of perigee is 5 deg/day.

Problems 5.14 and 5.15 involve the geocentric satellite shown in Figure P5.14.
The satellite is in a highly inclined circular orbit such that its orbital plane is nor-
mal to Earth–sun direction on the June solstice.

5.14 Suppose we desire a circular sun-synchronous orbit for the orbital geometry
shown in Figure P5.14. Determine the orbital altitude for a sun-synchronous
orbit.

To the sunh

K
(North)

Equator

23.4ο

Orbit

Figure P5.14
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5.15 Suppose that the (constant) perturbing acceleration from solar-radiation pres-
sure is 6.2(10–8) m/s2. Use Gauss’ variation of parameter equations to show that
solar radiation pressure does not cause a secular drift in the longitude of the
ascending node Ω. [Hint: express the appropriate Gauss variational differential
equation with argument of latitude u as the independent variable (instead
of time) and integrate this transformed Gauss equation over one orbital
revolution.]

5.16 Determine the Jacobi constant C for a satellite that is located at the Lagrangian
point L4 (use dimensionless variables).

5.17 Determine the inertial position and velocity vectors (in km and km/s) for a sat-
ellite that is located at the Lagrangian point L4. Use the non-rotating, Earth-
centered inertial (ECI) frame xECI–yECI that is defined at epoch t0 as shown in
Figure P5.17. In addition, determine the satellite’s ECI position and velocity vec-
tors at epoch t0 + 24 h.

Problems 5.18–5.20 involve the circular restricted three-body problem (CR3BP)
with the Earth and moon as the two primary gravitational bodies. Figure P5.18
depicts an instant in the CR3BP where the +xECI axis of an Earth-centered inertial
(ECI) frame is aligned with the +xrot axis of a rotating frame with its origin at the
Earth–moon barycenter. The xECI–yECI plane coincides with the plane containing
the Earth and moon.
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yECI

xrot

yrot

Earth
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18ο
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Figure P5.17
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5.18 A satellite has the following position and velocity vectors in the ECI frame:

rECI = – 6,578 I km, vECI = −10 7 J km/s

Determine if this satellite can access the Lagrangian points L1 and L2 and regions
near the moon. Justify your answer.

5.19 Repeat Problem 5.18 for a satellite with the following position and velocity vectors
in the ECI frame:

rECI = – 6,578 I km, vECI = −10 89 J km/s

5.20 A GEO satellite has the following position and velocity vectors in the ECI frame:

GEO rECI = – 42,164 I km, vECI = −3 074665 J km/s

A second satellite is in an elliptical orbit with the ECI state vector:

Elliptical orbit rECI = – 6,746 24Ikm, vECI = −10 426695 J km/s

a) Show that both orbits have the same two-body energy relative to Earth.
b) Which satellite orbit has the “largest” region for allowable motion in the

CR3BP? (Or, which orbit has the smallest forbidden region in the CR3BP?) Jus-
tify your answer.

MATLAB Problem

5.21 Write anM-file that can compute a satellite’s position and velocity vectors relative
to the rotating coordinates that are used for the circular restricted three-body
problem (CR3BP) for the Earth–moon system. The inputs to the M-file are the
satellite’s inertial position and velocity vectors, rECI and vECI, expressed in an
Earth-centered inertial frame (in km and km/s, respectively). Assume that the
+xECI axis of the ECI frame is aligned with the +xrot axis, and that both frames
share a common +z axis. The M-file should also compute the Jacobi constant
C in terms of the dimensionless variables. Test your M-file by using the data con-
tained in Examples 5.7 and 5.8.
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Mission Applications

5.22 The Tropical Rainfall MeasuringMission (TRMM) satellite operated in low-Earth
orbit from late 1997 to early 2015. The TRMM orbit was essentially circular at an
altitude of 175 km and inclination of 34.9 . Suppose that the TRMM’s longitude of
the ascending node is Ω0 = 78 at epoch t0. Compute the longitude of the ascend-
ing node for the TRMM 10 days after this epoch.

5.23 Envisat (“Environmental Satellite”) was an Earth-observing satellite deployed by
the European Space Agency (ESA) in 2002. The Envisat orbit was essentially cir-
cular at an altitude of 773 kmwith an inclination of 98.4 . Show that Envisat oper-
ated in a sun-synchronous orbit.

5.24 The orbital elements of the Hubble Space Telescope (HST) at a particular
epoch are

a= 6,922 3 km, e= 0 001143, i= 50 75

Ω= 193 89 , ω= 85 41 , θ = 10 23

Determine the secular drift rates for Ω and ω (in deg/day) caused by Earth’s
oblateness.

5.25 The Cosmos 1687 was amid-1980s Russianmilitary communication satellite. The
Cosmos 1687 followed an elliptical orbit with perigee and apogee altitudes of
6,566 and 33,913 km, respectively, with an inclination of 69.7 . Determine the sec-
ular drift rates for Ω and ω (in deg/day) caused by Earth’s oblateness.

5.26 The Global Positioning System (GPS) is a constellation of satellites that occupy
circular orbits at an altitude of 20,180 km with an inclination of 55 . Determine
the secular drift rates for GPS satellites (in deg/day) caused by Earth’s oblateness,
lunar gravity, and solar gravity.

5.27 TheChandraX-rayObservatory (CXO) is anEarth-orbiting satellitewithperigee and
apogee altitudes of 14,308 and 134,528 km, respectively, and an inclination of 76.72 .
Determine the secular drift rates for the CXO (in deg/day) caused by Earth’s
oblateness.

5.28 An upper-stage rocket burn inserts a communication satellite into in a geostation-
ary transfer orbit (GTO) with a perigee altitude of 185 km, apogee altitude of
35,786 km, inclination i = 28.5 , longitude of ascending node Ω = 300 , and argu-
ment of perigee ω = 180 . At epoch t0, the satellite is at perigee. A malfunction in
the satellite’s health-monitoring system causes the GEO-insertion rocket burn (at
apogee) to be cancelled and consequently the satellite completes one orbital rev-
olution in GTO and returns to perigee.
a) Estimate the longitude of the ascending node Ω and argument of perigee ω

after one orbital revolution.
b) Determine the time-rate of energy change dξ/dt at perigee passage. Assume

that the satellite’s ballistic coefficient is CB = 85 kg/m2 and that the atmos-
pheric density is ρ = 4.65(10–10) kg/m3 at 185-km altitude.
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c) Estimate the total energy dissipated by drag for a single perigee passage. [Hint:
assume that drag is only significant for flight at altitudes below 200 km and use
an average atmospheric density and average velocity for altitudes between
200 and 185 km. Use Table 5.3 to determine the atmospheric density
at 200 km.]

5.29 A lunar probe has the following position and velocity vectors as expressed in a
rotating coordinate system with its origin at the Earth–moon barycenter:

r=

146,810

73,045

0

km, vrot =

1 3137

0 3808

0

km/s

Show that this lunar probe is capable of reaching the vicinity of the moon includ-
ing the Lagrangian points L1 and L2. Can this satellite possibly reach the Lagran-
gian point L3?
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6

Rocket Performance

6.1 Introduction

Chapters 2–5 presented the fundamentals of satellite motion in an orbit. However, we
have not yet discussed how to transport satellites from the surface of the Earth to orbit.
Clearly, some form of rocket propulsion launches a satellite and delivers it to orbit. The
next four chapters will discuss orbital maneuvers (i.e., changing a satellite’s orbit) and
interplanetary trajectories. Again, rocket propulsion is required to perform a desired
orbital maneuver or initiate a trajectory to a planet or the moon. We will see in Chapters
7–10 that orbital maneuvers and orbital transfers involve changing the satellite’s
velocity vector.
This chapter presents the fundamental concepts of rocket propulsion and rocket

performance. We do not present an in-depth treatment of rocket propulsion here; the
interested reader may consult Sutton and Biblarz [1] and Hill and Peterson [2] for a
detailed discussion of this topic. Instead, the primary objectives of this chapter are:
(1) to present rocket performancemetrics that aerospace engineers can use to link orbital
maneuvers with propellant mass requirements; and (2) to present the important issues
associated with launching a satellite into orbit.

6.2 Rocket Propulsion Fundamentals

Liquid-propellant engines and/or solid-rocket motors provide the thrust for launch vehi-
cles. Rocket thrust is the result of a chemical reaction in the combustion chamber
between the oxidizer and fuel in the propellant. Hot gases from the reaction are ejected
out the nozzle of the rocket at a high velocity to impart a thrust force on the rocket. Using
a control-volume approach, we can characterize the rocket thrust force as

T =mve + pe−pa Ae (6.1)

where ve is the exhaust velocity of the gas relative to the nozzle exit, m is the mass-flow
rate of the exhaust gas (positive for outflow), pe is the exhaust pressure at the nozzle exit,
pa is the ambient atmospheric pressure, and Ae is the area of the nozzle exit. The first
term on the right-hand side in Eq. (6.1), mve, is often labeled as the “momentum thrust”
whereas the second term is called the “pressure thrust.” Although the momentum thrust
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is the dominant term in Eq. (6.1), the pressure imbalance term is not negligible for
launch vehicles. For example, the Space Shuttle main engines experienced more than
18% thrust degradation at sea level when compared with thrust at vacuum conditions.
It is convenient to divide the total thrust in Eq. (6.1) bymass-flow rate in order to define

the effective exhaust velocity

veff = ve +
pe−pa Ae

m
(6.2)

Of course, we can concisely express the thrust as T =mveff using the effective exhaust
velocity. Specific impulse is an important metric of rocket performance

Isp =
T
mg0

(6.3)

where g0 = 9.80665 m/s2 is Earth’s “standard gravitational acceleration near sea level.”
We compute specific impulse by dividing the impulse of a rocket (i.e., the time integral
of thrust) by the total propellant weight consumed during the burn. Therefore, Isp has
units of time. Another definition of specific impulse is the time duration that a given
quantity of propellant can generate a thrust equal to the propellant’s initial weight.
Substituting T =mveff into Eq. (6.3) yields the following expression for effective exhaust
velocity

veff = g0Isp (6.4)

Hence, wemay think of effective exhaust velocity and specific impulse as the samemetric
for rocket performance. We shall soon see that Isp is the most important metric for char-
acterizing the efficiency of a rocket engine and propellant combination.

6.3 The Rocket Equation

Let us assume that a rocket is operating in “field-free space” where no forces other than
the rocket thrust T act on the vehicle. Hence, we may write Newton’s second law as

mv=T (6.5)

where v is the velocity of the space vehicle. Vehicle acceleration is

v=
T
m

=
mveff
m

(6.6)

Replacing the over-dot notation (e.g., v= dv/dt), Eq. (6.6) becomes

dv
dt

=
−veff
m

dm
dt

(6.7)

We inserted a minus sign in Eq. (6.7) because the outflow parameterm (positive by con-
vention) has been replaced by the time derivative of mass (note that dm/dt is negative
because propellant mass is being exhausted out the rocket nozzle). After canceling
the dt terms and substituting veff = g0Isp into Eq. (6.7), we obtain

dv=
−g0Isp
m

dm (6.8)
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which can be integrated to yield

Δv= −g0Isp ln
mf

m0
(6.9)

wherem0 andmf are the initial and final masses of the space vehicle before and after the
propulsive burn, respectively. We can eliminate the minus sign in Eq. (6.9) by inverting
the natural logarithm argument

Δv= g0Isp ln
m0

mf
(6.10)

Equation (6.10) is often called the “rocket equation” or “ideal rocket equation.” It can be
used to compute the idealized (or maximum) velocity incrementΔv that can be achieved
by a given rocket engine-propellant combination (Isp) and propellant massmp =m0−mf .
In Chapters 7–10, we will show how to compute the required velocity incrementΔv for a
desired orbital maneuver. The rocket equation (6.10) shows that for fixed initial and final
masses, m0 and mf, the propulsive velocity increment Δv is maximized by using an
engine-propellant combination with the highest possible specific impulse Isp.
It is useful to modify the rocket equation so that we can determine the mass ratio

m0/mf for a given Δv. Applying the exponential function to Eq. (6.10), we obtain

m0

mf
= exp

Δv
g0Isp

(6.11)

The mass ratio m0/mf is greater than unity for any nonzero Δv. It is also useful to
modify Eq. (6.11) so that we can determine the propellant mass mp required to impart
a desired Δv. Substituting mf =m0−mp into Eq. (6.11) yields

m0

m0−mp
= exp

Δv
g0Isp

(6.12)

Solving Eq. (6.12) for propellant mass, we obtain

mp =m0 1−exp
−Δv
g0Isp

(6.13)

Equation (6.13) shows that increasing Isp will decrease the propellant mass required for a
given velocity increment Δv. Table 6.1 presents the specific impulses for a variety of
rocket-propellant combinations. In general, cryogenic liquid propellants with low
molecular weight (e.g., liquid oxygen, LO2, and liquid hydrogen, LH2) are much more
efficient than solid propellants. Figure 6.1 presents the final-to-initial mass fraction
mf/m0 after a propulsive burn as computed by the reciprocal of Eq. (6.11). Note that
the velocity incrementΔv in Figure 6.1 ranges from zero (no burn) to 3.5 km/s; a velocity
change at this upper value will result in a hyperbolic escape trajectory from low-Earth
orbit (LEO). Figure 6.1 shows that the liquid-propellant J-2 stage delivers a much higher
mass fraction when compared with the solid-propellant Star 48 stage. The Apollo lunar
missions utilized the Rocketdyne J-2 stage to attain the velocity change to depart LEO
and follow a high-energy trajectory to the moon. Figure 6.1 shows that the mass fraction
after the translunar burn (Δv≈3 05 km/s) was about 0.48; hence more than half of the
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total spacecraft mass in the low-Earth “parking orbit” consisted of propellant mass
required to achieve the trajectory to the moon.
We cannot overemphasize the utility of either form of the rocket equation. Estimating

the propellant mass is a principal objective of space mission design because it contributes
to the total spacecraft mass, which in turn determines the launch-vehicle selection proc-
ess. The overall mission costs are heavily influenced by the launch costs. Furthermore,
reducing a space vehicle’s onboard propellant mass may result in an increase in payload
mass (e.g., additional scientific instruments).

Example 6.1 In July 1999, the Inertial Upper Stage (IUS) booster rocket transferred the
Chandra X-ray Observatory (CXO) from a 300-km altitude circular LEO to an elliptical
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Figure 6.1 Final-to-initial mass fraction mf/m0 vs. velocity increment Δv.

Table 6.1 Rocket-propellant combinations and specific impulse.

Rocket Propellant type Fuel Oxidizer
Isp
(s)

Space Shuttle main engine Liquid LH2 LO2 452

Rocketdyne J-2 Liquid LH2 LO2 421

Aerojet Rocketdyne R-4D Liquid CH6N2 N2O4 311

Orbital ATK Star 48 Solid HTPB/Ala APb 287

Shuttle solid rocket booster Solid Al APb 268

a Hydroxyl-terminated polybutadiene/aluminum.
b Ammonium perchlorate.

Space Flight Dynamics216



orbit with an apogee altitude of 13,200 km (see Figure 6.2). The IUS provided a velocity
increment of Δv = 1.7089 km/s as shown in Figure 6.2. The initial vehicle mass in LEO
was 12,500 kg (CXO + IUS), and the solid-propellant IUS has a specific impulse of 296 s.
Determine the propellant mass required for the orbit transfer.
Using Eq. (6.13) with Isp = 296 s, m0 = 12,500 kg, Δv = 1,708.9 m/s, and g0 = 9.80665

m/s2, yields the IUS propellant mass:

mp =m0 1−exp
−Δv
g0Isp

= 5,562 kg

Note that Δv and effective exhaust speed g0Isp must have consistent units in the rocket
equation (we used meters per second in this example).
It turns out that the propulsive maneuver presented in this example did not establish

the final target orbit for the CXO. A sequence of additional propulsive burns was needed
to place the CXO in its highly elliptical orbit with semimajor axis a = 80,796 km and
eccentricity e = 0.744 (recall that Example 2.3 analyzes the final CXO orbit).

Example 6.2 Consider a 2,500 kg satellite in a 300-km altitude circular LEO as shown in
Figure 6.3a. Compute the propellant mass required for a propulsive burn that increases the
satellite’s velocity from circular speed to the local escape speed (Figure 6.3b). Determine
the propellant mass for a liquid-propellant stage with Isp = 325 s and a solid-propellant
stage with Isp = 280 s.
We will use the propellant-mass version of the rocket equation, that is, Eq. (6.13).

Therefore, we need to compute the incremental change in velocity Δv between the cir-
cular LEO (Figure 6.3a) and the parabolic escape trajectory shown (Figure 6.3b). Circular
orbital speed is

vLEO =
μ

rLEO
= 7 726 km/s

where rLEO = RE + 300 = 6,678 km is the radius of LEO. Local escape speed for a parabolic
trajectory [see Eq. (2.88) in Section 2.6] is

vesc =
2μ
rLEO

= 10 926 km/s

Figure 6.3b shows that the escape parabola is tangent to the circular orbit and hence they
share the common radius rLEO. The velocity increment required for the escape trajectory

LEO

Elliptical orbit

∆v = 1.7089 km/s

Figure 6.2 CXO orbit transfer (Example 6.1).
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is Δv = vesc – vLEO = 3.2 km/s. Using Eq. (6.13) with Isp = 325 s (liquid propellant), m0 =
2,500 kg, and g0 = 9.80665 m/s2, yields the propellant mass:

Liquid propellant mp =m0 1−exp
−Δv
g0Isp

= 1,584 0 kg

The reader should take care to express Δv and effective exhaust speed g0Isp in consistent
units (km/s or m/s). Repeating this calculation using the solid-propellant rocket (Isp =
280 s), we obtain

Solid propellant mp =m0 1−exp
−Δv
g0Isp

= 1,720 5 kg

Therefore, the solid-propellant stage requires 136.5 kg additional propellant to
perform the same velocity change as the liquid-propellant stage in this example. The
reader should also note that in either case the propellant mass is a significant
percentage of the initial mass of the satellite before the burn. For the more efficient
liquid-propellant stage,

Liquid propellant mp/m0 = 0 634

Over 63% of the initial mass in LEO must be liquid propellant.

Example 6.3 In Example 6.2, the velocity increment required for an escape trajectory
from LEO was computed to be Δv = 3.2 km/s. The propellant mass for the solid-motor
stage was determined to bemp = 1,720.5 kg (recall that the initial satellite mass is 2,500 kg
and the specific impulse is Isp = 280 s). Estimate the burn time for the solid-propellant
stage if the engine can produce 67,000 N of thrust.

vLEO

LEO

rLEO

vesc

LEO

rLEO

Parabolic escape
trajectory

(b)(a)

Figure 6.3 (a) Circular low-Earth orbit (LEO) and (b) escape trajectory (Example 6.2).
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We use Eq. (6.3) to compute mass-flow rate from thrust and specific impulse

m=
T

g0Isp
= 24 4 kg/s

The burn time is the total propellant mass divided by the mass-flow rate

tburn =
mp

m
= 70 511 s

6.4 Launch Trajectories

A launch (or ascent) trajectory is designed to deliver a specified payload mass to a desired
orbit at engine cut-off using the least amount of propellant. It is difficult to analyze
launch trajectories due to the inclusion of aerodynamic and thrust forces along with
gravity forces. Recall that obtaining an analytical solution for orbital motion is possible
only for the case where a central-force (conservative) gravity field is the only force acting
on the satellite. Accurately determining a launch trajectory relies on numerical integra-
tion of the ascent equations of motion
Figure 6.4 shows a free-body diagram of a launch vehicle during its planar ascent tra-

jectory over a spherical Earth. Three forces affect the vehicle’s motion: gravitational force
mg acting from the vehicle to the center of the Earth, aerodynamic force (resolved into lift
L and drag D), and thrust force T. By definition, lift L is the aerodynamic force compo-
nent normal to the flight path and dragD is tangent to the flight path (opposite the veloc-
ity vector). We assume that thrust T always points along the longitudinal axis of the
vehicle, and therefore it can be steered by changing the angle-of-attack α as shown in
Figure 6.4. Because we are treating the launch vehicle as a point mass moving in a vertical
plane, we do not develop a dynamical equation for angle-of-attack; instead we assume

mg

Velocity, v

γ
Horizon

Flight path
L

D

T

α

Down -track, s

Earth’s mean 
radius, r0

Radius, r
(to Earth’s center)

Figure 6.4 Launch trajectory in a vertical plane.
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that the “steering program” α(t) is a known function of time. Attitude dynamics involve
the rotational motion of a space vehicle about its center of mass and are treated in Chap-
ters 12 and 13.
Our goal is to derive the equations of motion for the ascent trajectory. For simplicity,

we will assume that the Earth (or planet) does not rotate. Thus, the vehicle’s Earth-
relative velocity v is also the inertial velocity. It is convenient to express accelerations
in a local rotating frame that moves with the vehicle. The absolute acceleration of the
launch vehicle in a rotating coordinate frame is

a= vut + vγ−
v2 cosγ

r
un (6.14)

where un and ut are unit vectors that move with the vehicle and remain normal and tan-
gential to the flight path (see Section C.4 in Appendix C for the full derivation of this
equation). Radius r (from the Earth’s center) and flight-path angle γ are the same para-
meters used to describe orbital motion in Chapters 2–5. Applying Newton’s second law
and the summation of forces in tangential and normal directions (see Figure 6.4) yields

mv=T cosα−D−mg sinγ (6.15)

m vγ−
v2 cosγ

r
=T sinα+ L−mg cosγ (6.16)

Note we placed that the absolute acceleration terms on the left-hand sides of Eqs. (6.15)
and (6.16) and the external forces on the right-hand sides. Equations (6.15) and (6.16) do
not account for the Coriolis and centripetal accelerations caused by the Earth’s rotation.
We may divide all terms in Eqs. (6.15) and (6.16) by mass m in order to obtain accelera-
tions and rearrange the equations so that the first-order derivative terms are on the left-
hand sides:

v=
T
m
cosα−

D
m

−g sinγ (6.17)

vγ =
T
m
sinα+

L
m

− g−
v2

r
cosγ (6.18)

In order to evaluate all right-hand side terms, we need expressions for Earth’s gravita-
tional acceleration, g, and the lift and drag forces, L and D. Gravitational acceleration
has an inverse-square relationship with radius

g r = g0
r0
r

2
(6.19)

where r0 is the “mean radius” of the Earth that corresponds to the standard gravity; that
is, g0 = μ/r20 (note that the mean radius r0 is not the Earth’s equatorial radius). The lift and
drag forces are

L=
1
2
ρv2SCL (6.20)

D=
1
2
ρv2SCD (6.21)
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where ρ is the atmospheric density, S is a vehicle reference area, and CL and CD are the
aerodynamic lift and drag coefficients, respectively. Because we use inertial velocity v in
the aerodynamic force calculations, we have assumed that the Earth’s atmosphere is
stationary.
We need three additional equations to fully describe the state of the launch vehicle:

r = vsinγ (6.22)

s=
r0
r
vcosγ (6.23)

m= −
T

g0Isp
(6.24)

Equations (6.22) and (6.23) are kinematic equations that define the radial velocity and
down-track velocity projected along the Earth’s surface (Figure 6.4). Equation (6.24)
defines the vehicle’s decreasing mass due to burning and exhausting the propellant.
Equations (6.17), (6.18), and (6.22)–(6.24) are the equations of motion for the launch

trajectory [of course we also need Eqs. (6.19)–(6.21) to fully define all terms in the
dynamical equations]. These ordinary differential equations (ODEs) are highly nonlinear
and hence there is no analytical (closed-form) solution. We must use a computer to
numerically integrate the ODEs given the initial conditions, the thrust-steering program
α(t), and appropriate functions that define atmospheric density ρ and aerodynamic coef-
ficients CL and CD.
In order to gain some insight into the launch trajectory, we can analyze the losses due

to atmospheric drag and the gravitational force. Consider the integral of Eq. (6.17), or
integral of the acceleration along the flight path:

vdt =
T
m
cosαdt−

D
m
dt− g sinγdt (6.25)

The left-hand-side integral is the vehicle’s actual velocity increment (or, change in mag-
nitude of velocity vector v) because it is the time integral of absolute acceleration along
the flight path. Let us denote the left-hand-side integral as Δvactual. We can express all
acceleration integrals in Eq. (6.25) as velocity increments

Δvactual =Δvthrust−Δvdrag−Δvgrav (6.26)

whereΔvthrust is the integral of tangential thrust acceleration Tcosα/m,Δvdrag is the inte-
gral of drag acceleration D/m, and Δvgrav is the integral of the tangential gravitational
acceleration g sin γ, respectively. If we consider the special case of tangential thrust
(T is aligned with the velocity vector; i.e., α = 0), then Δvthrust is the ideal velocity incre-
ment defined by the rocket equation (6.10). The reader can see this fact by reviewing the
derivation of the ideal rocket equation, Eqs. (6.5)–(6.10), where we assumed that tangen-
tial thrust is the only force acting on the vehicle. It should be clear to the reader that
Eq. (6.10) determines the ideal or maximum theoretical velocity change that can be
produced by a propulsive force aligned with the velocity vector. Thus, for the case of
tangential thrust (or α = 0), we can rewrite Eq. (6.26) as

Δvactual =Δvideal−Δvdrag−Δvgrav (6.27)
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where the ideal velocity increment is computed using Eq. (6.10)

Δvideal = g0Isp ln
m0

mf
(6.28)

The two energy-loss integrals that diminish the ideal velocity increment in Eq. (6.27)
are called the drag loss and gravity loss and are defined as

Δvdrag =
D
m
dt (6.29)

Δvgrav = g sinγdt (6.30)

In general, we must compute both losses using numerical integration because there are
no analytical solutions for the drag acceleration or flight-path angle histories during the
ascent trajectory. Ascending vertically through the dense atmosphere as slowly as pos-
sible minimizes Δvdrag because aerodynamic drag is proportional to the square of the
vehicle’s velocity; see Eq. (6.21). Reaching horizontal flight (sinγ = 0) as rapidly as possi-
ble, on the other hand, minimizes Δvgrav. However, a launch vehicle that accelerates
along a long, shallow climb at relatively low altitudes will experience severe drag losses.
Launch trajectories exhibit a compromise between these two conflicting flight programs.
Figure 6.5 shows the ascent profile of the Saturn V rocket used for the Apollo moon

landings and the launch of the Skylab space station (1969–1973). We see that soon after
the initial vertical ascent, the Saturn V pitched downward and the flight path became
more horizontal (note the scale of the axes in Figure 6.5). When the launch vehicle
reaches the first-stage engine cut-off altitude of approximately 65 km, the atmospheric
density is greatly diminished, and hence drag is negligible (atmospheric density is
reduced to less than 1% of its maximum sea-level value at an altitude of 32.5 km).
Figure 6.5 shows that the majority of the second-stage flight and all of the third-stage
flight is nearly horizontal as the Saturn V accelerates to orbital speed. Rocket staging
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Figure 6.5 Altitude vs. down range for Saturn V launch trajectory.
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(discarding empty engine stages during flight) greatly increases the payload capability of
launch vehicles. We will discuss staging in Section 6.5.
Figure 6.6 shows the acceleration losses along the flight path for the Saturn V booster:

gravitational acceleration component tangent to the flight path, g0 sin γ, and drag accel-
eration, D/m. The gravity and drag losses, Δvgrav and Δvdrag, are the respective time inte-
grals or areas under each curve in Figure 6.6. We see that g0 sinγ≈g0 for the first 30 s due
to the initial vertical ascent (γ = 90 ); for t > 30 s the Saturn V pitches down toward the
horizon and hence the gravity component along the flight path diminishes. For the latter
half of second-stage flight (and third-stage flight), the gravity-loss contribution is negli-
gible because the flight path is essentially horizontal (see Figure 6.5). Drag loss is negli-
gible for the first 30 s of vertical ascent due to the relatively low velocity and peaks at
about 1.1 m/s2 at t = 80 s due to supersonic flight through the dense atmosphere. Drag
loss becomes small at first-stage engine cut-off because the atmosphere is relatively thin
at an altitude of 65 km. Figure 6.6 shows that the gravity loss is far more significant
than the drag loss for the Saturn V launch vehicle; the following examples will quantify
the losses.

Example 6.4 The fully loaded mass of the Saturn V at liftoff is 2.899(106) kg and the
total propellant mass of the first stage is 2.074(106) kg. At 161 s after liftoff, the first
stage is depleted and shut down. The launch vehicle is at an altitude of 65 km and
Earth-relative velocity v1 = 2,372 m/s at first-stage engine cut-off. Assume that the
average specific impulse for the first stage is 290 s. Estimate the sum of the drag and
gravity losses experienced by the first stage of the Saturn V launch profile.
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Figure 6.6 Energy-loss accelerations along the Saturn V flight path.
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We know that at engine cut-off the actual velocity increment is Δvactual = v1 = 2,372
m/s because at liftoff the vehicle has zero Earth-relative velocity. The ideal velocity
increment is computed using the rocket equation (6.10)

Δvideal = g0Isp ln
m0

mf

where m0 = 2.899(106) kg is the liftoff mass of the entire Saturn V vehicle and mf is the
mass of the Saturn V vehicle at engine cut-off. Hence, mf is the liftoff mass minus the
propellant mass of the first stage, or mf = 2.899(106) – 2.074(106) = 825,000 kg. Using
m0, mf, g0 = 9.80665 m/s2, and Isp = 290 s in the rocket equation, we obtain Δvideal =
3,574.1 m/s. Using Eq. (6.27), the sum of the two energy-loss terms is

Δvdrag +Δvgrav =Δvideal−Δvactual = 1,202 1m/s

Hence about 34% of the ideal (maximum) theoretical velocity increment from thrust has
been lost to aerodynamic drag and vertical ascent in the gravity field.

Example 6.5 During its first-stage ascent, the Saturn V rocket climbed vertically for
30 s and then pitched downward toward the horizon. The piecewise linear function of
time approximates the sine of the flight-path angle during first-stage ascent:

sinγ =
1 for 0 ≤ t ≤ 30 s

1 15−0 005t for 30 < t ≤ 161 s

Estimate the total gravity loss at first-stage engine cut-off, t = 161 s.
Note that at liftoff (t = 0), the flight-path angle is γ 0 = sin−1 1 = 90 (vertical flight, as

expected), and that at first-stage cut-off, γ 161 = sin−1 0 345 = 20 2 (nearly horizontal
flight). Equation (6.30) defines the gravity loss, which we separate into two integrals

Δvgrav =
161

0

g sinγdt =

30

0

gdt +

161

30

g 1 15−0 005t dt

Assuming constant gravitational acceleration g = g0, we obtain the gravity loss

Δvgrav = g0t
30
0 + 1 15g0t−0 0025g0t

2 161

30
= 1,158 1m/s

As an aside, we can use the gravity loss with the results from Example 6.4 to estimate
the drag loss

Δvdrag =Δvideal−Δvactual−Δvgrav = 44m/s

This example shows that the gravity loss is much more significant than the drag loss for
the first stage of the Saturn V launch vehicle. The relatively low drag loss is due to the
Saturn V’s low thrust-to-weight ratio and subsequent “slow” acceleration through the
dense atmosphere. It turns out that Δvdrag estimated here is essentially the total drag loss
for the entire launch trajectory because atmospheric density is relatively thin for flight
above first-stage engine cut-off. Furthermore, gravity loss contributions after first-stage
cut-off will diminish as the vehicle continues to pitch down from γ 161 = 20 2 toward
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nearly horizontal flight. The next example demonstrates the diminished gravity loss for
the nearly 6.4-min second-stage trajectory.

Example 6.6 At the start of the second stage of the Saturn V rocket (t = 164 s after
liftoff ), the vehicle has an Earth-relative velocity v1 = 2,372 m/s and its total mass is
659,200 kg. The total propellant mass for the second stage is 444,100 kg and the specific
impulse of the Rocketdyne J-2 engine is 421 s in vacuum conditions. An exponential
function is used to approximate the sine of the flight-path angle during second-stage
flight:

sinγ = 1 54e− t/109 for 164 ≤ t ≤ 550 s

Figure 6.6 shows that g0 sin γ approximately follows an exponential decay for 164 < t <
550 s. Estimate the Earth-relative velocity of the launch vehicle at time t = 550 s (second-
stage engine cut-off ).
The ideal velocity increment can be computed using the rocket equation (6.10)

Δvideal = g0Isp ln
m0

mf

where m0 = 659,200 kg and mf is the mass of the Saturn V at second-stage cut-off;
mf = 659,200 – 444,100 = 215,100 kg. Using m0, mf, g0 = 9.80665 m/s2, and Isp = 421 s
in the rocket equation, we obtain Δvideal = 4,623.7 m/s.
We use Eq. (6.30) to compute the gravity loss for second-stage flight

Δvgrav =
550

164

g sinγdt = g0

550

164

1 54e− t/109dt = −g0 109 1 54 e− t/109
550

164 = 355 0m/s

where we have assumed constant gravitational acceleration g = g0. The actual velocity
increment at second-stage engine cut-off is

Δvactual =Δvideal−Δvgrav = 4,268 7m/s

Because atmospheric density is very small during second-stage flight, we have neglected
drag losses. Hence, the Earth-relative velocity at the end of second stage is

v2 = v1 +Δvactual = 2 372 + 4,268 7 = 6,640 7m/s

As an aside, we can compute the inertial velocity of the launch vehicle relative to a non-
rotating geocentric frame. To do so, we must add the inertial velocity of the rotating
Earth to the vehicle’s Earth-relative velocity v2 [recall that the launch trajectory equations
of motion (6.17) and (6.18) assumed a non-rotating planet]. Of course, a stationary vehi-
cle on the surface of the Earth has inertial velocity equal to the product of the Earth’s
angular velocity and the distance normal to the spin axis. For launch from Kennedy
Space Center (latitude ϕ = 28.5 ), the inertial velocity of the Earth’s surface is ωERE cos ϕ
= 408.7 m/s where ωE = 7.292(10−5) rad/s is the Earth’s spin rate and RE is the radius of
the Earth. At second-stage cut-off, the Saturn V is at an altitude of approximately 180 km
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and hence r2 = 6,558 km (assuming a spherical Earth). Therefore, the inertial velocity of
the launch vehicle at second-stage cut-off is

v2, fix = v2,rot +ωEr2 cosϕ = 6 640 7 + 420 3 = 7 061m/s

where we have assumed that the Saturn V is launched due east and remains at a latitude
of 28.5 , and has horizontal velocity at second-stage engine cut-off. Note that circular
orbital speed at 180-km altitude is μ/r2 = 7,796 m/s. A third stage of the Saturn
V launch vehicle, consisting of a single J-2 engine, burned for about 2.5 min to provide
the extra velocity increment to achieve circular orbital speed.

Figures 6.5 and 6.6 show that the launch profile usually begins with a vertical
ascent through the dense layers of the atmosphere, followed by a rotation of the
velocity vector toward the horizon. One way to begin the downward pitch motion
is to produce a negative side force (i.e., α < 0; see Figure 6.4) by slightly tilting the
rocket from its vertical path. Equation (6.18) shows that a lateral thrust force,
T sin α, will create a negative flight-path angle rate, γ < 0, when α < 0. Thrust is then
realigned with the velocity vector (α = 0) in order to maximize the rate of energy gain and
reduce the side forces on a slender rocket. This maneuver initiates the so-called gravity
turn where the gravitational acceleration normal to the flight path, g cos γ, causes the
rocket to pitch downward toward the horizon. The rotational rate of the gravity turn
can be determined from Eq. (6.18) with L = 0 and α = 0 (i.e., zero thrust and aerodynamic
force components normal to the flight path)

γ
−g cosγ

v
(6.31)

Note that we have neglected the “centrifugal acceleration” term v2 cos γ/r in Eq. (6.18)
because it is relatively small compared with gravity during the initial launch trajectory.
Table 6.2 presents approximate flight-path angle and velocity values for the first-stage
ascent phase of the Saturn V booster. Column four in Table 6.2 displays the gravity turn
rate as computed by Eq. (6.31). While the Saturn V did not utilize a pure gravity
turn during the initial ascent phase, Table 6.2 shows that gravitational acceleration is
capable of providing a gentle pitch-down maneuver without the need to impart aerody-
namic or thrust side forces.

Table 6.2 Gravity turn for a Saturn V launch trajectory.

Time from liftoff
(s) Flight-path angle, γ

Velocity, v
(m/s)

Gravity turn rate, γ
(deg/s)

30 89.7 89 –0.03

45 82.7 162 –0.44

60 70.1 264 –0.72

90 47.8 591 –0.64

120 34.3 1,178 –0.39

150 25.1 1,998 –0.26

Space Flight Dynamics226



6.5 Staging

It isnotpossible to inject a satellite intoLEOwitha single rocket stageusing the current level
of technology. Single-stage rockets exhibit limited performance because the rocket engines
must accelerate the entire structural weight from the surface of the Earth to orbital velocity.
To demonstrate the performance limitation of a single-stage rocket, we begin with

analysis of its mass components:

m0 =mp +mst +mPL (6.32)

where the liftoff mass m0 consists of the total propellant mass mp, the total structural
mass mst, and the payload mass mPL. Structural mass mst is the summation of all com-
ponents that are not propellant or payload: tanks, engines, pumps, plumbing, support
structure, electrical cables, and so on. It is useful to define non-dimensional mass ratios.
To begin, we define the payload ratio λ as

λ=
mPL

mp +mst
(6.33)

The structural coefficient ε is

ε=
mst

mp +mst
(6.34)

Note that the “gross mass” of the rocket stage,mp +mst, is the denominator in both defi-
nitions. Clearly, we desire a large payload ratio λ. The mass ratio R is the liftoff mass
divided by the final or burnout mass, mf =mst +mPL

R =
m0

mf
=

m0

mst +mPL
(6.35)

Using these non-dimensional terms in Eq. (6.32), we can express the mass ratio as

R =
1 + λ
ε+ λ

(6.36)

Note that the mass ratio (6.35) is equal to Eq. (6.11), a variant of the ideal rocket equation,
and hence we can write

R = exp
Δvideal
g0Isp

=
1 + λ
ε+ λ

(6.37)

Next, we can characterize R by defining a particular target orbit (Δvideal) and rocket-
propellant combination (Isp). First, recall that we derived the ideal rocket equation by
assuming that thrust is the sole force acting on the rocket (i.e., zero drag and gravity
forces). Hence, the idealized (or theoretical maximum) velocity increment Δvideal used
in Eq. (6.37) is computed by adding the drag and gravity losses to the actual velocity
change to achieve the desired orbit. Using Eq. (6.27), we obtain

Δvideal =Δvactual +Δvdrag +Δvgrav (6.38)

For insertion into a 180-km circular LEO, the inertial velocity must be circular orbital
speed, or vLEO = 7,796m/s. However, an eastward launch from Cape Canaveral (latitude
ϕ = 28.5 ) will provide an additional 420 m/s due to Earth’s rotation (see Example 6.6),
and hence the actual velocity increment from liftoff to LEO is Δvactual = 7,796 – 420 =
7,376 m/s. Assuming “typical” drag and gravity losses (e.g., Δvdrag = 120 m/s and
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Δvgrav = 1,600m/s), the ideal velocity increment required for LEO insertion is Δvideal =
7,376 + 120 + 1,600 = 9,096m/s.
Now we can use Eq. (6.37) to determine mass ratio R for the launch-to-LEO Δvideal =

9,096 m/s and the rocket’s specific impulse Isp. However, the launch vehicle’s structural
coefficient ε will show a correlation with Isp. Table 6.3 presents the specific impulses
along with estimates of the structural coefficients for three existing liquid-propulsion
stages. Using a low-weight fuel such as LH2 will increase Isp, but the corresponding
low density will increase the size of the tank and consequently the structural coefficient
ε (see the Delta IV data in Table 6.3).
To complete this simple analysis, let us compute the payload ratio λ for a fictitious

single-stage vehicle based on the information in Table 6.3. We have established that
the ideal velocity increment for launch-to-LEO insertion is Δvideal = 9,096 m/s. Solving
Eq. (6.37) for payload ratio yields

λ=
1−Rε
R −1

(6.39)

Table 6.4 presents the mass and payload ratios for a single-stage ascent to LEO. Mass
ratio R dramatically decreases as Isp increases (recall that mf/m0 = 1/R) and hence the
more efficient stages deliver greater mass to LEO as expected. However, the payload ratio
λ is negative for all three cases indicating the infeasibility of a single-stage launch to LEO.
It is interesting that the stage that uses the most efficient fuel (LH2, Isp = 409 s) exhibits
the worst payload performance. While low-weight LH2 provides the highest possible
exhaust velocity (and smallest mass ratio R), its use requires a very large tank (due to
its low density), which in turn increases the structural coefficient.
All launch vehicles use multiple rocket stages to reach their desired target orbit. The

main advantage of a multiple-stage rocket is that after propellant is burned and ejected,
the structural “dead weight” of the empty stage is discarded thus making the entire rocket

Table 6.3 Specific impulse and structural coefficient.

Stage Propellant
Vacuum specific impulse, Isp
(s) Structural coefficient, ε

Falcon 9 Kerosene/LO2 311 0.06

Atlas V Kerosene/LO2 338 0.07

Delta IV LH2/LO2 409 0.12

Table 6.4 Single-stage to low-Earth orbit performance.a

Stage
Vacuum specific impulse, Isp
(s)

Structural coefficient,
ε

Mass ratio,
R

Payload ratio,
λ

Falcon 9 311 0.06 19.736 –0.010

Atlas V 338 0.07 15.552 –0.006

Delta IV 409 0.12 9.658 –0.018

a Ideal Δvideal = 9,096m/s.
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more efficient. A secondary advantage of staging is that smaller and/or fewer rocket
engines can be employed for the latter stages because they are used to accelerate a less
massive vehicle. A very large initial thrust force is required for liftoff, and hence vehicle
acceleration for a single-stage vehicle may become excessive as the majority of the pro-
pellant mass is exhausted.
Figure 6.7 shows an exploded view of the two-stage Atlas V 401 launch vehicle. The

first stage, a single RD-180 engine, burns for roughly 250 s. The Centaur second stage
uses a single RL-10 engine with variable burn time. The payload fairing (PLF) is a shroud
that protects the satellite (payload) against aerodynamic forces and thermal loads during
flight through the atmosphere. Table 6.5 presents the approximate characteristics of the
Atlas V 401 launch vehicle, while Table 6.6 presents the approximate gravity and drag
losses for each stage. We may employ the rocket equation (6.10) to obtain the idealized
velocity increment for each stage of a particular launch vehicle. However, we must

RD-180 Engine

Atlas V Booster

Conical ISA

Short ISA

RL 10A
Centaur
Engine

Centaur

Launch
Vehicle Adapter

PLF

Figure 6.7 Atlas V 401 launch vehicle. Source: Reproduced with permission of United Launch
Alliance, LLC.

Table 6.5 Atlas V 401 launch vehicle.

Stage Engine
Specific impulse, Isp
(s)

Structural mass, mst

(kg)
Propellant mass, mp

(kg)

First RD-180 315 25,600a 284,000

Second RL-10 451 2,200 20,800

a Includes interstage adapter mass and payload fairing mass.
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carefully define the initial massm0 and final massmf before and after the propulsive burn.
The following example uses the data in Tables 6.5 and 6.6 to analyze the launch perfor-
mance of the two-stage Atlas V 401.

Example 6.7 Using the Atlas V 401 specifications contained in Tables 6.5 and 6.6, esti-
mate the final inertial velocity of the separated spacecraft if the payload mass is 9,800 kg.
The first stage of the Atlas V 401 consists of a single RD-180 engine that uses kerosene

and liquid oxygen as the propellant. The Centaur (or second) stage consists of a single
RL-10 engine that burns a mixture of liquid hydrogen and liquid oxygen. To begin our
calculations, let us use the rocket equation (6.10) to determine the ideal velocity incre-
ment for the first stage:

Δvideal,1 = g0Isp,1 ln
m0,1

mf ,1

where m0,1 is the liftoff mass of the Atlas V, mf,1 is the total mass of the Atlas V at first-
stage engine cut-off, and Isp,1 = 315 s is the specific impulse of the first stage. Liftoff mass
is the sum of all propellant masses, structural masses, and the payload mass. Using the
data in Table 6.5 and a payload mass of 9,800 kg, we obtain

m0,1 =mp,1 +mst,1 +mp,2 +mst,2 +mPL = 342,400 kg

Total mass at first-stage burnout is the liftoff mass minus the first-stage propellant mass,
ormf,1 = 342,400 – 284,000 = 58,400 kg. Hence, the first-stage ideal velocity increment is
Δvideal,1 = 5,464 m/s. Subtracting the first-stage gravity and drag losses (Table 6.6), yields
the actual velocity increment at the end of the first stage

Δvactual,1 =Δvideal,1−Δvgrav,1−Δvdrag,1 = 4,044m/s

Next, we apply the same steps to the second stage. The ideal velocity increment is

Δvideal,2 = g0Isp,2 ln
m0,2

mf ,2

Recall that the structural mass of the first stage has been discarded and consequently the
initial mass at second-stage engine start ism0,2 =mp,2 +mst,2 +mPL = 32,800 kg. The total
mass at second-stage engine cut-off is mf,2 =m0,2 – mp,2 = 12,000 kg. Using Isp,2 = 451 s,
the ideal velocity increment from the second stage isΔvideal,2 = 4,447 m/s. After subtract-
ing the 500 m/s gravity loss (there is no drag loss for second stage), the actual velocity

Table 6.6 Gravity and drag losses for the Atlas V 401 launch vehicle.

Stage
Gravity loss, Δvgrav
(m/s)

Drag loss, Δvdrag
(m/s)

First 1,300 120

Second 500 0
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increment is Δvactual,2 = 3,947 m/s. Finally, the spacecraft’s Earth-relative velocity at the
end of the second stage is the sum of the two velocity increments:

v2 =Δvactual,1 +Δvactual,2 = 4,044 + 3,947 = 7,991m/s

Wemay assume that the spacecraft has a horizontal flight path (i.e., γ = 0) at second-stage
burnout. Recall that our analysis of the flight mechanics of the ascent trajectory in
Section 6.4 assumed a non-rotating Earth. In reality, of course, v2,rot = 7,991 m/s is the
spacecraft’s Earth-relative velocity and we must add the velocity of the rotating frame
in order to estimate the inertial velocity of the spacecraft:

v2, fix = v2,rot +ωEr2 cosϕ = 7,991 + 422 = 8,413m/s

where Earth’s spin rate is ωE = 7.292(10−5) rad/s, r2 = 6,578 km (i.e., 200-km altitude
LEO), and latitude ϕ = 28.5 (launch from Cape Canaveral). Velocity for a 200-km alti-
tude circular orbit is 7,784 m/s, and hence the estimated inertial velocity at second-stage
burnout exceeds the LEO target speed by more than 600m/s. One possible explanation
for the overly optimistic performance is that our analysis assumes all propellant mass is
consumed during both burns.

6.6 Launch Vehicle Performance

As noted in the previous section, determining a launch trajectory requires numerical
integration of the equations of motion with accurate models for atmospheric density,
subsonic and supersonic aerodynamic coefficients, and rocket thrust. Furthermore, max-
imizing the payload mass delivered to a desired orbit requires trajectory optimization
methods that are beyond the scope of this textbook. Fortunately, launch vehicle suppliers
provide a “payload user’s guide” document that presents launch vehicle performance as a
function of the orbital target. The launch performance is often times presented as a plot
of payload mass vs. an orbital parameter such as circular orbit altitude. Thus, the launch
vehicle supplier has accounted for all of the aforementioned complexities associated with
determining a launch trajectory. References [3] and [4] are the “payload user’s guides” for
the Atlas and Delta families of launch vehicles, respectively.
Figure 6.8 shows the payload mass in circular LEO (inclination i = 28.5 ) for two ver-

sions of the 500-series Atlas V launch vehicle (the second digit indicates the number of
strap-on solid-propellant rockets that augment thrust at liftoff ). Payloadmass is typically
defined by launch vehicle suppliers as the total mass of the spacecraft plus the mass
required for the mechanical interface between the spacecraft and launch vehicle.
Figure 6.8 shows that a single upper-stage burn is used for orbits with altitudes below
500 km, and a two-burn maneuver is used for circular altitudes greater than 500 km.
Clearly, the payload mass decreases with LEO altitude because additional propellant
mass is required to achieve the demand in additional orbital energy. Launch performance
curves (similar to Figure 6.8) are used by satellite builders to determine the best match
between existing launch vehicles and a desired spacecraft mass and target orbit.
Launch vehicles are also used to send a spacecraft on an escape trajectory that even-

tually leads to an interplanetary target. Recall from Chapter 2 that a satellite leaves a
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gravitational body along a hyperbolic trajectory with positive specific energy. Further-
more, when the satellite has reached a very large distance from the gravitational body,
the potential energy is negligible, that is, −μ/r∞ ≈0 (recall that r∞ is the radial
distance “at infinity”). Therefore, total energy of a hyperbolic trajectory equals kinetic
energy “at infinity”

ξ=
v2∞
2

(6.40)

Hence, the hyperbolic excess velocity v∞ defines the energy of the departure hyperbola.
Interplanetary launch performance is usually presented as a function of the so-called
“launch energy” C3 that is defined as the square of hyperbolic excess velocity

C3 = v
2
∞ = 2ξ (6.41)

Figure 6.9 shows the payload mass capability of the Atlas V 551 and Delta IV Heavy
vehicles for interplanetary missions [5]. Launch energy C3 is the independent variable in
Figure 6.9, and it defines the energy of the escape hyperbola. Note that the payload mass
is greatest when C3 = 0 for a parabolic trajectory with zero excess velocity at infinity (of
course, a parabolic escape from Earth will require an additional propulsive burn to reach
an interplanetary target). We will see in Chapter 10 that specifying a particular interplan-
etary target (such as Mars or Venus) and departure and arrival dates determines the
hyperbolic escape trajectory and hence the required C3. Mission planners use launch-
energy performance curves (similar to Figure 6.9) to estimate the total spacecraft mass
as it leaves Earth’s gravitational field.
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Figure 6.8 Low-Earth orbit payload mass vs. circular altitude. Source: Adapted from Ref. [3].
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6.7 Impulsive Maneuvers

This chapter has focused on the relationships between propulsive maneuvers and space-
craft mass (i.e., the propellant mass) as well as launch trajectories. For some on-orbit
propulsive maneuvers, the burn time is relatively short compared with the orbital period
and consequently we can treat the burn as an impulsive maneuver (of course, the long-
duration burn of a launch trajectory does not fit this category). We can develop an
impulsive-thrust approximation by considering again Eq. (6.6) where thrust T is the only
external force acting on the satellite:

v=
T
m

(6.42)

Next, we approximate the vehicle acceleration using v=Δv/Δt and solve Eq. (6.42) for
finite burn time Δt

Δt =
Δv
T/m

(6.43)

Equation (6.43) shows that a finite velocity change Δv will require a relatively short burn
time if the thrust acceleration T/m is large. Equation (6.43) also shows that burn time Δt
shrinks to an infinitesimal value as thrust acceleration becomes infinite. This limiting
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Figure 6.9 Interplanetary payload mass vs. launch energy C3. Source: Ref. [5]. Courtesy of NASA.
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case is impulsive thrust or an impulsive maneuver. In this scenario, a very “large” thrust
force instantaneously produces the desired velocity change Δv without any change in
orbital position.
Let us consider the everyday example of a golfer driving a golf ball. The golf club

imparts a very large force on the golf ball such that it leaves the tee at a speed of 150
mph (67 m/s). Therefore, we may treat a golfer’s drive as an impulse: the ball’s velocity
changes from zero (at rest on the tee) to 67m/s in a very short time with essentially no
change in position of the ball.
As a space flight dynamics example, consider again the scenario in Examples 6.2

and 6.3 where a solid-propellant rocket delivers a force that changes the vehicle’s
velocity to achieve a parabolic escape trajectory from LEO. Referring back to
Example 6.3, we see that a 70.5 s (1.2 min) burn will achieve the desired velocity
increment Δv = 3,200 m/s. Because the orbital period of LEO is 90.5 min, the burn
arc is about 1/90 of an orbital revolution or about 4 . Hence, there is little change
in the spacecraft’s position during the burn (the change in orbital position and
burn time are small relative to the large time and distance scales associated with
space flight). The short burn time supports the impulsive-maneuver approxima-
tion. Note that the initial thrust acceleration for Example 6.3 is T/m0 = 67,000
N/2,500 kg = 26.8 m/s2 = 2.73 g0. This relatively large thrust acceleration results
in a short burn time. Reducing the thrust acceleration increases the burn time,
and consequently the propulsive maneuver can no longer be approximated as
an impulse.
Employing impulsive maneuvers greatly simplifies the analysis of orbital transfers, as

we shall see in Chapters 7, 8, and 10. For impulsive maneuvers, the important perfor-
mance metric is the velocity increment, Δv, and it is readily computed from knowledge
of the initial orbit and transfer orbit. Once Δv is known, we can easily determine the
propellant mass by using the ideal rocket equation and the propulsion system character-
istics such as specific impulse.

6.8 Summary

This chapter has provided a brief introduction to the fundamentals of rocket propulsion
and rocket performance. The primary outcome of this chapter is the so-called “rocket
equation” that links the incremental change in velocity (Δv) with the corresponding pro-
pellant mass. It is important to reiterate that the rocket equation was derived for a vehicle
in “field-free space” where propulsive thrust is the only external force acting on the vehi-
cle. Consequently, we may use the rocket equation to determine the theoretical or ideal
velocity increment Δv achieved by burning a given amount of propellant. The ideal Δv
always represents the maximum possible velocity increment produced by rocket propul-
sion because other forces (such as aerodynamic drag and gravity) are ignored. For launch
trajectories originating at the Earth’s surface, drag and gravity losses must be included in
order to estimate the vehicle’s actual change in velocity after a propulsive maneuver.
However, when an orbiting satellite fires an onboard rocket with a sufficiently “high”
thrust-to-mass ratio, the burn time is relatively short and consequently the satellite’s
velocity changes rapidly with little change in orbital position. This scenario is
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approximated by an impulsive maneuver with an instantaneous change in velocity. In
this case, the ideal velocity increment predicted by the rocket equation exhibits a good
match with the vehicle’s actual change in velocity.
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Problems

Conceptual Problems

6.1 A rocket engine and propellant combination has a specific impulse of 410 s.
Determine the mass-flow rate required to obtain a thrust of 432,500 N.

6.2 A single Space Shuttle Main Engine (SSME) has the following characteristics:
Thrust at sea level, TSL = 1,859.4 kN
Specific impulse at sea level is 366 s
Nozzle exit area, Ae = 4.168 m2

Nozzle exit pressure, pe = 11,600 Pa
Determine the specific impulse of the SSME at an altitude of about 6 km where

the ambient atmospheric pressure is pa = 46,563 Pa. Atmospheric pressure at sea
level is 101,325 Pa.

6.3 A launch vehicle is currently at an altitude of 6.65 kmwith velocity v = 280m/s. The
launch vehicle is using a gravity turn to create a pitch-downmaneuver with angular
velocity γ = –0.735 deg/s. Determine the launch vehicle’s current flight-path angle.

6.4 Consider a rocket stage operating in “field-free space”where the rocket thrust is the
only force. If the rocket’s effective exhaust velocity is 3,140 m/s and the initial total
vehicle mass is 4,500 kg, determine the propellant mass required to increase the
vehicle’s velocity by 2,600 m/s.

6.5 Using the rocket stage data in Problem 6.4, determine the payload ratio if its struc-
tural coefficient is 0.097 and the desired velocity increment is 2,600 m/s.
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6.6 Consider a single-stage-to-orbit (SSTO) launch vehicle. Suppose the ideal velocity
increment to achieve low-Earth orbit (LEO) is Δvideal = 9,100 m/s (this ideal incre-
ment factors in gravity and drag losses and the small velocity boost from Earth-
rotation effects). If a SSTO vehicle could achieve a structural coefficient of 0.08
and a specific impulse of 375 s, determine the vehicle’s total liftoff massm0 required
to deliver a payload mass of 1,000 kg to LEO.

6.7 Consider the SSTO launch vehicle scenario described in Problem 6.6 (i.e., mPL =
1,000 kg and Δvideal = 9,100 m/s). The specific impulse is a function of structural
coefficient ε:

Isp = −6,361ε2 + 2,751ε+ 195 6 in s

Recall that the structural coefficient generally increases as specific impulse increases.
Plot the total liftoff massm0 vs. structural coefficient for 0.05 < ε < 0.1 and determine
the structural coefficient that minimizes m0 (note that the given specific impulse
function is overly optimistic; e.g., Isp = 357 s for ε = 0.07 which is significantly better
than the specific impulse values listed in Table 6.3. In addition, Isp in Table 6.3 are
values for vacuum conditions whereas the Isp values used for a SSTO vehicle must
be “averaged” in order to account for both atmospheric and vacuum flight).

6.8 A satellite is in a 200-km altitude LEO and its total initial mass is 3,000 kg. The
satellite needs to fire its onboard rocket engine to increase its inertial velocity to
8.6 km/s. If its onboard rocket engine has a thrust of 900 N, can we approximate
this single rocket burn as an impulsive maneuver? Explain your answer.

Mission Applications

Problems 6.9–6.14 involve the Atlas V launch vehicle. Its characteristics are tabulated
as follows:

Stage Propellant mass (kg)
Structural mass
(kg)

Isp
(s)

Total burn time
(s)

First (RD-180) 284,000 21,000 315 253

Second (Centaur RL-10) 20,800 2,200 451 927

Solid rocket booster 41,000 5,700 279 94

The structural masses for the first and second stages accounts for the engines, pumps,
tanks, and so on, and do not include the interstage adapter mass and payload fairing mass
(see Figure 6.7). The total interstage adapter mass is 2,500 kg and the payload fairing
mass is 3,600 kg. Note that the solid rocket booster (SRB) characteristics in the above
table pertain to a single SRB.
In addition, use Table 6.6 for the gravity and drag losses for the Atlas V launch vehicle.

6.9 First, consider the Atlas V 501 which does not use any strap-on SRBs (hence the
“0” second digit in 501). Compute the ideal and actual velocity increments (Δv) at
the completion of the first-stage burn if the payload mass is 8,000 kg.
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6.10 Next, let us consider the Atlas V 531 which uses three strap-on SRBs (hence the
“3” second digit in 531). Compute the ideal velocity increment at the completion
of the SRB burn (the SRBs are ignited at liftoff ). You cannot estimate the actual
Δv because the first-stage burn is not yet completed. In addition, compute the
ideal and actual velocity increments at the completion of the first-stage burn.
The payload mass is 8,000 kg.

6.11 Finally, consider the Atlas V 551 which uses five strap-on SRBs (hence the “5”
second digit in 551). Compute the ideal and actual velocity increments at the
completion of the first-stage burn (the SRBs are ignited at liftoff ). The payload
mass is 8,000 kg.

6.12 Now consider the final velocity of the spacecraft (payload mass) after all
rocket stages have been exhausted. First, let us analyze the Atlas V 501 (no SRBs).
Determine the final inertial velocity of the spacecraft for a payloadmass of 8,000 kg.
Assume that the Earth’s rotation adds 422 m/s directly to the velocity increments.

6.13 Determine the final inertial spacecraft velocity delivered by the Atlas V 551 (five
SRBs). Use a payload mass of 4,000 kg and assume that the Earth’s rotation adds
422 m/s directly to the velocity increments. Assuming that the final altitude is
6,563 km at second-stage burnout (i.e., 185-km altitude) compute the launch
energy C3 and compare your result to the interplanetary payload performance
predicted in Figure 6.9.

6.14 Repeat Problem 6.13 and determine the final inertial spacecraft velocity and
launch energy C3 delivered by the Atlas V 531 for a payload mass of 4,000 kg.

Problems 6.15–6.17 involve the S-IVB which was the third stage of the Saturn
V rocket used for the Apollo missions. It was burned twice; the first burn com-
pleted the launch phase and placed the payload in a 185-km altitude circular LEO.
The second burn was “translunar injection” (TLI) which sent the payload on a
highly eccentric orbit to themoon. The S-IVB could be throttled to vary the thrust
and mass-flow rate. The characteristics of these two burns are summarized in the
following table:

Event Mass-flow rate (kg/s) Burn time (s)

LEO insertion 218.1 147

Translunar injection 204.4 347

The specific impulse of the J-2 engine used by the S-IVB is Isp = 421 s. Flight-path
angle is essentially zero during both burns of the S-IVB stage.

6.15 Compute the velocity increment ΔvLEO for the LEO insertion burn if the total
mass in LEO after the burn is 132,000 kg [total mass in LEO includes the
S-IVB stage and the payload mass consisting of the command/service module
(CSM), and lunar module (LM)].
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6.16 Compute the velocity increment ΔvTLI for translunar injection (TLI). The total
mass before the TLI burn is 132,000 kg.

6.17 If the payloadmass for TLI (i.e., the CSM and LM) ismPL = 44,000 kg, estimate the
structural coefficient and payload ratio of the S-IVB stage.

Problems 6.18 and 6.19 involve the LM ascent stage which was used to trans-
port the Apollo astronauts from the surface of the moon to the orbiting CSM. The
characteristics of the LM are summarized as follows:

Total mass of the LM ascent stage on the moon’s surface is 4,980 kg
LM specific impulse Isp = 311 s
LM thrust T = 15,520 N

6.18 Compute the vertical velocity of the LM 10 s after igniting the ascent engine.
Assume vertical flight for the first 10 s of the ascent phase and assume constant
lunar gravitational acceleration gm = 1.625m/s2.

6.19 When the LM completed the ascent phase, its mass was 2,713 kg. The actual
velocity change in the LM after the ascent burn was 1.687 km/s. Compute the
gravity loss during the lunar ascent phase. Assume constant lunar gravitational
acceleration gm = 1.625 m/s2.

Problems 6.20 and 6.21 involve the Pegasus, which is an air-launched system
dropped from the underside of a Lockheed L-1011 at 12 km. The Pegasus consists
of three solid rocket stages where first-stage flight is aided by lift from a fixed wing.

6.20 At second-stage ignition, the Pegasus hasmassm = 5,652 kg and is at an altitude of
70 km, inertial velocity of 2.5 km/s, and flight-path angle of 38 . The second stage
burns for 71 s and at burnout the vehicle is at an altitude of 192 km and flight-path
angle of 26 . The Orion 50 XL second stage has specific impulse Isp = 290 s and
propellant mass mp = 3,915 kg. Estimate the inertial velocity of the Pegasus after
second-stage burnout. Second-stage flight is essentially at vacuum conditions.
Assume that sin γ is a linear function of time during the second-stage burn.

6.21 At third-stage ignition, the Pegasus is at an altitude of 736 km, inertial velocity of
4.566 km/s, and flight-path angle of 2.2 . Its total mass at third-stage ignition is
1,198 kg. The Pegasus’ target orbit after the third-stage burn is a 741-km circular
orbit. The Orion 38 third stage has specific impulse Isp = 290 s, structural mass
mst = 110 kg, and its burn time is 65 s. Determine the third-stage propellant mass
and the payload mass delivered to the target orbit. Assume that sin γ is a linear
function of time during the third-stage burn.

6.22 The Ares I or Crew Launch Vehicle (CLV) was designed for human space flight
missions after the retirement of the US Space Shuttle in 2011. The second stage of
the Ares I was powered by a single J-2X engine with thrust T = 1,307,000 N and
specific impulse Isp = 421 s. Suppose that the Ares I is currently at an altitude of
130 kmwith inertial velocity v = 6.740 km/s and flight-path angle γ = 1.8 . Its mass
is 267,100 kg at this instant.
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a) If the time rate of the flight-path angle is zero at this instant, compute the pitch
attitude thrust-steering angle α. Neglect atmospheric forces at this altitude.

b) The CLV accelerates to an inertial velocity of 7.220 km/s. How much propel-
lant mass was required for this acceleration? Assume that the flight-path angle
remains constant during this flight phase.

6.23 An oxygen tank explosion on the service module during the translunar trajec-
tory ended the lunar-landing flight plan for Apollo 13. Consequently, the
Apollo 13 mission used a “free-return” (coasting) trajectory around the moon
to return the astronauts to Earth. In order to shorten the return trajectory, the
astronauts fired the LM descent-stage engine to provide a velocity increment
Δv of 262 m/s. Estimate the burn time for this maneuver during the return
trajectory. Use the following parameters: total initial spacecraft mass before
the burn is 47,200 kg, LM descent-stage engine thrust T = 45,040 N, LM
descent-stage Isp = 311 s.

6.24 The Payload Assist Module (PAM)-D is a solid rocket upper stage with thrust
T = 66,440 N and specific impulse Isp = 293 s. The PAM-D stage is mated to a
communication satellite in circular LEO and the total mass is 2,210 kg. Compute
the velocity increment Δv achieved by the PAM-D if the total burn time is 55 s.

6.25 The Centaur upper stage uses an RL-10 rocket engine with liquid oxygen and liq-
uid hydrogen (Isp = 451 s). The Centaur structural mass is 2,200 kg and its struc-
tural coefficient is 0.096. The Centaur stage has the capability to impart a total
ideal velocity increment of Δv = 6,120m/s. Determine the payload mass and pay-
load mass ratio associated with the Centaur stage.
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7

Impulsive Orbital Maneuvers

7.1 Introduction

Chapters 2–5 dealt with satellite position, velocity, and flight time in an orbit, while
Chapter 6 linked a propulsive rocket burn to changes in orbital velocity and mass. This
chapter involves altering a satellite’s orbit by applying a propulsive thrust force. We
assume that the thrust-to-mass ratio is sufficiently high so that the propulsive maneuver
is approximated by an impulse with an instantaneous change in orbital velocity and
no change in position (the reader should consider reviewing impulsive maneuvers in
Section 6.7).
This chapter focuses on orbital maneuvers: transporting a satellite from one orbit to a

target orbit. Often a launch vehicle delivers a satellite to an intermediate (lower-energy)
orbit and a subsequent engine stage transfers the satellite to its intended orbit for oper-
ation.We have seen in previous chapters that the geostationary-equatorial orbit (GEO) is
a circular orbit with a period that matches Earth’s rotation rate making it a desirable des-
tination for communication and weather satellites. Because GEO altitude is 35,786 km
(over 5.6 Earth radii), an orbital maneuver is required to transfer a satellite from a lower-
energy orbit to GEO. This scenario is only one example of an orbital maneuver; other
examples include small-scale orbit corrections, changing the orbital inclination, and ren-
dezvous with an orbiting satellite such as a space station.
Figure 7.1 shows a schematic diagram of a two-impulse, coplanar orbit transfer

between inner and outer circular orbits. The first impulse at point A changes the circular
velocity vector so that the satellite follows an elliptical orbit (the dashed path); the second
impulse at point B changes the elliptical velocity vector so that the satellite enters the
desired outer circular orbit (Orbit 2). Because the durations of the two propulsive
“burns” are relatively short, we may model the velocity changes at A and B as impulsive
maneuvers without change in orbital position. In practice, firing an onboard chemical
rocket twice produces the orbit transfer shown in Figure 7.1. It is important for the
reader to note that the satellite follows a “coasting arc” between points A and
B where gravity is the only force acting on the satellite, and hence the dashed path in
Figure 7.1 is an elliptical orbit. Note also that if the onboard engine failed to fire at
point B, the satellite would continue its elliptical orbit and eventually return to point
A. Computing the velocity increments (Δv) required at orbit-intersection points
A and B is the focus of this chapter.
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7.2 Orbit Shaping

Before we present transfers between two orbits, we will discuss orbit shaping, where fir-
ing a rocket changes orbital elements such as semimajor axis and eccentricity. The reader
should keep in mind that the rocket burn is treated as an impulsivemaneuver that results
in an instantaneous change in velocity, or Δv. Our basic objective in orbit-shaping
problems is to determine the velocity increment Δv given the satellite’s current orbit
and the desired (or target) orbit. Once we determine Δv, we may compute the associated
propellant mass using the rocket equation and the characteristics of the rocket engine
(i.e., specific impulse or effective exhaust velocity). The following examples demonstrate
orbit-shaping maneuvers.

Example 7.1 A geocentric satellite is in an elliptical orbit with semimajor axis
a = 8,500 km and eccentricity e = 0.15. Determine the impulsive Δv required to create
a circular orbit with a radius equal to the apogee radius of the elliptical orbit.
Figure 7.2 shows the initial elliptical orbit. We can compute perigee and apogee radii of

the initial ellipse from a and e:

Perigee rp = a 1−e = 8,500 km 0 85 = 7,225 km
Apogee ra = a 1 + e = 8,500 km 1 15 = 9,775 km

The target circular orbit has radius r = ra, and therefore the circle is tangent to the ellipse
at apogee as shown in Figure 7.2. Using the satellite’s apogee state in the energy equations
(2.29) and (2.63) yields

ξ=
v2a
2
−
μ

ra
= −

μ

2a
Solving for apogee velocity, we obtain

va =
−μ

a
+
2μ
ra

= 5 8873 km/s

Orbit 1

A

Orbit 2

Impulse #1

B

Impulse #2

Transfer orbit

Figure 7.1 Two-impulse, coplanar orbit transfer.
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The circular velocity for the target orbit is

vc =
μ

ra
= 6 3857 km/s

Circular speed is greater than the apogee velocity. The required velocity increment is

Δv= vc−va = 0 4983 km/s

A collinear summation of the vectors is shown in Figure 7.2: apogee velocity vamust be
increased by an increment Δv to produce the circular velocity vc. Because the velocity
change Δv is impulsive, the radial position ra does not change during the maneuver.
This type of orbit-shaping maneuver is commonly called a perigee-raising (or periapsis-

raising) maneuver. In an operational setting, the thrust vector is aligned with the apogee
velocity va for a so-called “tangent burn.” In this example, the tangentΔv impulse at apogee
increases the orbital energy and perigee radius so that the new orbit is circular. The reader
shouldnote that for this example, an impulsiveΔv greater than 0.4983 km/s raises the initial
perigee radiusbeyond the radius ra such that it becomes theapogeeof thenewellipticalorbit
(in which case the initial apogee radius will become the perigee radius of the new ellipse).

Example 7.2 Consider again a geocentric satellite in an elliptical orbit with semimajor
axis a = 8,500 km and eccentricity e = 0.15. Determine the impulsive Δv required to cre-
ate a circular orbit with a radius equal to the perigee radius of the elliptical orbit.
Figure 7.3 shows the initial elliptical orbit and the target circular orbit. Because the

radius of the target circular orbit is the initial perigee radius, we must apply the Δv
impulse at perigee as shown in Figure 7.3. We may determine the initial perigee velocity
and the target circular velocity using perigee radius rp = 7,225 km (see Example 7.1 for
the calculation of perigee radius):

Perigee velocity vp =
−μ

a
+
2μ
rp

= 7 9652 km/s

ra rp

Initial elliptical 
orbit

∆v

va
vc

Target circular
orbit with r = ra

Figure 7.2 Circularization Δv at apogee (Example 7.1).
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Circular velocity vc =
μ

rp
= 7 4276 km/s

Because the target circular velocity is less than the perigee velocity, the impulsive Δv
is applied in the opposite direction of vp in order to reduce the speed (see Figure 7.3).
The magnitude of the required velocity increment is

Δv= vp−vc = 0 5376 km/s

This orbit-shaping maneuver is commonly called an apogee-lowering (or apoapsis-
lowering) maneuver. In practice, the thrust vector from the rocket burn is aligned in
the opposite direction of the perigee velocity vp so that the resulting Δv impulse
decreases the orbital energy and lowers the apogee radius.

Example 7.3 Determine the propellant mass and burn time for the impulsive Δv
maneuver from Example 7.1. Assume that the initial spacecraft mass is m0 = 2,000 kg
and that the onboard rocket engine has a thrust magnitude T = 6,000 N and specific
impulse Isp = 320 s.
Using Eq. (6.13) with Isp = 320 s,m0 = 2,000 kg,Δv = 498.3 m/s, and g0 = 9.80665 m/s2,

we obtain the propellant mass:

mp =m0 1−exp
−Δv
g0Isp

= 293 6 kg

Note that we expressed Δv in units of meters per second in order to be consistent
with the effective exhaust speed g0Isp.
We need the engine mass-flow rate in order to determine the burn time. Using Eq. (6.3),

we obtain

m=
T

g0Isp
= 1 9120 kg/s

ra rp

Initial elliptical orbit

vp

vc

Target circular 
orbit with r = rp

∆v

Figure 7.3 Circularization Δv at perigee (Example 7.2).
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The burn time is

tburn =
mp

m
= 153 6 s = 2 56 min

We could compute the propellant mass and burn time for the apogee-lowering maneu-
ver (Example 7.2) in the same manner using the appropriate Δv.

7.3 Hohmann Transfer

We begin our discussion of orbit transfers with one of the most basic and simplest orbital
maneuver: the minimum-energy transfer between circular coplanar orbits. This orbit
transfer problem, first solved by Walter Hohmann in 1925 [1], is called the Hohmann
transfer. Figure 7.4 shows that the Hohmann transfer is an elliptical orbit tangent to both
the inner and outer circular orbits. The semimajor axis of the Hohmann transfer is one-
half of the sum of the radii of the two circular orbits:

at =
1
2
r1 + r2 (7.1)

We will use subscript t to denote characteristics of the transfer orbit. Knowledge of
semimajor axis allows computation of the energy of the Hohmann transfer ellipse:

ξt =
−μ

2at
(7.2)

r2

r1

∆v1vc1

v1

Hohmann
transfer

Outer circular orbit
Inner 
circular
orbit

vc2

v2 ∆v2

Figure 7.4 Hohmann transfer.
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Finally, we can compute the required velocities at each apse of the Hohmann transfer
ellipse using the energy equation (2.29) and Eq. (7.2):

Periapsis v1 = 2 ξt +
μ

r1
=

−μ

at
+
2μ
r1

(7.3)

Apoapsis v2 = 2 ξt +
μ

r2
=

−μ

at
+
2μ
r2

(7.4)

Let us identify the circular and Hohmann-transfer velocities in Figure 7.4. The satel-
lite’s initial circular velocity, vc1 = μ/r1, is shown as an arrow tangent to the inner orbit.
Because the Hohmann ellipse is tangent to both circles, the periapsis and apoapsis velo-
cities are collinear with the inner and outer circular velocities. The Hohmann-transfer
periapsis velocity v1 is greater than circular velocity vc1 because the semimajor axis
(energy) of the transfer ellipse is greater than the semimajor axis of the inner circle.
Figure 7.4 shows that the Hohmann periapsis velocity is v1 = vc1 +Δv1. The first velocity
increment is

Δv1 = v1−vc1 (7.5)

Firing a rocket engine aligned with the inner circular velocity vector produces this
impulsive Δv1 and establishes the Hohmann-transfer ellipse. When the satellite coasts
for one-half of the elliptical period, it reaches the apoapsis of the Hohmann transfer,
radius r2. Figure 7.4 shows that the satellite arrives at apoapsis with velocity v2 [as deter-
mined by Eq. (7.4)], and this velocity is less than the circular velocity of the outer orbit,
vc2 = μ/r2. Therefore, a second tangential engine burn must be employed to impart
velocity increment Δv2. The second velocity increment is

Δv2 = vc2−v2 (7.6)

The sum of the two impulsive velocity increments, Δv=Δv1 +Δv2, can be used in the
ideal rocket equation (6.13) to determine the propellant mass required for the Hohmann
transfer (of course, we must also know the initial mass of the satellite and the specific
impulse of the rocket engine).
The flight time on the Hohmann-transfer ellipse is simply one-half the elliptical period

[see Eq. (2.80)]

tf =
π

μ
a3/2t (7.7)

The following example illustrates a Hohmann transfer.

Example 7.4 A Delta IV launch vehicle delivers a Global Positioning System (GPS)
satellite to a 185-km altitude circular low-Earth orbit (LEO). Determine the two Δv
impulses required for a coplanar Hohmann transfer to a 20,180-km altitude GPS cir-
cular orbit. In addition, compute the coast time for the Hohmann transfer to the target
GPS orbit.
Figure 7.5 shows the geometry of the Hohmann transfer where r1 = 185 km + RE =

6,563 km (inner LEO) and r2 = 20,180 km + RE = 26,558 km (GPS orbit). Recall that
RE is the Earth’s radius. Using Eq. (7.1), we find that the semimajor axis of the Hohmann

Space Flight Dynamics246



transfer is at = r1 + r2 /2 = 16,560.5 km. The apse velocities on theHohmann transfer are
found using Eqs. (7.3) and (7.4)

Hohmann perigee v1 =
−μ

at
+
2μ
r1

= 9 869 km/s

Hohmann apogee v2 =
−μ

at
+
2μ
r2

= 2 439 km/s

The inner and outer circular velocities are

LEO vc1 =
μ

r1
= 7 793 km/s

GPSorbit vc2 =
μ

r2
= 3 874 km/s

Finally, the two impulses are determined by using Eqs. (7.5) and (7.6)

Impulse in LEO Δv1 = v1−vc1 = 2 076 km/s

Impulse at apogee Δv2 = vc2−v2 = 1 435 km/s

The total velocity increment for the Hohmann transfer is Δv1 +Δv2 = 3.511 km/s.
We use Eq. (7.7) to determine the flight time on the Hohmann transfer:

tf =
π

μ
a3/2t = 10,604 5 s = 2 95 h

Hence, the flight time between the two rocket burns is nearly 3 h. Both burns are aligned
with the local horizon and collinear with the satellite’s velocity vector.

LEO

GPS orbit

∆v1

∆v2

Figure 7.5 Hohmann transfer from low-Earth orbit (LEO) to Global Positioning System (GPS) orbit
(Example 7.4).
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The Hohmann transfer is actually the most energy-efficient coplanar transfer for a
specific range of outer-to-inner circular radii ratio. A three-burn bi-elliptic transfer,
consisting of two successive Hohmann transfers, may bemore efficient than the standard
two-burn Hohmann transfer. The second burn of the bi-elliptic transfer is actually out-
side the outer (target) circular orbit. If the ratio R= r2/r1 is less than 11.94, then the two-
burn Hohmann transfer is the most efficient transfer. If R > 11.94, then the bi-elliptic
transfer may be the most efficient transfer. The bi-elliptic transfer may be unrealistic
in some cases due to an extremely large intermediate orbit with a prohibitively long
transfer time. The interested reader can consult Vallado [2; pp. 328–330] for additional
details and criteria for when the bi-elliptic transfer is superior to the Hohmann transfer.

7.3.1 Coplanar Transfer with Tangential Impulses

The Hohmann transfer is an ellipse that is tangent to both the inner and outer circular
orbits and hence it utilizes two tangential impulses. We can envision other coplanar orbit
transfers that use tangential impulses. Figure 7.6 shows an orbit transfer between an
inner elliptical orbit and a target outer circular orbit. If we compare Figure 7.6 with
the Hohmann transfer (Figure 7.4), we see that the only difference is that the first tan-
gential impulse Δv1 is applied at the periapsis of the inner elliptical orbit (rp1). The semi-
major axis and energy of the transfer orbit are determined using Eqs. (7.1) and (7.2) with
initial periapsis radius rp1 replacing the initial circular radius r1:

at =
1
2

rp1 + r2 (7.8)

ξt =
−μ

2at
(7.9)

r2

rp1

∆v1vp1

v1

Orbit
transfer

Outer circle

Inner
ellipse

vc2

v2∆v2

Figure 7.6 Orbit transfer using two tangential impulses.
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The velocity required at periapsis of the transfer ellipse is computed using Eq. (7.3)
with radius r1 replaced by periapsis radius rp1

Periapsis v1 = 2 ξt +
μ

rp1
=

−μ

at
+
2μ
rp1

(7.10)

The first tangential impulse is

Δv1 = v1−vp1 (7.11)

where vp1 is the periapsis velocity of the inner elliptical orbit. The second tangential
impulse (at apoapsis) is the difference between the outer circular velocity vc2 and the
apoapsis velocity of the transfer ellipse computed via Eq. (7.4). The following example
illustrates this type of orbit transfer.

Example 7.5 In July 2001, the European Space Agency (ESA) launched the ARTEMIS
spacecraft on an Ariane 5 booster rocket. Because ARTEMIS was a communication sat-
ellite, its ultimate destination was GEO. Due to a partial failure of the Ariane booster, the
ARTEMIS spacecraft reached a sub-nominal elliptical orbit with perigee and apogee alti-
tudes of 580 and 17,350 km, respectively. The Ariane’s target was a geostationary transfer
orbit (GTO) with an apogee altitude of 35,786 km (i.e., GEO altitude). Mission operators
decided to use the onboard chemical-propulsion rocket to transfer the ARTEMIS space-
craft from the sub-nominal elliptical orbit to a circular orbit with an altitude of 31,000 km
(see Figure 7.7). ARTEMIS’ onboard electric-propulsion stage performed the remaining
orbit transfer from the 31,000-km altitude circle to GEO (we will analyze low-thrust
transfers in Chapter 9).
Determine the two tangential Δv impulses required for the coplanar orbit transfer. In

addition, compute the burn time for the first Δv impulse if the initial mass of the ARTE-
MIS satellite is 3,100 kg and the onboard chemical rocket provides 400 N of thrust with a
specific impulse of 318 s.

r2

rp1  ∆v1

Orbit
transfer

Outer circle
altitude = 31,000 km

Inner ellipse
580 x 17,350 km

∆v2

Figure 7.7 ARTEMIS coplanar orbit transfer (Example 7.5).
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Figure 7.7 shows the geometry of the transfer where rp1 = 580 km + RE = 6,958 km
(perigee of inner ellipse) and r2 = 31,000 km + RE = 37,378 km (outer circular orbit).
We use Eq. (7.8) to determine the semimajor axis of the transfer: at = rp1 + r2 /2 =
22,168 km. The apse velocities on the transfer orbit are found using Eqs. (7.10) and (7.4)

Transfer perigee v1 =
−μ

at
+
2μ
rp1

= 9 8281 km/s

Transfer apogee v2 =
−μ

at
+
2μ
r2

= 1 8295 km/s

Next, we need the perigee velocity of the initial inner elliptical orbit. The apogee radius
of the inner ellipse is ra1 = 17,350 km + RE = 23,728 km. Hence, the semimajor axis of the
inner ellipse is a1 = rp1 + ra1 /2 = 15,343 km. Perigee velocity on the inner ellipse is com-
puted using Eq. (7.10) with initial semimajor axis a1

Inner ellipse perigee vp1 =
−μ

a1
+
2μ
rp1

= 9 4124 km/s

Circular velocity of the outer orbit is

Outer circular orbit vc2 =
μ

r2
= 3 2656 km/s

Finally, the two tangential impulses are

Impulse at perigee Δv1 = v1−vp1 = 0 4157 km/s

Impulse at apogee Δv2 = vc2−v2 = 1 4361 km/s

Hence, the total velocity increment for the transfer is Δv1 +Δv2 = 1 8518 km/s.
To compute the burn time for the first impulse, we need the engine mass-flow rate and

the propellant mass. Using Eq. (6.3) with thrust T = 400 N and Isp = 318 s, the mass-flow
rate is

m=
T

g0Isp
= 0 1287 kg/s

The rocket equation (6.13) provides the propellant mass for the first burn:

mp1 =m0 1−exp
−Δv1
g0Isp

= 386 88 kg

Therefore, the burn time is

tburn1 =
mp1

m
= 3,016 2 s = 50 3 min

This burn time is too long to satisfy our assumption of an impulsive rocket burn. We can
use Kepler’s equation to show that the burn-arc angleΔθ = 122 (i.e., one-third an orbital
revolution) corresponds to a 50-min transit from perigee to the end of the burn. The
problem here is that the initial thrust acceleration T/m0 = (400 N)/(3,100 kg) =
0.129 m/s2 is too small to complete the first required velocity change (Δv1 = 416m/s)
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as an “impulse.” To circumvent this issue, the mission operators divided the first tangen-
tial Δv1 burn into five successive (smaller) perigee burns. Each perigee burn raised
apogee; the fifth and final perigee burn established the elliptical transfer orbit shown
in Figure 7.7. For the same reason, the second tangential impulse (Δv2 = 1.436 km/s)
was divided into three successive apogee burns to establish the circular orbit with an
altitude of 31,000 km.

Example 7.5 and Figure 7.7 present an orbit transfer between an inner elliptical orbit
and an outer circular orbit with two tangential impulses. However, Figure 7.7 does not
represent the only feasible coplanar transfer that uses two tangential impulsive burns.
Figure 7.8 shows another option: the first impulse Δv1 occurs at apogee of the inner
ellipse, and the second impulse Δv2 establishes the desired circular orbit. Which option
provides the smallest total Δv? Using the ARTEMIS orbit-transfer scenario presented in
Example 7.5, we find that the first impulse (applied at apogee) is Δv1 = 1.7732 km/s, and
the second impulse is Δv2 = 0.3878 km/s. The total velocity increment for this second
option is 2.1610 km/s, which is nearly 17% greater than the total Δv for the transfer
depicted in Figure 7.7. Clearly, this result shows why the ARTEMIS mission operators
selected the orbit-transfer strategy illustrated by Example 7.5 and Figure 7.7 (i.e., initial
tangential burn at perigee) to achieve a 31,000-km altitude circular orbit.
The previous numerical comparison suggests that it is more efficient in terms of Δv

(and therefore propellant mass) to perform impulsive maneuvers at periapsis. Another
way to pose this problem is to consider a satellite with a fixed propellant mass or fixedΔv.
Suppose we want to increase the orbital energy for a given Δv impulse – where is the
optimal location in the orbit for the rocket engine burn? The answer can be determined
by manipulating the energy equation

ξ=
v2

2
−
μ

r
(7.12)

r2

ra1

∆v1
Orbit
transfer

Outer circular orbit

Inner 
ellipse

 ∆v2

Figure 7.8 Feasible coplanar orbit transfer with poor Δv performance.
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Taking differentials of Eq. (7.12) yields

dξ= vdv+
μ

r2
dr (7.13)

For an impulsive velocity change, there is no change in position (i.e., dr = 0). Replacing
the differentials dξ and dv in Eq. (7.13) with incremental values, we obtain

Δξ= vΔv (7.14)

Equation (7.14) clearly shows that for a fixed Δv, we can achieve the largest energy
increase by applying the impulse where velocity v is maximum, that is, at periapsis.
Of course, aligning the impulsiveΔvwith the periapsis velocity (i.e., a tangent burn) max-
imizes the change in kinetic energy. This discussion is an example of the so-calledOberth
effect named after the German physicist Hermann Oberth.

7.4 General Coplanar Transfer

Figure 7.1 shows that it is possible to perform an orbit transfer between coplanar circular
orbits if the periapsis of the transfer orbit is less than or equal to the radius of the inner
circle, and the apoapsis of the transfer ellipse is greater than or equal to the radius of the
outer circle. Figure 7.9a is a more detailed depiction of the general coplanar orbit transfer
presented in Figure 7.1. Figure 7.9a shows the circular and elliptical-orbit velocity vectors
at the two intersections where the impulsive maneuvers occur. For a general coplanar
orbit transfer, the velocity vectors on the circular and elliptical transfer orbits will not
necessarily be collinear. Therefore, vector addition and geometry is required to calculate
themagnitude and orientation of the impulsive vector Δv. To show this, consider the first
velocity impulse in Figure 7.9b:

vc1 +Δv1 = v1 or Δv1 = v1−vc1 (7.15)

Perhaps the easiest way to compute the magnitude of Δv1 is by using the law of cosines:

Δv1 = v21 + v2c1−2v1vc1 cosγ1 (7.16)

where γ1 is the flight-path angle of the elliptical-orbit velocity v1 (see Figure 7.9b). In
general, the angle between the two velocity vectors at the impulse maneuver point is
the difference in their respective flight-path angles; in this case, however, the initial orbit
is circular and hence the flight-path angle for vc1 is zero. Law of cosines also determines
the magnitude of the second impulse Δv2

Δv2 = v22 + v2c2−2v2vc2 cosγ2 (7.17)

Knowledge of the Δvmagnitude allows calculation of the propellant mass required for
the orbit transfer (of course, we also need initial satellite mass and specific impulse of the
propulsion system). From an operational viewpoint, we also need to determine the direc-
tion of the impulsive maneuver (or, the direction of the thrust vector). Figure 7.9b
(a close-up view of the first impulse) shows that ϕ1 is the elevation angle of vector

Space Flight Dynamics252



Δv1 with respect to the local horizon. Angle ϕ1 is the supplementary angle of angle δ1 in
Figure 7.9b

ϕ1 = π−δ1 (7.18)

where angle δ1 can be computed using the law of sines:

sinδ1
v1

=
sinγ1
Δv1

(7.19)

Firing the onboard rocket at elevation angle ϕ1 performs the first impulsive burn.
In summary, we can determine the magnitude and direction of the impulsive maneu-

ver by using the following steps:

1) Given the semimajor axis (or energy) of the desired transfer orbit, compute the
velocity magnitude v1 required at the impulse location (radius r1) using the energy
equation (2.29).

Impulse #1

Impulse #2

2 v2

∆v2

vc2

1

v 1

vc1

∆v1

(a)

(b)

Local 
horizon

1

v1
vc1

∆v11

1

r1

Orbit transfer

ϕ

γ

γ

γ
δ

Figure 7.9 (a) General two-impulse, coplanar orbit transfer, and (b) close-up view of the first impulsive
maneuver.
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2) Given the angular momentum of the transfer orbit, compute the flight-path angle γ1
at radius r1 using Eq. (2.22). Additional information about the transfer (such as a
sketch or the true anomaly of the impulse point) determines if the flight-path angle
is positive or negative.

3) Use Eq. (7.16) to calculate the magnitude of the first impulse Δv1.
4) Use Eqs. (7.18) and (7.19) to determine the elevation angle ϕ1 of the first impulse.

The reader should note that knowing the energy and angular momentum of the trans-
fer orbit is an essential part of the solution process. Recall from Chapter 2 that energy ξ
and angular momentum h can be computed from a combination of orbital parameters
such as semimajor axis a and eccentricity e, or periapsis and apoapsis radii. The following
example illustrates a general coplanar orbit transfer.

Example 7.6 Figure 7.10 shows a two-impulse Earth-orbit transfer where the first
impulse occurs after perigee passage on the transfer ellipse. The inner and outer circular
orbits have radii r1 = 2.5RE and r2 = 6RE, respectivelywhereRE is the radius of the Earth. The
transfer orbit has a perigee radius of 1.9RE and an apogee radius of 8.5RE. Determine (a) the
magnitude anddirectionof the first impulse, and (b) the timeof flight on the transfer ellipse.

a) We begin by computing the orbital characteristics of the transfer ellipse from the
given apse radii:

Semimajor axis at =
rp + ra

2
=

1 9 + 8 5 RE

2
= 5 2RE = 33,166 km

Eccentricity et =
ra−rp
ra + rp

=
8 5−1 9 RE

8 5 + 1 9 RE
= 0 6346

v1

vc1

∆v1

1

1

1 2

r1

r2

1

ϕ

δ
γ

θ θ

Figure 7.10 General two-impulse, coplanar orbit transfer (Example 7.6).

Space Flight Dynamics254



Parameter pt = at 1−e2t = 19,809 km

Angular momentum ht = ptμ= 88,858 km2/s

Using the energy equation and Eq. (2.22), we find the velocity and flight-path angle on
the transfer ellipse at radius r1

v1 =
−μ

at
+
2μ
r1

= 6 163 km/s

γ1 = cos
−1 ht

r1v1
= 25 27

Note that flight-path angle γ1 is positive because the first impulse occurs after perigee
passage (see Figure 7.10). Finally, we use Eq. (7.16) to determine the magnitude of the
first impulse

Δv1 = v21 + v
2
c1−2v1vc1 cosγ1 = 2 693 km/s

where the circular speed for the inner orbit is vc1 = μ/r1 = 5.000 km/s. The angle δ1
(see Figure 7.10) is determined from the law of sines

δ1 = sin−1 v1
Δv1

sinγ1 = 77 72

The elevation angle of impulse vector Δv1 is the supplementary angle:

ϕ1 = 180 – δ1 = 102 28

b) In order to determine the time of flight between the two impulses, we need to com-
pute the true anomaly for each impulse. Begin by using the trajectory equation (2.45)
to express the radial positions at each impulse:

First impulse r1 =
pt

1 + et cosθ1

Second impulse r2 =
pt

1 + et cosθ2

Solving for true anomaly, we obtain

θ1 = cos
−1 1

et

pt
r1
−1 = 67 55 and θ2 = cos−1

1
et

pt
r2

−1 = 139 47

Time of flight between impulses is determined by using Eq. (4.21)

t2− t1 =
1
n

M2−M1

where the two mean anomalies are

M1 =E1−et sin E1 = 0 2477 rad and M2 = E2−et sin E2 = 1 200 rad
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[we use Eq. (4.33) to determine eccentric anomaly E from true anomaly θ]. Using

mean motion n= μ/a3t = 1.0453(10–4) rad/s, the transfer flight time is

t2 – t1 = 9,110 s = 2 53 h

For comparison, the flight time for a Hohmann transfer between the circular orbits
[i.e., semimajor axis aH = r1 + r2 /2 = 27,107 km] is 6.17 h and the first Hohmann-
transfer impulse is 0.941 km/s. Therefore, the orbit transfer depicted in Figure 7.10
is a “fast transfer” between the circular orbits at the cost of much greater Δv or
propellant mass.

7.5 Inclination-Change Maneuver

A velocity increment with a component normal to the plane of the orbit will change the
orientation of the orbital plane. In general, a Δv component normal to the orbital plane
will change the longitude of the ascending node Ω and inclination i. In this section, we
will only focus on impulsivemaneuvers that change orbital inclination. Figure 7.11 shows
a plane-change maneuver between an inclined circular orbit (Orbit 1) and an equatorial
orbit with the same circular radius (Orbit 2). To change inclination only, the velocity
increment (Δv)must be applied to Orbit 1 at the nodal crossing (i.e., the equatorial plane
crossing). Figure 7.11a shows the plane-change impulse applied at the ascending node.
Note that the orbit-normal component of Δv is in the opposite direction as the angular
momentum vector h1 for Orbit 1. Of course, we can perform the inclination change one-
half of a revolution later (or earlier) at the descending node; in this case the normal com-
ponent of Δv will be in the same direction as h1. In either scenario, the vector addition
shown in Figure 7.11b forms an isosceles triangle because Orbits 1 and 2 have the same
circular speeds (i.e., vc1 = vc2). Thus, the impulse Δv in Figure 7.11a has rotated velocity
vector vc1 “downward” (south) to the equatorial plane without changing its magnitude. In
addition, Figure 7.11a shows that the impulse Δv has rotated the angular momentum h1

∆i

∆i
∆v

vc2

vc1

h1

h 2

Circular orbit 2
(equatorial)

Circular orbit 1 Ascending node 
for orbit 1

(a)

∆v∆i
vc1

vc2

(b)

Figure 7.11 (a) Inclination change at the ascending node, and (b) vector diagram for the inclination
change.
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through angle Δi to h2 without changing its magnitude. We can determine the magni-
tude of the impulse by observing the “top” right triangle that is half of the isosceles
triangle in Figure 7.11b:

sin
Δi
2

=
Δv/2
vc1

(7.20)

Substituting v= vc1 = vc2 in Eq. (7.20), the magnitude of the plane-change velocity incre-
ment is

Δv= 2vsin
Δi
2

(7.21)

Equation (7.21) is the velocity increment required for changing the orbital inclination
of a circular orbit. The reader should note that Δi is the magnitude of the inclination
change. A pure inclination-change maneuver must occur at a nodal crossing. However,
an inclination-change maneuver does not necessarily have to result in an equatorial orbit
as illustrated in Figure 7.11.
Determining the inclination-change Δv for an elliptical orbit requires an additional

term in Eq. (7.21). Recall that we can define inclination as the angle measured from
the equatorial plane to the projection of the velocity vector onto the horizontal plane
at a nodal crossing (see Figure 3.12). Therefore, for an elliptical orbit, the two equal veloc-
ity vector “legs” of the isosceles triangle in Figure 7.11b must be the horizontal velocity
component, or v cos γ. Replacing the circular velocity vectors in Figure 7.11b with the
horizontal velocity components, we obtain

Δv= 2vcosγ sin
Δi
2

(7.22)

Equation (7.22) is the velocity increment required for changing the orbital inclination
of an elliptical orbit [actually, Eq. (7.22) is the general equation for the inclination-change
Δv because it also holds for circular orbits]. The reader should note that we must com-
pute velocity v and flight-path angle γ at the nodal crossing. Furthermore, because veloc-
ity changes along an elliptical orbit, we must check both the ascending and descending
nodal crossings and perform the inclination change at the crossing where horizontal
velocity v cos γ is smallest. The following examples illustrate orbital maneuvers with
inclination changes.

Example 7.7 A GPS satellite is in a circular orbit with an altitude of 20,180 km and
inclination of 41 . Determine the Δv impulse required for a plane change to a target
inclination of 55 .
We use Eq. (7.21) to determine the single velocity impulse

Δv= 2vsin
Δi
2

where Δi = 55 – 41 = 14 . The circular velocity of the GPS orbit is v= μ/r =
3.874 km/s (see Example 7.4). Therefore, the velocity increment for the plane change is

Δv= 2 3 874 sin 7 = 0 944 km/s
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Example 7.8 A more realistic scenario for the GPS satellite orbit insertion is to per-
form the plane change at apogee of the Hohmann-transfer ellipse (see Example 7.4
and Figure 7.5). Assume that the GPS satellite is on a Hohmann-transfer ellipse with
a perigee altitude of 185 km, an apogee altitude of 20,180 km, an inclination of 41 ,
and argument of perigee of 180 . Compute the velocity impulse at apogee that increases
the inclination to 55 but does not change any other orbital elements.
We can perform a pure inclination-change maneuver at apogee because the apse line

lies in the equatorial plane and apogee coincides with the ascending node (note that argu-
ment of perigee is 180 , i.e., perigee direction is collinear with the descending node).
Because the satellite is in the elliptical Hohmann-transfer orbit, we must use
Eq. (7.22) to determine the velocity impulse

Δv= 2v2 cosγ2 sin
Δi
2

where Δi = 55 – 41 = 14 . In this scenario, the velocity v2 is the orbital speed at apogee
of the Hohmann-transfer ellipse in Figure 7.5. Flight-path angle γ2 is zero at apogee. We
must compute apogee speed using the energy (semimajor axis) of the Hohmann-transfer
ellipse (see Example 7.4). First, we find that perigee radius is r1 = 185 km + RE = 6,563 km
and apogee radius is r2 = 20,180 km + RE = 26,558 km (GPS orbit). Thus, the semimajor
axis of the Hohmann transfer is at = r1 + r2 /2 = 16,560 5 km. The apogee velocity on
the Hohmann transfer is

Hohmann apogee v2 =
−μ

at
+
2μ
r2

= 2 439 km/s

Using the Hohmann apogee speed v2 in Eq. (7.22) yields the plane-change impulse:

Δv= 2 2 439 cos 0 sin 7 = 0 594 km/s

Examples 7.7 and 7.8 both involve a 14 pure inclination-change maneuver performed
at radius r2 = 26,558 km (GPS orbit). The plane-change Δv is lower in this example
because the maneuver occurs at apogee of the Hohmann transfer where orbital velocity
(2.439 km/s) is less than the GPS circular velocity (3.874 km/s).

Example 7.9 Russia launches a satellite intended for a Molniya orbit with targeted
orbital elements:

a = 26,565 km
e = 0.7411
i = 63.4
Ω = 50
ω = –90

Figure 7.12 shows the satellite’s orbit after the launch phase. The orbit-insertion phase
achieved four of the five Molniya orbital elements: a, e, Ω, and ω. However, the orbital
inclination after the launch phase is i0 = 60.2 . Determine the impulsive Δv required to
correct the satellite’s inclination.
Because we only need to change inclination, the plane-change impulse occurs at

the nodal crossing. In order to use Eq. (7.22) to compute Δv, we need the velocity
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and flight-path angle of the satellite on the elliptical orbit at the nodal crossing. The sat-
ellite crosses the ascending node at true anomaly θ = 90 , and the corresponding radius is
determined from the trajectory equation (2.45):

r =
p

1 + ecosθ
=

a 1−e2

1 + ecosθ
= 11,974 7 km

The radial distance is equal to the parameter p when true anomaly is 90 . The velocity
at the ascending node is determined using the energy equation:

v=
−μ

a
+
2μ
r
= 7 181 km/s

The flight-path angle at this point is

γ = cos−1
h
rv

= cos−1
μp

rv
= 36 54

Finally, the inclination-change impulse is computing using Eq. (7.22) withΔi = 63.4 –
60.2 = 3.2 :

Δv= 2vcosγ sin
Δi
2

= 2 7 181 cos 36 54 sin 1 6 = 0 322 km/s

Because the Molniya satellite’s speed is relatively large at the nodal crossing (7.2 km/s),
even a small inclination change requires a significant impulse.

7.6 Three-Dimensional Orbit Transfer

The previous sections have involved coplanar orbit transfers that change energy and
plane-change maneuvers that only change inclination. It is possible to perform a

Ascending node,
n

J

Perigee, e
I

K

Ω0

a0 = 26,565 km
e0 = 0.7411
i0 = 60.2º

º
º

Ω0 = 50
0 = –90ω

Figure 7.12 Molniya orbit after the launch phase (Example 7.9).
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three-dimensional (3-D) orbit transfer where the Δv impulse changes both energy and
inclination. All that is required for the orbit-transfer calculation is a basic vector diagram
of the velocity vectors before and after the impulsive maneuver. For example, consider
Figure 7.13 and the associated simple velocity vector addition:

v1 +Δv = v2 (7.23)

where v1 is the velocity vector of the satellite in Orbit 1 and v2 is the velocity vector asso-
ciated with Orbit 2. Of course, both velocity vectors share a common orbital position
vector r where the impulsive maneuver occurs. One way to interpret Figure 7.13 is to
view the satellite from the central body along “line-of-sight” position vector r. The
law of cosines determines the magnitude of the velocity increment

Δv= v21 + v22−2v1v2 cosϕ (7.24)

where ϕ is the angle between velocity vectors v1 and v2 (see Figure 7.13). Note that in the
special case where the impulse occurs at the ascending (or descending) node, the angle ϕ
in Figure 7.13would represent a change in inclination betweenOrbits 1 and 2. In this case,
Figure 7.13 illustrates an orbital maneuver where Δv increases the orbital energy
(because magnitude v2 > v1) and increases the orbital inclination from i1 to i2 = i1 + ϕ.
Wewill call this type ofmaneuver where a single impulse alters both the energy and plane
a “3-D orbit transfer.” The following example illustrates a 3-D orbit maneuver.

Example 7.10 Examples 7.4, 7.7, and 7.8 have illustrated a coplanar Hohmann transfer
and inclination-change maneuvers for a GPS satellite. This example will demonstrate a
3-D orbit maneuver to the desired GPS orbit and compare the 3-D transfer performance
with a “piecewise” approach where various orbit changes occur individually and sequen-
tially. In all orbit-transfer cases here, the satellite begins in a circular 185-km altitude
LEO with inclination i1 = 41 . The GPS target orbit is a circular orbit with an altitude
of 20,180 km and inclination i2 = 55 . Determine the total Δv for the following orbit-
transfer scenarios:

a) Perform a coplanar Hohmann transfer to the circular GPS orbit, and then perform a
pure inclination change (i.e., three impulsive maneuvers).

b) Perform the firstHohmann-transferΔv to raise apogee to theGPS orbit, perform a pure
inclination change at apogee, and then perform a coplanar maneuver at apogee (one
revolution later) to establish the circular GPS orbit (i.e., three impulsive maneuvers).

v2

v1

∆v
Position of satellite where the orbit
maneuver occurs 

ϕ

Figure 7.13 Change in the velocity vector.

Space Flight Dynamics260



c) Perform the first Hohmann-transfer Δv to raise apogee to the GPS orbit, and then
perform a 3-D maneuver at apogee to change the plane and circularize the orbit
(i.e., two impulsive maneuvers).

a) Figure 7.14 illustrates the three Δv maneuvers for Case (a). The first two impulses
perform a coplanar Hohmann transfer (see Example 7.4 for details):

Coplanar impulse in LEO Δv1 = 2 076 km/s establish apogee atGPSorbit

Coplanar impulse at apogee Δv2 = 1 435 km/s establish circularGPSorbit

The third Δv is a pure 14 inclination change performed at the next nodal crossing
(the descending node), one-half circular orbit revolution from the apogee burn (the
Δv3 vector is shown as a “dot” in Figure 7.14 because it is primarily normal to the orbit
plane). We determined this inclination-change impulse in Example 7.7:

Plane-change impulse at descending node Δv3 = 0 944 km/s

Therefore, the total velocity increment for Case (a) is Δv = 4 455 km/s

b) Figure 7.15 illustrates the three Δv maneuvers for Case (b). The first impulse estab-
lishes the coplanar Hohmann transfer [same as Case (a)]:

Coplanar impulse in LEO Δv1 = 2 076 km/s establish apogee at GPSorbit

LEO

GPS orbit

Δv1

Δv2

Establish apogee

Coplanar
Hohmann
transfer
(i = 41ο)

Establish circular GPS
(i = 41ο)

Ascending 
node, n

Coast in GPS orbit
for ½ revolution

Δv3

14ο inclination change 
at descending node 
(normal direction)

Figure 7.14 Three-impulse maneuver to GPS orbit (Example 7.10a).
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The second impulse at apogee performs a pure 14 inclination change without
altering the orbital energy (see Example 7.8 for details):

Inclination-change impulse at ascending node Δv2 = 0 594 km/s
“dot” in Figure 7 15

Finally, the third impulse occurs at apogee after one full coasting revolution on the
elliptical orbit. This third Δv establishes the circular GPS orbit, and hence it is equiv-
alent to the second coplanar Hohmann-transfer impulse from Example 7.4:

Coplanar impulse at apogee Δv3 = 1 435 km/s establish circularGPSorbit

Therefore, the total velocity increment for Case (b) is Δv = 4 105 km/s

c) Figure 7.16 shows the twoΔvmaneuvers for Case (c). The first impulse establishes the
coplanar Hohmann transfer [same as Cases (a) and (b)]:

Coplanar impulse in LEO Δv1 = 2 076 km/s establish apogee atGPSorbit

The second impulse at apogee is a combined maneuver that changes inclination
and energy to create the desired 55 inclined circular GPS orbit. A vector diagram
of the 3-D maneuver is to the right of the orbit transfer shown in Figure 7.16. This
vector diagram represents a view from the Earth to the satellite along the ascending
node direction. Hence, v2 (the satellite’s velocity vector at apogee) has an angle of
41 (relative to the equatorial plane) at the nodal crossing, and the target GPS velocity

LEO

GPS orbit

∆v1

∆v3

Establish apogee

Coplanar
Hohmann
transfer
(i = 41ο)

Establish circular GPS
(i = 55ο)

Ascending
node, n

Coast in 
elliptical 
orbit for one 
revolution

∆v2

14ο inclination change 

i = 55ο

Figure 7.15 Three-impulse maneuver to GPS orbit (Example 7.10b).
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vector vc2 has an angle of 55 (equal to the target inclination). Therefore, the angle
between the two velocity vectors is the inclination changeΔi = 14 . From the previous
examples, we know that the magnitudes of these velocities are v2 = 2.439 km/s and
vc2 = 3.874 km/s. The law of cosines determines the magnitude of the combined
maneuver

3-D impulsive maneuver Δv2 = v22 + v2c2−2v2vc2 cosΔi= 1 619 km/s

Therefore, the total velocity increment for Case (c) is Δv = 3 695 km/s
Clearly, the combined 3-Dmaneuver [Case (c)] is the best option for inserting a GPS

satellite into its proper orbit because it requires the lowest total Δv.
In practice, the orbit-transfer scenario of Case (c) delivers a GPS satellite to its

desired orbit. First, the launch vehicle inserts the satellite into a circular low-Earth
orbit (LEO). Next, the upper-stage engine fires at the nodal crossing to establish apo-
gee at the GPS target altitude. After a 3-h (half-revolution) coast, the upper-stage
engine restarts to perform the combined 3-D maneuver to change the plane and
energy. The reader should note that a transfer to a GPS orbit requires a total inclina-
tion change of 55 – 28.5 = 26.5 for launch fromCape Canaveral (latitude ϕ = 28.5 ).
In the example presented here, the launch vehicle performs a 12.5 plane change (note
that i1 = 41 for LEO) and the upper-stage engine performs the remaining 14 plane
change with the combined Δvmaneuver. The allocation of the plane change between
the launch vehicle and upper stage requires a numerical optimization process and is
beyond the scope of this textbook.

LEO

GPS orbit

∆v1

∆v2

Establish apogee

Coplanar 
Hohmann 
transfer
(i = 41ο)

Establish circular GPS
(i = 55ο)

Ascending 
node, n

View from Earth to 
satellite at ascending 
node crossing

∆v2

Circular GPS velocity

v2

Apogee velocity

∆i = 14ο

vc2

Figure 7.16 Two-impulse, three-dimensional maneuver to GPS orbit (Example 7.10c).
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7.7 Summary

In this chapter, we determined the velocity increment (Δv) required to change the shape
and orientation of an orbit. This chapter has focused on impulsivemaneuverswhere firing
a “large” rocket thrust produces an instantaneous change in velocitywithout any change in
the satellite’s orbital position. In general, the velocity increment Δv is the difference
between the satellite’s current velocity vector and adesired velocity vector. Formany com-
mon coplanar orbital maneuvers (such as impulses that raise or lower periapsis or apoap-
sis), vector addition is not required because the satellite’s current and targeted velocities
are collinear. The Hohmann transfer is an elliptical transfer orbit where both apses are
tangent to inner and outer circular orbits. Thus, the Hohmann transfer requires two
impulses to perform a coplanar transfer from an inner circular orbit to an outer circular
orbit (or vice versa). An impulse with a component normal to the orbit plane will change
the inclination. The inclination-change Δv depends on the satellite’s horizontal velocity
component and the magnitude of the change in inclination angle.
We close this chapter by presenting a few important rules-of-thumb for impulsive

orbital maneuvers:

1) For a fixed Δv capability, performing an impulsive burn at periapsis will produce the
maximum change in energy.

2) An impulsive burn that only changes inclinationmust occur at either the ascending or
descending node.

3) Performing an inclination-change maneuver at apoapsis (at the equatorial plane
crossing) will minimize the impulsive Δv for a desired change in inclination angle.
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Problems

Conceptual Problems

7.1 A launch vehicle delivers a satellite to an orbit with an apogee altitude of 400 km
and perigee altitude of 250 km. The satellite’s initial mass in this elliptical orbit is
1,200 kg and it is equipped with a rocket engine that can deliver 800 N of thrust
with a specific impulse of 325 s. Determine:
a) The impulsive Δv required to establish a 400-km altitude circular orbit.
b) The propellant mass required for the circularization burn.
c) The circularization burn time (in min).
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7.2 A satellite is in a 600-km altitude circular geocentric orbit. If the satellite has a
rocket engine and propellant mass capable of providing a total velocity increment
Δv = 3 km/s, determine the largest possible circular orbit that can be achieved.

7.3 A geocentric satellite is initially in a circular low-Earth orbit (LEO) with an altitude of
300kmandan inclinationof 28.5 .The satellite’s target orbit is ellipticalwith aperigee
altitude of 300 km, an apogee altitude of 2,000 km, and an inclination of 40 . Compare
the single-impulse and two-impulse strategies for shaping the satellite’s orbit.

7.4 Alaunchvehicledelivers a spy satellite to a 325-kmaltitude circularparkingorbit.The
AirForcewants toplace the satellite inanelliptical orbitwitha12-hperiodandperigee
at 325 km altitude. Compute theΔv required to place the satellite in the desired orbit.

7.5 A spacecraft is in a 185-km altitude LEO. Compute the velocity increment ΔvTLI
for translunar injection (TLI) if the sole purpose of the TLI burn is to raise apogee
to a radial distance of 384,400 km (i.e., the approximate Earth–moon distance).

7.6 An Earth-orbiting satellite is in an elliptical orbit with perigee and apogee altitudes
of 300 and 800 km, respectively. Compare theΔv required to achieve an escape (i.e.,
parabolic) trajectory if the impulse occurs at perigee or apogee.

7.7 An interplanetary satellite is in a 185-km altitude circular parking orbit about the
Earth. Determine the velocity increment Δv required to establish a hyperbolic tra-
jectory with launch energy C3 = 10 km2/s2.

7.8 We desire a coplanar geocentric transfer between inner and outer circular orbits
with altitudes of 400 and 25,000 km, respectively. Determine if the following trans-
fer ellipses are feasible or infeasible and justify your answers.
a) Semimajor axis a = 19,078 km, eccentricity e = 0.651.
b) Semimajor axis a = 20,500 km, eccentricity e = 0.639.
c) Semimajor axis a = 19,100 km, eccentricity e = 0.645.

7.9 Figure P7.9 shows two concentric, coplanar geocentric orbits. Determine the total
velocity increment Δv for a transfer starting from the 600-km altitude circular orbit
and ending at the 1,500-km altitude circular orbit. In addition, compute the trans-
fer time.

Hohmann transfer

Orbit 2:
Altitude = 1,500 km

Orbit 1:
Altitude = 600 km

Figure P7.9
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7.10 Determine the total velocity increment Δv for a coplanar geocentric transfer
starting from a 1,500-km altitude circular orbit and ending at a 600-km altitude
circular orbit.

7.11 Figure P7.11 shows two satellites moving in concentric coplanar orbits about
the Earth. Satellite A is in a 300-km altitude circular orbit and Satellite B is in a
700-km circular orbit. At epoch t0, Satellite B is 60 ahead of Satellite A (as depicted
in Figure P7.11). Determine the earliest epoch time t1 such that aHohmann transfer
delivers Satellite A to the 700-km orbit so that Satellites A and B occupy the same
position in orbit (i.e., rendezvous). Let initial epoch time t0 be zero. In addition,
determine the total Δv for the Hohmann-transfer rendezvous.

7.12 Determine the two velocity increments, Δv1 and Δv2, for the coplanar geocentric
orbit transfer shown in Figure P7.12. The initial and final orbit radii are r1 =
6,878 km and r2 = 34,000 km, respectively. The first impulse is tangent to the ini-
tial circular orbit and it establishes a transfer ellipse with an apogee altitude of
35,000 km.

Satellite A at t0 = 0
Altitude = 300 km

Satellite B at t0 = 0
Altitude = 700 km

60ο

Hohmann transfer
initiated at t1

Satellites A and B
(rendezvous)

Figure P7.11

Initial orbit:
Radius r1 = 6,878 km

Final orbit:
Radius r2 = 34,000 km

Orbit transfer

Apogee altitude = 35,000 km

Figure P7.12
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Problems 7.13 and 7.14 involve the two geocentric coplanar orbits shown in
Figure P7.13. Both orbits share a common apse line

7.13 Determine the two-impulse orbit transfer from the initial orbit to the final orbit
with the minimum total Δv. Compute the total Δv and the perigee and apogee of
the orbit transfer between the initial and final orbits shown in Figure P7.13.

7.14 Determine the single Δv (applied at the orbit-intersection point) required to trans-
fer a satellite from the initial orbit to the final orbit. Compare the single-impulseΔv
with the (minimum) total Δv for the two-impulse transfer found in Problem 7.13.

7.15 A communication satellite in a geostationary-equatorial orbit (GEO) has been
perturbed by lunar and solar gravity forces and consequently its orbital elements
are a = 42,164 km, e = 0, i = 0.5 , andΩ = 245 . The GEO satellite is equipped with
an onboard rocket engine with specific impulse Isp = 320 s. If the satellite’s current
mass is 1,890 kg, determine the propellant mass required to re-establish GEO.

7.16 A launch vehicle delivers a satellite to a 800-km altitude circular LEO with an
inclination of 88 . The goal is to achieve an 800-km circular sun-synchronous
orbit (SSO). Determine the impulsive Δv required to establish the SSO. [Hint:
see Example 5.3.]

7.17 An Earth-orbiting satellite is in a 300-km altitude circular orbit with an inclination
of 28.5 . Its target orbit is a near-polar, 300-km altitude circular orbit with an
inclination of 85 . Compare the totalΔv for two orbit-transfer strategies: (a) a sin-
gle impulse for a pure inclination change; and (b) an apogee-raising impulse that
establishes an ellipse with an apogee altitude of 30,000 km, following by a pure
inclination change to i = 85 (applied at apogee), and finally an apogee-lowering
impulse (applied at perigee) to re-establish a 300-km circular orbit.

Apses

Initial orbit:
Perigee alt. = 300 km
Apogee alt. = 1,500 km

Final orbit:
Perigee alt. = 700 km
Apogee alt. = 2,000 km

Figure P7.13
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7.18 Figure P7.18 shows an elliptical geocentric orbit with perigee and apogee altitudes
of 1,200 and 1,900 km, respectively, an inclination of 10 , and an argument of per-
igee of 60 . Determine the minimum Δv that establishes an equatorial elliptical
orbit without changing perigee or apogee altitudes. Be sure to describe the orbital
location of the impulsive maneuver.

7.19 A geocentric satellite has been perturbed from its 800-km altitude circular, equa-
torial orbit. Figure P7.19 shows the perturbed orbit, which has the following
orbital characteristics: perigee altitude = 700 km, apogee altitude = 780 km, incli-
nation i = 2 , and argument of perigee ω = 135 . Determine the best sequence of
impulsive maneuvers that re-establishes the 800-km circular equatorial orbit and
minimizes the total Δv. Carefully describe the sequence, location, and magnitude
of each impulse.

Ascending
node, n

Perigee 
direction, e

Apse line

Perigee alt. = 1,200 km
Apogee alt. = 1,900 km
Inclination = 10ο

ω

Figure P7.18

Ascending
node, n

Perigee 
direction, e

Apse line

Operational orbit:
Altitude = 800 km
i = 0

Perturbed orbit:
Perigee alt. = 700 km
Apogee alt. = 780 km
i

ω

= 2ο

Figure P7.19
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7.20 Figure P7.20 shows an orbit transfer between circular, inclined geocentric orbits.
The first impulsive, Δv1 = 2 km/s, is applied at the descending node and is col-
linear with the inner circular orbital velocity vector. The initial orbit has an incli-
nation of 28.5 and the final orbit inclination is 10 . Determine the second velocity
increment Δv2.

7.21 A launch vehicle delivers a 15,700-kg satellite to a circular 185-km altitude LEO
with an inclination of 28.5 . The satellite’s upper stage consists of a liquid-
propulsion rocket with Isp = 420 s. If the structural coefficient of the upper stage
is ε = 0.09, compute the payload mass mPL delivered to geostationary-equatorial
orbit (GEO) with an altitude of 35,786 km. Use a two-impulse geostationary trans-
fer orbit (GTO).

MATLAB Problem

7.22 Write anM-file that will calculate the two velocity increments,Δv1 andΔv2, for an
orbit transfer between arbitrary geocentric orbits. The initial and final orbits may
be circular or elliptical with different inclinations. Assume that the two impulses
occur at the appropriate apse locations and that the apse line is collinear with the
line of nodes. The six inputs are the perigee and apogee altitudes (in km) and incli-
nations (in degrees) of the initial and final orbits. The desired outputs are themag-
nitudes of the two impulses (in km/s) and the transfer time between the orbits
(in h). Test your M-file by solving Example 7.10.

Initial orbit:
Perigee alt. = 500 km
i1 = 28.5ο

Final orbit:
i2 = 10ο

∆v1 = 2 km/s

Ascending node
n

Figure P7.20
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Mission Applications

7.23 Figure P7.23 shows the US Space Shuttle’s 320-km altitude circular orbit.
Determine the Shuttle’s de-orbit impulse Δv required to target a flight-path angle
of –1.3 at the so-called “entry interface” altitude of 122 km.

7.24 An Ariane 5 is launched from Europe’s Spaceport in French Guiana and delivers
a 6,640-kg satellite to a GTO with perigee and apogee altitudes of 560 and
35,786 km, respectively, and an inclination of 7.0 . Determine:
a) The minimum impulsive Δv required to establish an equatorial GTO.
b) The minimum impulsive Δv required to establish GEO.
c) The satellite’s mass in GEO (assume an onboard rocket engine with Isp = 320 s).

7.25 The Meridian 4 is a Russian communication satellite that was launched in May
2011 on a Soyuz-2 rocket. The launch vehicle initially delivered the satellite to
a 203-km circular LEO. The first impulsive Δv burn of the Fregat upper stage
raised apogee to its target altitude of 39,724 km. The second impulsive Δv at apo-
gee of the transfer orbit raised its perigee altitude to 998 km. Figure P7.25 presents
the two impulsive maneuvers, the transfer orbit, and the final target orbit
for the Meridian 4 satellite (not to scale). Determine both impulsive Δv burns
and the coasting time between the two impulses.

De-orbit impulse ∆v

EI

Earth’s atmosphere
EI altitude = 122 km

Orbit transfer
ellipse

Shuttle orbit

Figure P7.23

203-km LEO

∆v1

∆v2

Meridian 4 orbit:
998 km perigee altitude
39,724 km apogee altitude

Transfer orbit

Figure P7.25
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7.26 Lunar Orbiter 1 (1966) was the first US spacecraft to orbit the moon. Initially the
Lunar Orbit 1 entered an elliptical lunar orbit with periapsis (“perilune”) and
apoapsis (“apolune”) altitudes of 189 and 1,867 km, respectively. One week later,
an onboard rocket burn lowered the perilune altitude to 58 km while maintaining
apolune altitude at 1,867 km. Four days after the first orbital maneuver, a second
burn lowered perilune altitude to 40.5 km (apolune did not change). Compute the
two Δv impulses required for the two periapsis-lowering maneuvers.

Problems 7.27 and 7.28 involve the Chandra X-ray Observatory (CXO), which is
an Earth-orbiting observation satellite.

7.27 In July 1999, the two-stage Inertial Upper Stage (IUS) booster rocket was used to
transfer the CXO from a 300-km altitude circular LEO to a highly elliptical orbit as
shown in Figure P7.27 (not to scale). Igniting the first IUS stage established an ellip-
tical orbit (Transfer orbit 1) with an apogee altitude of 13,200 km as shown in
Figure P7.27. After jettisoning the first IUS stage, the second stage was fired at per-
igee (300 km altitude) after one orbital revolution. The second impulse established
Transfer orbit 2 with an apogee altitude of 72,000 km as shown in Figure P7.27.
Both orbit transfers are coplanar. Determine Δv for each of the two IUS burns.

7.28 After a sequence of coplanar maneuvers, the CXO was placed in highly elliptical
orbit with apogee and perigee radii of 140,906 and 20,686 km, respectively, and an
inclination of 28.5 . Compute the Δv required to increase the inclination to
76.72 . Assume that the plane-change Δv occurs at apogee (at a nodal crossing)
and only affects the orbital inclination.

Problems 7.29 and 7.30 involve the Lunar Atmosphere and Dust Environment
Explorer (LADEE) spacecraft, which was launched in September 2013 and was
eventually placed in an orbit about the moon.

7.29 The LADEE spacecraft was launched into a highly elliptical orbit by a Minotaur
V booster. This elliptical orbit had a period of 6.4 days and perigee altitude of
200 km (see Figure P7.29). After coasting for one revolution, the LADEE space-
craft fired an onboard rocket at perigee to increase its orbital period to 8.2 days.

LEO:
300 km altitude

Transfer orbit 1:
Apogee altitude = 13,200 km 

1st IUS burn ∆v1

2nd IUS burn ∆v2

Transfer orbit 2:
Apogee altitude = 72,000 km 

Figure P7.27
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After coasting for another revolution, the LADEE spacecraft fired a second per-
igee burn to increase its period to 9.9 days. Determine the two Δv increments for
the two impulsive perigee burns. In addition, compute the apogee radius after the
second perigee burn and compare it to the mean Earth–moon distance.

7.30 After a coasting translunar trajectory, the LADEE spacecraft was inserted into a
highly elliptical “capture orbit” about the moon by firing a rocket at an altitude
of 400 km above the lunar surface. The resulting capture orbit had perilune
and apolune altitudes of 400 and 15,588 km, respectively (see Figure P7.30). After
coasting for three revolutions in this highly elliptical orbit, LADEE fired its
onboard rocket at periapsis to create an elliptical orbit with a period of 4 h. Deter-
mine the Δv for this impulsive maneuver (note that the moon’s radius is Rm =
1,738 km and its gravitational parameter is μm = 4,903 km3/s2).

7.31 The Apollo astronauts departed the moon’s surface in the lunar module (LM)
ascent stage. After over 7 min of powered flight, the LM ascent stage achieved
the elliptical lunar orbit shown in Figure P7.31 (not to scale) with perilune and
apolune altitudes of 15.8 and 89.4 km, respectively. The Apollo command and
service module (CSM) orbited themoon in a circular orbit 116 km above the lunar
surface. Determine the Δv impulse performed by the LM stage at apolune so that
the transfer orbit’s perilune and apolune are 89.4 and 116 km, respectively.

Perigee altitude
200 km

6.4-day orbit

8.2-day orbit

9.9-day orbit

Earth

Figure P7.29

Perilune altitude
400 km

4-hr elliptical 
orbit

Capture orbit

Apolune altitude
15,588 kmmoon

Figure P7.30
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7.32 In March 2006, the Mars Reconnaissance Orbiter (MRO) spacecraft approached
Mars on a hyperbolic trajectory with asymptotic approach speed v−∞ =
2 9572 km/s. Mars orbit insertion (MOI) occurred at periapsis by firing six rocket
engines. The MOI burn produced an elliptical orbit with periapsis and apoapsis
altitudes of 426 and 44,500 km, respectively. Determine the Δv for this impulsive
maneuver [note thatMars’ radius is RM = 3,396 km and its gravitational parameter
is μM = 4.2828(104) km3/s2].

Problems 7.33 and 7.34 involve the Juno spacecraft, which departed Earth in
early August 2011 and arrived at Jupiter in early July 2016.

7.33 The Juno spacecraft approached Jupiter on a hyperbolic trajectory with eccentric-
ity e = 1.0172 and semimajor axis a = –4.384(106) km. Determine the Δv impulse
applied at the periapsis (“perijove”) passage that established an elliptical orbit
about Jupiter with semimajor axis a = 4,092,211 km and eccentricity e =
0.981574 (the impulsive maneuver did not change the perijove radius). Jupiter’s
gravitational parameter is μJ = 1.266865(108) km3/s2.

7.34 Mission operators had hoped to fire Juno’s onboard rocket in October 2016 to
reduce its orbital period from 53.486 to 14 days (a valve malfunction cancelled
the burn). The single impulse would have occurred at perijove. Compute the
(planned) impulsive Δv for the period reduction. Use the information in Problem
7.33 to determine the perijove radius, and assume that the burn does not change
perijove radius. Jupiter’s gravitational parameter is μJ = 1.266865(108) km3/s2.

Circular CSM orbit
(116 km altitude)

LM orbit after ascent
perilune alt. = 15.8 km
apolune alt. = 89.4 km

Ascent stage 
engine
cutoff

Orbit transfer to
CSM orbit

∆v

moon

Figure P7.31
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8

Relative Motion and Orbital Rendezvous

8.1 Introduction

Many space flight applications involve rendezvous, where a maneuvering spacecraft
(e.g., the SpaceXDragon) approaches and eventually docks with a target satellite (e.g., the
International Space Station). For such cases, it is important to analyze the relative motion
between the two satellites. Relative motion analysis also applies to the terminal orbit-
insertion phase. In this scenario, a satellite is moving with respect to its intended “slot”
in a target orbit. A third example of relative motion is orbital station-keeping, where a
satellite must perform small thrusting maneuvers in order to return to its intended posi-
tion in an orbit (station-keeping is periodically required because satellites are perturbed
from their operational orbits by third-body forces, atmospheric drag, and solar radiation
pressure).
Up to this point in the textbook, we have used conic sections to describe the two-body

motion of a satellite in an inverse-square gravity field. In Chapter 7, we determined the
impulsive Δv required to impart changes in a satellite’s orbital elements. For relative
motion analysis, this approach would be cumbersome if we demanded that differences
in orbital elements represent deviations between a satellite and its target orbit. In this
chapter, we take a different approach by developing linear ordinary differential equations
(ODEs) for the relative position and velocity coordinates. These linear ODEs allow us to
obtain analytical closed-form expressions for relative motion as a function of time. One
caveat is that the linear ODEs and their solutions are only accurate when certain position
and velocity components remain “small” with respect to the target orbit.

8.2 Linear Clohessy–Wiltshire Equations

Figure 8.1 shows the scenario where a satellite is moving relative to a target in a circular
orbit with radius r∗. The polar coordinates of the moving target and satellite are (r ∗, θ ∗)
and (r, θ), respectively. It should be clear to the reader that the target is moving in the

circular orbit with angular velocity n= θ∗ = μ/r∗3. Furthermore, the target may simply
be a “moving slot” in a desired circular orbit or it may be another space vehicle, such as a
space station. In either case, we wish to express the satellite’s dynamical equations of
motion relative to the target.
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Let us assume that two forces are acting on the satellite: inverse-square gravity and a
rocket thrust force. The absolute acceleration of the satellite expressed in the moving
polar coordinates [see Eq. (C.23) in Appendix C] is

a= r −rθ
2
ur + rθ + 2rθ uθ (8.1)

where ur and uθ are unit vectors along the radial and transverse directions, respectively.
Next, let us consider the forces (or accelerations) that act on the satellite. The radial com-
ponent of absolute acceleration is the sum of gravitational acceleration (−μ/r2) and the
radial component of thrust acceleration (ar), whereas the transverse thrust acceleration
(aθ) is the sole acceleration term in the uθ direction. Therefore, we may rewrite Eq. (8.1)
in terms of its radial and transverse components and employ Newton’s second law:

r −rθ
2
= −

μ

r2
+ ar (8.2)

rθ + 2rθ = aθ (8.3)

The left-hand sides of Eqs. (8.2) and (8.3) are the absolute acceleration components and
the right-hand sides are the external forces divided by the satellite mass. It is clear that
Eqs. (8.2) and (8.3) constitute a fourth-order, nonlinear system. A good starting point for
deriving a linear system is to express Eqs. (8.2) and (8.3) using state-variable equations.
To show this, let us define a four-element state vector x as

x=

x1

x2

x3

x4

=

r

r

r∗θ

r∗θ

(8.4)

The first state variable x1 is the radius of the satellite, the second state variable x2 is
radial velocity, the third state variable x3 is the arc length projected along the
reference circle (see Figure 8.1), and the fourth state variable x4 is the satellite’s transverse
(or circumferential) velocity projected along the reference circle. The input (or control)
vector u consists of the radial and transverse thrust acceleration components

r *

Reference
circular
orbit

Fixed 
direction

 θ∗ θ

Satellite
Target

r

n

Figure 8.1 Satellite relative to a moving target position in a reference orbit.
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u=
u1

u2
=

ar

aθ
(8.5)

We can derive state-variable equations by taking the first time derivative of each state
xi and expressing the right-hand sides solely in terms of state variables xi and input vari-
ables u1 and u2

x1 = r = x2 (8.6)

x2 = r = −
μ

x21
+
x1 x24
r∗2

+ u1 (8.7)

x3 = r
∗θ = x4 (8.8)

x4 = r
∗θ = −

2x2x4
x1

+
r∗

x1
u2 (8.9)

Equations (8.6)–(8.9) are four first-order state-variable equations. The reader should
verify that Eqs. (8.6)–(8.9) are simply another representation of the two second-order
differential equations (8.2) and (8.3); the dynamics have not been altered in any way.
We can use a compact vector notation to express the state-variable equations as

x= f x,u =

x2

−
μ

x21
+
x1 x24
r∗2

+u1

x4

−
2x2x4
x1

+
r∗

x1
u2

(8.10)

Of course, Eq. (8.10) is still a nonlinear system. The first step in the linearization proc-
ess is to define the reference state x∗ and reference input u∗ vectors:

x∗ =

r∗

0

r∗θ∗

r∗n

and u∗ =
0

0
(8.11)

The reference state vector x∗ defines the position and velocity of the target in the refer-
ence circular orbit depicted in Figure 8.1. The reference input u∗ is zero thrust acceler-
ation so that a satellite with state vector x∗ will remain in the reference circular orbit. It is
easy to show that the reference states and inputs, Eq. (8.11), satisfy the state-variable
equations (8.10).
The next step in the linearization process is to define the perturbation vectors or devia-

tions between the satellite’s states and inputs and their respective reference values:

δx= x−x∗ and δu=u−u∗ (8.12)

The perturbation state vector, δx, is a collection of the differences in position and velocity
components between the satellite and target. Next, we rewrite the state-variable
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equations (8.10) in terms of the reference and perturbation variables using x= δx+ x∗

and u= δu+u∗

δx+ x∗ = f δx+ x∗,δu+u∗ (8.13)

Expanding the right-hand side of Eq. (8.13) in a first-order Taylor series about the refer-
ences x∗ and u∗ yields

δx+ x∗ = f x∗,u∗ +
∂f
∂x ∗

δx+
∂f
∂u ∗

δu (8.14)

Because the reference is a solution to the nonlinear dynamic equation, the terms x∗ and
f(x∗, u∗) cancel each other, and Eq. (8.14) becomes

δx=
∂f
∂x ∗

δx+
∂f
∂u ∗

δu (8.15)

Equation (8.15) is a linear differential equation that approximates the motion of the
satellite relative to the target in the reference circular orbit. It is very important to note
that the solution of Eq. (8.15) provides the satellite’s position and velocity deviations from
the reference orbit.
Next, let us expand and show all terms in the second and fourth rows of the linearized

equation (8.15)

δx2 =
∂f2
∂x1 ∗

δx1 +
∂f2
∂x2 ∗

δx2 +
∂f2
∂x3 ∗

δx3 +
∂f2
∂x4 ∗

δx4 +
∂f2
∂u1 ∗

δu1 +
∂f2
∂u2 ∗

δu2 (8.16)

δx4 =
∂f4
∂x1 ∗

δx1 +
∂f4
∂x2 ∗

δx2 +
∂f4
∂x3 ∗

δx3 +
∂f4
∂x4 ∗

δx4 +
∂f4
∂u1 ∗

δu1 +
∂f4
∂u2 ∗

δu2 (8.17)

We only consider the partial derivatives of the second and fourth rows of f(x,u) because
these two rows represent the dynamical equations of motion. Let us complete the line-
arization process by computing the partial derivatives of f(x,u) in Eq. (8.10) with respect
to states and inputs. The partial derivatives of f2(x,u) are

∂f2
∂x

=
∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

=
2μ
x31

+
x24
r∗2

0 0
2x1x4
r∗2

(8.18)

∂f2
∂u

=
∂f2
∂u1

∂f2
∂u2

= 1 0 (8.19)

Evaluating Eq. (8.18) at the reference states x1∗ = r∗ and x4∗ = r∗n yields

∂f2
∂x1 ∗

=
2μ
r∗3

+
r∗n 2

r∗2
= 3n2 (8.20)

∂f2
∂x4 ∗

=
2r∗ r∗n

r∗2
= 2n (8.21)
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Using these partial derivatives in Eq. (8.16), we obtain the first linearized dynamical
equation

δx2 = 3n2δx1 + 2nδx4 + δu1 (8.22)

The partial derivatives of the fourth row, f4(x,u), are

∂f4
∂x

=
∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4

=
2x2x4
x21

−
r∗

x21
u2 −

2x4
x1

0 −
2x2
x1

(8.23)

∂f4
∂u

=
∂f4
∂u1

∂f4
∂u2

= 0
r∗

x1
(8.24)

Evaluating Eqs. (8.23) and (8.24) at the references x1∗ = r∗, x2∗ = 0, x4∗ = r∗n, and u2∗ = 0
yields

∂f4
∂x1 ∗

= 0 (8.25)

∂f4
∂x2 ∗

=
−2 r∗n

r∗
= −2n (8.26)

∂f4
∂x4 ∗

= 0 (8.27)

∂f4
∂u2 ∗

= 1 (8.28)

Using these partials in Eq. (8.17), we obtain the second linearized equation

δx4 = −2nδx2 + δu2 (8.29)

Finally, let us rewrite the two linearized dynamical equations in terms of relative coor-
dinates. Figure 8.2 shows a rotating coordinate frame with its origin fixed at the target as
it moves in the reference circular orbit. The +x axis is along the target’s outward radial
direction, and the +y axis is along the circular arc of the reference orbit in the direction of
motion (note the slight abuse in notation here; x is the radial perturbation from the ref-
erence circle even though we used xi for the state variables in our linearization process).
It should be clear from Figure 8.2 that x= δr is the satellite’s radial displacement from the
reference circle, and y= r∗δθ is the satellite’s circumferential displacement from themov-
ing target location (projected onto the reference circular orbit). The scenario depicted in
Figures 8.1 and 8.2 shows x > 0 (the satellite is above the reference circle), and y < 0 (the
satellite lags behind the target). Using these new coordinates, we can make the following
substitutions for the perturbation state and input variables: x= δx1, x= δx2, y= δx3,
y= δx4, ax = δu1, and ay = δu2. Hence, Eqs. (8.22) and (8.29) become

x = 3n2x+ 2ny+ ax (8.30)

y = −2nx+ ay (8.31)

Equations (8.30) and (8.31) are commonly knownas theClohessy–Wiltshire (CW)equa-
tions. Hill [1] first derived these relative-motion equations in 1878; Clohessy andWiltshire
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rediscovered themina1960 studyonorbital rendezvous [2]. Equations (8.30) and (8.31) are
a set of coupled, linear, time-invariant differential equations that describe the planar
motion of a satellite relative to a reference circular orbit. Although our derivation has only
considered planarmotion, it is possible to derive an additional linearized dynamical equa-
tion for out-of-plane motion

z = −n2z + az (8.32)

where z is the satellite’s displacement from the circular orbit in a direction normal to the
orbital plane. We can attach a +z axis to the target (origin) in Figure 8.2 that points out of
the page. Referring again to Figure 8.2, we may think of the x, y, and z coordinates as the
radial, along-track, and cross-track displacements of the satellite relative to the target
moving in a reference circular orbit. The thrust acceleration components in the radial,
along-track, and cross-track directions are ax (= ar), ay (= aθ), and az, respectively.

8.3 Homogeneous Solution of the Clohessy–Wiltshire
Equations

The CW equations (8.30)–(8.32) are a set of linear, time-invariant differential equations
(at first glance the reader may think that the existence of products including the n and n2

terms results in a nonlinear system; recall that n and n2 are simply constant coefficients in
this case).We should emphasize that the CWequations are an approximation of the two-
body dynamics, and, like all linearized systems, this approximation is only accurate for
“small” deviations from the reference state. Therefore, we should identify the limitations
of the CW differential equations. Referring again to Figure 8.2 (with the +z axis out of the
page), we see that (xyz) is a cylindrical coordinate frame. We also note that the only dis-
placements appearing in the right-hand sides of the CW equations are x and z; along-
track displacement (y) does not appear in the CW equations. Therefore, the accuracy
of the linearized CW equations is confined to a toroidal or doughnut-shaped ring about

r*

Reference
circular
orbit

y = r*
Satellite

n

Target

x = δr

0

δθ

Figure 8.2 Coordinate frame for relative motion.
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the reference orbit where x and z displacements remain “small.”The CWequations accu-
rately describe the satellite’s relative motion for scenarios with large along-track (y) dis-
placements as long as x and z displacements are “small.”
Because the CW equations are linear, we may obtain analytical closed-form

solutions. Recall that the complete solution to a differential equation is composed
of the homogeneous and particular solutions. The homogenous solution is obtained
by solving the differential equation with zero input, while the particular solution
depends on the nature of the input (or forcing) function. For our relative-motion
equations, the thrust acceleration components (ax, ay, and az) are the input
functions. We will develop and focus on the homogeneous solution of the CW
equations with zero thrust acceleration. The homogeneous solution will describe
the “natural” motion of the satellite relative to the target where gravity is the
only force.
To begin, note that the out-of-plane motion, Eq. (8.32), is uncoupled from the in-plane

Eqs. (8.30) and (8.31); that is, coordinate z only appears in Eq. (8.32). The homogenous
cross-track CW equation is

z + n2z = 0 (8.33)

This differential equation is an undamped harmonic oscillator, and its solution consists
of sine and cosine terms

z t =C1 cos nt +C2 sin nt (8.34)

where the two constants depend on the initial cross-track position and velocity compo-
nents, that is, C1 = z0 and C2 = z0/n. The solution for out-of-plane motion is

z t = z0 cos nt +
z0
n
sin nt (8.35)

The reader can verify this solution by substituting it (along with its second time
derivative) into the governing differential equation (8.33). The cross-track velocity is
the first time derivative of Eq. (8.35):

z t = −z0nsin nt + z0 cos nt (8.36)

Next, we turn our attention to the along-track (y) solution. Direct integration of the
homogeneous along-track acceleration (8.31) with ay = 0 yields the velocity

y t = −2nx+ c (8.37)

The integration constant must be c= 2nx0 + y0 so that Eq. (8.37) is satisfied at time t = 0,
that is, y 0 = y0. Using Eq. (8.37) in the homogeneous radial acceleration equation (8.30),
we obtain

x = 3n2x+ 2n −2nx+ c

or

x = −n2x+ 2nc

Relative Motion and Orbital Rendezvous 281



Placing the terms involving x on the left-hand side yields

x + n2x= 2nc (8.38)

Equation (8.38) is an undamped second-order differential equation with a constant
forcing (or input) function on the right-hand side. The complete solution x(t) will be
the sum of the homogeneous and particular solutions. We know that the homogenous
solution will involve sine and cosine terms (a harmonic oscillator), while the particular
solution will be a constant because the forcing function is a constant. Therefore, the form
of the complete solution of Eq. (8.38) is

x t =A1 cos nt +A2 sin nt +A3 (8.39)

We need three equations to determine the three constants A1, A2, and A3. The first and
second time derivatives of Eq. (8.39) provide two additional equations:

x t = −A1nsin nt +A2ncos nt (8.40)

x t = −A1n
2 cos nt−A2n

2 sin nt (8.41)

Evaluating Eqs. (8.39)–(8.41) at time t = 0, we obtain

x 0 =A1 +A3 = x0 (8.42)

x 0 =A2n= x0 (8.43)

x 0 = −A1n
2 = −n2x0 + 2nc (8.44)

where Eq. (8.38) is used to derive Eq. (8.44). The three constants are

A1 = x0−
2c
n

(8.45)

A2 =
x0
n

(8.46)

A3 =
2c
n

(8.47)

Finally, substituting the three Ai constants (with c= 2nx0 + y0) into Eq. (8.39) yields the
homogeneous solution for radial position:

x t = −3x0−
2y0
n

cos nt +
x0
n
sin nt + 4x0 +

2y0
n

(8.48)

The relative radial velocity is the first time derivative of Eq. (8.48)

x t = x0 cos nt + 3nx0 + 2y0 sin nt (8.49)

It is easy to see that Eqs. (8.48) and (8.49) are satisfied at time t = 0; that is, x 0 = x0
and x 0 = x0.
The along-track solution, y(t), is obtained by integrating Eq. (8.37) with the substitu-

tions x=A1 cosnt +A2 sin nt +A3 and c= 2nx0 + y0

y t = −2n A1 cos nt +A2 sin nt +A3 dt + 2nx0 + y0 dt +B
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Performing the integration yields

y t = −2n
A1 sin nt

n
−
A2 cos nt

n
+A3t + 2nx0 + y0 t +B (8.50)

where B is a constant of integration. Substituting the previous expressions for A1, A2, and
A3 and using y(0) = y0 to solve for the constant B yields the solution:

y t = 6x0 +
4y0
n

sin nt +
2x0
n

cos nt− 6nx0 + 3y0 t + y0−
2x0
n

(8.51)

Equation (8.51) is the homogeneous solution for the along-track motion of the satellite
relative to the target. Taking a time derivative of Eq. (8.51), we obtain

y t = 6nx0 + 4y0 cos nt−2x0 sin nt−6nx0−3y0 (8.52)

Equations (8.35), (8.36), (8.48), (8.49), (8.51), and (8.52) describe the satellite’s position
and velocity relative to a target moving on the reference circular orbit. These six equa-
tions are collected and comprise equation set (8.53):

x t = −3x0−
2y0
n

cos nt +
x0
n
sin nt + 4x0 +

2y0
n

(8.53a)

y t = 6x0 +
4y0
n

sin nt +
2x0
n

cos nt− 6nx0 + 3y0 t + y0−
2x0
n

(8.53b)

z t = z0 cos nt +
z0
n
sin nt (8.53c)

x t = x0 cos nt + 3nx0 + 2y0 sin nt (8.53d)

y t = 6nx0 + 4y0 cos nt−2x0 sin nt−6nx0−3y0 (8.53e)

z t = −z0nsin nt + z0 cos nt (8.53f)

Equations (8.53a–f ) represent relative motion of the satellite without thrust forces.
The reader should verify that setting t = 0 in the right-hand sides of Eqs. (8.53a–f ) does
indeed yield the expected initial conditions for each position and velocity component.
Let us list the characteristics of relative satellite motion described by the linear CW
equations:

1) A satellite that is initially at the origin (x0 = y0 = z0 = 0) with zero relative velocity
(x0 = y0 = z0 = 0) will remain at the origin or target orbit for all time t > 0.

2) A satellite that is on the reference circular orbit with zero radial and cross-track dis-
placement (i.e., x0 = z0 = 0) and zero relative velocity (i.e., x0 = y0 = z0 = 0) but dis-
placed in the along-track direction (i.e., y0 0) will remain in this relative position
for all time. In other words, a satellite in the same circular orbit as the target but
at a different angular position will simply remain at a fixed along-track offset distance
y0 at all times. This is true because y0 only appears as the initial condition for solution
y(t) and does not appear in any harmonic terms or terms that are linear in time t.

3) All solutions contain harmonic terms with a common angular frequency n that is
equal to the mean motion of the reference circular orbit, or 2π divided by the period.

4) The cross-track (or out-of-plane) position and velocity solutions z(t) and z t are
uncoupled from the in-plane motion; that is, z0 and z0 only influence Eqs. (8.53c)
and (8.53f).
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5) The along-track solution (8.53b) is the only relative motion that involves a secular
“drift” term that is linear in time t.

The following examples utilize the homogeneous solution to the CW equations to
illustrate relative motion.

Example 8.1 Figure 8.3 shows a satellite in a circular orbit (radius r = 8,590 km) that is
“lagging behind” a target position (the origin) in the reference circular orbit (radius r∗ =
8,600 km). The two neighboring circular orbits are coplanar. At time t = 0, the satellite
has an angular separation δθ0 = –2 (lag) behind the target. Compute the initial relative
position and velocity components in the CW frame and determine the satellite’s relative
position and velocity components 30 min later.
Because the satellite’s orbit is coplanar with the reference orbit, the cross-track posi-

tion and velocity components (z and z) are always zero. The initial radial displacement in
the CW frame is

x0 = δr0 = r−r
∗ = –10 km

The initial along-track displacement is

y0 = r
∗δθ0 = 8,600 km – 0 0349 rad = –300 2 km

These two calculations show that the satellite is below and lagging behind the target as
seen in Figure 8.3.
Because the reference orbit and the neighboring satellite orbit are circular, the initial

relative radial velocity is x0 = 0. Furthermore, the relative radial velocity x remains con-
stant (at zero) due to the satellite’s circular orbit, and therefore x = 0 holds at all times.
Equation (8.30) shows that for this special case of neighboring circular orbits (and no
thrust), we may write

x = 3n2x+ 2ny= 0

r*
Reference
circular
orbit 

Satellite
Target

0

r

y = r*

x = δr

δθ

Figure 8.3 Satellite in a neighboring circular orbit (Example 8.1; not to scale).
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Using this expression at time t = 0, the initial along-track relative velocity must be

y0 = −1 5nx0 = 0 011874 km/s

where n= μ/r∗3 = 7.9163(10−4) rad/s is the angular velocity of the reference orbit.
Equation (8.31) shows that along-track velocity is constant (i.e., y = 0) because radial
velocity x is always equal to zero.
Even though we expect x, x, and y to remain constant, let us evaluate the homogeneous

solutions (8.53) at time t = 1,800 s (=30min). The harmonic terms evaluated at angle nt =
1.4249 rad are cos nt = 0.145349 and sin nt = 0.989380. Using these values along with the
appropriate initial conditions, we obtain

x 1,800 = −3x0−
2y0
n

cos nt +
x0
n
sin nt + 4x0 +

2y0
n

= –10 km no change

y 1,800 = 6x0 +
4y0
n

sin nt +
2x0
n

cos nt− 6nx0 + 3y0 t + y0−
2x0
n

= – 278 8 km

x 1,800 = x0 cos nt + 3nx0 + 2y0 sin nt = 0 no change

y 1,800 = 6nx0 + 4y0 cos nt−2x0 sin nt−6nx0−3y0 = 0 011874 km/s no change

We see that in 30 min the satellite has moved 21.4 km closer to the target. Of course,
for this simple case we could have obtained the along-track displacement using
y t = y0 + y0t with t = 1,800 s. We may also use the inertial displacements to compute
the final relative displacement. Figure 8.4 presents the along-track inertial displacements
of the target and satellite in their respective orbits. The total along-track distance of the
target is easy to compute from the product of the constant angular rate (n), radius r∗, and
time t; i.e., r ∗nt = 12,254.4 km. Similarly, the total along-track travel distance of the sat-
ellite is r ∗ωt = 12,275.8 km where the constant angular rate of the inner circular orbit is

ω= μ/r3 = 7.9301(10−4) rad/s. Remember that we must use the satellite’s projected
along-track distance r ∗ωt (instead of the inner circle arc length rωt) due to the definition

Reference circular
orbit r*

Satellite 
at t = 0

Target at
t = 0

Target at 
t = 1800 s

Satellite at
t = 1800 s

Target along-track distance:
r*nt = 12,254.4 km

Satellite along-track distance
(projected to outer circle):
r*ωt = 12,275.8 km

n

ω

Figure 8.4 Target and satellite along-track distances (Example 8.1; not to scale).

Relative Motion and Orbital Rendezvous 285



of the along-track distance, y= r∗δθ (see Figures 8.1 and 8.2). The difference in the two
inertial along-track distances, r∗ ωt−nt = 21.4 km, is the change in along-track dis-
placement of the satellite relative to the target. Adding this relative displacement to
y0 yields –278.8 km, which matches the solution using the linearized CW equations.
This simple example has demonstrated that when the satellite is in a neighboring cir-

cular orbit with a radius lower than the target orbit, the satellite will maintain a constant
positive along-track relative velocity. Thus, if the satellite is initially behind the target (as
shown in Figures 8.3 and 8.4), it will continually reduce the along-track (y) separation.
Given enough time, the satellite will reach y = 0 and thereafter it will “lead” the target.
Similarly, when the satellite is in a higher neighboring circular orbit (x0 > 0), the along-
track relative velocity is negative (i.e., y0 = −1 5nx0) and a satellite starting behind the
target will continuously drift away at a constant rate.

Example 8.2 An astronaut in the open payload bay of the Space Shuttle throws a
wrench with positive radial velocity of 0.04 km/s (nearly 90 mph – imagine Randy John-
son in space in the 1990s). If the Space Shuttle is in a 320-km circular orbit, determine the
position and velocity components of the wrench after one orbital revolution of the
Shuttle.
The circular Space-Shuttle orbit is the reference orbit with radius r∗ = 320 km + RE =

6,698 km and the Shuttle is at the origin of the CW frame. Because the wrench is thrown
from the Shuttle, its initial position coordinates are zero: x0 = y0 = z0 = 0. The wrench’s
initial velocity relative to the Shuttle (target) is purely radial and therefore x0 = 0 04 km/s
and y0 = z0 = 0. The cross-track components (z and z) are always zero because the wrench
is initially in the reference orbital plane with zero out-of-plane velocity. Angular velocity

of the reference Shuttle orbit is n= μ/r∗3 = 1.1517(10−3) rad/s, and the corresponding
period is Tperiod = 2π/n = 5,455.43 s (= 90.9 min). The relative position and velocity com-
ponents after one orbit are determined by evaluating Eq. (8.53) with t = Tperiod

x 5,455.43 = −3x0−
2y0
n

cos nt +
x0
n
sin nt + 4x0 +

2y0
n

= 0 km

y 5,455.43 = 6x0 +
4y0
n

sin nt +
2x0
n

cos nt− 6nx0 + 3y0 t + y0−
2x0
n

= 0 km

x 5,455.43 = x0 cos nt + 3nx0 + 2y0 sin nt = 0 04 km/s

y 5,455.43 = 6nx0 + 4y0 cos nt−2x0 sin nt−6nx0−3y0 = 0 km/s

Clearly, the wrench has returned to the Shuttle (target) with the same velocity compo-
nents that existed at time t = 0.
We may use Eqs. (8.53a) and (8.53b) to obtain the wrench’s radial and along-track rel-

ative position coordinates at arbitrary time 0≤ t ≤Tperiod. Figure 8.5 shows the radial and
along-track deviations of the wrench relative to the Shuttle over one orbit (the +x and +y
axes have been added for clarity). Note that the wrench initially moves radial outward
from the origin and drifts behind the Shuttle (solid path in Figure 8.5). At half an orbit, the
wrench crosses the reference orbit (i.e., x = 0) at a relative along-track distance of
–138.9 km. During the second half of the orbit, the wrench is below the Shuttle orbit
(x < 0) and drifts toward the origin and eventually returns to the Shuttle in exactly
one orbital period. If unobstructed, the wrench would continue to follow the “elliptical
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trace” in the CW coordinates shown in Figure 8.5. Figure 8.5 also shows the case where
the wrench has negative initial radial velocity, x0 = −0 04 km/s. As expected, the relative
motion (dashed path in Figure 8.5) is the mirror image of the previous case reflected
across the x axis: the wrench is initially below the reference orbit and drifts ahead of
the Shuttle; after half an orbit the wrench is above the Shuttle and drifts back to the
origin.

Example 8.3 Consider again the scenario of Example 8.2 but in this case, an astronaut
throws a wrench from the Shuttle with an along-track velocity magnitude of 0.04 km/s.
Plot the relative position coordinates of the wrench during two orbital revolutions of the
Shuttle for the initial conditions y0 = 0 04 km/s and y0 = −0 04 km/s.
As with Example 8.2, we use Eqs. (8.53a) and (8.53b) to obtain the wrench’s radial and

along-track relative coordinates for values of time between zero and two periods, or
0 ≤ t ≤ 2Tperiod. Figure 8.6 shows the radial and along-track deviations of the wrench rel-
ative to the Shuttle over two orbits for y0 = ± 0 04 km/s. When the initial along-track
velocity is positive (solid line), the wrench’s orbit is more energetic than the Shuttle’s
orbit, and therefore it initially drifts above the reference orbit because its apogee is larger.
After one revolution, the wrench returns to its perigee which is at the same altitude as the
Shuttle orbit and therefore x = 0. However, after one revolution the wrench is about –655
km behind the Shuttle because its orbital speed near apogee is slower than the Shuttle’s
circular velocity, and hence it drifts behind the target. When the wrench is near its per-
igee (the Shuttle’s orbit), its speed is greater than circular speed and this effect accounts
for the brief “loops” observed in Figure 8.6 near x = 0. The wrench will continue to drift
behind the Shuttle losing 655 km in the along-track (y) direction every revolution. When
the initial along-track velocity is negative (dashed path in Figure 8.6), we observe the
reverse effect: the wrench’s orbit is less energetic than the Shuttle’s orbit and the
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Figure 8.5 Relative position of an object with initial radial velocity during one orbital revolution
(Example 8.2).
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wrench’s perigee is below the reference circle. In this case, the wrench is moving faster
than the Shuttle (when near its perigee), and therefore it drifts ahead in the along-track
direction. However, when the wrench is near its apogee (x = 0), it is moving slower than
the target and a brief “loop” is observed in the relative coordinate frame.

8.4 Orbital Rendezvous Using the Clohessy–Wiltshire
Equations

It is convenient to express the analytical solutions (8.53) in a matrix-vector format. We
shall soon see that this format facilitates solutions for orbital rendezvous. Before we do
so, let us simplify the discussion by considering planar relative motion where z = z = 0 at
all times. Note that separately analyzing the x–ymotion is not restrictive because the out-
of-plane coordinates z and z do not appear in the planar solutions (8.53a), (8.53b),
(8.53d), and (8.53e).
To begin, let us define two 2 × 1 column vectors: the relative position vector δr and

relative velocity vector δv

δr=
x

y
, δv =

x

y
(8.54)

Next, we can express the planar position solutions, Eqs. (8.53a) and (8.53b), in the fol-
lowing matrix-vector format

δr t =
−3cos nt + 4 0

6 sin nt−nt 1
δr0 +

sin nt
n

−2
n

cos nt−1

2
n

cos nt−1
4
n
sin nt−3t

δv0 (8.55)

where the initial relative position and velocity vectors are
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Figure 8.6 Relative position of an object with initial along-track velocity during two orbital revolutions
(Example 8.3).
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δr0 =
x0

y0
, δv0 =

x0

y0
(8.56)

The reader should verify that carrying out the matrix-vector multiplication of the top
rows of Eq. (8.55) yields Eq. (8.53a), the solution for relative radial position x(t). Multi-
plication of the bottom rows yields Eq. (8.53b), the solution for y(t). Similarly, the planar
relative velocity solutions are

δv t =
3nsin nt 0

6n cos nt−1 0
δr0 +

cos nt 2sin nt

−2sin nt 4cos nt−3
δv0 (8.57)

Let us write Eqs. (8.55) and (8.57) as

δr t =Φ11δr0 +Φ12δv0 (8.58)

δv t =Φ21δr0 +Φ22δv0 (8.59)

where the four 2 × 2 matrices are

Φ11 =
−3cos nt + 4 0

6 sin nt−nt 1
(8.60a)

Φ12 =

sin nt
n

−2
n

cos nt−1

2
n

cos nt−1
4
n
sin nt−3t

(8.60b)

Φ21 =
3nsin nt 0

6n cos nt−1 0
(8.60c)

Φ22 =
cos nt 2sin nt

−2sin nt 4cos nt−3
(8.60d)

Up to this point, we have done nothing more than to express the planar homogeneous
solutions (8.53) in terms of the two sets of matrix-vector equations (8.58) and (8.59).
Suppose we want to determine an orbit transfer from an arbitrary initial state, δr0 and

δv0, to the origin of the CW frame with a prescribed transfer time t. Such a maneuver
might represent an orbital insertion into a “slot” in a target orbit or orbital rendezvous
with another satellite such as a space station. Consider first the relative position solution
Eq. (8.58). For arbitrary initial position and velocity δr0 and δv0, there is no guarantee of
rendezvous [i.e., δr(t) = 0] at time t. However, it is possible to determine the required
initial relative velocity for rendezvous by solving Eq. (8.58) with δr(t) = 0

δvreq0 = −Φ−1
12Φ11δr0 (8.61)

whereΦ−1
12 is the inverse of the matrix shown in Eq. (8.60b). A satellite with initial relative

velocity defined by Eq. (8.61) will reach the origin at the prescribed time t. However, the
satellite’s actual initial relative velocity is δv0. Therefore, the following impulsive maneu-
ver is required at time t = 0:

Δv0 = δvreq0 −δv0 (8.62)
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Equation (8.62) determines the radial and along-track components of the initial impul-
sive burn for rendezvous. It is important to reiterate that the required initial velocity is
computed using Eq. (8.61) for a specified transfer time t, and that matrices Φ11 and Φ12

depend solely on time t and angular velocity of the reference orbit n; see Eqs. (8.60a)
and (8.60b).
After the first impulse has established initial relative velocity δvreq0 , the satellite coasts

and reaches the origin δr(t) = 0 at time t. Equation (8.59) determines the satellite’s ter-
minal relative velocity when it arrives at the origin:

δv t =Φ21δr0 +Φ22δv
req
0

Because we desire zero relative velocity (i.e., rendezvous) at time t, a second impulsive
maneuver is required:

Δvf = −δv t (8.63)

This second impulse simply cancels out the satellite’s residual relative velocity when it
arrives at the origin or target. The magnitude of the total velocity increment for the two-
impulse maneuver is

Δv= Δv0 + Δvf (8.64)

Using the total Δv in the rocket equation (6.13) determines the total propellant mass
required for rendezvous.
A final note is in order. Computing the initial relative velocity for rendezvous via

Eq. (8.61) requires the inverse of matrix Φ12. Referring to Eq. (8.60b), we see that
when the transfer time is an exact multiple of the period of the reference orbit
(i.e., t = kTperiod), the harmonic terms are sin nt = 0 and cos nt = 1 and thus matrix
Φ12 becomes

Φ12 kTperiod =
0 0

0 −3kTperiod

Under these conditions, thematrixΦ12 is singular (its determinant is zero) and its inverse
does not exist. However, if one avoids transfer times that are exact multiples of Tperiod,
then it is possible to invert matrix Φ12. For example, suppose we have a reference orbit
with period Tperiod = 95 min (= 5,700 s) and n = 2π/Tperiod = 0.001102 rad/s. For transfer
time t = 2.99Tperiod, the matrix Φ12 is

Φ12 2 99Tperiod =
−56 9625 3 5802

−3 5802 −51,356 85

In this case, Φ12 is nonsingular and therefore its inverse exists. The following examples
illustrate orbital rendezvous scenarios.

Example 8.4 Figure 8.7 shows a scenario where a “chaser” satellite is 20 km above and
40 km ahead of a target in a 300-km altitude circular orbit. Determine the satellite’s nec-
essary velocity components at this instant so that it performs a rendezvous with the tar-
get in one-quarter of the period of the reference orbit.
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Equation (8.61) determines the initial relative velocity required for rendezvous

δvreq0 = −Φ−1
12Φ11δr0

where the initial relative position vector is

δr0 =
x0

y0
=

20

40
km

and the matrices Φ11 and Φ12 are defined by Eqs. (8.60a) and (8.60b), respectively

Φ11 =
−3cos nt + 4 0

6 sin nt−nt 1

Φ12 =

sin nt
n

−2
n

cos nt−1

2
n

cos nt−1
4
n
sin nt−3t

The angular velocity of the reference orbit (r∗ = 6,678 km) is n= μ/r∗3 = 1.1569(10−3)
rad/s. The orbital period is Tperiod = 2π/n = 5,431.01 s (= 90.52 min), so the desired ren-
dezvous time is t = Tperiod/4 = 1,357.75 s (= 22.63 min). Evaluating the matrices using
these values for n and t, we obtain

Φ11 =
4 0

−3 4248 1

Φ12 =
864 3726 1,728 7451

−1,728 7451 −615 7695

The inverse of Φ12 is

Φ−1
12 =

−2 5069 10−4 −7 0380 10−4

7 0380 10−4 3 5190 10−4

Reference circular 
orbit r* = 6,678 km

r*

Target

n

x

Satellite 
at t = 0

y0 = 40 km

x0 = 20 km

Figure 8.7 Satellite initial position for orbital rendezvous (Example 8.4; not to scale).
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We use Eq. (8.61) to determine the initial relative velocity required for rendezvous

δvreq0 = −Φ−1
12Φ11δr0 =

2 5069 10−4 7 0380 10−4

−7 0380 10−4 −3 5190 10−4

4 0

−3 4248 1

20

40

=
0

−0 0463
km/s

Therefore, the required initial relative velocity components are

x0 = 0, y0 = −0 0463 km/s

Figure 8.8 presents the radial and along-track displacements of the orbital rendezvous
using the satellite’s initial states x0 = 20 km, y0 = 40 km, x0 = 0, and y0 = −0 0463 km/s and
rendezvous time t = 1,357.75 s (= 22.63 min). Note that we have added “time-to-go” (tgo)
tags to the relative position coordinates (tgo is the time remaining until rendezvous).
Figure 8.8 shows that the satellite is initially at apogee with a maximum radial relative
displacement of 20 km, zero radial velocity, and negative along-track velocity.
Figure 8.8 also implies that the chaser satellite approaches the target “from above” along
the positive radial direction during the terminal phase of its rendezvous. The final veloc-
ity components of the orbital rendezvous are xf = −0 0231 km/s (–23.1 m/s) and yf = 0.
Hence, an onboard rocket must provide a purely radial Δv = 23.1 m/s when the satellite
reaches the origin at 22.63min to complete the rendezvousmaneuver. The reader should
compare Figure 8.8 with the dashed-line relative-motion trajectory shown in Figure 8.5
(Example 8.2). Figure 8.8 is essentially the final one-quarter of the “elliptical trace”
(Figure 8.5) as the satellite moves from its apogee to the origin.
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Figure 8.8 Orbital rendezvous (Example 8.4).
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Example 8.5 An 872-kg satellite (the “chaser”) is in a 350-km circular orbit. A target
satellite is in the same circular orbit. The chaser satellite “leads” the target by 5 in the
along-track (y) direction (see Figure 8.9). Determine the chaser satellite’s total Δv and
propellant mass required to perform a rendezvous maneuver with the target satellite.
The transfer time is 250 min and the specific impulse of the chaser’s hydrazine thruster
is 225 s.

Angular velocity of the reference orbit (r∗ = 6,728 km) is n= μ/r∗3 = 1.1440(10−3)
rad/s. Because the chaser satellite is initially in the reference circular orbit, its relative
radial position is zero (x0 = 0) and its velocity components are zero (x0 = y0 = 0). The
chaser satellite is 5 (0.0873 rad) ahead of the target in the direction of orbital motion,
and therefore the initial along-track position is y0 = r∗δθ0 = 587.13 km. We can use
Eq. (8.61) to compute the initial relative velocity required for rendezvous

δvreq0 = −Φ−1
12Φ11δr0

where the initial relation position vector is

δr0 =
x0

y0
=

0

587 13
km

Using transfer time t = 250 min = 15,000 s in Eqs. (8.60a) and (8.60b), the matrices are

Φ11 =
4 3538 0

−108 9214 1

Φ12 =
−867 9973 1,954 3881

−1,954 3881 −48,471 9892

and the inverse of Φ12 is

Φ−1
12 =

−0 00106 −4 2586 10−5

4 2586 10−5 −1 8913 10−5

Reference circular 
orbit r* = 6,728 km

r*

Target

n

x

Satellite
at t = 0

y0 = 587.13 km

0δθ = 5ο

Figure 8.9 Satellite initial position for orbital rendezvous (Example 8.5; not to scale).
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We use Eq. (8.61) to compute the initial relative velocity required for rendezvous:

δvreq0 = −Φ−1
12Φ11δr0 =

0 00106 4 2586 10−5

−4 2586 10−5 1 8913 10−5

4 3538 0

−108 9214 1

0

587 13

=
0 0250

0 0111
km/s

Because the chaser satellite’s initial relative velocity is zero, the first impulse is

Δv0 = δv
req
0 −δv0 =

0 0250

0 0111
km/s

The chaser satellite’s terminal relative velocity is

δv t =Φ21δr0 +Φ22δv
req
0

where the two matrices are defined by Eqs. (8.60c) and (8.60d). Evaluating these matrices
at time t = 15,000 s, we obtain

Φ21 =
−0 003408 0

−0 007674 0

and

Φ22 =
−0 1179 −1 9860

1 9860 −3 4718

Therefore, the terminal velocity at time t = 15,000 s is

δv 15,000 =Φ21δr0 +Φ22δv
req
0

=
−0 003408 0

−0 007674 0

0

587 13
+

−0 1179 −1 9860

1 9860 −3 4718

0 0250

0 0111

=
−0 0250

0 0111
km/s

The second impulse must cancel out the terminal relative velocity

Δvf = −δv 15,000 =
0 0250

−0 0111
km/s

The vector norms of the two impulses are

Δv0 = 0 02736 km/s = 27 36m/s

Δvf = 0 02736 km/s = 27 36m/s
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Therefore, the total velocity increment for rendezvous is Δv= Δv0 + Δvf
= 54 72m/s .
Finally, we can use a variation of the rocket equation, Eq. (6.13), to determine the pro-

pellant mass required for the rendezvous maneuver. Using exhaust speed g0Isp = 2,206.5
m/s, we obtain

mp =m0 1−exp
−Δv
g0Isp

= 872 kg 1– exp −54 72/2,206 5 = 21 36 kg

Example 8.6 Consider again the rendezvous scenario in Example 8.5. Plot the relative
position coordinates of the chaser satellite during rendezvous for transfer times of 250
and 274 min.
As with the previous examples, we can use Eqs. (8.53a) and (8.53b) to obtain the posi-

tion coordinates (x,y) of the chaser relative to the target for any arbitrary time t

x t = −3x0−
2y0
n

cos nt +
x0
n
sin nt + 4x0 +

2y0
n

y t = 6x0 +
4y0
n

sin nt +
2x0
n

cos nt− 6nx0 + 3y0 t + y0−
2x0
n

The reader should note that the required initial relative velocity at the beginning of the
rendezvous maneuver is

x0

y0

req

= δvreq0 = −Φ−1
12Φ11δr0

This initial velocity is the result of the first impulsive burn. For a 250-min transfer, the

required initial velocity is δvreq0 = 0 0250 0 0111 T km/s, and therefore themagnitude of
the first impulse is 27.36 m/s (see Example 8.5 for details).
Figure 8.10 shows the radial and along-track coordinates of the chaser satellite during

the 250-min rendezvous maneuver. The first impulse Δv0 shown in Figure 8.10 has pos-
itive x (radial) and y (along-track) components. Hence, the chaser satellite would need to
be rotated prior to the first impulse so that its thrust vector is at an elevation angle
tan−1 0 025/0 011 = 66 above the local horizon in the direction of motion. Because
the first impulse produces positive radial and along-track relative velocity components,
the chaser’s orbit has an apogee greater than r∗ and the satellite initially drifts above the
reference orbit. When the chaser is above the reference orbit (i.e., x > 0), it drifts “back”
towards the target (the chaser has a very small positive y component as it crosses the
reference orbit). After completing nearly three “periodic paths” in the relative (x,y) frame,
the chaser reaches the target (origin) and the symmetric second impulse Δvf cancels out
the relative velocity components to complete the rendezvous. Because the period is

Tperiod =
2π
n

= 5,492 1 s = 91 5 min

the number of orbital revolutions is t/Tperiod = 250 min/91.5 min = 2.73. Figure 8.10
shows that the chaser satellite completes two “periodic paths” in the CW frame but does
not quite complete the third path before reaching the target.
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We repeat the rendezvous analysis for a 274-min transfer. Using Eq. (8.61) with t =
274 min = 16,440 s, the initial relative velocity required for rendezvous is

δvreq0 = −Φ−1
12Φ11δr0 =

0 0275 8 4121 10−7

−8 4121 10−7 2 0216 10−5

1 0026 0

−113 0973 1

0

587 13

=
0 00049

0 01187
km/s

The satellite’s terminal velocity at time t = 16,440 s is

δv 16,440 =Φ21δr0 +Φ22δv
req
0

=
−0 000143 0

−5 94 10−6 0

0

587 13
+

0 9991 −0 0832

0 0832 0 9965

0 00049

0 01187

=
−0 00049

0 01187
km/s

Figure 8.11 shows the radial and along-track coordinates of the chaser satellite during the
274-min rendezvous maneuver. Here the first impulse is essentially along the circumfer-
ential (y) direction in order to raise the chaser’s apogee. Figure 8.11 shows that the chaser
always remains above the reference orbit as it drifts back and completes three “periodic
paths” before it reaches the target (origin). The second impulse is essentially “anti-
circumferential” and cancels out the terminal relative velocity. Because the period of
the reference orbit is 91.5 min, the number of orbital revolutions is 274/91.5 = 2.99
(essentially three orbits).
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Figure 8.10 Orbital rendezvous for transfer time t = 250 min (Example 8.6).
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Finally, it is instructive to characterize the totalΔv as a function of transfer time for this
particular rendezvous scenario. It is possible to repeat the Δv0 and Δvf calculations
for a wide range of transfer times by using MATLAB and a simple “looping” script.
Figure 8.12 shows the total Δv (the sum of Δv0 and Δvf ) plotted against the number
of revolutions of the reference orbit (note that the longest transfer time shown in
Figure 8.12 is 8Tperiod = 732min or 12.2 h). Figure 8.12 clearly shows that totalΔv reaches
a (local) minimum value when the transfer time is a multiple of the target orbit’s period.
Furthermore, increasing the number of target-orbit revolutions decreases the total Δv.
The worst possible scenario is to use a transfer time that is approximately half-way
between a multiple of the reference period (e.g., t = 6.5Tperiod). Figure 8.12 also shows
the 250 and 274-min rendezvous maneuvers.
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Figure 8.11 Orbital rendezvous for transfer time t = 274 min (Example 8.6).
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Figure 8.12 Total Δv for rendezvous vs. number of revolutions of the target orbit (Example 8.6).
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8.5 Summary

This chapter dealt with satellite motion relative to a target moving in a circular orbit. The
target could represent another satellite, a space station, or simply an orbital location or
“slot” where we wish to insert the maneuvering satellite. Accurately analyzing relative
motion is critical for in-space operations such as orbital rendezvous between two satel-
lites or repositioning a satellite in a new orbital location. We developed linear ODEs for
the satellite’s position and velocity coordinates relative to the moving target. These linear
equations are called the CW equations and because they are linear ODEs, we are able to
obtain analytical or closed-form solutions. We chose a cylindrical coordinate frame
where the satellite’s position deviations from the target are in radial, along-track, and
cross-track (out-of-plane) directions. As with any linearized system of equations, retain-
ing adequate accuracy requires that deviations from the reference trajectory remain
“small” at all times. However, due to the nature of an inverse-square gravity field, the
linearized CW equations only require that the radial and cross-track deviations remain
“small”; large along-track deviations do not degrade the accuracy of the linear solution.
Finally, we ended this chapter by developing a systematic procedure for obtaining a two-
impulse rendezvous maneuver. In general, the total Δv of the two-impulse rendezvous
maneuver will depend on the satellite’s initial position and velocity relative to the target
and the allocated transfer time.
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Problems

Conceptual Problems

Problems 8.1–8.8 involve relative satellite motion in the Clohessy-Wiltshire (CW) frame.
Each problem specifies the reference (target) circular orbital radius r∗, the initial CW-
frame position coordinates (x0, y0, and z0), and the initial CW-frame velocity components
(x0, y0, and z0). Determine the satellite’s position and velocity coordinates relative to the
CW frame at end-time tf.

8.1 Reference radius r∗ = 6,678 km, x0 = –2 km, y0 = –500 km, z0 = 0, x0 = 0, y0 =
0.008 km/s, z0 = 0. End-time tf = 140 min.

8.2 Reference radius r∗ = 6,678 km, x0 = 5 km, y0 = 200 km, z0 = 0, x0 = 0, y0 =
–0.01 km/s, z0 = 0. End-time tf = 140 min.

8.3 Reference radius r∗ = 6,678 km, x0 = 20 km, y0 = –100 km, z0 = 0, x0 = –0.002 km/s,
y0 = –0.03 km/s, z0 = 0. End-time tf = 3Tperiod
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8.4 Reference radius r∗ = 6,678 km, x0 = 20 km, y0 = –100 km, z0 = 5 km,
x0 = –0.002 km/s, y0 = –0.03 km/s, z0 = 0.004 km/s. End-time tf = 3Tperiod

8.5 Reference radius r∗ = 20,500 km, x0 = 80 km, y0 = 600 km, z0 = 0, x0 = –0.001 km/s,
y0 = –0.026 km/s, z0 = 0. End-time tf = 1.5Tperiod

8.6 Reference radius r∗ = 20,500 km, x0 = –80 km, y0 = 0, z0 = 20 km, x0 = 0,
y0 = 0.027 km/s, z0 = –0.005 km/s. End-time tf = 1.5Tperiod

8.7 Reference radius r∗ = 20,500 km, x0 = –4 km, y0 = 0, z0 = 2 km, x0 = –0.002 km/s,
y0 = 0.0013 km/s, z0 = 0.001 km/s. End-time tf = 30 min.

8.8 Reference radius r∗ = 20,500 km, x0 = 0, y0 = 20 km, z0 = 0, x0 = 0.002 km/s,
y0 = 0.001 km/s, z0 = 0.001 km/s. End-time tf = 30 min.

Problems 8.9–8.14 involve the scenario depicted in Figure P8.9. Two satellites
are in coplanar orbits about the Earth. At the instant shown, Satellite A is 10 km
directly above Satellite B. The inertial velocity of Satellite A is 7.71 km/s and its
flight-path angle is zero at this instant. Satellite B is in a circular orbit with a radius
of 6,678 km.

8.9 Determine the initial conditions of Satellite A relative to a CW frame that moves
with Satellite B.

8.10 Determine the position and velocity coordinates of Satellite A relative to the CW
frame at time t = Tperiod.

8.11 Analytically determine the perigee and apogee radii of Satellite A.

8.12 Verify the solutions to Problems 8.10 and 8.11 by plotting the time histories of the
relative position and velocity coordinates of Satellite A for one orbital period. In

Reference circular
orbit r* = 6,678 km

Satellite B

n

Satellite A

10 km

vA0 = 7.71 km/s

Figure P8.9
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addition, present the relative motion of Satellite A by plotting radial displacement
(x) vs. along-track displacement (y).

8.13 Compute the two impulsive Δv vectors such that Satellite A performs an orbital
rendezvous with Satellite B in one-quarter period of the reference orbit. Present
the orbital rendezvous by plotting x vs. y.

8.14 Repeat Problem 8.13 for a rendezvous time of 60 min (about two-thirds of a
period). Present the orbital rendezvous by plotting x vs. y.

8.15 A satellite’s initial states relative to the CW frame are x0 = 3 km, y0 = 0, z0 = 0,
x0 = 0 002 km/s, y0 = – 0 005 km/s, and z0 = 0. The reference circular orbit has
a period of 91.3 min. Determine the epoch times when the satellite next reaches
perigee and apogee. Which apse passage is first?

MATLAB Problems

8.16 Write an M-file that will determine the propagated relative position and
velocity coordinates of a satellite with respect to the origin of the CW frame.
The inputs to the M-file should be propagation time t (in min), radius of the
reference circular orbit r∗ (in km), the initial radial, along-track, and cross-
track positions in the CW frame (x0, y0, and z0, in km), and the initial CW-
frame velocity components (x0, y0, and z0, in km/s). The output of the M-file
should be the three position and velocity coordinates at the end time t as
expressed in the CW frame (in km and km/s). Test your M-file by solving
Examples 8.1 and 8.2.

8.17 Write an M-file that will plot the satellite’s relative motion in the CW frame. The
M-file should create two plots: (a) along-track displacement (y) on the horizontal
axis and radial displacement (x) on the vertical axis; and (b) along-track displace-
ment (y) on the horizontal axis and cross-track displacement (z) on the vertical
axis. The inputs to the M-file should be propagation time t (in min), radius of
the reference circular orbit r∗ (in km), the initial radial, along-track, and cross-
track positions in the CW frame (x0, y0, and z0, in km), and the initial velocity
components (x0, y0, and z0, in km/s). This M-file should make use of the
relative-motion solver M-file described in Problem 8.16. Test your M-file by
recreating Figures 8.5 and 8.6.

8.18 Write an M-file that will compute the two impulsive Δv vectors for a planar
orbital rendezvous. The inputs to the M-file should be rendezvous time tf (in
min), radius of the reference circular orbit r∗ (in km), and the initial position
and velocity components relative to the CW frame (x0, y0, x0, and y0) in kilometers
and kilometers per second, respectively. The output of the M-file should be the
two impulsive Δv vectors (radial and along-track components) that are applied at
times t = 0 and t = tf.
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Mission Applications

8.19 Satellite operators want to design a rendezvous strategy for a satellite that is dis-
placed from a targeted “slot” in a 500-km altitude low-Earth orbit (LEO). The
satellite’s initial relative position and velocity components in the CW frame are
x0 = –2 km, y0 = 1.4 km, z0 = 0.8 km, x0 = 0 001 km/s, y0 = 0 003 km/s, and
z0 = 0 002 km/s. The satellite operators decide on a two-phase maneuver strategy:
(1) command an out-of-plane impulse (Δv) that will correct the orbital plane; and
(2) command two impulses for a planar rendezvous with the target orbit slot.
a) Determine the timing and magnitude of the out-of-plane (z axis) impulse; i.e.,

find the time t1 when the satellite crosses the orbital plane of the refer-
ence LEO.

b) Determine the two impulsive vectors required for a rendezvous maneuver so
that the satellite reaches the origin at time t2 = Tperiod, i.e., the orbital period
of the reference LEO (hence the transit time for the planar rendezvous phase
is t2 – t1).

8.20 Satellite operators want to change the longitude of a communication satellite in
geostationary-equatorial orbit by 30 E. Determine the total magnitude of the two
Δv impulses required for orbital-rendezvous maneuvers that take 1, 7, 14, 30, and
60 days. Is there a dramatic difference in total Δv for this range of maneuver
times? Which maneuver time appears to provide a good tradeoff between total
Δv and transfer time?

8.21 A geocentric satellite is in a 300-km altitude circular orbit. Satellite operators
want to reposition the satellite so that it occupies a location in the same circular
orbit that is 60 “behind” its current position (see Figure P8.21). The satellite is
equipped with thrusters that can only provide impulses along the horizontal
(y) direction, and its propellant budget limits the total Δv to 80 m/s for the ren-
dezvous maneuver. Determine the shortest possible rendezvous time and the cor-
responding total Δv for the 60 repositioning maneuver.

Reference circular 
orbit r* = 6,678 km

r*

Target

n

x

Satellite
at t = 0

δθ 0 = 60ο

Figure P8.21
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8.22 Consider again the orbital scenario depicted in Figure P8.9 and Problems
8.9–8.14. Perform a trade study by computing the total magnitude of the two
impulsive Δv vectors for orbital rendezvous for a range of rendezvous times
(the rendezvous M-file from Problem 8.18 will be very useful here). Let rendez-
vous time range from 5 to 85 min (nearly one orbit). Plot total Δv vs. rendezvous
time to determine the optimal time. In addition, plot the optimal orbital rendez-
vous (radial distance x vs. along-track distance y).
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9

Low-Thrust Transfers

9.1 Introduction

All orbital maneuvers presented in Chapters 7 and 8 utilized impulsive velocity changes.
Our fundamental assumption is that firing a high-thrust chemical rocket will change
velocity (and hence the orbital elements) instantly with no change in position (the reader
may wish to review Section 6.7). A very different propulsion mode is low-thrust propul-
sion, where charged particles or plasmas are accelerated using electrostatic or electro-
magnetic forces and ejected at very high exhaust velocities. Ion and Hall-effect
thrusters are two examples of electric propulsion (EP) devices currently being used
for space missions. The high EP exhaust speeds translate to specific impulses (Isp) that
are nearly 10 times greater than conventional chemical rockets. The rocket equation,
Eq. (6.13), shows that increasing Isp significantly reduces the propellant mass. However,
because the EP mass-flow rate is extremely small, the thrust magnitude is very low. Con-
sequently, an EP device must operate continuously so that the very low thrust acceler-
ation will produce a sizeable velocity (or orbital) change when integrated over a long time
(often days or months). We will present the fundamental equation that relates EP thrust
to electric power and Isp. The interested reader may consult Sutton and Biblarz [1;
pp. 622–656] for additional details regarding electric propulsion devices.
Analyzing low-thrust trajectories is challenging because Keplerian two-body motion is

no longer valid and hence the orbital elements are continuously changing over time.
Recall that in Section 5.4 we developed Gauss’ form of the variation of parameters
method that describes how the orbital elements change due to perturbing accelerations.
We will develop analytical solutions for special low-thrust transfers by using Gauss’ var-
iation of parameters and treating the EP thrust as a perturbation.
Figure 9.1 shows a continuous-thrust orbit transfer between circular orbits. Here a

small propulsive force continually acts on the satellite to slowly increase the altitude
(and energy) of the inner orbit until it reaches the target orbit. Hence, the orbit transfer
is an unwinding spiral trajectory where each orbital revolution is a nearly circular orbit.
An onboard electric propulsion system (such as an ion or Hall-effect thruster) provides
the small, continuous thrust magnitude for the low-thrust transfer. Characterizing a
low-thrust transfer is more difficult than analyzing an impulsive orbit transfer because
the orbital elements are continuously changing and therefore we cannot use the
constants of motion (such as specific energy and angular momentum) to define the
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transfer orbit between the two circles. We will develop analytical expressions for
low-thrust transfers, such as coplanar circle-to-circle transfers and pure inclination-
change maneuvers.

9.2 Electric Propulsion Fundamentals

Chapter 6 presented the fundamental relationships for rocket propulsion, and these basic
relationships still hold for low-thrust EP devices. Let us repeat the fundamental equation
that expresses the thrust force T in terms of effective exhaust velocity, veff, and mass-flow
rate, m:

T =mveff =mc (9.1)

In this chapter, we will use symbol c to denote the EP thruster’s effective exhaust velocity.
Recall that Eq. (6.4) defines effective exhaust velocity:

c= g0Isp (9.2)

EP devices convert the electric power input (typically from solar cells) to the output
power of the jet exhaust (i.e., accelerated ions or plasma). For constant effective exhaust
velocity, the output jet power is the time-rate of the exhaust jet’s kinetic energy:

Pout =
1
2
mc2 (9.3)

EP thruster efficiency η is the ratio of the output power Pout (in the exhaust jet) to the
input power Pin:

η=
Pout
Pin

=
1
2mc2

Pin
(9.4)

Substituting Eq. (9.1) in the numerator of Eq. (9.4), we obtain

η=
1
2Tc

Pin
(9.5)

Orbit 1

Orbit 2

Outward spiral 
from Orbit 1 to 
Orbit 2

Figure 9.1 Continuous-thrust, coplanar orbit transfer.
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Substituting c= g0Isp in Eq. (9.5) and solving for thrust T yields

T =
2ηPin
g0Isp

(9.6)

Equation (9.6) is the fundamental thrust equation for an electric propulsion device.
Thruster efficiency accounts for the energy losses associated with converting electric
input power to jet power; typically, experimental trials quantify η. One odd feature of
Eq. (9.6) is that increasing Isp (or, increasing the exhaust speed of the accelerated parti-
cles) decreases the magnitude of the thrust for constant input power and constant
thruster efficiency. Substituting Eq. (9.1) into (9.6) and solving for mass-flow rate yields

m=
2ηPin
c2

(9.7)

Therefore, increasing Isp (i.e., increasing c) will also reduce the mass-flow rate when effi-
ciency and input power are constant.
Three basic categories of EP devices exist: (1) electrothermal, (2) electrostatic, and (3)

electromagnetic thrusters. In this textbook, we will focus on two EP devices with proven
flight performance as primary propulsion for orbit transfers. Ion thrusters are electrostatic
devices that accelerate charged particles and Hall-effect thrusters are electromagnetic
devices that accelerate a gas heated to a plasma state. Both thrusters typically use xenon
as the propellant because it is the stable inert gas with the highestmolecularmass. Ion and
Hall-effect thrusters create a thrust force through the momentum flux of the exhausted
particles. Because the exiting particles have very low mass (with very high velocities),
the resulting thrustmagnitude is extremely small. Table 9.1 summarizes the performance
of two representative EP thrusters, NASA’s NSTAR ion thruster and the Aerojet
BPT-4000Hall-effect thruster [2,3].Note that the specific impulses of EP thrusters are four
to ten times greater than the Isp for chemical-propulsion rockets. The reader should also
note that the thrust magnitude of a single thruster is less than 0.1 N for low input power
and between 0.1N and 0.25N at the highest input power setting. Clearly, these EP devices
produce a very low thrust force and consequently a thrustermust operate continuously for
months in order to produce a significant change in a spacecraft’s orbit.
The basic “rocket equation” developed in Chapter 6 is still valid for low-thrust devices.

Recall that Eq. (6.13) is a form of the rocket equation that allows the calculation of the
propellant mass mp required to provide the velocity change Δv

mp =m0 1−exp
−Δv
g0Isp

(9.8)

Table 9.1 Performance specifications for two electric propulsion thrusters.

Thruster
Specific impulse
(s)

Input power
(kW) Thruster efficiency

Thrust
(mN)

NSTAR ion 1,972–3,120 0.47–2.29 0.424–0.617 20.6–92.4

BPT-4000 Hall 1,220–2,150 1.0–4.5 0.473–0.595 79–254

Source: Adapted from Refs [2] and [3].
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wherem0 is the satellite’s initial mass. For in-space impulsivemaneuvers,Δv is simply the
instantaneous change in the velocity vector determined from the orbital elements of the
initial orbit and transfer orbit. For low-thrust transfers, the calculation of Δv is not so
straightforward. Equation (9.8) shows that increasing Isp (i.e., increasing the jet exhaust
speed) reduces the propellant mass. Let us demonstrate the potential mass savings of
using low-thrust EP by considering a satellite with initialmassm0 = 2,000 kg and amaneu-
ver that calls forΔv=3km/s (3,000m/s). For a chemical-propulsion rocketwith Isp =310 s,
the propellant mass required for Δv = 3,000 m/s is 1,254 kg, which is 63% of the initial
mass of the satellite. Therefore, relatively little payload mass remains after the impulsive
burn. For an ion thruster with Isp = 3,100 s, the required xenon propellant mass for Δv =
3,000m/s is 188 kg! Hence, the xenon propellant mass is only 9% of the initial mass, and a
much larger payloadmass is delivered after completing the orbit transfer.We should note
that this mass comparison is not as straightforward as presented by this simple example
because the low-thrust Δv for a given orbit transfer does not match the impulsive Δv.
For example, the low-thrust Δv for a circle-to-circle orbit transfer is greater than the
impulsiveΔv for the corresponding Hohmann transfer. The following sections will char-
acterize the low-thrustΔv so that wemay use variants of the rocket equation to determine
the xenon propellant mass and transfer time required to complete a given orbit transfer.

9.3 Coplanar Circle-to-Circle Transfer

Because the electric-propulsion thrust force is so low, a continuous-thrust maneuver fol-
lows an unwinding spiral trajectory when starting from a circular orbit. The “quasi-cir-
cular” nature of the low-thrust spiral transfer allows us to develop analytical solutions.
To show the quasi-circular spiral transfer, let us begin with Gauss’ variational equation
for eccentricity, Eq. (5.95)

de
dt

=
1
v

2 e+ cosθ at +
r sinθ
a

an (9.9)

where at and an are the perturbing acceleration components from the low-thrust pro-
pulsion system. Perturbing acceleration at is the thrust acceleration component along
the velocity vector, while thrust acceleration component an is normal to the velocity vec-
tor and in the orbital plane (where the radial outward direction is considered to be pos-
itive). Figure 9.2 shows a schematic diagram of an EP spacecraft with its thrust vector
orientation relative, to the rotating normal-tangent NTW frame. The T axis (not to
be confused with the thrust vector) is always tangent to the orbit; the N axis is in the
orbital plane normal to the T axis and points away from the central body. The W axis
is normal to the orbital plane (i.e.,W =N×T). The EP spacecraft in Figure 9.2 is oriented
so that it has positive thrust components in the T andN directions (i.e., at > 0 and an > 0)
and aw = 0 because the thrust vector is in the orbital plane. Because the EP thruster is
fixed to the spacecraft, the thrust vector may be “steered” in any direction by rotating the
entire satellite about its center of mass.
Let us investigate a low-thrust transfer that departs from a circular orbit. We will

assume that thrust is always aligned with the velocity vector (the T axis) so that an = 0
and at = T/m where T is the propulsive thrust force. Recall from basic mechanics that
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the time-rate of energy (i.e., power) is the dot product of the force and velocity vectors.
Hence, thrusting along the velocity vector will maximize the time-rate of orbital energy;
this strategy is beneficial for transferring from a low circular orbit to a higher orbit.
Assuming an = 0 and e = 0 (circular orbit), Eq. (9.9) becomes

de
dt

=
2cosθ

v
at (9.10)

Instead of integrating Eq. (9.10) with respect to time, we choose to compute the change in
eccentricity over a single orbital revolution. Therefore, we can eliminate dt by dividing
Eq. (9.10) by the time-rate of angular position (true anomaly) for a circular orbit,
dθ/dt = v/r; the result is

de
dθ

=
2r cosθ

v2
at (9.11)

After separating variables, Eq. (9.11) becomes

de=
2r cosθ

v2
atdθ (9.12)

Equation (9.12) is easy to integrate if we assume that radius r, velocity v, and thrust
acceleration at remain constant over one orbital revolution. This assumption is accept-
able for quasi-circular low-thrust transfers because the orbital elements change very little
during a single powered orbit. Using this assumption, the integral of Eq. (9.12) is

de=
2r
v2
at

2π

0

cosθdθ = 0 (9.13)

Thus, we can conclude that the net change in eccentricity is zero over a single powered
orbital revolution and therefore a low-thrust transfer starting from a circular orbit fol-
lows a quasi-circular unwinding spiral trajectory. The reader should keep inmind that we
have assumed that the thrust vector remains aligned with the velocity vector in order to
maximize the rate of energy change.

Thrust

N (normal)

Orbit

T (tangent)

W axis is normal to
orbital plane

Figure 9.2 Electric-propulsion thrust vector in the orbital plane.
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We can investigate the change in semimajor axis over a single powered orbit by begin-
ning with Gauss’ variational equation for semimajor axis, Eq. (5.82):

da
dt

=
2a2v
μ

at (9.14)

As before, we eliminate dt by dividing Eq. (9.14) by dθ/dt = v/a

da
dθ

=
2a3

μ
at (9.15)

Note that a = r because the orbit is circular. Separating variables and integrating over one
orbital revolution yields

da=
2a3

μ
at

2π

0

dθ =
4πa3

μ
at (9.16)

Again, we have assumed that orbital element a is essentially constant over a single
revolution. Equation (9.16) shows that semimajor axis (and hence energy) does indeed
change after each powered revolution. As a quick example, consider a low-thrust engine
with thrustT=0.3Npropelling a spacecraftwith initialmassm=3,000kg; hence the thrust
acceleration is at =T/m = 10–4m/s2 = 10–7 km/s2. If the starting orbit is a 400-km altitude
circular orbit (a = 6,778 km), then Eq. (9.16) shows that da = 0.98 km after one powered
orbital revolution, which is a 0.01% change in semimajor axis. Hence, the constant-
semimajor axis assumption used to achieve Eq. (9.16) is valid. The low-thrust transfer will
require many, many revolutions in order to impart a significant change in orbital energy.
We can extend the previous analyses to determine the time required to perform a low-

thrust coplanar transfer between two circular orbits. Of course, knowing transfer time
allows the calculation of propellant mass if we assume that the low-thrust engine is con-
tinuously operating during the transfer with a constant mass-flow rate. To begin, rewrite
Eq. (9.14) with circular velocity v= μ/a

da
dt

=
2a3/2

μ
at (9.17)

Separate variables and rewrite thrust acceleration as at = T/m

μ

2
a−3/2da=

T
m0−mt

dt (9.18)

Note that the diminishing spacecraft mass ism=m0−mt, where m is the mass-flow rate
(magnitude) of the low-thrust engine. Substituting Eq. (9.1) for thrust in Eq. (9.18) yields

μ

2
a−3/2da=

mc
m0−mt

dt (9.19)

It is convenient to define the “time constant” τ =m0 m which allows us to express the
right-hand side of Eq. (9.19) as

μ

2
a−3/2da=

c
τ− t

dt (9.20)
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Integrating Eq. (9.20) from semimajor axis a0 to af, and from time t0 = 0 to final time t = tf
yields

μ

a0
−

μ

af
= c ln

τ

τ− tf
(9.21)

Note that the left-hand side is the initial circular orbital velocity, v0 = μ/a0, minus the
final (target) circular velocity, vf = μ/af . Solving Eq. (9.21) for the low-thrust transfer
time tf, we obtain

tf = τ 1−exp
−Δv
c

(9.22)

whereΔv= v0−vf is the difference in circular velocities for the low-thrust coplanar trans-
fer. Equation (9.22) is actually a variation of the rocket equation: dividing Eq. (6.13) by
mass-flow rate m yields Eq. (9.22) because propellant mass is mp =mtf . Therefore,
Eq. (9.22) shows that the low-thrust Δv for a coplanar circle-to-circle transfer is simply
the difference in circular orbital speeds:

Δv= v0−vf (9.23)

Manipulating Eq. (9.21) will produce an analytical expression for semimajor axis as a
function of transfer time. Substituting v0 = μ/a0, a(t) = af, and t = tf into Eq. (9.21) yields

μ

a t
= v0−c ln

τ

τ− t
(9.24)

Solving Eq. (9.24) for semimajor axis results in

Outward spiral a t =
μ

v0−c ln
τ

τ− t

2 (9.25)

Equation (9.25) shows how semimajor axis changes with time during an outward low-
thrust quasi-circular transfer (i.e., energy increases during the transfer). Recall that the
time constant τ =m0/m is the initial spacecraft mass divided by the engine mass-flow
rate, and that c=T/m is the effective jet exhaust velocity. Therefore, the initial thrust
acceleration is T/m0 = c/τ.
An inward spiral transfer to a lower circular orbit is essentially an outward spiral in

reverse. Here the thrust acceleration at is directed 180 opposite of the velocity vector so
that energy decreases at a maximum rate. Therefore, we simply insert a minus sign on
one sideofEq. (9.17)becauseda/dt<0.The remainingderivation is the sameas theoutward
spiral except that now the (positive) velocity change isΔv= vf −v0. Using Eq. (9.22) to com-
pute the inward transfer time, the inward (decreasing) semimajor axis is

Inward spiral a t =
μ

v0 + c ln
τ

τ− t

2 (9.26)
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Example 9.1 A cluster of three Hall-effect thrusters produces 0.6 N of total thrust. The
Hall thruster has specific impulse Isp = 1,700 s. Compute the low-thrust transfer time and
propellant mass for a coplanar transfer from low-Earth orbit (LEO) to geostationary-
equatorial orbit (GEO). The LEO altitude is 300 km and the initial mass of the spacecraft
in LEO is 2,500 kg.
We use Eq. (9.22) to compute the time required to complete the continuous-thrust

LEO–GEO transfer:

tf = τ 1−exp
−Δv
c

whereΔv is the difference between the initial and target circular velocities, and c = g0Isp =
16,671 m/s (recall that g0 = 9.80665 m/s2). The initial LEO circular speed is vLEO =
μ/aLEO = 7,726 m/s, the final GEO circular speed is vGEO = μ/aGEO = 3,075 m/s,

and therefore the low-thrust velocity increment is Δv= vLEO−vGEO = 4,651 m/s. In
order to compute the time constant τ =m0/m, we need the (total) mass-flow rate of
the combined operation of three Hall thrusters:

m=
T
c
= 0 6N/16,671m/s = 3 5990 10– 5 kg/s = 3 1095 kg/day

Therefore, τ = 6.9464(107) s (=803.98 days). Using τ, Δv, and c, we can compute the con-
tinuous-thrust transfer time:

tf = 803 98 1−exp
−4,651
16,671

= 195 73days

The propellant mass is mp =mtf = 3 1095kg/day 195 73 days = 608 6 kg

As an aside, let us compare a numerically integrated low-thrust transfer with the ana-
lytical results developed in this section. Gauss’ variational equations for a, e, and true
anomaly θ [Eqs. (5.82), (5.95), and (5.108)] can be numerically integrated to determine
the coplanar transfer. These differential equations with tangential thrust (i.e., an = 0) are

da
dt

=
2a2v
μ

at (9.27)

de
dt

=
2 e+ cosθ

v
at (9.28)

dθ
dt

=
h
r2

−
2sinθ
ev

at (9.29)

where angular momentum is h= μp and parameter p can be determined from a and e.
Radius r is determined from the trajectory equation (2.45), and velocity v is determined
from the energy equation (2.29). Tangential thrust acceleration is at =T/m, and the
diminishing spacecraft mass is determined by integrating

dm
dt

= −
T
c

(9.30)

Note the minus sign in Eq. (9.30) because mass is decreasing. We use MATLAB’s
M-file ode45.m to numerically integrate Eqs. (9.27)–(9.30) starting from the initial
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conditions given in this example problem (we are essentially applying the special pertur-
bation method discussed in Chapter 5 to our low-thrust transfer problem). Figure 9.3
shows the orbital eccentricity resulting from numerical integration of Eq. (9.28) for a
450 min transfer time. Note that eccentricity exhibits a periodic profile where its peak
value is about 10–4 and its minimum value returns to zero (i.e., a circular orbit) roughly
every 91 min. The reader should note that the period of the 300-km altitude LEO is
91 min, and therefore Figure 9.3 verifies Eq. (9.13): the net change in eccentricity due
to tangential thrust is zero after each orbital revolution.
Figure 9.4 shows the time histories of the semimajor axis determined by numerical

integration and the analytical semimajor axis computed using Eq. (9.25). The transfer
time is 195.73 days, that is, the time required to reach GEO from LEO. The numerical
and analytical solutions for a(t) are indistinguishable in Figure 9.4 and differ by less than
0.2 km throughout the transfer. These comparisons validate the quasi-circular approx-
imation used to develop Eqs. (9.22) and (9.25).

Example 9.2 Two advanced ion thrusters produce a total 0.25 N of thrust, and each
engine has a specific impulse Isp = 3,200 s. Plot semimajor axis vs. transfer time for
two coplanar circle-to-circle transfers where the initial spacecraft mass is 1,200 kg
and 2,400 kg. The initial and final circular orbit radii are 2RE and 4RE, respectively (recall
that Earth’s radius is RE = 6,378 km).
First, we use Eq. (9.22) to compute the continuous-thrust transfer time

tf = τ 1−exp
−Δv
c

where Δv= v0−vf is the difference between the initial and target circular velocities, and
exhaust speed is c = g0Isp = 31,381 m/s. The initial and final circular speeds are easily
computed using the initial and final radii (a0 = 2RE = 12,756 km, af = 4RE = 25,512 km):
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Figure 9.3 Eccentricity history during the initial low-thrust transfer from LEO (Example 9.1).
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v0 = μ/a0 = 5,590m/s and vf = μ/af = 3,953m/s

hence Δv = 1,637 m/s. The time constant is τ =m0/m, where the mass-flow rate is com-
puted from the total thrust magnitude and exhaust speed c:

m=
T
c
= 0 25N/31,381m/s = 7 9666 10– 6 kg/s = 0 6883kg/day

Therefore, the time constant is τ = 1.5063(108) s (=1,743.4 days) for m0 = 1,200 kg, and
τ = 3.0126(108) s (=3,486.8 days) for m0 = 2,400 kg. Using the two time constants yields
transfer times of tf = 88.63 and 177.25 days, respectively. Clearly, the second transfer time
is twice as long as the first transfer time because the factor of two in the initial mass
(which leads to a factor of two in the time constant τ).
Equation (9.25) determines semimajor axis as a function of transfer time t

a t =
μ

v0−c ln
τ

τ− t

2

Figure 9.5 shows semimajor axis (in units of RE) for the “short transfer” (m0 = 1,200 kg
and tf = 88.63 days) and the “long transfer” (m0 = 2,400 kg and tf = 177.25 days).
We can compute the mass ratio m0/mf using the rocket equation (6.11):

m0

mf
= exp

Δv
g0Isp

= 1 054
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Figure 9.4 Semimajor axis history for a low-thrust LEO-GEO transfer (Example 9.1).
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Because both transfers involve the same initial and target orbits, and employ the same
low-thrust engine, the mass ratio m0/mf (and propellant mass ratio mp/m0) is constant.
Therefore, the propellant mass required for the spacecraft with m0 = 1,200 kg is half of
the propellant mass required for the 2,400 kg spacecraft (of course this result can be
gleaned from the product of the constant mass-flow rate and the two transfer times).

9.3.1 Comparing Impulsive and Low-Thrust Transfers

Thus far, we have developed the basic performance equations for low-thrust transfer
time [Eq. (9.22)] and low-thrustΔv [Eq. (9.23)] for a quasi-circular coplanar transfer with
continuous thrust. The xenon propellantmassmp required for a continuous transfer may
be computed using the rocket equation (9.8) or by the product of mass-flow rate m and
transfer time tf.
Let us compare a coplanar LEO–GEO transfer using a conventional chemical rocket

and a low-thrust EP device. For a 300-km altitude LEO, the two-impulse Hohmann
transfer Δv is 3,893 m/s (see Section 7.3 for the Hohmann transfer formulas). Assuming
a chemical stage with Isp = 320 s, we can compute the final/initial mass ratio using the
rocket equation (6.11); the Hohmann-transfer result ismf/m0 = 0.289. For the low-thrust
transfer, the velocity increment is the difference in circular speeds, that is,Δv = 4,651m/s
(see Example 9.1). Hence, the low-thrust Δv is 19.5% greater than the total impulsive
Δv from the Hohmann transfer. Using the Hall-effect thruster from Example 9.1
(Isp = 1,700 s), we find that the final/initial mass ratio is mf/m0 = 0.757. Therefore, a
spacecraft equipped with Hall thrusters can deliver much more mass to GEO compared
with a chemical rocket (despite the larger Δv) because its specific impulse is greater by a
factor of five. A spacecraft equipped with ion thrusters (Isp = 3,200 s) will deliver even
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Figure 9.5 Semimajor axis vs. low-thrust transfer time (Example 9.2).
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more payload mass to GEO because mf/m0 = 0.862. The tradeoff is the LEO–GEO
transfer time: the low-thrust transfers will take hundreds of days to reach GEO.
Why is the low-thrust Δv greater than the two-impulse Hohmann-transfer Δv? The

low-thrust transfer suffers trajectory losses due to the quasi-circular nature of the trans-
fer. To illustrate these trajectory losses, let us consider performing multiple Hohmann
transfers from LEO to GEO. Figure 9.6 shows a LEO–GEO scenario with twoHohmann
transfers: the first Hohmann transfer reaches an intermediate circular orbit halfway
between LEO and GEO; the second Hohmann transfer delivers the satellite to GEO.
Two Hohmann transfers (as shown in Figure 9.6) will require four impulses (two pairs
of impulses at periapsis and apoapsis). Using the formulas in Section 7.3, we find that the
total impulsive Δv is 4,297 m/s for two Hohmann transfers which is more than 10%
greater than the single Hohmann-transfer case. For three Hohmann transfers, we obtain
Δv = 4,449 m/s. Computing the total impulsiveΔv for multiple transfers is relatively easy
using aMATLABM-file that repeatedly performs the calculations for a single Hohmann
transfer. Figure 9.7 shows the total impulsive Δv for multiple Hohmann transfers from
LEO to GEO. It is clear that the total impulsive Δv steadily increases as the number of
intermediate Hohmann transfers increases (the largest increase occurs between the sin-
gle and double Hohmann-transfer scenarios). Figure 9.7 also shows that when the LEO–
GEO transfer is divided into 15 or more Hohmann transfers, the total impulsive Δv
asymptotically approaches the low-thrust Δv (=4,651 m/s). This analysis illustrates
the trajectory losses associated with a quasi-circular transfer: the total impulsive Δv
increases if we force a circularization burn at the intermediate orbits. As the number
of intermediate orbits (or, Hohmann transfers) increases, the overall transfer to GEO
resembles an unwinding spiral trajectory.
One way to circumvent low-thrust trajectory losses would be to concentrate powered

low-thrust maneuvers at the apses in the same manner as the impulsive Hohmann trans-
fer. However, because the EP thrust acceleration is so low, this strategy would require
many powered arcs. To show this, consider operating the EP thruster for short segments
near each LEO perigee passage and subsequently coasting through apogee until the

LEO

GEO

1st Hohmann transfer

2nd Hohmann transfer

Intermediate
circle

Figure 9.6 Low-Earth orbit (LEO) to geostationary-equatorial orbit (GEO) using two Hohmann transfers
(not to scale).
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spacecraft returns to perigee for another powered arc. This perigee-thrusting strategy
would persist until the orbit’s apogee reached GEO altitude, and then a series of apo-
gee-thrusting arcs would follow to raise perigee to GEO. In order to quantify this
approach, let us consider the Hall-thruster system presented in Example 9.1. The initial
thrust acceleration is T/m0 = 2.4(10–4) m/s2 which is approximately equal to Δv/Δt
where Δt is the thrusting time near each perigee pass. If we assume that the EP device
thrusts for a10-minarccenteredoneachperigeepass (the initialLEOperiod is91min), then
the “impulsive” velocity increment for each perigee pass is merelyΔv= T/m0 Δt = 0.144
m/s. Recall that the velocity increment required at perigee for an impulsive Hohmann
transfer is 2,426 m/s. Therefore, this low-thrust perigee-thrusting strategy will require
nearly 17,000 perigee-thrusting arcs! The total transfer time using the perigee-thrusting
strategy would be greater than 5 years. Of course, this 5-year maneuver does not result in
GEO; it has only raised apogee to GEO altitude. Next, the spacecraft performs a series of
concentrated apogee-thrusting maneuvers to raise perigee to GEO altitude; this phase
would also take more than 5 years. This simple example shows why low-thrust trajectory
losses are inevitable – GEO satellite owners cannot wait 10 years after launch to begin
operating their satellite! If low-thrust devices are utilized for large-scale orbit transfers
(like LEO–GEO), then it is likely they will be operated continuously in order to keep the
total transfer time to a minimum value.

9.4 Coplanar Transfer with Earth-Shadow Effects

Electric-propulsion engines receive their power from solar arrays. Therefore, a realistic
low-thrust spiral transfer has unpowered coasting arcs when the spacecraft passes
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equatorial orbit).

Low-Thrust Transfers 315



through the Earth’s shadow. For low-thrust transfers that depart from LEO, the Earth-
eclipse arc can be a significant percentage of an orbital revolution. Figure 9.8 shows a
simple Earth-shadow model where the circular orbit (radius r = a) is assumed to be
in the ecliptic plane. It is easy to show that the Earth-shadow angle ϕsh is

ϕsh = 2sin
−1 RE

a
(9.31)

Recall that RE is the Earth’s radius. We can define a “sunlight weighting function” w that
denotes the percentage of time the spacecraft spends in sunlight over one orbital
revolution:

w= 1−
ϕsh

2π
= 1−

1
π
sin−1 RE

a
(9.32)

Clearly, w= 0 5 when a=RE (half of the orbit is in sunlight), and w≈1 (no shadow) for a
circular orbit with a very large radius. The reader should note that this simple shadow
model is restrictive because it assumes that the circular orbit remains in the ecliptic
plane. Actual shadow conditions for a circular orbit will depend on the calendar date,
inclination i, and longitude of the ascending nodeΩ. For example, a satellite in GEO will
experience a short Earth-shadow arc on the spring and fall equinox dates but no shadow
will exist for the summer and winter solstice dates.
We can estimate the low-thrust transfer time with Earth-shadow conditions by factor-

ing the weighting function w into the time-rate of semimajor axis:

da
dt

=
2a3/2

μ
wat (9.33)

Clearly, if w = 1 (continuous thrust), then Eq. (9.33) becomes Eq. (9.17). Our previous
approach of separating variables and integrating each side of Eq. (9.33) does not work
if we use Eq. (9.32) to define w because analytical integrals do not exist. One remedy
is to use a small-angle approximation for w

w= 1−
RE

πa
(9.34)

Sunlight

Shadow

ϕsh

a
RE

Circular orbit: r = a 

Figure 9.8 Simple Earth-shadow model.
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Substituting Eq. (9.34) into Eq. (9.33) and separating variables yields

μ

2a3/2
1−

RE

πa

−1

da=
T

m0−mt
dt (9.35)

Integrating Eq. (9.35), we obtain

πμ

RE
tanh−1 πa0

RE
− tanh−1 πaf

RE
= c ln

τ

τ− tf
(9.36)

Note that both sides of Eq. (9.36) have units of velocity because of the term μ/RE on the
left-hand side, and the effective exhaust velocity c on the right-hand side. Finally, we can
manipulate Eq. (9.36) and solve for transfer time in the presence of shadow eclipses

tf = τ 1−exp
−c
c

(9.37)

where c is the left-hand side of Eq. (9.36)

c=
πμ

RE
tanh−1 πa0

RE
− tanh−1 πaf

RE
(9.38)

Equation (9.37) approximates the total low-thrust transfer time with interrupted thrust
caused by Earth-shadow eclipses. Total transfer time tf is the sum of the powered time
(engine on) and coasting time (engine off during eclipses). The total powered time is
essentially the same for continuous- and interrupted-thrust transfers because both
involve the same change in orbital energy. Hence, the propellant mass required for either
case is the product of the mass-flow rate m and the continuous-thrust transfer time
determined by Eq. (9.22). The following examples illustrate low-thrust transfers with
and without Earth-shadow eclipses.

Example 9.3 Consider again the low-thrust coplanar LEO–GEO transfer outlined in
Example 9.1. Compute the total transfer time for the case where Earth’s shadow inter-
rupts thrust. Compare this result with the continuous-thrust scenario.
To determine the transfer time with shadow eclipses, we start by using Eq. (9.38) to

compute c for a0 = 6,678 km (LEO) and af = 42,164 km (GEO):

c=
πμ

RE
tanh−1 πa0

RE
− tanh−1 πaf

RE
= 5,567m/s

Next, use Eq. (9.37) to compute the transfer time with interrupted thrust

tf = τ 1−exp
−c
c

Recall that c = g0Isp = 16,671m/s for the Hall-effect thruster in Example 9.1 with a specific
impulse of 1,700 s. We computed the time constant τ =m0/m = 803.98 days in Example
9.1. Therefore, the transfer time with Earth-shadow eclipses is

tf = 803 98 1−exp
−5,567
16,671

= 228 2days
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Hence, including the Earth-shadow eclipses has increased the transfer time bymore than
32 days compared with the continuous-thrust transfer determined in Example 9.1.
As an aside, we can plot the “sunlight weighting function” w for this LEO–GEO trans-

fer. Equation (9.32) presents the accurate calculation of w as a function of semimajor axis
(using the simple ecliptic shadow model), while Eq. (9.34) uses the small-angle approx-
imation (recall that the small-angle approximation is required for the analytical integral
of the transfer time with interrupted thrust). Figure 9.9 plots the actual and approximate
weighting functions vs. semimajor axis. Note that at LEO (aLEO = 1.047RE), the Earth-
shadow angle is ϕsh = 146 (thus w = 0.59) and the small-angle method overestimates the
actual sunlight function by about 17%. However, when the spacecraft reaches a radius of
about 2RE, the Earth-shadow arc has diminished to ϕsh = 60 and the small-angle w
shows a good match with the actual weighting function w.

9.5 Inclination-Change Maneuver

We can develop analytical solutions for a low-thrust maneuver that only changes orbital
inclination. To begin, consider Gauss’ variational equation for inclination, Eq. (5.102):

di
dt

=
r
h
aw cos ω+ θ (9.39)

where aw is the perturbing thrust acceleration component in the direction of the angular
momentum vector h, or normal to the orbital plane. For a pure plane change that max-
imizes the inclination rate di/dt, the thrust vector is always aligned normal to the orbital
plane. In such a case, the thrust components along the velocity and in-plane normal
directions, at and an, are zero and hence semimajor axis and eccentricity remain constant
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Figure 9.9 Sunlight weighting function w for low-Earth orbit (LEO) to geostationary-equatorial orbit
(GEO) transfer (Example 9.3).
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[see Eqs. (9.9) and (9.14)]. Note that the cosine term cos ω+ θ in Eq. (9.39) switches
signs as the spacecraft passes through the argument of latitude u=ω+ θ = ± 90 (i.e.,
± 90 from the ascending node). Therefore, in order to maintain a positive inclination
rate di/dt > 0, the thrust acceleration aw is aligned with the angular momentum vector
h when cos ω+ θ > 0, and aligned opposite of h when cos ω+ θ < 0 (of course, this
strategy is reversed if we desire di/dt < 0). Using this thrust-steering strategy, the mag-
nitude of the inclination rate is

di
dt

=
r
h
aw cosu (9.40)

where u=ω+ θ and aw = T/m is the magnitude of the thrust acceleration. For a circular
orbit, we can substitute h = rv in Eq. (9.40).We can change the independent variable from
time t to argument of latitude u by dividing Eq. (9.40) by du/dt = dθ/dt = v/r, and the
result is

di
du

=
r2

μ
aw cosu (9.41)

We have substituted circular orbital speed v= μ/r to develop Eq. (9.41). Finally, we can
separate variables and integrate both sides of Eq. (9.41) over one orbital revolution:

di=
r2

μ
aw

2π

0

cosu du=
4r2

μ
aw (9.42)

Equation (9.42) is the inclination change after one circular orbital revolution of con-
tinuous thrust. We can divide Eq. (9.42) by the period of a circular orbit, 2πr/v, to obtain
the mean time rate for inclination change:

di
dt

=
2
πv

aw (9.43)

The overbar in Eq. (9.43) denotes themean time rate of inclination change, and therefore
we may use Eq. (9.43) to estimate large plane changes after many powered orbital revo-
lutions. In contrast, Eqs. (9.39) and (9.40) present the instantaneous time-rate of incli-
nation, which depends on the satellite’s position in the orbit. Finally, we can separate
variables in Eq. (9.43)

πv
2
di=

mc
m0−mt

dt (9.44)

Note that we have substituted aw = T/m, similar to the steps surrounding Eqs. (9.18) and
(9.19). Integrating both sides and some algebraic manipulation leads to the transfer time

tf = τ 1−exp
−Δiπv
2c

(9.45)

where Δi is the magnitude of the desired plane change (in rad) and τ =m0/m as before.
Recall that v is the (constant) circular orbital speed because the low-thrust maneuver
only changes the inclination. Equation (9.45) is the low-thrust transfer time required
for inclination change Δi for a circular orbit with velocity v. This equation assumes
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continuous thrust (i.e., thrust is not interrupted by Earth-shadow eclipses). If we com-
pare the inclination-change transfer time equation (9.45) with the coplanar circle-to-
circle equation (9.22), we see that the low-thrust Δv for a pure inclination change is

Δvi =
Δiπv
2

(9.46)

Here we have included subscript i to indicate the low-thrust Δv for a pure inclination
change (keep in mind that Δi is the magnitude of the change in orbital inclination
expressed in radians).

Example 9.4 Consider again a spacecraft equipped with three Hall-effect thrusters
with 0.6 N of total thrust and specific impulse Isp = 1,700 s. Compute the low-thrust
transfer time and propellant mass required for a 20 plane-change maneuver for two cir-
cular orbits: (a) radius r = 10,000 km; and (b) radius r = 30,000 km. The initial mass of the
spacecraft is 2,500 kg in both cases.
The exhaust speed and mass-flow rate for the Hall-effect thruster are

c= g0Isp = 16,671m/s and m=
T
c
= 3 5990 10– 5 kg/s = 3 1095 kg/day

Therefore, the time constant is τ =m0/m = 6.9464(107) s (= 803.98 days).

a) For the lower orbital radius r = 10,000 km, the circular speed is v= μ/r = 6,314 m/s.
Equation (9.45) provides the low-thrust transfer time for Δi = 0.3491 rad:

tf = τ 1−exp
−Δiπv
2c

= 150 75days

The corresponding propellant mass is mp =mtf = 468 8 kg

b) For the higher orbital radius r = 30,000 km, the circular speed is v= μ/r = 3,645 m/s.
Hence, the low-thrust transfer time is tf = 90.83 days, and the associated propellant
mass is mp = 282.4 kg. Like impulsive maneuvers, performing the plane change at a
higher altitude (and lower orbital speed) significantly reduces the propellant mass.

9.6 Transfer Between Inclined Circular Orbits

In the previous sections, we developed simple analytical expressions for the low-thrust
Δv, transfer time, and propellantmass for two scenarios: a coplanar circle-to-circle trans-
fer, and an inclination-change maneuver. Uncoupling the changes in orbital elements
allowed us to solve Gauss’ variational equations using separation of variables and ana-
lytical integration. In 1961, T. N. Edelbaum obtained a closed-form solution for the gen-
eral three-dimensional low-thrust transfer between inclined circular orbits [4].
Edelbaum utilized optimization theory and the calculus of variations to develop the min-
imum-propellant transfer between circular orbits with a plane change. His approach
assumed that the out-of-plane thrust acceleration component aw remained constant
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over an orbital revolution (switching signs at ± 90 from the nodal crossings) while the
in-plane thrust component remained aligned with the velocity vector (i.e., an = 0). How-
ever, the magnitude of the out-of-plane component aw varies in an optimal fashion so
that the majority of the inclination change occurs at higher orbital altitudes. Using in-
plane tangential thrust assures that the orbit transfer retains its quasi-circular “spiral”
nature that we observed in Section 9.3. This thrust-steering strategy will cause simulta-
neous changes in semimajor axis and inclination during the orbit transfer.
Because the optimization theory employed by Edelbaum is beyond the scope of this

textbook, we will not discuss or present the details here (the interested reader may con-
sult Edelbaum’s original work [4] or Kechichian’s excellent reexamination of this classic
solution using optimal control theory [5]). Instead, we will simply present Edelbaum’s
main result for the low-thrust velocity increment for a circle-to-circle low-thrust transfer
with an inclination change:

Δv= v20 + v
2
f −2v0vf cos

Δiπ
2

(9.47)

Here v0 and vf are the initial and final velocities of the respective circular orbits and
Δi is the magnitude of the inclination change between the two circular orbits. Because
the factor π exists in Eq. (9.47), the reader should take care to perform the cosine oper-
ation with its argument in radians. Note that for a coplanar transfer (Δi = 0), the low-
thrust velocity increment determined by Eq. (9.47) is simply the difference in circular
velocities (i.e., Δv= v0−vf ). Therefore, Edelbaum’s equation (9.47) with Δi = 0 matches
the coplanar circle-to-circle Δv that we developed in Section 9.3. However, Eq. (9.47) is
not correct for a pure inclination-change maneuver where v0 = vf. For a low-thrust
maneuver that only changes inclination, the low-thrust velocity increment is

Inclination change Δv=
Δiπv0
2

(9.48)

Equation (9.48) matches Eq. (9.46), our result from Section 9.5. Table 9.2 summarizes the
appropriate low-thrust Δv equation for a variety of orbit transfers.
Transfer time for the low-thrust maneuver between inclined circular orbits is

tf = τ 1−exp
−Δv
c

(9.49)

Table 9.2 Low-thrust Δv equations for orbital maneuvers with continuous thrust.a

Orbit transfer Low-thrust Δv

Coplanar circle-to-circle Δv= v0−vf

Inclination-change only Δv=
Δiπv0
2

Circle-to-circle with inclination change Δv= v20 + v
2
f −2v0vf cos

Δiπ
2

aNote that v0 and vf are the circular orbital speeds of the initial and final orbits, respectively.
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where the time constant τ and exhaust speed c are defined in the same manner as in Sec-
tions 9.2 and 9.3.Wemay compute the low-thrustΔv using the appropriate expression in
Table 9.2 that corresponds to the desired orbital transfer. Propellant mass is the product
of transfer time tf and the constant mass-flow rate of the EP device. It is important to
remember that Edelbaum’s results (and the results developed in Sections 9.3 and 9.5)
are valid for low-thrust transfers with continuous thrust (i.e., no Earth eclipses). The fol-
lowing example demonstrates a low-thrust transfer between inclined circular orbits.

Example 9.5 Using the electric-propulsion spacecraft characteristics from Example
9.1, determine the low-thrust Δv, transfer time, and xenon propellant mass for a
LEO–GEO transfer with a plane change. Assume that the LEO inclination is 28.5
(i.e., the latitude of the Cape Canaveral launch facility).
The LEO and GEO circular velocities are vLEO = 7,726 m/s and vGEO = 3,075 m/s,

respectively (for calculations see Example 9.1). We know that the inclination change
is Δi = 28.5 because GEO is an equatorial orbit. Using Edelbaum’s equation (9.47),
the low-thrust velocity increment is

Δv= v2LEO + v2GEO−2vLEOvGEO cos
Δiπ
2

= 5,950 8m/s

where Δi = 0.4974 rad. We compute the transfer time using Eq. (9.49) with τ =
803.98 days and c = g0Isp = 16,671.3 m/s (see Example 9.1):

tf = τ 1−exp
−Δv
c

= 803 98 1−exp
−5,950 8
16,671 3

= 241 3days

Recall that the coplanar LEO–GEO transfer time is 195.7 days for this EP spacecraft.
Thus, the 28.5 plane change added over 45 days to the transfer time.
Because we are assuming a continuous-thrust transfer, the propellant mass is the prod-

uct of transfer time and mass-flow ratem = 3.1095 kg/day (see Example 9.1 for the mass-
flow rate calculation):

mp =mtf = 750 5 kg

9.7 Combined Chemical-Electric Propulsion Transfer

The high jet exhaust speed associated with electric propulsion allows a spacecraft
propelled by EP devices to deliver more payload mass to a target orbit when compared
with a transfer using conventional chemical-propulsion engines. The tradeoff, however,
is that a low-thrust transfer requires a great deal of time which ultimately delays the satel-
lite’s intended operation in orbit. Table 9.3 presents the velocity increment Δv, transfer
time, and mass ratio for a LEO–GEO transfer with a 28.5 inclination change for a two-
impulse Hohmann transfer and low-thrust transfers. The total impulsive Δv is deter-
mined using the three-dimensional Hohmann-transfer method illustrated by Example
7.10c in Chapter 7 (i.e., the second impulse at apogee raises perigee and performs the
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28.5 plane change). Edelbaum’s equation (9.47) determines the total low-thrust Δv. Of
course, the impulsive and low-thrust Δv depend only on the characteristics of the LEO
and GEO orbits. A Hohmann transfer reaches GEO in a matter of hours (about 5 h),
whereas low-thrust transfers require over 8 months of continuous thrust. Table 9.3
shows the potential payload advantages of using low-thrust propulsion: the mass ratios
mGEO/mLEO for LEO–GEO transfers using EP devices are much greater than the mass
ratio for an impulsive transfer.
Table 9.3 highlights the advantages and disadvantages of using chemical-propulsion

engines and EP devices for a LEO–GEO transfer. A propulsion option worth considering
is the combined use of chemical and EP stages for the LEO–GEO transfer. The chemical
stage would transfer the spacecraft from LEO to an intermediate (higher) orbit at which
point the EP stage would take over and complete the remaining transfer to GEO. This
combined-propulsion strategy would increase the payload mass of an all-chemical
(Hohmann) transfer and reduce the transfer time of an all-EP low-thrust transfer.
Figure 9.10 shows a schematic diagram of this proposed combined-propulsion strategy.
The Hohmann transfer takes the spacecraft from LEO to an intermediate circular orbit
with radius r1 and inclination i1. After discarding the spent chemical stage, the EP
thruster completes the spiral transfer from circle r1 to GEO with an inclination change
equal to i1. It should be clear that the radius and inclination of the intermediate circular
orbit, r1 and i1, greatly affect the payloadmass delivered to GEO and the EP transfer time.
For example, if we choose r1 so that it is only slightly greater than LEO and select i1 =
28.5 (= iLEO), then the EP stage will essentially perform the entire LEO–GEO transfer.
At the other extreme, selecting a very large r1 (≈rGEO) and small i1 (≈0) essentially elim-
inates the payload advantages associated with using the EP thruster.
Before continuing, we should note that this maneuver strategy is a bit artificial and

somewhat constrained by forcing the second impulsive burn to establish an intermediate
circular orbit. The intermediate orbit (i.e., the starting orbit for the EP stage) could be an
inclined elliptical orbit. However, the only analytical formulas available for low-thrust
transfers involve circular orbits as the initial and terminal conditions. Computing the
minimum-propellant low-thrust transfer between an arbitrary inclined elliptical orbit
and a circular target orbit requires numerical integration of the equations of motion
coupled with a numerical optimization algorithm. This topic is well beyond the scope
of this textbook; the interested reader may wish to consult Conway [6] for examples
of various methods for low-thrust trajectory optimization.

Table 9.3 Low-Earth orbit (LEO) to geostationary-equatorial orbit (GEO) transfer with 28.5 inclination
change.a

Propulsion mode
Total Δv
(m/s)

Transfer time, tf
(days)

Final-to-initial mass
ratio, mGEO/mLEO

Chemical (Isp = 320 s) 4,256.0 0.2 0.2576

Ion (T = 0.6 N, Isp = 3,200 s)b 5,950.8 261.4 0.8273

Hall (T = 0.6 N, Isp = 1,700 s)b 5,950.8 241.3 0.6998

a Initial LEO is 300-km altitude.
b Initial mass in LEO is mLEO = 2,500 kg.
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Let us demonstrate the tradeoffs in payload mass and EP transfer time for a chemical-
electric propulsion option for a LEO–GEO transfer. We can determine the mass ratio
and transfer time using the following algorithm:

1) Given the intermediate circular radius r1 and inclination i1, compute the two-impulse,
three-dimensional Hohmann transfer from LEO to the inclined circular orbit r1 using
the formulas developed in Chapter 7 (e.g., see Example 7.10c). Use the total impulsive
Δvc and the chemical-stage Isp,c to determine the chemical-stage propellant massmp,c

mp,c =mLEO 1−exp
−Δvc
g0Isp,c

(9.50)

2) Compute the mass of the spacecraft in the intermediate circular orbit using

m1 =mLEO−mp,c−Ktmp,c (9.51)

where Kt is the so-called tankage fraction. The product Ktmp,c represents the “dry
mass” of the chemical stage (engine, tank, and structure) that is jettisoned after
the transfer to intermediate orbit r1.

3) Use Edelbaum’s equation (9.47) to compute the low-thrust ΔvEP for a transfer from
the intermediate orbit (r1 and i1) to GEO. The final spacecraft mass in GEO is

mGEO =m1−mp,EP

where the xenon propellant mass, mp,EP, is determined by Eq. (9.8). The low-thrust
transfer time is

tEP = τ 1−exp
−ΔvEP
g0Isp,EP

Hohmann 
transfer to 
intermediate 
circular orbit

LEO

GEO

Intermediate 
circular orbit 
with inclination i1

r1

EP outward 
spiral from 
intermediate 
orbit to GEO

Figure 9.10 Combined chemical-electric propulsion transfer from low-Earth orbit (LEO) to geostationary-
equatorial orbit (GEO).
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where Isp,EP is the EP stage specific impulse and the time constant is τ =m1/m. The mass-
flow rate of the EP device is computed using EP thrust T and Isp,EP.
To demonstrate combined chemical-electric transfers, we assume that a Delta IV

(Medium) launch vehicle delivers 13,300 kg to a 400-km circular LEO with inclination
iLEO = 28.5 . Suppose the spacecraft is equipped with Hall-effect thrusters with a total
input power of 15 kW, thruster efficiency of 53%, and specific impulse Isp,EP = 1,700 s.
Using Eq. (9.6), we find that the total thrust isT = 0.9537N. The chemical stage has specific
impulse Isp,c = 320 s and tankage fraction Kt = 0.08. Figure 9.11 presents the final-to-initial
mass ratio mGEO/mLEO for different values of the intermediate orbital radius r1 and incli-
nation i1. The extreme left end of the four curves presents EP transfers that begin at r1 =
6,778 (LEO), and thus the chemical stage has not increased the orbital energy. The top
(solid) curve in Figure 9.11 represents EP transfers that perform the entire 28.5 inclination
change, and hence the top left point (mGEO/mLEO = 0.7) is an all-EP transfer to GEO (the
chemical stage does not exist). The bottom curve in Fig. 9.11 represents coplanar EP trans-
fers (the chemical stage has performed the 28.5 inclination change). It should be clear to
the reader that the lower right point is an all-chemical-propulsion (Hohmann) transfer to
GEO (there is no EP stage). Although the all-chemical impulsive transfer exhibits a very
poor mass ratio (mGEO/mLEO = 0.2), its performance is slightly better than the low-thrust
LEO–GEO coplanar transfer that begins after the chemical stage performs the 28.5 incli-
nation change. The reader should note that the mass ratio for the Hohmann transfer in
Table 9.3 (mGEO/mLEO = 0.26) is larger than the all-chemical value in Figure 9.11 because
it includes the spent dry mass of the chemical stage. Figure 9.11 also shows that when the
intermediate radius r1 is greater than 30,000 km, the mass ratio ranges from 0.20 to 0.24
and therefore using the EP stage does not show any significant benefit.
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Figure 9.11 Final mass ratio for combined chemical-electric propulsion low-Earth orbit (LEO) to
geostationary-equatorial orbit (GEO) transfer.
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Figure 9.12 shows the low-thrust transfer time for the EP stage to reach GEO. The top
curve in Figure 9.12 represents low-thrust transfers that perform the entire 28.5 change
in inclination. The upper left point in Figure 9.12 is the all-EP transfer, and its 800-day
transfer time makes it an unattractive option for satellite operators. The reader should
note that the all-EP LEO-GEO transfer presented in Figure 9.12 exhibits a much higher
transfer time (800 days) compared with the Hall-effect LEO–GEO transfer time in
Table 9.3 (241 days). This dramatic time increase is due to the difference in time con-
stants: τ =m0/m = 2,691 days for the EP system used for Figure 9.12, and τ =m0/m =
804 days for the EP system used for Table 9.3. The time constant τ is very large for
the all-EP transfers presented here because the initial mass in LEO is very large (i.e.,
m0 = 13,300 kg). Note that the initial mass in LEO is m0 = 2,500 kg for the low-thrust
LEO–GEO transfers presented in Table 9.3.
Mission operators can use Figures 9.11 and 9.12 to make a trade between the GEO

payload mass and the EP transfer time. For example, suppose that mission designers
require a mass ratio of at least 0.4 in order to justify the use of the additional EP stage.
Figure 9.11 shows that the intermediate orbit r1 = 12,040 km, i1 = 28.5 will provide this
mass ratio, and Figure 9.12 shows that the corresponding EP transfer time is 306 days.
However, we could also select the intermediate orbit r1 = 10,210 km, i1 = 19 and achieve
a mass ratio of 0.4 with an EP transfer time of 283 days. Table 9.4 summarizes combina-
tions of r1 and i1 that result in a final mass ratio of 0.4. The smallest EP transfer time is
about 276 days for an intermediate orbit where r1 = 11,072 km and i1 = 21 . We could
perform a similar analysis where we vary r1 and i1 to achieve a desired EP transfer time
(say, 150 days) and select the combination that maximizes the final mass ratio. Table 9.5
presents this tradeoff where r1 = 15,164 km and i1 = 17 provides the maximum mass
ratio (mGEO/mLEO = 0.3106) for an EP transfer time of 150 days.
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Figure 9.12 Electric propulsion transfer time for combined chemical-electric propulsion low-Earth orbit
(LEO) to geostationary-equatorial orbit (GEO) transfer.
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The ARTEMIS spacecraft demonstrated the combined use of chemical and electric pro-
pulsion modes to reach its target orbit. In July 2001, the European Space Agency (ESA)
attempted to send the ARTEMIS telecommunications satellite to GEO using the Ariane
5 launch vehicle [7]. Due to a partial failure of the Ariane booster, the ARTEMIS spacecraft
reached a sub-nominal elliptical orbit with perigee and apogee altitudes of 580 and
17,350 km, respectively. The Ariane’s target was a geostationary transfer orbit (GTO) with
an apogee altitude of 35,786 km (i.e., GEO altitude). Although the spacecraft was equipped
with a chemical upper stage (intended for the GTO apogee burn to complete the transfer
to GEO), this stage did not have enough liquid propellant to complete the transfer from its
low-energy elliptical orbit. Mission operators at ESA redesigned the transfer strategy to
GEO by utilizing the chemical-propulsion upper stage and the onboard EP ion thrusters
(the ion thrusters were intended for on-orbit station-keeping). First, ARTEMIS fired

Table 9.4 Combined chemical-electric propulsion low-Earth orbit (LEO) to geostationary-equatorial
orbit (GEO) transfers with mGEO/mLEO = 0.4.

Intermediate orbit radius, r1
(km) Intermediate inclination, i1

Electric propulsion transfer time
(days)

12,042 28.5 306.4

12,089 27.0 295.5

11,973 25.0 284.4

11,641 23.0 277.6

11,072 21.0 276.2

10,210 19.0 283.2

8,882 17.0 307.3

Table 9.5 Combined chemical-electric propulsion low-Earth orbit (LEO) to geostationary-equatorial
orbit (GEO) transfers with electric propulsion transfer time = 150 days.

Intermediate orbit radius, r1
(km) Intermediate inclination, i1

Final mass ratio,
mGEO/mLEO

20,652 28.5 0.2733

19,961 27.0 0.2805

19,016 25.0 0.2895

18,055 23.0 0.2976

17,087 21.0 0.3042

16,120 19.0 0.3087

15,164 17.0 0.3106

14,228 15.0 0.3093

13,317 13.0 0.3045

12,432 11.0 0.2962
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its chemical stage at several perigee passes to raise apogee to an altitude of 31,000 km.
Next, the chemical stage was fired at successive apogee passes to raise perigee and establish
a circular orbit with an altitude of 31,000 km (Example 7.5 analyzed the impulsive Δv
requirements of the chemical-propulsion stage). Finally, the ion thrusters (T = 0.015 N)
performed the remaining orbit transfer from the 31,000-km altitude circle to GEO.
ARTEMIS reached its GEO target orbit in late January 2003 more than 18 months after
its launch (the total EP thrusting time was about 9 months). Despite the long transfer time
and delay in satellite operations, the ion propulsion system essentially saved the ARTEMIS
spacecraft from total failure. ARTEMIS successfully served as a communication satellite
for Europe and the Middle East and exceeded its expected mission lifetime of 10 years.
Problem 9.19 at the end of this chapter illustrates the low-thrust transfer phase of the
ARTEMIS spacecraft.

9.8 Low-Thrust Transfer Issues

This chapter ends with a brief discussion of issues associated with low-thrust transfers.
We have hinted at some of these issues in previous sections.
Obtaining closed-form (analytical) expressions for the low-thrustΔv and transfer time

is only feasible for circle-to-circle transfers, pure inclination changes between circular
orbits, and circle-to-circle transfers with an inclination change. Furthermore, these ana-
lytical solutions (particularly Edelbaum’s method) assume that the low-thrust transfer
involves continuous thrust without interruption. We were able to develop an approxi-
mate Earth-shadowmodel for coplanar circle-to-circle transfers in Section 9.4. However,
it is difficult to extend this technique to maneuvers with plane changes. Determining the
accurate Earth-shadow conditions is a complex calculation due to the continually chan-
ging three-dimensional orientation of the orbit relative to a geocentric frame and the
continually changing sun–Earth vector with its seasonal variations. For example, it is
not too difficult to visualize that a near-GEO orbit will always experience an Earth-
shadow eclipse at the March and September equinox dates but will not enter the Earth’s
shadow at the June and December solstice dates (see Figure 3.1). Because solar arrays
provide the power for EP systems, the Earth-eclipse periods of zero thrust will extend
the total transfer time.
Low-thrust transfers between arbitrary orbits (such as elliptical orbits) do not have

analytical solutions, and therefore numerical integration of the powered equations of
motion is necessary. For example, there is no analytical solution for the low-thrust trans-
fer from GTO to GEO. Furthermore, merely finding a feasible low-thrust transfer
between the given initial and target orbits is usually not acceptable. Trajectory optimi-
zation techniques determine the optimal thrust-control steering program that minimizes
or maximizes some desired performance index. It turns out that Edelbaum’s solution
(9.47) is the minimum Δv transfer between inclined circular orbits with continuous
thrust. Conway [6] presents a variety of numerical trajectory optimization methods
for low-thrust transfers.
Transit through the Van Allen radiation belts causes solar array power to degrade.

High-energy particles (electrons and protons) exist in two toroidal “belt” regions in
the Earth’s magnetosphere. The more severe inner belt has peak-radiation dose rates
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at altitudes ranging from 2,000 to 6,000 km. Extended exposure of solar cells in this high-
flux environment causes significant power degradation over time. It is possible, however,
to limit the power degradation by shielding the solar cells but this approach adds mass to
the power system. Modeling the radiation environment and its interaction with solar
cells is extremely complicated and uncertain due to the variability in radiation flux
caused by solar flares. Low-thrust transfers that pass through the radiation belts must
account for power degradation effects because diminishing power will cause diminishing
thrust acceleration, which in turn slows down the transfer rate through the belts!
A combined chemical-electric propulsion strategy is useful in this scenario: the chemi-
cal-propulsion stage raises the orbit above the most severe region of the belts, and the EP
stage completes the transfer with reduced power degradation.

9.9 Summary

In this chapter, we discussed the fundamentals of low-thrust orbit transfers.We presented
a brief introduction to electric propulsion systems and the associated interactions between
input power, thrust, specific impulse, and mass-flow rate. Next, we developed analytical
solutions for low-thrust transfers by integrating Gauss’ variational equations where the
small propulsive thrust is a perturbation. These analytical solutions only exist for special
orbit-transfer scenarios, such as quasi-circular spiral transfers between coplanar circular
orbits and pure inclination changes for circular orbits. The analytical solutions allow us
to calculate the low-thrust velocity increment (Δv), which through the rocket equation
determines propellant mass and transfer time. We also developed a method that estimates
the transfer time for quasi-circular, low-thrust transfers in the presence of Earth-shadow
eclipses. Finally, we ended the chapter by presenting Edelbaum’s analytical method
for determining low-thrust transfers between inclined circular orbits, and combined
chemical-electric propulsion strategies for reducing the transfer time.
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Problems

Conceptual Problems

9.1 The Aerojet BPT-4000 Hall thruster is operating with an input power of 3.5 kW
and a specific impulse of 1,840 s. If the Hall thruster is producing 216 mN of thrust,
determine its thruster efficiency.

9.2 An ion thruster is operating with an input power of 2 kW and is producing 79 mN
of thrust. The thruster efficiency is 61%. Determine the specific impulse of the ion
thruster.

9.3 In our derivation of the analytical low-thrust solutions we assumed that semimajor
axis changed very little over a single powered orbital revolution (hence the quasi-
circular nature of the unwinding spiral trajectory). However, as the powered space-
craft “spirals out” to greater orbital radii (and greater orbital energy), it will even-
tually violate the quasi-circular assumption. If the thrust acceleration is 10–7 km/s2,
determine the radius where the change in semimajor axis exceeds 1% over a single
powered orbital revolution.

Problems 9.4–9.7 involve an electric-propulsion device with specific impulse
Isp = 2,900 s, thruster efficiency η = 60%, and input power Pin = 2 kW.

9.4 A 1,000-kg geocentric satellite is in a circular orbit with radius r = 8,500 km. Deter-
mine the orbital radius and spacecraft mass after 25 days of continuous thrusting
along the velocity vector (i.e., thrust is uninterrupted).

9.5 Repeat Problem 9.4 for the case where thrust is aligned in the opposite direction as
the satellite’s velocity vector.

9.6 A 1,000-kg geocentric satellite is in a circular orbit with radius r = 8,500 km. Deter-
mine the total transfer time to reach an orbital radius of 9,500 km for two cases: (a)
continuous thrust; and (b) thrust interrupted by Earth-shadow eclipses.

9.7 A 1,000-kg geocentric satellite is in a circular orbit with radius r = 35,000 km and
inclination i = 28.5 . Determine the propellant mass required to reduce the orbital
inclination to 15 .

9.8 An Earth-observation satellite is designed to operate in an 18,500-km altitude cir-
cular orbit with inclination i = 45 . However, the launch vehicle fails to achieve the
target orbit and instead delivers the 2,000-kg satellite to a circular orbit with an
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altitude of 17,300 km and inclination of 45 . Fortunately, the satellite is equipped
with ion thrusters (intended for station-keeping) that have a mass-flow rate of
0.13 kg/day and total thrust of 50 mN.
a) Determine the xenon propellant mass required to complete the orbit transfer

using the ion thrusters.
b) Compute the maximum possible Earth-shadow angle that could exist for the

satellite in its initial orbit.
c) Compute the low-thrust transfer time with and without Earth-shadow eclipses.

9.9 A spacecraft is using low-thrust electric propulsion to perform a coplanar
orbit-raising maneuver. The spacecraft begins in a circular orbit with radius
r0 = 12,500 km and with mass m0 = 3,000 kg. The ion propulsion system has a
specific impulse Isp = 3,100 s and its mass-flow rate is 1.12 kg/day. Compute
the quasi-circular orbital radius after 100 days of continuous thrusting (i.e., there
are no Earth-shadow effects).

9.10 A spacecraft has an initial mass of 1,400 kg in a 400-km altitude low-Earth orbit
(LEO) with an inclination of 28.5 . The spacecraft’s low-thrust propulsion system
has a specific impulse of 3,100 s and amass-flow rate of 0.61 kg/day. Determine the
final spacecraftmassdelivered togeostationary-equatorial orbit (GEO)andthe total
low-thrust transfer time for two transfer strategies: (a) a coplanar spiral to GEO
altitude followed by a pure inclination change to achieve an equatorial orbit; and
(b) a three-dimensional low-thrust transfer that simultaneously changes orbital
energy and inclination. Assume continuous-thrust transfers (i.e., no shadow
eclipses).

9.11 A3,500-kg satellite is in an8,000-kmaltitude circularEarthorbitwith an inclination
of 85 . The target orbit is an 8,000-km circular polar Earth orbit (i = 90 ). Compare
thepropellantmass andpowered-time requirements for twopropulsive options: (a)
a chemical rocket enginewith thrustT=1,850Nand Isp = 320 s; and (b) a low-thrust
Hall-effect thruster with T = 0.7 N and Isp = 1,600 s (assume continuous thrusting).

9.12 A European Space Agency launch vehicle delivers a 10,700-kg communication sat-
ellite to an equatorial 200-km altitude circular orbit. The satellite consists of a
chemical-propulsion stage (Isp,c = 320 s, tankage fraction Kt = 0.09) mated to an
electric-propulsion (EP) stage with a single Hall thruster (Isp,EP = 1,850 s, η =
0.55, Pin = 4 kW). The satellite’s target orbit is GEO and a mission constraint sets
the low-thrust transfer time to 60 days (neglect Earth-shadow eclipses). Determine:
a) The radius of the starting orbit for the low-thrust transfer.
b) The impulsive velocity increment Δvc and chemical-stage propellant mass.
c) The low-thrust velocity increment ΔvEP and xenon propellant mass.
d) The final satellite mass in GEO.

MATLAB Problem

9.13 Write an M-file that will compute the transfer time, propellant mass, and low-
thrust Δv for a low-thrust transfer between inclined circular orbits. The inputs
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should be the initial and final circular-orbit altitudes (km), the initial and final
orbital inclinations (degrees), the spacecraft’s initial mass (kg), the electric-
propulsion thrust magnitude (N), and the specific impulse (s). Assume continu-
ous-thrust transfers with no thrust interruption.

Mission Applications

9.14 The initial mass of an electric-propulsion spacecraft is

m0 =mp +mpp +mPL

where mp is the propellant mass, mpp is the total power-plant mass (solar array,
power processing units, thrusters, and xenon propellant tank), andmPL is the pay-
load mass. The ratio of the input array power Pin to the power-plant mass is called
the “specific power,” α = Pin/mpp. Suppose an electric-propulsion spacecraft has
an input power of 8.5 kW, specific impulse Isp = 3000 s, thruster efficiency η =
64%, total xenon propellant mass mp = 90 kg, specific power α = 40 W/kg, and
payload mass mPL = 1,000 kg. Determine the low-thrust velocity increment Δv,
the total low-thrust transfer time (in days), and the final orbit for a coplanar trans-
fer starting at a circular 12,300 km radius geocentric orbit. Assume continuous
(uninterrupted) thrust and complete usage of all xenon propellant.

9.15 Mission designers want to use Hall thrusters for a low-thrust transfer from a cir-
cular 8,000-km altitude mid-Earth orbit (MEO) to GEO. The spacecraft mass in
MEO is 1,000 kg and the initial MEO has an inclination of 20 . The Hall thruster
system has Isp = 1,650 s and thruster efficiency η = 0.56. Determine the minimum
input power so that the MEO–GEO transfer time is 120 days. Thrust is contin-
uous during the low-thrust transfer.

9.16 An engineer is considering two electric propulsion options for transferring a
spacecraft to GEO: (a) an ion thruster with specific impulse Isp = 3,100 s and
thruster efficiency η = 0.65; and (b) a Hall thruster with specific impulse Isp =
1,700 s and thruster efficiency η = 0.53. Both options will use an 8-kW solar array
for input power, and both options begin with a total spacecraft mass of 900 kg.
The initial orbit is circular with an altitude of 10,000 km and inclination of
15 . The best option will provide the highest “transportation rate” which is
defined as the spacecraft mass delivered to GEO divided by the low-thrust transfer
time (in days). Which thruster option provides the greatest “transportation rate”?
Assume that the thrusters operate continuously during the orbit transfer to GEO
(i.e., ignore Earth-shadow effects).

9.17 Satellite operators want to reposition a satellite that is in a GEO. Because they
want to initiate an eastward drift, they use the ion engine to spiral inward to a
lower circular orbit with a radius of 41,500 km. After the proper coasting time
in the lower orbit, the ion thruster raises the orbit back to GEO. If the satellite’s
initial mass in GEO is 2,500 kg and the ion thruster has a specific impulse of 3,100 s,
determine the total xenon propellant mass for the repositioning maneuver.

Space Flight Dynamics332



9.18 Mission analysts want to design an orbit-transfer strategy that delivers a total
satellite mass of 800 kg to a 20,000-km altitude circular orbit. They plan to use
a Hall thruster for the final transfer phase to the target orbit. The Hall-effect
device has a thrust magnitude of 160 mN and a specific impulse of 1,800 s.
The satellite user (the customer) demands that the low-thrust orbit transfer
take no more than 90 days, and therefore the mission planners decide to use a
chemical-propulsion stage (Isp = 325 s) to perform the initial orbit transfer from
a 200-km circular LEO. Determine the total satellite mass in LEO, the chemical-
stage propellant mass, the xenon propellant mass, and the radius of the starting
orbit for the low-thrust transfer. All orbit transfers are coplanar. Determine the
low-thrust transfer time with and without Earth-shadow eclipses.

9.19 In July 2001, the European Space Agency launched the ARTEMIS spacecraft on
an Ariane 5 booster rocket. As discussed in Section 9.7, the Ariane launch vehicle
encountered a partial failure and did not achieve the proper intermediate orbit
required for a transfer to GEO. Consequently, the onboard chemical-propulsion
upper stage raised the ARTEMIS spacecraft to a circular orbit with an altitude of
31,000 km. The ARTEMIS spacecraft then used its electric propulsion ion thrus-
ters (originally intended for on-orbit inclination control) to complete the orbit
transfer from the 31,000-km altitude circular orbit to GEO. Determine the total
xenon propellant mass for this coplanar transfer and the total transfer time
(include Earth-shadow effects). The ARTEMIS spacecraft’s mass in the
31,000 km altitude circular orbit is 1,800 kg, its total thrust from the ion engines
is 0.015 N, and the specific impulse is 3,200 s.

9.20 Design a feasible orbit-transfer strategy from LEO to GEO using combined chem-
ical- and electric-propulsion stages. Assume that the Atlas V 521 is the launch
vehicle of choice and therefore the total spacecraft mass in LEO is 12,725 kg
(LEO is a 500-km altitude circular orbit with an inclination of 28.5 ). Search
the engineering literature and select an existing EP thruster. You will need to
determine the EP input power, specific impulse, and total thrust magnitude
(remember that you may use multiple thrusters simultaneously). In addition,
select the appropriate parameters for the chemical stage. Design a feasible
orbit-transfer strategy that delivers a payload mass of at least 2,000 kg to GEO
with a low-thrust transfer time of less than 100 days. Compute payload mass,
mPL, by using the total mass of the spacecraft at the start of the EP-powered phase:

m1 =mp,EP +mpp +mPL

where mp,EP is the xenon propellant mass and mpp is the total EP power-plant
mass (solar array, power processing units, thrusters, and xenon propellant tank).
Power-plant mass can be computed using the “specific power,” α = Pin/mpp =
40 W/kg. Clearly document your orbit-transfer design by presenting all of the
important characteristics of the chemical and EP stages, and the two orbit-
transfer phases.
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10

Interplanetary Trajectories

10.1 Introduction

All prior chapters have primarily focused on satellite motion influenced by a single cen-
tral gravity field (the exception is the restricted three-body problem studied in
Section 5.6). In fact, we can obtain closed-form analytical solutions only for satellite
motion governed by the two-body problem (it may be useful for the reader to review
the assumptions and limitations of the two-body problem presented in Chapter 2). Much
of our discussion so far has dealt with determining and predicting the motion of Earth-
orbiting satellites. In doing so, we have laid the foundation for computing orbital position
and velocity, time of flight (TOF), and the velocity increment (Δv) associated with man-
euvers between orbits.
As the title indicates, this chapter involves computing space trajectories from an initial

planetary body to a target planet (of course, all interplanetary missions begin with depar-
ture from Earth). At first glance, the reader may wonder if we have the analytical tools to
tackle such a daunting problem. Remember that our “analytical tool-kit” consists of
equations that describe two-body motion: conservation of energy and angular momen-
tum, and Kepler’s laws. Therefore, a reasonable approach to obtaining an interplanetary
trajectory is to break it into a sequence of two-body segments with respect to the appro-
priate central gravitational body. Using our “two-body tool-kit,” we can obtain closed-
form solutions of satellite motion relative to the dominant gravity field. Finally, we ensure
the continuity of the interplanetary trajectory by piecing together (or “patching”) the var-
ious two-body orbits (or conic sections). This strategy is the basis of the patched-conic
method, which serves as a very useful technique for preliminary design of interplanetary
missions. As with orbital maneuver analysis studied in Chapters 7–9, the ultimate goal of
interplanetary mission analysis is to evaluate the total velocity increments required to
carry out a space mission. It is extremely important that the reader keeps this objective
in mind: minimizing the total Δv will minimize the propellant mass (through the rocket
equation) and ultimately determine how much payload mass a space vehicle delivers to
the planetary target.
Before beginning our discussion of the patched-conic method, it is instructive to sur-

vey a few actual interplanetary missions. Figure 10.1 shows the trajectory of the Mariner
2 mission to Venus in 1962. Mariner 2 was the first spacecraft to encounter a planetary
target. Figure 10.1 shows the positions of Earth and Venus in their respective orbits about
the sun at launch on August 27, 1962 (recall that the inertial +XH axis points along the
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vernal equinox direction, and that Earth crosses the +XH axis on the first day of the
autumnal equinox, roughly September 22 or 23). Figure 10.1 also shows the spacecraft’s
arrival at Venus 3.5 months later in mid-December. Clearly, the timing of the launch
must be planned precisely so that the Mariner 2 spacecraft encounters Venus when
its trajectory crosses Venus’ orbit. This illustration also shows that the Mariner 2 space-
craft followed an inward elliptical transfer from Earth’s orbit to Venus’ orbit. However,
unlike the orbit transfers discussed in Chapter 7, Figure 10.1 shows a heliocentric (or sun-
centered) transfer where the sun is the primary gravitational body. Because Mariner 2
spent the great majority of its orbital transfer in heliocentric space, we may treat this
trajectory as a two-body problem with respect to the sun. Of course, there are relatively
brief periods (at the beginning and end of the mission) where the spacecraft is primarily
under the gravitational influence of the departure and arrival planetary bodies.
Figure 10.2 shows the heliocentric trajectory of the Mars Reconnaissance Orbiter
(MRO), which was launched on August 12, 2005 and arrived at Mars 7 months later
on March 10, 2006. In this case, the interplanetary trajectory is an outward heliocentric
ellipse departing the inner orbit (Earth) and arriving at an outer orbit (Mars). Figure 10.2
also shows that Earth’s orbit is nearly circular while Mars’ orbit is noticeably eccentric; in
fact, the MRO arrival appears to occur as Mars is approaching its aphelion. Figure 10.3
shows the Cassini mission to Saturn which departed Earth on October 15, 1997 and
arrived at Saturn on July 1, 2004 [1]. The Cassini interplanetary trajectory is much more
complicated when compared with the “direct” Earth–Venus and Earth–Mars missions
illustrated in Figures 10.1 and 10.2. Figure 10.3 shows that the Cassini spacecraft com-
pleted two orbits about the sun that included three so-called “gravity assists” (labeled in
Figure 10.3 as “flybys”) with Venus and Earth. After the August 1999 gravity assist with
Earth, the Cassini spacecraft encountered Jupiter in late December 2000 for its final grav-
ity assist before reaching Saturn 3.5 years later. A gravity assist is a close encounter with a
planetary body in order to change the spacecraft’s heliocentric orbit; we will analyze grav-
ity assists at the end of this chapter.

Earth at launch
Aug 27, 1962

Venus at arrival
Dec 14, 1962 Earth-Venus

heliocentric 
transfer

Venus at
launch

sun

YH

XH

Figure 10.1 Mariner 2 heliocentric trajectory.
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Figure 10.2 Mars Reconnaissance Orbiter heliocentric trajectory.
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Figure 10.3 Cassini heliocentric trajectory. Source: Courtesy of NASA/JPL-Caltech.
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10.2 Patched-Conic Method

Figure 10.4 presents a schematic diagram of an interplanetary mission from Earth to
Mars. Using “clock-face coordinates,”we see that the spacecraft’s departure from Earth’s
orbit is at about 5 o’clock and arrival atMars’ orbit is at about 11 o’clock. The heliocentric
transfer between the two planetary orbits is an ellipse with the sun as the primary grav-
itational body. This phase of themission (typically called the “interplanetary cruise”) lasts
7–9 months for an Earth–Mars trajectory. However, in order to begin the interplanetary
cruise, the spacecraft must first escape Earth’s gravitational pull and transition from
“near-Earth space” to “interplanetary space.” The insert figure in the lower right corner
of Figure 10.4 shows a “zoomed-in view” of the spacecraft’s departure from Earth orbit.
Here we see a hyperbolic departure trajectory leaving a low-Earth orbit (LEO) and even-
tually crossing a fictitious boundary called the “Earth sphere of influence” (Earth SOI). In

Earth 
departure

Mars 
arrival

Heliocentric 
transfer
(ellipse)

sun

Earth SOI

Hyperbolic
departure

Mars SOI

Hyperbolic
arrival

Figure 10.4 Patched-conic interplanetary trajectory.
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a similar fashion, the upper left corner of Figure 10.4 shows a zoomed-in view of the
hyperbolic arrival trajectory at Mars. In this case, the spacecraft crosses the fictitious
“Mars sphere of influence” (Mars SOI) as it enters Mars’ gravity field.

10.2.1 Sphere of Influence

The SOI is a fictitious boundary for two-body motion about a planet. If a satellite is
within the Earth’s SOI, then its orbit can be approximated as a two-body problem with
the Earth as the central body. However, as a spacecraft leaves a planet and crosses its SOI,
we can approximate its orbit as a two-body problem with the sun as the central body.
Clearly, the SOI concept does not represent the true physics of motion in an N-body
gravity field. However, the SOI is a convenient fabrication that allows us to analyze a
complicated interplanetary trajectory as a sequence of two-body problems (after all,
we can only obtain analytical solutions of two-body motion).
Laplace defined the SOI boundary using the ratio of the perturbing acceleration and

the central-body acceleration. To show this concept, consider a spacecraft that is at a
great distance from the Earth where we assume that the Earth and sun are the only grav-
itational bodies influencing the satellite’s motion. The total gravitational acceleration of
the satellite as expressed in an Earth-centered frame is

a1 = aE + ap,s (10.1)

where aE is the central-body acceleration due to the Earth’s gravity and ap,s is the perturb-
ing acceleration due to the sun’s gravity. In a similar fashion, the total gravitational accel-
eration of the satellite as expressed in a sun-centered frame is

a2 = as + ap,E (10.2)

where as is the central-body acceleration due to the sun’s gravity and ap,E is the perturb-
ing acceleration due to Earth. Laplace equated the ratios of perturbing and central-body
accelerations:

ap,s
aE

=
ap,E
as

(10.3)

The SOI is the boundary where these two ratios are equal. We will not present the der-
ivation defining the SOI radius; the interested reader may consult Battin [2;
pp. 395–397], Vallado [3; pp. 945–948], or Prussing and Conway [4; pp. 155–158] for
the details. The boundary where Eq. (10.3) holds is approximately spherical, and the
radius of the Earth’s SOI is

rSOI = rE
ME

Ms

2/5

(10.4)

where rE is the mean Earth–sun distance,ME is the mass of the Earth, andMs is the mass
of the sun. We may compute the SOI radius of any planet in our solar system by using
Eq. (10.4) with the appropriate values for the mean planet–sun distance (i.e., semimajor
axis) and planetary mass. Table 10.1 presents each planet’s SOI radius as well as its semi-
major axis in order to put the SOI into proper perspective. Note that Table 10.1 presents
the planet–sun distance in terms of the astronomical unit (AU) which is the mean
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distance from the Earth to the sun (essentially the semimajor axis of the Earth’s helio-
centric orbit, i.e., 1 AU = 149,597,871 km). While the Earth’s SOI radius is nearly 1 mil-
lion km, it is only 0.6% of the mean Earth–sun distance and hence it would be difficult to
see the SOI on a heliocentric trajectory plot such as Figure 10.4. Table 10.1 shows that
Jupiter has the largest SOI as a percentage of its semimajor axis.
The patched-conic method breaks the entire interplanetary mission into a sequence of

distinct phases where each phase is a separate two-body problem. Figure 10.4 illustrates
the three distinct phases summarized below:

1) Earth-departure phase: The spacecraft leaves the Earth’s gravity field along a hyper-
bolic escape trajectory, which is analyzed using two-body motion in an Earth-
centered inertial frame. When the spacecraft crosses the Earth’s SOI, it has reached
the first “patch point”where we must “turn off” Earth’s gravity and “turn on” the sun’s
gravity.

2) Heliocentric phase: The spacecraft follows an elliptical transfer orbit where the sun is
the primary gravitational body. This “interplanetary cruise” is analyzed using two-
body motion in the heliocentric-ecliptic coordinate frame. Because the radius of each
planet’s SOI is small relative to the scale of the solar system, we can use the heliocen-
tric position vectors of the departure and arrival planets as the boundary conditions of
the heliocentric phase.

3) Planetary-arrival phase: The spacecraft crosses the target planet’s SOI (the second
“patch point”) where we “turn off” the sun’s gravity and “turn on” the planet’s gravity.
The arrival trajectory inside the planet’s SOI is a hyperbola analyzed in an inertial
planet-centered frame.

As previously mentioned, the heliocentric phase encompasses the great majority of the
entire mission as the spacecraft cruises from Earth’s orbit to the target planet’s orbit. The
duration of the interplanetary cruise depends on the target planet and may take several
months to several years. In contrast, the planet-centered departure and arrival phases
take only a few days. Therefore, the heliocentric phase is typically determined first in
order to establish the launch and arrival dates and the mission duration.

Table 10.1 Planetary sphere of influence radii.

Planet
Semimajor axis, a
(AU)

SOI radius, rSOI
(km)

SOI radius, rSOI
(AU) rSOI/a

Mercury 0.387 112,400 0.0008 0.0019

Venus 0.723 616,300 0.0041 0.0057

Earth 1.000 924,800 0.0062 0.0062

Mars 1.524 577,300 0.0039 0.0025

Jupiter 5.203 48,208,900 0.3223 0.0619

Saturn 9.555 54,655,500 0.3653 0.0382

Uranus 19.218 51,795,300 0.3462 0.0180

Neptune 30.110 86,895,000 0.5809 0.0193
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Another consequence of the using the patched-conic method is that we must perform
coordinate transformations between the various body-centered frames at the “SOI patch
points.” It is critical that we differentiate between the spacecraft’s velocity relative to a
planet and its velocity relative to the sun. The reader should remember that the two-body
problem assumes that we have an inertial frame fixed at the center of the sole gravita-
tional body and hence velocity is relative to the central body. Therefore, when we analyze
the heliocentric trajectory, the spacecraft’s velocity must be relative to the sun. When a
spacecraft departs (or arrives at) a planet, we must be careful to use the proper vector
addition to determine the appropriate velocity for the subsequent two-body problem.
Before we present the patched-conic method, it is useful to define a new set of refer-

ence units for heliocentric transfers. Unlike Earth-centered orbits, the radial distances of
heliocentric orbits are hundreds ofmillions of kilometers. A convenient way to work with
heliocentric orbits is to use a set of reference units (or “canonical units”) to normalize the
distances, velocities, and time. For heliocentric orbits, the reference distance unit is 1 AU,
or rref = 149,597,871 km. The reference velocity is defined as the circular orbital speed in
a heliocentric orbit at 1 AU:

vref =
μs
rref

= 29 7847 km/s (10.5)

where the sun’s gravitational parameter is μs = 1.327124(1011) km3/s2. This reference
velocity is the mean velocity of Earth in its orbit about the sun. The reference time unit
(TU) is defined such that vref = 1 AU/TU = 29.7847 km/s and hence 1 TU = 5,022,643 s
(=58.132 days). Note that if we normalize the sun’s gravitational parameter, we obtain
μs = 1 AU3/TU2 [e.g., Eq. (10.5) shows that μsmust be 1 AU3/TU2 so that vref = 1 AU/TU
for radius rref = 1 AU]. Table 10.2 summarizes the reference canonical units for heliocen-
tric orbits.Wewill express heliocentric orbits in terms of the canonical units AU, TU, and
AU/TU and use Table 10.2 to convert TU to days and AU/TU to units of kilometers
per second.

10.2.2 Coplanar Heliocentric Transfers between Circular Orbits

As a first demonstration of the patched-conic method, let us use the simplest possible
model of our solar system: circular, coplanar planetary orbits. Before we model the pla-
nets’ orbits as concentric circles, we will present their orbital elements. Table 10.3 pre-
sents the (approximate) orbital elements for the eight planets for the epoch (i.e.,
reference date) January 1, 2000. Table 10.3 comprises an ephemeris that determines
the locations of the planets in the heliocentric-ecliptic frame at any desired date. Recall
the definition of the longitude of perihelion (Chapter 3):

Table 10.2 Canonical units for a heliocentric system.

Dimension Reference unit

Distance 1 AU = 149,597,871 km

Time 1 TU = 5,022,643 s = 58.132444 days

Velocity 1 AU/TU = 29.784690 km/s
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ϖ Ω+ω (10.6)

The longitude of perihelion is measured from the +XH axis to the ascending node in the
ecliptic plane, and then from the node to perihelion in the planet’s orbital plane. Because
Earth’s orbital plane is the ecliptic plane,Ω is undefined and thereforeϖ is the angle from
+XH to Earth’s perihelion. The true longitude at epoch is

l0 Ω+ω+ θ0 (10.7)

True longitude defines the angular position of a planet at a given date (January 1, 2000 for
Table 10.3). For Earth, true longitude is measured in the ecliptic plane from the +XH axis
to its orbital position. We will treat the five planetary elements a, e, i, Ω, and ϖ as con-
stants and use Kepler’s equation to determine the true longitude l at a desired date.
Table 10.3 shows that Venus’ orbit is very nearly circular, whereas the orbits of Mars

and Mercury are eccentric. Venus and Mercury exhibit the largest inclinations with
respect to the ecliptic plane (3.4 and 7 , respectively). Table 10.4 presents a simplified
“two-dimensional (2-D) ephemeris” for Venus, Earth, andMars, where the planets’ orbits
are coplanar and circular. We will use the concentric-coplanar planetary system sum-
marized in Table 10.4 to demonstrate the steps required for the patched-conic method.
In Section 10.5, we will apply the patched-conic method to the full three-dimensional
(3-D) planetary ephemeris in Table 10.3.
Wewill first consider anEarth–Mars interplanetarymission. InChapter 7, we identified

theHohmann transfer as theminimum-energy transfer betweencircular orbits in termsof
total Δv. Figure 10.5 shows the Hohmann transfer ellipse from Earth’s circular orbit to
Mars’ circular orbit. Following the methods developed in Section 7.3, the semimajor axis
of the Hohmann transfer is half of the sum of the circular radii of Earth and Mars:

at =
1
2
rE + rM = 1 26185 AU (10.8)

Table 10.3 Planetary ephemeris for the epoch January 1, 2000.

Planet

Semimajor
axis, a
(AU)

Eccentricity,
e

Inclination, i
( )

Longitude of the
ascending
node, Ω
( )

Longitude of
perihelion, ϖ
( )

True
longitude at
epoch, l0
( )

Mercury 0.38710 0.20563 7.005 48.331 77.456 252.251

Venus 0.72333 0.00677 3.394 76.680 131.564 181.980

Earth 1.00000 0.01671 0.000 Undefined 102.937 100.466

Mars 1.52368 0.09340 1.850 49.558 336.060 355.433

Jupiter 5.20260 0.04849 1.303 100.464 14.331 34.351

Saturn 9.55491 0.05551 2.489 113.666 93.057 50.077

Uranus 19.21845 0.04630 0.773 74.006 173.005 314.055

Neptune 30.11039 0.00899 1.770 131.784 48.124 304.349

Source: Adapted from Ref. [3].
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where rE = 1 AU is the radius of Earth’s orbit about the sun and rM = 1.5237 AU is Mars’
orbital radius (we will use subscript t to denote characteristics of the transfer). Energy of
the Hohmann transfer ellipse is

ξt =
−μs
2at

= – 0 39624 AU2/TU2 (10.9)

where we have used heliocentric canonical units with the sun’s gravitational parameter
expressed as μs = 1 AU3/TU2. Finally, we compute the required velocities at each apse of
the Hohmann transfer ellipse using the energy equation

Perihelion v1 = 2 ξt +
μs
rE

=
−μs
at

+
2μs
rE

= 1 09887AU/TU (10.10)

Aphelion v2 = 2 ξt +
μs
rM

=
−μs
at

+
2μs
rM

= 0 72118AU/TU (10.11)

Let us now carefully consider these velocity requirements for the heliocentric Hohmann
transfer from Earth orbit to Mars orbit. The perihelion velocity v1 = 1.09887 AU/TU is
the spacecraft’s velocity relative to the sun when it is at 1 AU (i.e., at Earth’s orbit about
the sun). Because Earth’s orbital speed (relative to the sun) is vE = μs/rE = 1 AU/TU, the

Table 10.4 Concentric-coplanar planetary models for the epoch January 1, 2000.

Planet
Radius
(AU) Angular velocity (deg/day) True longitude at epoch, l0 ( )

Venus 0.7233 1.6021 181.980

Earth 1.0000 0.9856 100.466

Mars 1.5237 0.5240 355.433

Mars
arrival

sun

Earth
departure

Heliocentric 
Hohmann transfer

v1 > vE

v2 < vM

rM = 1.5237 AU

rE = 1 AU

Figure 10.5 Heliocentric Hohmann transfer from Earth orbit to Mars orbit.
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spacecraft must (somehow) achieve a velocity increment Δv = v1 – vE = 0.09887 AU/TU
(=2.9448 km/s) in order to begin the heliocentric Hohmann transfer. The reader should
remember that the heliocentric transfer begins when the spacecraft crosses the Earth’s
SOI as seen in Figure 10.4 (it is also important to remember that because the Earth’s
SOI is “small” on a solar-system scale, it is not shown in Figure 10.5).
Figure 10.6 shows a “zoomed-in” view of the Earth-departure hyperbola that begins the

Hohmann transfer to Mars. We see that the spacecraft escapes Earth on a hyperbolic
trajectory where the Earth is the central gravitational body. The spacecraft’s heliocentric
velocity at the first “patch point” (the Earth’s SOI) can be stated in sentence form as

Spacecraft's velocity = Earth's velocity + Spacecraft's velocity
relative to the sun relative to the sun relative to the Earth

Or, expressed as a mathematical equation

v1 = vE + v
+
∞ = 1 09887AU/TU (10.12)

where vE is Earth’s velocity relative to the sun (=1AU/TU) and v+
∞ is the hyperbolic excess

velocity of the spacecraft as it crosses the SOI (remember that the superscript + indicates
the hyperbolic departure asymptote). It is important to note that v+

∞ is the spacecraft’s
velocity relative to an Earth-centered frame. Therefore, Eq. (10.12) is the first velocity
transformation at the Earth’s SOI: the spacecraft’s velocity relative to the sun (v1) is equal
to the velocity of the moving coordinate frame (Earth’s velocity relative to the sun, vE)
plus the spacecraft’s velocity relative to the moving frame (v+

∞ ). In general, Eq. (10.12)
is a vector equation; however, for a Hohmann transfer, the departure asymptote is par-
allel with the Earth’s velocity vector vE as shown in Figure 10.6. Using Eq. (10.12), we see
that the hyperbolic excess velocity required for the Hohmann transfer to Mars is

Departure 
asymptote

Earth’s
shadow

Departure 
hyperbola

∆vTMI

LEO

To sun

Earth’s velocity 
(relative to the sun) 
vE

v∞
+

= 1 AU/TU

Earth’s SOI

Hyperbolic
excess velocity
(relative to Earth)

= 0.09887 AU/TU
= 2.9448 km/s

Figure 10.6 Earth-departure hyperbola for a Hohmann transfer to Mars.
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v+
∞ = v1−vE = 0 09887 AU/TU= 2 9448 km/s (10.13)

This hyperbolic excess speed establishes the energy required for the Earth-departure
hyperbola:

ξ=
v+2
∞
2

=
v2p
2
−
μE
rp

= 4 3359 km2/s2 (10.14)

where rp and vp are the radius and velocity of the Earth-departure hyperbola at perigee,
respectively. Typically, a launch vehicle inserts the interplanetary probe into a circular
low-Earth “parking orbit”; afterwards an upper stage is fired to establish the hyperbolic
escape trajectory. Assuming a 185-km altitude LEO (rLEO = rp = 6,563 km), we see that
the circular parking orbit velocity is vLEO = μE/rLEO = 7.7932 km/s. Using Eq. (10.14),
the perigee velocity of the Earth-departure hyperbola is vp = 11.4079 km/s. Finally, the
velocity impulse in LEO for “trans-Mars injection” (TMI) is

ΔvTMI = vp−vLEO = 3 6147 km/s (10.15)

Figure 10.6 shows the TMI velocity impulse applied in LEO. It is important to
emphasize that ΔvTMI is the only rocket burn required to send the spacecraft on
its coasting trajectory to Mars. No orbital maneuvers occur at the Earth’s SOI.
The previous discussion of the Hohmann transfer shown in Figure 10.5 identified
a velocity increment (0.09887 AU/TU = 2.9448 km/s) that must be added to Earth’s
sun-relative velocity vE in order to initiate the heliocentric Hohmann transfer. The
hyperbolic excess velocity v+

∞ provides this velocity increment at the Earth’s SOI but
it is not the result of a rocket burn performed at the SOI boundary. Hyperbolic excess
velocity v+∞ is a direct result of the TMI burn ΔvTMI applied in LEO as shown in
Figure 10.6. In practice, an upper rocket stage provides the TMI impulse at the appro-
priate location in the low-Earth parking orbit. It is extremely important for the reader to
understand the Earth-departure phase and the associated velocity transformations as the
spacecraft moves from an Earth-centered frame (before the SOI) to a sun-centered frame
(after the SOI).
Knowledge of ΔvTMI, initial mass in LEO, and the specific impulse of the upper stage

determine the mass of the spacecraft sent to Mars on a Hohmann transfer. It is also of
interest to note that the rocket burn to establish the escape hyperbola occurs when the
spacecraft is in the Earth’s shadow as seen in Figure 10.6.
Perhaps a more standardized method of characterizing the payload mass for an inter-

planetary transfer is to compute the launch energy C3. Recall that we defined launch
energy in Chapter 6 as the square of hyperbolic excess speed. For a coplanar Earth–Mars
Hohmann transfer, the launch energy is

C3 = v+∞
2
= 8 6718 km2/s2 (10.16)

Now we may use the launch-energy performance curve for a specific launch vehicle
to determine the payload mass. For example, Figure 6.9 shows the payload mass
capabilities for the Atlas V 551 and Delta IV Heavy boosters. Reference [5] is an
on-line launch-performance calculator provided by NASA. Table 10.5 presents
the payload mass to Mars (via a coplanar Hohmann transfer) for four different
launch vehicles.
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Finally, we use Eq. (4.42) to compute the spacecraft’s flight time on the Earth-departure
hyperbola from perigee to the Earth’s SOI

t− tp =
−a3

μE
esinh F −F (10.17)

To use this equation, we must determine the semimajor axis and eccentricity of the
hyperbolic trajectory and the hyperbolic anomaly (F) of the point in the escape trajectory
when the spacecraft reaches the Earth’s SOI. Semimajor axis is determined from the
escape energy, Eq. (10.14):

ξ=
v+ 2
∞
2

= −
μE
2a

= 4 3359 km2/s2

Therefore, a = –45,964.8 km. Perigee position and velocity on the hyperbola determine
the angular momentum, parameter, and eccentricity as follows:

Angular momentum h= rpvp = 74,870 km2/s = pμ

Parameter p=
h2

μ
= 14,063 km= a 1−e2

Eccentricity e= 1−
p
a
= 1 1428

The trajectory equation (2.45) determines the spacecraft’s true anomaly at the
Earth’s SOI:

r =
p

1 + ecos θ
= 924,800 km Earth’s SOI

which yields θ = 149.514 . Using Eq. (4.43) to compute sinh F and F yields

sinh F =
e2−1 sin θ
1 + ecos θ

= 18 4539 and F = 3 6092

Using these values in Eq. (10.17), we find that the hyperbolic flight time from perigee (at
LEO) to the Earth’s SOI is 272,836 s = 75.8 h = 3.16 days. This calculation confirms our
previous assertion that the Earth-departure phase lasts only a few days.
The previous discussion addresses the Earth-departure hyperbola; that is, the first

phase of the patched-conic interplanetary trajectory. Now let us use Eq. (7.7) to

Table 10.5 Payload mass for a Hohmann transfer to Mars
with C3 = 8.67 km2/s2.

Launch vehicle
Payload mass to Mars
(kg)

Atlas V 501 1,640

Falcon 9 2,750

Atlas V 551 5,195

Delta IV Heavy 9,090
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determine the flight time on the heliocentric Hohmann transfer from Earth to
Mars orbit:

tH =
π

μs
a3/2t

Using at = 1.2619 AU and μs = 1AU3/TU2, we obtain tH = 4.4531 TU. Using Table 10.2 to
convert heliocentric time units (TU) to days, we see that the Hohmann-transfer flight
time is 258.9 days or nearly 9 months.
Next, we turn our attention to the Mars-arrival phase. The spacecraft will follow a

hyperbolic trajectory after it crosses Mars’ SOI. To show this, we can calculate the
Mars-relative velocity at Mars’ SOI; that is, the second “patch point”

v−
∞ = v2−vM = – 0 08894AU/TU= –2 6490 km/s (10.18)

where v2 is the aphelion velocity of the spacecraft on the Hohmann transfer (relative to
the sun; Figure 10.5) and vM is the circular orbital velocity ofMars relative to the sun. The
magnitudes of these velocities are v2 = 0.72118 AU/TU and vM = μs/rM = 0.81012
AU/TU, respectively. Figure 10.7 shows the Mars-arrival hyperbolic trajectory. Because
the spacecraft’s sun-relative velocity at aphelion (v2) is less thanMars’ sun-relative veloc-
ity (vM), the spacecraft’s hyperbolic trajectory approaches Mars along its “leading edge.”
In other words, the minus sign in Eq. (10.18) indicates that the Mars-relative velocity
vector v−

∞ is in the opposite direction as Mars’ heliocentric velocity vector vM as shown
in Figure 10.7. It is very important to note that the instant the spacecraft crosses Mars’

v∞
–

Hyperbolic
arrival velocity
(relative to Mars)

= 0.08894 AU/TU 
= 2.6490 km/s

Arrival
hyperbola

Mars’ velocity 
(relative to the sun) 
vM = 0.81012 AU/TU

Arrival asymptote

Mars’ SOI

To sun

Mars’
shadow

Offset
distance, d

Departure
branch

Periapsis
passage

Figure 10.7 Mars-arrival hyperbola for a Hohmann transfer to Mars.
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SOI, the patched-conic method demands that we switch to a two-body problem with an
inertial frame fixed at the center of Mars. We may evaluate the energy of the two-body
trajectory relative to Mars at its SOI boundary:

22

22 −
∞

∞

−
∞ =−=

v
r

v
M

M
μξ

0
10 19

If the spacecraft has any Mars-relative velocity at the SOI boundary, then energy ξM is
positive and hence the spacecraft must be on a hyperbolic trajectory relative to Mars.
Figure 10.7 shows the spacecraft traveling along the arrival branch of the hyperbola to

periapsis and then departing Mars along the outgoing hyperbolic branch. A rocket burn
or flight through Mars’ atmosphere will alter the hyperbolic trajectory. Note that
Figure 10.7 shows periapsis passage occurring on the sun-lit side of Mars. If the mission
objectives call for a Mars orbiter, then the spacecraft fires an onboard rocket (typically at
periapsis) to reduce energy and establish a closed orbit. If a direct landing is desired (such
as the Mars Exploration Rover missions or Mars Science Laboratory), then the hyperbo-
la’s periapsis radius is targeted so that it is below the appreciable Martian atmosphere.
The complete characteristics of the Mars-arrival hyperbola (such as its periapsis radius)
can only be determined if the offset distance d is known. Figure 10.7 shows that d is the
distance between the arrival asymptote and a parallel line passing through the center of
Mars. We will discuss the planetary arrival trajectory in more detail in Section 10.4.
At this point, it is useful to review Figure 10.4 and identify the three distinct phases of

the patched-conic method: (1) the Earth-departure hyperbola (Figure 10.6); (2) the heli-
ocentric interplanetary cruise (Figure 10.5); and (3) the Mars-arrival hyperbola
(Figure 10.7). Each phase consists of a two-body problem with respect to the appropriate
central body. The reader should carefully note that Figure 10.4 shows a “general”
patched-conic Earth–Mars mission whereMars’ orbit is depicted accurately as an ellipse.
Figures 10.5–10.7 present a specialized case: a coplanar Hohmann transfer between cir-
cular Earth and Mars orbits. It is important to remember that modeling the planets’
orbits as coplanar circles about the sun simplifies the analysis at the cost of accurately
calculating the heliocentric transfer time and launch energy. In Section 10.5, we will pose
the heliocentric orbit transfer as Lambert’s problem with the planetary positions defined
by an accurate ephemeris (i.e., Table 10.3).

Example 10.1 Figure 10.8 shows a heliocentric Hohmann transfer from Earth to
Venus. Assuming a coplanar transfer between circular planetary orbits, determine the
following parameters: (1) flight time for the heliocentric interplanetary cruise phase;
(2) launch energy C3 for the Earth-departure phase; (3) velocity increment ΔvTVI for
the “trans-Venus injection” (TVI); and (4) hyperbolic excess velocity v−∞ at Venus’
SOI. Assume that an upper stage performs the ΔvTVI burn in a 185-km altitude circular
low-Earth orbit.
The semimajor axis of the Hohmann transfer is half of the sum of the circular radii of

Earth and Venus:

at =
1
2
rE + rV = 0 8617 AU
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The radius of Venus’ orbit is 0.7233 AU. Flight time for the interplanetary cruise is half of
the period of the Hohmann-transfer ellipse:

tH =
π

μs
a3/2t = 2 5128 TU= 146 1days

Energy of the Hohmann transfer ellipse is

ξt =
−μs
2at

= –0 58027AU2/TU2

Using the energy equation, we can compute the sun-relative velocity at Earth departure
(aphelion on the Hohmann transfer):

Aphelion v1 = 2 ξt +
μs
rE

= 0 9162 AU/TU

Immediately, we note that the spacecraft’s sun-relative velocity v1 is less than the Earth’s
orbital velocity (vE = 1 AU/TU) as shown in Figure 10.8. Therefore, when the spacecraft
crosses Earth’s SOI, its velocity relative to the sun must be less than Earth’s orbital veloc-
ity so that it begins an inward transfer to Venus (see Figure 10.8). The spacecraft’s veloc-
ity relative to the sun as it crosses the Earth’s SOI (at the first “patch point”) is

v1 = vE + v +
∞

The Earth-relative hyperbolic excess velocity is

v +
∞ = v1−vE = – 0 0838AU/TU= −2 4954 km/s

where v1 is the aphelion velocity of the spacecraft on the Hohmann transfer (relative to
the sun; see Figure 10.8) and vE is the circular orbital velocity of Earth relative to the sun.
The negative sign on hyperbolic departure velocity indicates that v +

∞ is in the opposite
direction as v1. Figure 10.9 shows the Earth-departure hyperbola. The reader should note
that the vector addition vE + v +

∞ in Figure 10.9 yields v1 = 0.9162 AU/TU as required for
the Hohmann transfer in Figure 10.8.

Venus 
arrival

sun

Earth
departure

Heliocentric 
Hohmann transfer

v1 < vE

v2 > vV

rV = 0.7233 AU

rE = 1 AU

Figure 10.8 Earth–Venus heliocentric Hohmann transfer (Example 10.1).
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We can determine launch energy by squaring the magnitude of the hyperbolic excess
velocity:

C3 = v+
∞

2
= 6 2271 km2/s2

The TVI velocity impulse is the difference between the hyperbolic perigee velocity at
radius rLEO and LEO velocity. First, we determine the energy of the Earth-departure
hyperbola using v+

∞

ξE =
v+
∞

2

2
=

v2p
2
−

μE
rLEO

= 3 1135 km2/s2

Using rLEO = 185 km + RE = 6,563 km and μE = 3.986(105) km3/s2 (for an Earth-relative
hyperbola), we find that perigee velocity is vp = 11.3003 km/s. Circular velocity in LEO is
vLEO = μE/rLEO = 7.7932 km/s. Hence, the TVI impulse is

ΔvTVI = vp−vLEO = 3 5070 km/s

The reader should compare the velocity impulses for trans-Mars injection and TVI:
these two velocity impulses differ by a little more than 100 m/s! However, for a Mars
mission, the departure asymptote is aligned with Earth’s sun-relative velocity
(Figure 10.6) whereas for a Venus mission, the departure asymptote is in the opposite
direction as vE (Figure 10.9).

Departure 
hyperbola

Departure 
asymptote

Earth’s velocity 
(relative to the sun) 
vE = 1 AU/TU

Hyperbolic
excess velocity
(relative to Earth)

= 0.0838 AU/TU 
= 2.4954 km/s

Earth’s SOI
To sun

Earth’s
shadow

∆vTVI

LEO

v∞
+

Figure 10.9 Earth-departure hyperbola for a Hohmann transfer to Venus (Example 10.1).
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The final calculation involves the spacecraft’s hyperbolic arrival velocity at Venus’ SOI.
First, we must compute the spacecraft’s sun-relative velocity at Venus’ orbit (perihelion
on the Hohmann transfer):

Perihelion v2 = 2 ξt +
μs
rV

= 1 2667AU/TU

Venus’ orbital velocity is vV = μs/rV = 1 1758AU/TU. Therefore, the spacecraft’s sun-
relative velocity is greater than Venus’ orbital velocity at SOI arrival (see Figure 10.8). The
Venus-relative hyperbolic arrival velocity is

v−∞ = v2−vV = 0 0909AU/TU= 2 7066 km/s

We will revisit the Venus-arrival phase in Section 10.4.

10.3 Phase Angle at Departure

The previous section has presented an Earth–Mars Hohmann transfer in some detail.
For simplicity, we have assumed that both planetary orbits are coplanar circles about
the sun. Figure 10.10 shows the Earth–Mars Hohmann transfer previously depicted in
Figure 10.5. Using “clock-face” coordinates, we see that the spacecraft departs Earth’s
SOI when Earth is at the 6 o’clock position and arrives at Mars’ SOI when Mars is at
12 o’clock. We must now consider Mars’ position when the spacecraft begins its helio-
centric interplanetary cruise. Clearly, Mars must also be at the 12 o’clock position when
the spacecraft arrives at Mars’ orbit. Therefore, Mars must travel an angular displace-
ment ωM t2− t1 during the Hohmann transfer as shown in Figure 10.10 (note that
ωM is the angular velocity of Mars’ circular orbit). Our previous analysis shows that

Mars at 
arrival t = t2

sun

Earth at departure
t = t1

Heliocentric 
Hohmann transfer
TOF = t2 – t1

Mars at 
departure t = t1

Mars transit 
during t2 – t1

ϕ

ωM(t2–t1)

Figure 10.10 Phase angle at departure for an Earth–Mars Hohmann transfer between coplanar circular
orbits.
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the TOF of the heliocentric Hohmann transfer is t2 – t1 = 258.9 days. Recall that
Table 10.4 presents a simple “2-D ephemeris” for Venus, Earth, andMars, where the pla-
nets’ orbits are coplanar and circular. Using Mars’ angular velocity ωM = 0.5240 deg/day,
we see that Mars travels about 135.7 during the interplanetary cruise (see Figure 10.10).
We can now define the phase angle at departure (ϕ) as the angular separation between
Earth and Mars at the start of the heliocentric transfer. For the Earth–Mars Hohmann
transfer shown in Figure 10.10, the phase angle at departure is

ϕ= 180 −ωM t2− t1 (10.20)

Using the Mars transit angle of 135.7 , we find that ϕ = 44.3 . Therefore, Mars must
“lead” Earth by 44.3 on the date when the spacecraft leaves Earth’s SOI on a Hohmann
transfer. The general expression for the phase angle at departure is

ϕ=Δθ−ωT t2− t1 (10.21)

where Δθ is the transfer angle of the interplanetary cruise and ωT is the angular velocity
of the target planet. If the phase angle ϕ > 0, then the target planet “leads” ahead of Earth
(as shown in Figure 10.10); if ϕ < 0 then the target planet “lags” behind Earth.
Figure 10.10 shows the proper Earth–Mars geometry at departure so that a 259-day

Hohmann transfer delivers the spacecraft to Mars at the arrival date. However, for
the sake of simplicity, Figure 10.10 shows Earth and Mars at the 6 and 12 o’clock posi-
tions, respectively. In practice, we must consider the actual positions of these planets in
the heliocentric frame on a given date. Using the simplified 2-D ephemeris models
(Table 10.4) for Earth and Mars, we can write the true longitude of both planets at
any arbitrary time t as

Earth lE t = lE0 +ωE t− t0 (10.22)

Mars lM t = lM0 +ωM t− t0 (10.23)

where lE and lM are the true longitude angles of Earth andMars (measured from the iner-
tial +XH axis), respectively, lE0 and lM0 are the true longitudes at the epoch January 1,
2000 (listed in Table 10.4), and t0 is the epoch date of January 1, 2000. The phase angle
at departure is the true longitude of Mars minus the true longitude of Earth:

ϕ= lM t − lE t = lM0− lE0 + ωM−ωE t− t0 (10.24)

Solving Eq. (10.24) for the time past the epoch date, t – t0, we obtain

t− t0 =
ϕ± k360 − lM0 + lE0

ωM−ωE
(10.25)

Equation (10.25) expresses the time difference in days if all angles and angular rates are
in degrees and degrees per day, respectively. Equation (10.25) allows us to compute the
dates (either before or after the epoch January 1, 2000) when the Earth–Mars geometry at
departure exhibits a particular phase angle ϕ. Note that we have added (or subtracted)
multiples of 360 to the phase angle so that we may compute past and future dates when
the proper Earth–Mars geometry repeats. Evaluating Eq. (10.25) for the Earth–Mars
Hohmann transfer with ϕ = 44.3 , k = 0, and data from Table 10.4, we obtain t – t0 =
456 days (or 1.25 years). Therefore, the first feasible departure date for an Earth–Mars
Hohmann transfer is 456 days after January 1, 2000, or April 1, 2001. The next feasible
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departure date is obtained with k = –1, or t− t0 = 1,236 days (3.38 years) after January 1,
2000. The time difference t− t0 = 1,236 days after the epoch translates to a calendar date
of May 21, 2003. Note that we must use k < 0 in Eq. (10.25) in order to predict future
departure dates because the denominator ωM−ωE < 0 (because Mars’ period is greater
than Earth’s orbital period).
Table 10.6 presents feasible departure dates for an Earth–Mars Hohmann transfer for

missions prior to and after January 1, 2000. In addition, column three of Table 10.6 lists
actual Mars missions and their launch dates. Interestingly, the actual mission launch
dates show a good match with the Hohmann-transfer departure dates predicted by
Eq. (10.25). Space agencies (such as NASA) have taken advantage of every favorable
launch date summarized in Table 10.6 with a mission to Mars except for the launch

Table 10.6 Predicted departure dates for an Earth–Mars Hohmann transfer and actual Mars mission
launch dates.

Days past
January 1, 2000 Hohmann-transfer departure date Actual launch date

–1,103 December 24, 1996 December 4, 1996
(Mars Pathfinder)

–323 February 12, 1999 December 11, 1998
(Mars Climate Orbiter)
January 3, 1999
(Mars Polar Lander)

456 April 1, 2001 April 7, 2001
(Mars Odyssey)

1,236 May 21, 2003 June 2, 2003
(Mars Express – ESA)
June 10, 2003
(Mars Exploration Rover-A)
July 8, 2003
(Mars Exploration Rover-B)

2,016 July 9, 2005 August 12, 2005
(Mars Reconnaissance Orbiter)

2,796 August 28, 2007 August 4, 2007
(Phoenix)

3,576 October 16, 2009 —

4,356 December 5, 2011 November 8, 2011
(Fobos-Grunt – Russia)
November 26, 2011
(Mars Science Laboratory)

5,136 January 23, 2014 November 18, 2013
(MAVEN)

5,916 March 13, 2016 March 4–30, 2016
(InSight – postponed)
March 14, 2016
(Schiaparelli – ESA)

6,696 May 2, 2018 May 5, 2018 (planned)
(InSight – new launch date)
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opportunity in late 2009. Space agencies utilize the efficiency of the Hohmann transfer
for Mars missions in order to maximize the payload mass of the spacecraft.
If we scrutinize Table 10.6, we see that the Earth-departure dates corresponding to the

desired phase angle of ϕ = 44.3 (for a Hohmann transfer) repeat every 780 days or
2.135 years. The time we must wait for the Earth–Mars phase angle to repeat is called
the synodic period, and it can be determined by modifying Eq. (10.25)

Tsynodic =
360

ωM−ωE
(10.26)

Wemust express the angular rates in Eq. (10.26) in degrees per day to obtain the synodic
period in days. The synodic period is the time required for any phase angle ϕ to repeat,
whether it is a Hohmann or non-Hohmann transfer. A more general equation for the
synodic period is

Tsynodic =
360

ωT −ωE
(10.27)

where ωT is the angular velocity of the target planet. Using the data in Table 10.4, we see
that the synodic period for a desired Earth–Venus phase angle is 584 days (1.60 years).
Equation (10.27) shows that the synodic period becomes large for planetary orbits that
have a small difference in their angular velocities (such as Earth and Mars); conversely,
the synodic period becomes small for “slow-moving” target planets such as Uranus and
Neptune.

Example 10.2 Let us return to Example 10.1 and the heliocentric Hohmann transfer
from Earth to Venus. Use the coplanar 2-D ephemeris data in Table 10.4 to compute the
Earth-departure date for the first mission opportunity after January 1, 2000. In addition,
compute the date of the first Earth–Venus mission opportunity after January 1, 2016.
First, we use Eq. (10.21) to compute the required phase angle at departure for an

Earth–Venus Hohmann transfer with transfer angle Δθ = 180

ϕ= 180 −ωV t2− t1

where ωV = 1.6021 deg/day is the angular velocity of Venus’ orbit, and t2− t1 = 146.1 days
is the Earth–Venus flight time on the Hohmann transfer (see Example 10.1). Using these
values, we find that the phase angle at departure is ϕ = –54.1 . Hence, Venus “lags”
behind Earth at the SOI departure date (see the Mariner 2 heliocentric trajectory shown
in Figure 10.1). Next, we use Eq. (10.25) to determine the first launch opportunity after
the epoch date t0 = January 1, 2000:

t− t0 =
ϕ± k360 − lV0 + lE0

ωV −ωE

The true longitudes of Earth and Venus at the epoch t0 are lE0 = 100.47 and lV0 = 181.98
(Table 10.4). We must use k = +1 to obtain the first departure date after January 1, 2000
because the denominator ωV −ωE is positive. Using these values in the above equation,
the time difference is t− t0 = 364 days. Therefore, the first departure opportunity is nearly
1 year after January 1, 2000. The departure date is December 30, 2000.
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We can obtain future Earth-departure dates by adding multiples of the synodic period
to December 30, 2000. Equation (10.27) determines the Earth–Venus synodic period:

Tsynodic =
360

ωV −ωE
= 583 9days = 1 60 years

Wemust add 10 synodic periods (5,839 days ≈ 16 years) to December 30, 2000 to obtain
a departure date in the year 2016. The Earth-departure date for a Venus mission in 2016
is Christmas Day: December 25, 2016.
As a final note, if we subtract 24 synodic periods (~38.4 years) from the December 30,

2000 departure date we obtain August 18, 1962 which is very close to the actual launch
date of August 27, 1962 for Mariner 2 (see Figure 10.1).

10.4 Planetary Arrival

Our previous discussion has addressed the planetary arrival phase to some degree. For
example, Figure 10.7 shows the hyperbolic flight phase within Mars’ SOI. Because
Figure 10.7 depicts an Earth–Mars heliocentric Hohmann transfer, the hyperbolic arrival
velocity vector v−

∞ is in the opposite direction asMars’ sun-relative orbital velocity vector
vM. Therefore, the spacecraft approaches Mars from the “leading edge.” Figure 10.7
shows the hyperbolic arrival asymptote on the sunlit side of Mars. The placement of
the arrival asymptote in Figure 10.7 is arbitrary because the patched-conic method pro-
vides no information on exactly where the Mars-relative velocity v−

∞ crosses the SOI
(only precise numerical integration of the N-body problem will accurately determine
the position and velocity of the spacecraft as it approaches Mars). In fact, we could have
just as easily “flipped” the hyperbola in Figure 10.7 so that the leading-edge arrival
asymptote passes through Mars’ shadow. Furthermore, we could have placed v−

∞ collin-
ear with vM so the offset distance d = 0 and the spacecraft follows a rectilinear impact
trajectory with Mars! In practice, the spacecraft’s onboard rocket performs very small
orbital maneuvers (so-called “mid-course corrections”) before planetary arrival in order
to target the appropriate offset distance d shown in Figure 10.7. Computing these mid-
course corrections is beyond the scope of this textbook. Therefore, we will assume that
any offset distance d can be achieved by a small trajectory correction performed well
before planetary arrival (of course, the offset distance d must be less than the radius
of the planet’s SOI otherwise the spacecraft misses the target planet altogether).
Figure 10.11 shows the B-plane, which is a reference plane for targeting the planetary

arrival phase. By definition, the B-plane intersects the center of the target planet and is
normal to the arrival asymptote. An orthogonal coordinate frame TRS is fixed to the cen-
ter of the target body where the +S axis is parallel to the arrival asymptote in the direction
of v−

∞ . Axes T and R lie in the B-plane where +T is in the target planet’s ecliptic plane
(note that so far we have assumed a coplanar solar system model and therefore the +T
axis is in a common ecliptic plane shared by all planets). The +R axis is normal to the T
and S axes and points toward the target planet’s South Pole (however, +R is not aligned
with the South Pole unless the planet’s equatorial plane coincides with its ecliptic plane).
The vector B shown in Figure 10.11 lies in the B-plane and points from the planet’s
center to the arrival asymptote’s intersection with the B-plane. Hence, the B vector only
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has T and R coordinates. Figure 10.11 shows a 3-D planetary arrival where the approach
hyperbola crosses the B-plane below the planet’s ecliptic plane. If we utilize our
simplified coplanar solar-system model, then the B vector will only have a T-axis
component.
Figure 10.12 shows a 2-D view of Figure 10.11 in the trajectory plane with an “edge-on”

view of the B-plane. Note that the offset distance d is defined as the distance between the
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Figure 10.11 Planetary arrival phase: B-plane target.
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Figure 10.12 Planetary arrival phase: trajectory plane.
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arrival asymptote and the +S axis and hence it is the magnitude of the B vector shown in
Figure 10.11. Comparing Figures 10.12 and 10.7, we see that the +S axis of the B-plane
frame will be collinear with the planet’s sun-relative velocity onlywhen the terminal apse
of the heliocentric ellipse is tangent to the planet’s orbit (i.e., a Hohmann transfer). Note
that if we attached the B-plane to Figure 10.7, the +S axis would be in the opposite direc-
tion as Mars’ heliocentric velocity vM.
Now we may relate the offset distance d to a desired (or target) periapsis radius rp for

the hyperbolic trajectory. Using Figure 10.12, we can express the angular momentum of
the hyperbola as

h= dv∞ = rpvp (10.28)

Note that both terms in Eq. (10.28) consist of the magnitude of the velocity multiplied by
the respective “moment arm” perpendicular to an axis that passes through the center of
the planet (in addition, note that we have dropped the superscript minus for hyperbolic
arrival velocity v−

∞ ). Next, use the energy equation evaluated at an infinite distance and at
periapsis:

ξ=
v2∞
2

=
v2p
2
−
μB
rp

(10.29)

where μB is the gravitational parameter for the planetary body. Solving Eq. (10.29) for
periapsis velocity, we obtain

vp = v2∞ +
2μB
rp

(10.30)

Substituting Eq. (10.30) into Eq. (10.28) and solving for the offset distance yields

d =
rp
v∞

v2∞ +
2μB
rp

(10.31)

Equation (10.31) determines the offset distance that is required to achieve a desired
periapsis radius rp. Remember that the offset distance is the magnitude of the B vector
in the B-plane, or d = B . For a 3-D planetary approach, we specify the TR coordinates
of the B vector in order to target a desired periapsis radius and inclination (Figure 10.11).
The planetary encounter phase may simply be a “flyby” where the spacecraft passes

through the targeted periapsis radius and then leaves the planet on the departure asymp-
tote. If a mission calls for an orbiting spacecraft, then an onboard rocket burn (typically at
periapsis) reduces the energy and creates a closed orbit. If a direct planetary landing is
desired (such as the Mars Science Laboratory mission), then the hyperbolic trajectory
must terminate at the proper conditions at the planet’s atmosphere. The so-called “entry
interface” (EI) is the altitude above a planet where atmospheric drag becomes appreci-
able. For example, EI for Mars is an altitude of 125 km. For an entry scenario, we may
express the energy equation (10.29) in terms of the radius and velocity at EI

ξ=
v2∞
2

=
v2EI
2

−
μB
rEI

(10.32)
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where rEI is the radius of entry interface (e.g., Mars’ radius plus 125 km) and vEI is the
velocity at EI. The velocity at EI is

vEI = v2∞ +
2μB
rEI

(10.33)

which is simply Eq. (10.30) with rp replaced by rEI. The angular momentum of the hyper-
bolic trajectory at EI is

h= rEIvEI cosγEI (10.34)

where γEI is the flight-path angle at EI. Finally, we may substitute Eqs. (10.33) and (10.34)
into Eq. (10.28) and solve for the offset distance:

d =
rEI cosγEI

v∞
v2∞ +

2μB
rEI

(10.35)

Equation (10.35) determines the offset distance required to achieve a desired entry
flight-path angle γEI. It is important to note that radius rEI is not a free parameter; it
is the largest radial distance where the planet’s atmosphere causes detectable aerody-
namic drag. The key targeting parameter in Eq. (10.35) is the EI flight-path angle. We
must carefully select γEI so that the vehicle can withstand deceleration and heating loads
during entry. Equation (10.35) determines the B-plane offset distance required to gen-
erate any entry flight-path angle from γEI = 0 (i.e., “skimming” the edge of the planet’s
atmosphere) to γEI = –90 (i.e., entering the atmosphere with purely vertical velocity).
Note that specifying γEI = –90 in Eq. (10.35) leads to d = 0 as expected. We will discuss
atmospheric entry in Chapter 11.

Example 10.3 Consider again the Venus-arrival hyperbola that resulted from the
Earth–Venus Hohmann transfer described in Example 10.1. Determine the offset dis-
tance d (B-plane target) if the mission calls for a 350-km altitude periapsis at Venus.
In addition, compute the impulsive velocity increment required to establish a 350-km
altitude circular orbit about Venus.
In Example 10.1, we determined that the Venus-relative hyperbolic arrival velocity is

v∞ = 2 7066 km/s. The target periapsis radius is rp = 350 km + RV = 6,402 km, where RV =
6,052 km is the mean radius of Venus. Using Eq. (10.31), we can compute the offset
distance

d =
rp
v∞

v2∞ +
2μV
rp

= 24,673 5 km

where μV = 3.2486(105) km3/s2 is Venus’ gravitational parameter. We may use conser-
vation of angular momentum, Eq. (10.28), to compute the spacecraft’s velocity at peri-
apsis passage

vp =
dv∞
rp

= 10 4313 km/s

Finally, the impulse required for insertion into a circular Venus orbit is

Δv= vp−vLVO = 3 3079 km/s
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where vLVO = μV /rp = 7.1234 km/s is the circular orbital speed for the desired low-
Venus orbit (LVO).

Example 10.4 The Mars Science Laboratory (MSL) mission used a direct entry,
descent, and landing profile. The target state at Mars entry interface was rEI =
3,521 km, vEI = 5.845 km/s, and flight-path angle γEI = –15.47 . Determine the Mars-
relative hyperbolic arrival speed and the offset distance d (i.e., the B-plane target).
Because the hyperbolic trajectory has constant energy, we can write

ξ=
v2∞
2

=
v2EI
2

−
μM
rEI

= 4 9184 km2/s2

where μM = 4.2828(104) km3/s2 is Mars’ gravitational parameter. Therefore, the hyper-
bolic arrival velocity is

v∞ = 2ξ= 3 136 km/s

We can use Eq. (10.35) to determine the offset distance

d =
rEI cosγEI

v∞
v2∞ +

2μM
rEI

= 6,324 km

10.5 Heliocentric Transfers Using an Accurate Ephemeris

All examples of the interplanetary cruise phase thus far have involved planetary motion
modeled by coplanar circular orbits about the sun. When we utilize a Hohmann transfer
between concentric-coplanar planetary orbits, the flight time and velocity increments
remain the same even when we change the departure date by multiples of the synodic
period. Therefore, all Earth–Mars Hohmann transfers listed in column two of
Table 10.6 have a heliocentric flight time of 258.9 days and launch energy C3 =
8.672 km2/s2. However, the actual Earth–Mars missions listed in column three of
Table 10.6 do not utilize the same 180 Hohmann transfer because of the eccentric plan-
etary orbits and the difference in the orbital planes (Table 10.3 shows that Mars’ eccen-
tricity and inclination are 0.093 and 1.85 , respectively).
We can improve the accuracy of the interplanetary cruise phase by defining each pla-

net’s orbit using the six orbital elements listed in Table 10.3. Now we may pose the heli-
ocentric transfer between planets as Lambert’s problem as described in Section 4.6: given
two known position vectors and the flight time between them, determine the corre-
sponding orbit. Posing the appropriate Lambert problem for the heliocentric phase is
conceptually easy, and the basic steps for determining the interplanetary trajectory
are as follows:

1) Given a guess for the Earth-departure date (t1), determine Earth’s heliocentric posi-
tion and velocity vectors (rE,vE) in the heliocentric-ecliptic frame.

2) Given a guess for the planet-arrival date (t2), determine the target planet’s heliocentric
position and velocity vectors (rT,vT).
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3) Using the known heliocentric flight time t2 – t1, solve Lambert’s problem and deter-
mine the heliocentric orbit that connects vectors rE and rT. As a by-product of solving
Lambert’s problem, we have the heliocentric velocities v1 and v2 that correspond to
the initial and terminal position vectors rE and rT.

4) Determine the Earth-relative hyperbolic departure velocity vector at the SOI:

v +
∞ = v1−vE (10.36)

5) Determine the launch energy from the magnitude v∞ = v +
∞

C3 = v2∞ (10.37)

Steps 1 and 2 require two solutions to Kepler’s problem in order to determine the true
anomalies of Earth and the target planet at times t1 and t2, respectively. Implicit in steps 1
and 2 are coordinate transformations from the six classical orbital elements to heliocen-
tric vectors (rE,vE) for Earth and (rT,vT) for the target planet (see Section 3.5). Step 3
requires a numerical search algorithm that can solve Lambert’s problem, such as the
p-iteration method outlined in Section 4.6. Recall that we must specify either a
“short-way” (Δθ < 180 ) or “long-way” (Δθ > 180 ) transfer when we solve Lambert’s
problem (again, see Section 4.6). Once we solve Lambert’s problem, Eq. (10.36) deter-
mines the Earth-relative hyperbolic velocity vector (and in a similar manner, the hyper-
bolic velocity vector at the target planet). Finally, the launch energy C3, computed by
Eq. (10.37), provides a performance metric for the trial departure and arrival dates t1
and t2. We can systematically search across a range of departure and arrival dates until
we determine the best combination that minimizes the launch energy C3.
Some additional terminology is in order at this point. A short-way transfer with trans-

fer angle Δθ < 180 is often called a “Type 1 transfer.” A long-way transfer (Δθ > 180 ) is
often called a “Type 2 transfer.”
At this stage, the reader may (justifiably) believe that the Hohmann transfer for the

concentric-coplanar solar-system model will approximate the best heliocentric transfer
when we incorporate accurate 3-D planetary orbits. To some degree, this assumption is
correct. However, it is worth noting that it is (usually) impossible to perform an exact
180 heliocentric transfer because of the difference in planetary orbital planes.
Figure 10.13 shows Mars’ orbit relative to Earth’s ecliptic plane. The lightly shaded half
of Mars’ orbit in Figure 10.13 is “above” Earth’s ecliptic plane, while the darker shaded
half is “below” the ecliptic. Mars crosses Earth’s ecliptic plane twice: at the ascending
node (Ω = 49.56 ) and descending node. Figure 10.13 also shows a 180 heliocentric
transfer that departs Earth on July 9, 2005 (i.e., a Hohmann-transfer departure date pre-
dicted in Table 10.6). The spacecraft’s arrival atMars (exactly one-half revolution later) is
infeasible because at the arrival date Mars is above the ecliptic while the spacecraft is in
the ecliptic plane. A 180 heliocentric transfer is possible only when the transfer termi-
nates at Mars’ ascending or descending node; that is, when Mars is crossing the ecliptic
plane. Furthermore, heliocentric transfers that are slightly less than or greater than 180
become feasible only by “lofting” the spacecraft above (or below) the ecliptic so that its
ZH position component matches Mars’ out-of-plane component. “Lofting” the heliocen-
tric trajectory out of the ecliptic requires a large ZH velocity component at Earth depar-
ture that is normal to Earth’s heliocentric velocity vector vE. This additional ZH velocity
increment does not increase the energy of the heliocentric transfer; it represents an
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unnecessary plane change (the “lofting”maneuver) that ultimately penalizes heliocentric
transfer angles that are near 180 .
The following example demonstrates the calculation of an accurate Earth–Mars heli-

ocentric transfer by using the Lambert-problem method previously outlined. The exam-
ple will highlight the effects of Mars’ inclination on the launch energy required for the
interplanetary cruise.

Example 10.5 Use the predicted departure and arrival dates for an Earth–Mars
Hohmann transfer as a starting guess for a realistic Earth–Mars mission in mid 2005
(see column two of Table 10.6). Compare the launch energy (C3) and Mars-arrival
hyperbolic velocity v−∞ for Earth–Mars transfers computed using concentric-coplanar
planetary orbits and accurate (3-D) planetary orbits.
First, let us consider the Earth–Mars transfer using coplanar circular orbits for the two

planets. Table 10.6 shows that on July 9, 2005 (or 2,016 days after January 1, 2000) Earth
and Mars have the proper relative geometry for a Hohmann transfer. We may use Eqs.
(10.22) and (10.23) and Table 10.4 to determine the true longitudes of Earth andMars for
the coplanar-concentric model. At departure time t1 = 2,016 days (July 9, 2005), Earth’s
longitude is

Earth lE t1 = lE0 +ωE t1− t0 = 2,087 = 287

The Hohmann transfer flight time is 259 days. At arrival time t2 = 2,016 + 259 =
2,275 days (March 25, 2006), Mars’ longitude is

Mars lM t2 = lM0 +ωM t2− t0 = 1,547 = 107

Earth departure
July 9, 2005

Infeasible
Mars arrival

180°
heliocentric 
transfer

XH

YH Mars’ 
ascending 
node

Mars’ orbit is
below ecliptic

Mars’ orbit is
above ecliptic

sun

Figure 10.13 Orbital plane difference between Earth and Mars and an infeasible heliocentric transfer
to Mars.
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which is 180 beyond the Earth-departure longitude. Remember that true longitude l is
measured clockwise from the inertial +XH heliocentric axis. Figure 10.14 shows the Hoh-
mann transfer between concentric-coplanar planetary orbits with departure date July 9,
2005.The arrival date atMars isMarch25, 2006 (i.e., 259days after departure). The launch
energy and Mars-arrival velocity for the Earth–Mars Hohmann transfer have been com-
puted in Section 10.2, and these values are C3 = 8 672 km2/s2 and v−∞ = 2 649km/s,
respectively.
Next, we compute an Earth–Mars transfer using an accurate ephemeris for the plane-

tary orbits. To begin, we determine Earth’s heliocentric state vector (rE, vE) at departure
date July 9, 2005.Although theprocess of computing vectors (r,v) in theheliocentric frame
is systematic, we will not present the details here. An outline of the required steps follows.
First, we compute the Earth’s mean anomalyM0 at epoch (January 1, 2000) using eccen-
tricity and true anomaly θ0 derived from the ephemeris data in Table 10.3. Next, we solve
Kepler’s problem, propagate Earth’s orbit to the departure date (July 9, 2005), and obtain
mean and true anomalies. Finally, using Earth’s classical orbital elements and the true
anomaly for July 9, 2005, we perform a transformation to the Cartesian heliocentric-
ecliptic frame (see Section 3.5 for details regarding this transformation). After performing
these steps, we obtain Earth’s position and velocity vectors for departure date July 9, 2005:

Earth departure July9, 2005 rE =

0 3035

−0 9703

0

AU, vE =

0 9383

0 2948

0

AU/TU

In order to set up Lambert’s problem, we need Mars’ heliocentric state vector (rM, vM)
at the end of the heliocentric transfer. The coplanar Hohmann transfer predicts that
March 25, 2006 (i.e., 259 days after Earth departure) will provide a good option for

Earth departure
July 9, 2005

Hohmann 
transfer

Mars arrival
March 25, 2006

YH

XHsun

rM

rE

Figure 10.14 Heliocentric Earth–Mars Hohmann transfer with departure date July 9, 2005 using
concentric-coplanar planetary orbits (Example 10.5).
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the Mars-arrival date. Using Mars’ orbital data in Table 10.3 and the steps previously
outlined for the Earth departure, we obtain Mars’ state vector for March 25, 2006:

Mars arrival March25, 2006 rM =

−0 6085

1 4998

0 0464

AU, vM =

−0 7229

−0 2368

0 0128

AU/TU

Next, we pose Lambert’s problem with initial position rE (Earth), final position rM
(Mars), and flight time t2− t1 = 259days. We also determine the “long way” solution
because Δθ = 185.0 for “counter-clockwise” (prograde) orbital motion from Earth posi-
tion rE to Mars position rM (note the transfer angle is not 180 because we have used an
accurate planetary ephemeris instead of concentric-coplanar circles). Solving Lambert’s
problem yields the spacecraft’s heliocentric velocity vectors at each end of the transfer:

Spacecraft’s heliocentric velocity at Earth departure v1 =

0 9670

0 3804

−0 3611

AU/TU

Spacecraft’s heliocentric velocity at Mars arrival v2 =

−0 6221

−0 1983

0 2275

AU/TU

Using Eq. (10.36), we determine the Earth-relative hyperbolic departure velocity
vector:

v +
∞ = v1−vE =

0 0287

0 0857

−0 3611

AU/TU

Note the very large ZH component for hyperbolic departure velocity that is required to
“loft” the heliocentric transfer below the ecliptic plane for interception with Mars’ orbit.
The magnitude of v +

∞ is 0.3722 AU/TU. Converting to SI units (1 AU/TU =
29.7847 km/s), yields v+

∞ = 11 086km/s and the associated launch energy is
C3 = v2∞ = 122 898km2/s2. This launch energy is over 14 times greater than the Hoh-
mann-transfer launch energy for concentric-coplanar planets! Obviously, this heliocen-
tric transfer is unacceptable. Intercepting Mars when it is well above Earth’s ecliptic
plane causes the extremely high launch energy.
We can repeat the Lambert-solution process outlined above for the same Earth-

departure date but with different heliocentric flight times. Figure 10.15 shows launch
energy C3 for heliocentric flight times ranging from 100 to 450 days. All heliocentric
transfers leave Earth’s SOI on July 9, 2005. Figure 10.15 shows that the short-way (or
Type 1) transfer (Δθ < 180 ) is used when flight time is less than 249 days, and the
long-way (or Type 2) transfer is used when flight time exceeds 249 days. When flight
time is about 249 days, the transfer angle is 180 and the heliocentric transfer is not fea-
sible due to the ZH (out-of-plane) component ofMars’ orbit. Hence,C3 is extremely large
for heliocentric transfer angles near 180 (C3 is limited to 50 km2/s2 in Figure 10.15 for
plotting purposes; the 259-day long-way transfer with C3 = 122.9 km2/s2 is off the chart).
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The dashed line in Figure 10.15 presents the launch energy for coplanar Earth–Mars
transfers; that is, we have artificially removed Mars’ inclination so that its orbit is in
the ecliptic plane (Mars’ orbit remains eccentric). Assuming coplanar (2-D) transfers
removes the excessive launch energy for transfer angles near 180 . If we ignore out-
of-planemotion, then a coplanar 242-day, short-way transfer (Δθ = 176.8 ) will minimize
the launch energy for an Earth-departure date of July 9, 2005 (of course, a coplanar trans-
fer is fictitious).
Figure 10.15 clearly shows the existence of two local minima for launch energy: flight

time of 197 days (short way) and flight time of 318 days (long way). Let us analyze each
transfer in some detail starting with the short-way transfer.

197-day short-way (Type 1) transfer

Mars’ state vector at arrival date January 22, 2006 (197 days after Earth departure) is

Mars arrival January 22, 2006 rM =

0 2092

1 5364

0 0270

AU, vM =

−0 7751

0 1788

0 0228

AU/TU

Solving the Lambert problem using the July 9, 2005 departure date with a flight time of
197 days yields the initial and final velocity vectors:

Spacecraft’s heliocentric velocity at Earth departure v1 =

1 0325

0 4000

0 0454

AU/TU

Spacecraft’s heliocentric velocity at Mars arrival v2 =

−0 6964

0 2553

−0 0242

AU/TU
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Figure 10.15 Earth–Mars launch energy vs. flight time for departure date July 9, 2005 (Example 10.5).
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The Earth-relative hyperbolic departure velocity vector is

v +
∞ = v1−vE =

0 0943

0 1053

0 0454

AU/TU=

2 8082

3 1354

1 3519

km/s

The magnitude of v +
∞ is 4.4209 km/s, and hence the launch energy is

C3 = v
2
∞ = 19 545 km2/s2 197-day Type 1 transfer

This launch energy is the minimizing point for the short-way transfer in Figure 10.15.
The launch energy for an Earth–Mars transfer using an accurate planetary ephemeris is
significantly larger than C3 = 8 672 km2/s2 for the Hohmann transfer between concen-
tric-coplanar planets.
Finally, the Mars-relative hyperbolic arrival velocity vector is

v−
∞ = vM−v2 =

0 0788

0 0765

−0 0470

AU/TU=

2 3467

2 2776

−1 3990

km s

The magnitude of the Mars-relative velocity v−
∞ is 3.5569 km/s which is significantly

greater than the coplanar Hohmann transfer result (v−∞ = 2 649 km/s).

318-day long-way (Type 2) transfer

Mars’ state vector at arrival date May 23, 2006 (318 days after Earth departure) is

Mars arrival May 23, 2006 rM =

−1 2437

1 0953

0 0535

AU, vM =

−0 5069

−0 5412

0 0011

AU/TU

Solving the Lambert problem using the July 9, 2005 starting position rE for a flight time of
318 days yields

Spacecraft’s heliocentric velocityat Earth departure v1 =

1 0174

0 4185

−0 0682

AU/TU

Spacecraft’s heliocentric velocity at Mars arrival v2 =

−0 4260

−0 5207

0 0350

AU/TU

The Earth- and Mars-relative hyperbolic velocities are

Earth departure v +
∞ = v1−vE =

2 3562

3 6858

−2 0310

km/s
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Mars arrival v−
∞ = vM−v2 =

2 4100

0 6116

1 0081

km/s

The magnitude of departure v +
∞ is 4.8230 km/s, and hence the launch energy is

C3 = v2∞ = 23 2616 km2/s2 318-day Type 2 transfer

which is the minimizing point for the long-way transfer in Figure 10.15. The magnitude
of the Mars-relative velocity v−

∞ is 2.6830 km/s, which is only slightly greater than the
coplanar Hohmann transfer result.
Figure 10.16 displays the best short-way and long-way heliocentric transfers for an

Earth-departure date of July 9, 2005. The transfer angles are 154.9 (short way) and
211.3 (long way), respectively. The short-way transfer is the best option for this fixed
departure date because it has the lower launch energy and shorter transfer time. Note
that the long-way transfer terminates at a radial distance of about 1.66 AU that is near
Mars’ aphelion radius of 1.67 AU.
Finally, we can compare the best short-way transfer in Figure 10.16 to theMars Recon-

naissance Orbiter heliocentric trajectory shown in Figure 10.2. Applying our Lambert-
problem solver to the actual MRO Earth-departure date of August 12, 2005 and Mars-
arrival date of March 10, 2006, we obtain C3 = 16.353 km2/s2 which shows a very close
match with the actual launch energy of 16.4 km2/s2 [6]. The actual MRO launch energy is

Earth departure
July 9, 2005

Mars arrival
May 23, 2006

sun XH

YH

rM

(short way)

rM

(long way)

rE

Mars arrival
Jan 22, 2006

Short way 
transfer
(Type 1)

Long way 
transfer
(Type 2)

Figure 10.16 Heliocentric Earth–Mars transfers with departure date July 9, 2005 using 3-D planetary
ephemeris (Example 10.5).

Space Flight Dynamics366



better than the launch energy corresponding to our optimal short-way transfer for a fixed
departure date of July 9, 2005. Finding the optimal heliocentric transfer involves iterating
on the flight time and the Earth-departure date.

10.5.1 Pork-Chop Plots

Example 10.5 presents a systematic process where we obtained the minimum-C3 helio-
centric transfer for a fixed departure date. In essence, we solved several Lambert pro-
blems for a range of flight times starting from a fixed Earth-departure position vector
rE. Figure 10.15 is the result of this flight-time “sweep,”which clearly shows the two opti-
mal transfers that minimize launch energy for a particular departure date. In practice,
mission designers find the best heliocentric transfer by varying two free parameters:
the Earth-departure date and the flight time. Therefore, we may solve many Lambert
problems for an array of n distinct departure dates and m flight times. By simply sorting
the n×m array of Lambert-problem solutions, we can obtain the overall (or “global”)
optimal heliocentric transfer that minimizes launch energy C3. This “brute force”
method will determine the best combination of departure date and flight time.
It is useful to create contour plots of the n×m Lambert-problem solutions in

order to visualize the design space for the interplanetary trajectory. Figure 10.17 shows
a contour plot of launch energy C3 vs. Earth-departure date and Mars-arrival date
(of course, flight time is the difference between arrival and departure dates). Note that
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Figure 10.17 Pork-chop plot for Earth–Mars transfers in the 2005–2006 timeframe.

Interplanetary Trajectories 367



the Earth-departure and Mars-arrival dates (the x- and y-axis labels) in Figure 10.17 are
presented as a modified Julian date (MJD) instead of a calendar date. Because the Julian
date (JD) is a continuous count of days, the flight time (in days) is simply the difference
between the arrival MJD and departure MJD (we will discuss conversions between the
calendar date, JD, and MJD in the next subsection). Each contour line in Figure 10.17
depicts a heliocentric transfer with constant C3. Figure 10.17 shows a cluster of two dis-
tinct heliocentric trajectories: the short-way (Type 1) and long-way (Type 2) transfers.
The center of each grouping of contour lines is the optimal transfer that minimizes
C3. The steep “ridge” between the Type 1 and Type 2 transfers indicates the region where
the transfer angle is nearly 180 and the correspondingC3 is extremely high. Figure 10.17
is commonly known as a pork-chop plot because the contour lines resemble a pork chop
(think of the “ridge” between the short- and long-way transfers as the bone). Mission
designers use pork-chop plots to analyze the so-called launch window, that is, the effect
that changes in the departure date has on launch energy and/or flight time. Note that
Figure 10.15 is actually a “vertical slice” of the pork-chop plot contours in
Figure 10.17 for the fixed departure date of July 9, 2005 (MJD = 53560). Figure 10.17
shows that the minimum-energy Type 1 transfer departs Earth on Aug 2, 2005 (MJD
= 53584) with C3 = 14.94 km2/s2 and arrives at Mars’ SOI 194 days later on February
12, 2006 (MJD = 53778). The minimum-energy Type 2 transfer departs Earth on Aug
29, 2005 (MJD = 53611) with C3 = 15.85 km2/s2 and arrives at Mars’ SOI 406 days later
on October 9, 2006 (MJD = 54017). For an Earth–Mars mission in 2005, the Type 1
(short-way) transfer requires the lowest launch energy. However, for some mission
opportunities, the long-way transfer may be the minimum-C3 transfer.

10.5.2 Julian Date

This section has introduced the basic concepts behind interplanetary mission design
using the patched-conic method with an accurate planetary ephemeris. Determining
the planetary position (i.e., true anomaly) at a specified date requires the solution of
Kepler’s problem. For example, suppose we want the true anomaly of Mars on Sep-
tember 23, 2020. Table 10.3 provides Mars’ true anomaly at the epoch date of Jan-
uary 1, 2000. The next step involves solving Kepler’s problem for a Mars transit time
corresponding to the time difference between January 1, 2000 and September 23,
2020. How do we compute this time difference from the calendar dates? The easiest
approach is to convert each calendar date into a Julian date. A JD is a continuous
count of days starting from January 1, 4713 BC. By convention, a JD starts at noon
so that astronomical observations (taken at night) are recorded under a single JD.
After we convert each calendar date into its respective JD, the planetary transit time
(in days) is simply the difference.
Many on-line programs are available for converting a calendar date to a JD and vice

versa. We will present Vallado’s algorithm for determining the JD from the calendar date
[3; p. 183]. Let us represent the calendar date by three integers: y = year number (a four-
digit number), m = month number (1–12), and d = day number (1–31). The associated
JD is

JD= 367y−A+B+ d + 1,721,013 5 (10.38)
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where A and B are

A=
7 y+ m+ 9

12

4
(10.39)

B=
275m
9

(10.40)

The operation x is the floor function, which rounds to the nearest integer value towards
minus infinity. In MATLAB syntax, this operation is floor(x). For example, 2 6 = 2.
As a quick example, the calendar date May 16, 2024 (y = 2024, m = 5, d = 16) can be
converted to the Julian date JD = 2,460,446.5. Because the convention for calendar dates
is to start a new day at midnight, the JD has a 0.5 fractional part (remember that a JD
begins at noon).
This conversion example leads to questions regarding the reference location for

noon at the start of a JD. Where on Earth is noon the starting point for a new
Julian day? The simple answer is that noon in Greenwich, UK is the basis for the
start of a new JD (of course, this is also the location of the Greenwich meridian or
0ο longitude). The local mean solar time relative to the Greenwich meridian is
called Universal Time (UT), and is colloquially referred to as Greenwich Mean
Time (GMT). For example, noon in Greenwich is 12:00:00 GMT (or 12 h,
0 min, and 0 s). The worldwide standard for time is “Coordinated Universal Time”
(UTC), and is determined from an assembly of atomic clocks. If we know UTC
(where H = h, M = min, and S = s), we can add its fractional part to the JD; hence
Eq. (10.38) becomes

JD= 367y−A+B+ d + 1,721,013 5 +

S
60

+M

60
+H

24
(10.41)

The JD of May 16, 2024 12:00:00 UTC (i.e., noon GMT) is 2,460,447.0, or the start of a
new Julian date.
Because a Julian date is a large number (greater than 2.4 million), it is common to use a

JD with fewer digits. One variant is themodified Julian date (MJD), which has five digits
to the left of the decimal point. We can compute the MJD by subtracting 2,400,000.5
from the JD. Thus, the MJD is a continuous count of days starting from midnight
November 17, 1858. Recall that the pork-chop plot, Figure 10.17, presents the Earth-
departure and Mars-arrival dates as MJDs.
We also need to convert Julian dates to calendar dates. For example, Table 10.6

presents Earth–Mars Hohmann transfers between coplanar-concentric orbits that
occur every synodic period. It is relatively easy to determine the JDs for launches
relative to the January 1, 2000 epoch date (i.e., column one in Table 10.6);
however, finding the corresponding calendar date is not so simple. Figure 10.18
presents the conversion algorithm, which is from the US Naval Observatory
[7]. Note that every calculation involves integers and the floor function.
The algorithm presented in Figure 10.18 can essentially be “cut-and-pasted” to
create a MATLAB M-file for converting a given JD to the corresponding calendar
date.
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We can append the Coordinated Universal Time to the calendar date computed by the
algorithm contained in Figure 10.18. First, we compute the fractional part of the JD
beyond noon GMT:

JDfraction = JD− JD (10.42)

The fractional part falls between the range 0 ≤ JDfraction < 1. Next, determine the hours
past midnight:

τhour =mod 12 + 24 JDfraction,24 (10.43)

where mod(x,24) is the modulus function after division. For example, mod(12.1,24) =
12.1, mod(23.6,24) = 23.6, mod(24.8,24) = 0.8, and mod(35.7,24) = 11.7. Therefore,
Eq. (10.43) ensures that 0 ≤ τhour < 24. The UTC hours H, minutes M, and seconds S are

H = τhour (10.44)

M = 60 τhour−H (10.45)

S = 3600 τhour−H −M/60 (10.46)

Therefore, the UTC is [H:M:S]. As a quick example, if JD = 2,457,665.0, then the calendar
date is October 3, 2016 UTC [12:00:00]. The reader can verify these calculations by using
the algorithm in Figure 10.18 and Eqs. (10.42)–(10.46).

10.6 Gravity Assists

The final topic of this chapter is the gravity assist or so-called “flyby” or “swingby.” In this
scenario, a spacecraft enters a planet’s SOI along a hyperbolic arrival asymptote, follows a
coasting (unpowered) hyperbola through periapsis passage, and leaves the planet along a
hyperbolic departure asymptote. The planetary flyby, however, changes the spacecraft’s
heliocentric energy relative to the sun. Therefore, a gravity assist is a maneuver where the
energy of the spacecraft’s heliocentric orbit is increased (or decreased) “for free” without
expending any rocket propellant. Of course, setting up a planetary encounter and gravity
assist often times requires “shaping” the heliocentric transfer by using mid-course tra-
jectory corrections (propulsive burns) and/or by utilizing a sub-optimal departure date
and launch energy. Consider again Figure 10.3, which shows the heliocentric phase of the

L = floor(JD + 68569.5)
N = floor( 4*L/146097 )
L = L - floor( (146097*N+3)/4 )
I = floor( 4000*(L+1)/1461001 )
L = L - floor(1461*I/4) + 31
J = floor(80*L/2447)
K = L - floor(2447*J/80)
L = floor(J/11)
J = J + 2 - floor(12*L)
I = floor(100*(N-49)) + I + L
year = I
month = J
day = K

Figure 10.18 US Naval Observatory algorithm for converting a Julian date (JD) to a calendar date [7].
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Cassini mission to Saturn. Note that the mission began with an inward transfer from
Earth to Venus for the first gravity assist in late April 1998 – it appears that the spacecraft
is initially moving in the wrong direction because it ultimately needs to move outward to
Saturn’s orbit! However, the first Venus gravity assist (VGA) significantly increased the
energy of the spacecraft’s heliocentric trajectory so that its aphelion was well beyond
Earth’s orbit. Figure 10.3 shows that the spacecraft performed a propulsive burn (“deep
space maneuver”) near aphelion on December 3, 1998. This rocket burn set up the sec-
ond VGA on June 24, 1999. The second VGA further increased the spacecraft’s helio-
centric energy and set up an encounter with Earth for a third gravity assist less than
2 months later on August 18, 1999. The three gravity assists significantly increased
the heliocentric energy so that the spacecraft was able to cross Jupiter’s orbit 16 months
after the Earth gravity assist. On December 30, 2000, the Cassini spacecraft encountered
Jupiter for a fourth (and final) gravity assist that further increased the heliocentric energy
for arrival at Saturn in early July 2004.
The preceding discussion indicates that a gravity assist can increase the heliocentric

energy of the spacecraft’s orbit. As we shall soon see, a gravity assist can also decrease
the orbital energy of the spacecraft relative to the sun. Figure 10.19 shows a “trailing
edge” gravity assist where the spacecraft’s periapsis passage is “behind” the planet’s
motion or along the “trailing edge” of the planet’s motion relative to the sun.
Figure 10.19 shows the special case where the periapsis direction of the hyperbolic
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Figure 10.19 Trailing-edge gravity assist for increasing energy.
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trajectory is collinear but opposite the planet’s heliocentric velocity vector vP. The space-
craft’s heliocentric velocity vector before the gravity assist is

v− = vP + v−
∞ (10.47)

where v−
∞ is the hyperbolic arrival velocity (at the SOI) of the spacecraft relative to the

planet. Figure 10.20a shows the vector addition of Eq. (10.47); the reader should be able
to correlate the arrival asymptote shown in Figure 10.19 with Figure 10.20a and
Eq. (10.47). After the hyperbolic flyby, the spacecraft departs the planet and crosses
the SOI with hyperbolic excess velocity vector v +

∞ as shown in Figure 10.19. The space-
craft’s heliocentric velocity vector after the gravity assist is

v + = vP + v
+
∞ (10.48)

Figure 10.20b depicts the vector addition after the flyby. It should be clear that themag-
nitude of the hyperbolic excess velocity is unchanged whether the spacecraft is approach-
ing or leaving the planet, that is, v∞ = v−

∞ = v +
∞ . By using the patched-conic method,

we have assumed that the two-body problem governs the spacecraft’s orbit inside the SOI
with the planet as the central body. Hence, the magnitude v∞ is constant because the
planet-relative energy of the hyperbolic trajectory is constant.
Returning to Eqs. (10.47) and (10.48) and Figure 10.20b, we see that the magnitude of

the spacecraft’s sun-relative velocity has increased after the gravity assist, that is

v + > v− (10.49)

Therefore, the trailing-edge gravity assist illustrated in Figures 10.19 and 10.20 increases
the energy of the spacecraft’s orbit relative to the sun. Figures 10.19 and 10.20b show that
the length of the post-flyby velocity vector v + increases because hyperbolic velocity vec-
tor v−

∞ has been rotated counter-clockwise by the turning angle δ. It is easy to see from
Figure 10.20b that increasing the turning angle δ will increase the magnitude of the post-
flyby velocity vector v +. Recall from Chapter 2 that turning angle is solely a function of
the eccentricity of the hyperbolic trajectory:

δ= 2sin−1 1
e

(10.50)

The turning angle δ increases as eccentricity e decreases. Recall that the energy of the
hyperbola is solely determined by v∞ , whereas the B-plane offset distance d and v∞
determine the angular momentum and eccentricity. Figure 10.21 shows two trailing-

To sun

−
∞v +

∞v

vP

v-

To sun

vP

v-v+

δ

(a) (b)

Figure 10.20 Trailing-edge gravity assist for increasing heliocentric energy: (a) heliocentric velocity v-

before flyby; and (b) heliocentric velocity v+ after flyby.
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edge gravity assists comparing “small” and “large” offset distances d. Decreasing offset d
(for fixed v∞ ) will decrease angular momentum, parameter p, and eccentricity e. Con-
sequently, Eq. (10.50) shows that decreasing eccentricity (toward unity) increases δ as
shown in Figure 10.21a. A large turning angle enhances the effect of the gravity assist
(see Figure 10.20). Increasing the offset distance d increases the periapsis radius, angular
momentum, and eccentricity and therefore “flattens out” the hyperbolic trajectory (i.e.,
decreasing δ) as shown in Figure 10.21b. Intuitively, Figure 10.21 makes sense: the closer
the planetary flyby, the greater the change in heliocentric energy.
There are practical limits on the offset distance for gravity assists. If the offset d is too

small, then the spacecraft will collide with the planet or enter its atmosphere. Flybys of
Earth and Venus are typically limited to about 300 km altitude to avoid their atmospheres
while a Jupiter flyby altitude is limited to roughly 500,000 km (about seven times the
radius of Jupiter) in order to minimize exposure to Jupiter’s hazardous radiation
environment.
The spacecraft’s heliocentric state vector before the gravity assist is r− ,v− , whereas its

new state vector is r+ ,v + after the gravity assist. Remember that in our application of
the patched-conic method, we have assumed that the spacecraft and planet share the
same heliocentric position vector when the spacecraft’s motion is within the planet’s
SOI. In this case, we have r− = r+ = rP where rP is the heliocentric position of the planet.
This approximation is acceptable for gravity assists with small planets (Venus and Earth)
but is less accurate for gravity assists with the so-called “gas giants” (Jupiter and Saturn).
For example, Table 10.1 shows that the ratio of SOI radius and planetary semimajor axis
is greater than 6% for Jupiter. For gravity assists with very large planets, we can improve
the accuracy of the spacecraft’s heliocentric position vector by accounting for the radius
of the SOI:

Before gravity assist r− = rP + r
−
∞

After gravity assist r+ = rP + r+∞

δ

d

(a)

vP

δ

d

(b)

vP

−
∞v

−
∞v

+
∞v

+
∞v

Figure 10.21 Effect of offset distance d on a trailing-edge gravity assist: (a) small offset d and large
turning angle δ; and (b) large offset d and small turning angle δ.
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The hyperbolic arrival radius r−∞ is the vector from the planet’s center to the point where
the spacecraft enters the SOI; similarly, r+∞ is the vector from the planet to the SOI depar-
ture point (of course, r−∞ = r+∞ = rSOI).
In summary, Figures 10.19–10.21 show trailing-edge gravity assists that increase the

spacecraft’s heliocentric energy. Some mission scenarios (like the MESSENGER mission
to Mercury) use one or more gravity assists to decrease the orbital energy. A “leading-
edge” gravity assist (i.e., periapsis passage is in front of the planet) will reduce the heli-
ocentric energy. To illustrate a leading-edge gravity assist, we can “flip” the hyperbolic
trajectory in Figure 10.19 so that its periapsis direction points along heliocentric velocity
vP. For an energy-loss gravity assist, Figure 10.20b depicts the velocity vector before the
flyby while Figure 10.20a depicts v+ after the flyby.
Finally, we should note that the spacecraft’s energy gain (or loss) is not “for free” with-

out consequences. The spacecraft’s kinetic energy change is balanced by an equal-and-
opposite change in the planet’s kinetic energy. However, because the spacecraft-to-
planet mass ratio is extremely small, the planet’s velocity change is immeasurable.

Example 10.6 Juno is a Jupiter-orbiting spacecraft launched on August 5, 2011 using
an Atlas V 551. The Centaur upper stage provided a significant velocity change so that
the Juno spacecraft initially followed a heliocentric trajectory with an aphelion distance
of approximately 2.31 AU. The Juno spacecraft fired its onboard engines to perform two
“deep space maneuvers” (DSM) near its aphelion on August 30, 2012 and September 3,
2012. These two successive DSMs corrected the trajectory to set up an Earth gravity
assist on October 9, 2013. Figure 10.22 shows the heliocentric flight of the Juno space-
craft along with the DSMs, the Earth gravity assist (flyby), and the arrival at Jupiter.

–6 –5 –4 –3 –2 –1 0 1 2
XH, AU

–2

–1

0

1

2

3

Y
H

, A
U

Earth

DSMs 1 & 2
Aug 30, 2012
Sept 3, 2012

Jupiter arrival
July 5, 2016 Earth flyby

Oct 9, 2013

Launch
Aug 5, 2011

Mars

Figure 10.22 Juno spacecraft’s heliocentric trajectory (Example 10.6).
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The approximate heliocentric position and velocity vectors for Earth and Juno at the
Earth gravity assist (October 9, 2013) are

Heliocentric position rE =

0 9577

0 2831

0

AU Earth and Juno

Heliocentric velocity AU/TU vE =

−0 2998

0 9554

0

Earth ; v− =

−0 0238

1 1691

0

Juno

Determine:

a) Juno’s hyperbolic arrival velocity, v−
∞ , before the Earth gravity assist.

b) Juno’s heliocentric semimajor axis and eccentricity before and after the Earth gravity
assist. The Earth gravity assist was a trailing-edge flyby with a perigee altitude
of 560 km.

a) Figure 10.23 shows Juno’s hyperbolic trajectory during the Earth gravity assist. Note
that the Earth–sun direction shown in Figure 10.23 corresponds to the Earth–sun
geometry presented in Figure 10.22 on the Earth-flyby date of October 9, 2013. Juno
used a trailing-edge Earth flyby in order to increase its heliocentric energy. Its perigee
passage on the hyperbolic flyby occurred a few minutes after entering the Earth’s
shadow. We can use Eq. (10.47) to compute the hyperbolic arrival velocity:

v−
∞ = v− −vE =

−0 0238

1 1691

0

−

−0 2998

0 9554

0

=

0 2760

0 2137

0

AU/TU

To sun

vE

+
∞v

−
∞v

Earth

XH

YH

Perigee

Earth’s orbit

Earth’s shadow

Figure 10.23 Juno’s trailing-edge hyperbolic Earth flyby (Example 10.6).
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Or, using 1 AU/TU = 29.785 km/s,

v−
∞ =

8 219

6 365

0

km/s

The Cartesian coordinates of v−
∞ make sense if we refer the hyperbolic arrival velocity

vector shown in Figure 10.23 to the inserted XH–YH frame. The magnitude of the
hyperbolic arrival velocity is v−∞ = 10.3955 km/s.

b) First, let us determine the energy of Juno’s trajectory relative to the sun before the
Earth gravity assist using heliocentric position vector rE and velocity vector v− :

ξ− =
v− 2

2
−
μs
rE

= – 281 80 km2/s2

where Earth’s radial position is rE = 0.9987 AU = 149,404,653 km, and
μs = 1.32712(1011) km3/s2. Semimajor axis before the gravity assist is

a− = −
μs
2ξ−

= 2 3547 108 km =1 574AU

The angular momentum (before the flyby) is

h− = rE × v− = 5 01898 109 K km2/s

Therefore, the pre-flyby parameter is

p− =
h− 2

μs
= 1 8981 108 km

Finally, the pre-flyby eccentricity is

e− = 1−
p−

a−
= 0 4404

The reader should remember that these elements are with respect to the sun (helio-
centric frame).
For the post-flyby elements, we need to compute Juno’s sun-relative velocity vector

after the gravity assist using Eq. (10.48)

v + = vE + v +
∞

Hence, we need to compute the hyperbolic departure velocity vector v +
∞ . Clearly, the

magnitudes of the arrival and departure hyperbolic velocities are equal, that is,
v∞ = v−

∞ = v +
∞ . Figure 10.24 shows the geometry of the vector addition for a trail-

ing-edge flyby (cf. Figures 10.23 and 10.24a to identify the directions of the asymptotic
velocity vectors v−

∞ and v +
∞ ).Note that thehyperbolic arrival velocity v−

∞ is at an angle of
37.75 relative to the heliocentric +XH axis [i.e., tan−1 6 365/8 219 = 37 75 ]. Conse-
quently, the hyperbolic departure velocity vector v +

∞ is at an angle 37.75 + δmeasured
counterclockwise fromthe+XH axis as shown inFigure10.24a (recall that δ is the turning
angle of thehyperbolic flyby– seeFigure10.21).Wedetermine theasymptoticdeparture
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vector in XH–YH coordinates by multiplying v∞ by the appropriate cosine and
sine terms:

v +
∞ = v∞

cos 37 75 + δ

sin 37 75 + δ

0

Equation (10.50) shows that the turning angle is

δ= 2 sin−1 1
e

The reader should take care to note that hyperbolic turning angle δ is a function of the
hyperbolic trajectory eccentricity e; that is, the segment of the gravity assist within
Earth’s sphere of influence as shown in Figure 10.23. First, let us use Eq. (10.30) to
compute Juno’s perigee velocity during the hyperbolic flyby

vp = v2∞ +
2μ
rp

= 14 932 km/s

where rp = RE + 560 km = 6,938 km is the perigee radius, v∞ = 10.396 km/s, and μ is
the Earth’s gravitational parameter. We compute the hyperbolic eccentricity using
the succession of calculations summarized below (remember that the Earth is the
central body in all two-body calculations):

Hyperbolic flyby semimajor axis a= −
μ

2ξ
= −

μ

v2∞
= – 3,688 km

Hyperbolic flyby parameter p=
h2

μ
=

rpvp
2

μ
= 26,962 km

Hyperbolic flyby eccentricity e= 1−
p
a
= 2 8810

To sun

37.75°

δ

vE

δ

vE

To sun

v+

+
∞v

−
∞v

+
∞v

−
∞v

−+ > vv

Earth Earth

XH

YH

−v

(a) (b)

Figure 10.24 Juno’s Earth gravity assist: (a) orientation of the asymptotic velocity vectors; and (b) Juno’s
heliocentric velocity vectors before and after the Earth flyby (Example 10.6).

Interplanetary Trajectories 377



Hence, δ = 40.62 and the hyperbolic departure velocity vector is

v +
∞ = v∞

cos 37 75 + 40 62

sin 37 75 + 40 62

0

=

2 095

10 182

0

km/s

Finally, Juno’s heliocentric (sun-relative) velocity after the flyby is

v + = vE + v +
∞ =

−8 928

28 455

0

+

2 095

10 182

0

=

−6 833

38 637

0

km/s

The magnitude of Juno’s post-flyby heliocentric velocity is v+ = 39 237km/s, which is
greater than v− as shown in Figure 10.24b. The post-flyby heliocentric calculations fol-
low the same steps as the pre-flyby calculations:

Sun-relative energy ξ+ =
v+ 2

2
−
μs
rE

= –118 496km2/s2

Sun-relative semimajor axis a+ = −
μs
2ξ+ = 5 5999 108 km = 3 743 AU

Sun-relative angular momentum h+ = rE × v + = 5 82527 109 K km2/s

Therefore, the post-flyby parameter is

p+ =
h+ 2

μs
= 2 5569 108 km

Finally, the post-flyby eccentricity is

e+ = 1−
p+

a+
= 0 7372

The reader should remember that these elements are with respect to the sun (i.e., the
heliocentric frame) after the Earth flyby. Clearly, the Juno spacecraft has gained energy
(relative to the sun) after the gravity assist (i.e., a+ > a− ), and its heliocentric trajectory
has become more eccentric (e+ > e− ). Figure 10.22 shows that Juno followed a highly
elliptical transfer after the Earth-gravity assist in October 2013 that eventually reached
Jupiter’s orbit in early July 2016.

10.7 Summary

This chapter has presented interplanetary trajectories. We have focused on the patched-
conic method, which divides the interplanetary mission into three separate two-body
problems: (1) Earth departure; (2) heliocentric cruise; and (3) planetary arrival.We deter-
mine the characteristics of each mission segment by employing the two-body fundamen-
tals (constants of motion, conic-section orbits, TOF, etc.) developed in Chapters 2 and 4.
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For example, the spacecraft follows a hyperbolic trajectory for the Earth-departure phase
because it must “escape” and reach “infinity” relative to a two-body system with Earth as
the central body. Likewise, the planetary arrival phase is also a hyperbolic trajectory
because the spacecraft approaches from an “infinite” distance. The heliocentric cruise,
by far the longest flight segment, is an elliptical transfer orbit where the sun is the central
body. The patched-conic method relies on properly “patching” together the various
two-body conic sections at the fictitious “sphere of influence.” In essence, the patching
process is relatively simple vector addition: the spacecraft’s inertial velocity in the heli-
ocentric frame is determined by adding its Earth-relative hyperbolic excess velocity to
the velocity of the moving frame (i.e., the Earth’s velocity relative to the sun). This vector
addition (and, the entire patched-conic method) becomes very easy to implement for a
solar system modeled by coplanar, circular planetary orbits (the reader should note the
similarity between the Hohmann transfer presented in Chapter 7 and the heliocentric
cruise between concentric-coplanar planets). We also showed how to apply the
patched-conic method to elliptical and inclined planetary orbits defined by their orbital
elements (i.e., an ephemeris). Here we obtain the heliocentric cruise by solving Lambert’s
problem, and we can systematically search for the optimal (minimum-energy) cruise by
obtaining multiple transfers for a range of Earth-departure and planet-arrival dates. We
ended this chapter by discussing a gravity assist, a non-propulsive flight maneuver where
a spacecraft’s heliocentric orbital energy changes after a hyperbolic encounter with a
planet.
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Problems

Conceptual Problems

10.1 Determine an interplanetary Earth—Jupiter mission that uses a heliocentric Hoh-
mann transfer. Assume coplanar concentric planetary orbits using the data in
Table 10.3. Determine the following parameters:
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a) Hyperbolic departure velocity, v+
∞ in km/s

b) Hyperbolic arrival velocity, v−∞ in km/s
c) Hohmann-transfer flight time in days
d) Phase angle at departure
e) Departure date for first launch opportunity after January 1, 2020.

10.2 Repeat Problem 10.1 for an Earth–Saturn mission.

10.3 Repeat Problem 10.1 for an Earth–Uranus mission.

10.4 Repeat Problem 10.1 for a Mars–Earth return mission.

10.5 Determine all feasible departure dates spanning the years 2020–2030 for a Mars–
Earth return mission that uses a heliocentric Hohmann transfer.

10.6 Determine all feasible departure dates spanning the years 2020–2030 for an
Earth–Venus mission that uses a heliocentric Hohmann transfer.

10.7 Determine all feasible departure dates spanning the years 2020–2030 for a
Venus–Earth return mission that uses a heliocentric Hohmann transfer.

10.8 Figure P10.8 shows a leading-edge hyperbolic Venus flyby along with the helio-
centric XH–YH coordinate axes. Below are the spacecraft’s hyperbolic arrival
velocity vector (relative to Venus) and Venus’ heliocentric velocity vector:

Spacecraft v−
∞ =

0

2 71

0

km/s, Venus vV =

0

35 0208

0

km/s

To sun

vV

+
∞v

−
∞v

Venus

XH

YH

Venus’ orbital 
velocity

Figure P10.8
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In addition, Venus’ heliocentric position vector during the flyby is

Venus rV =

0 72333

0

0

AU

The periapsis flyby altitude is 400 km. Determine:

a) The spacecraft’s sun-relative (heliocentric) semimajor axis, eccentricity,
perihelion radius, and aphelion radius before the flyby (express distances
in AU).

b) The spacecraft’s sun-relative (heliocentric) semimajor axis, eccentricity, per-
ihelion radius, and aphelion radius after the flyby (express distances in AU).

c) The B-plane offset distance (in km) for the arrival hyperbola.

10.9 An interplanetary, Earth–Venus mission calls for a direct atmospheric entry at
Venus. The targeted state at Venus’ atmospheric entry interface (EI) is rEI =
6,252 km, vEI = 11.25 km/s, and flight-path angle γEI = −9 . What is the target
offset distance d in the B-plane?

MATLAB Problems

10.10 Write an M-file that transforms an arbitrary calendar date to the corresponding
Julian date. The inputs should be a 1 × 3 row vector corresponding to the
calendar date, cal_date = [month day year], and a 1 × 3 row vector
corresponding to the Universal Time, UTC = [hour minute second].
The output should be the Julian date. Test your M-file against the US Naval
Observatory’s on-line Julian date calculator [7].

10.11 Write an M-file that transforms an arbitrary Julian date to the corresponding
calendar date. The input should be the Julian date and the outputs should be
a 1 × 3 row vector corresponding to the calendar date, cal_date = [month
day year], and a 1 × 3 row vector corresponding to the Universal Time,
UTC = [hour minute second]. Test your M-file against the US Naval
Observatory’s on-line Julian date calculator [7].

10.12 Write an M-file that will compute the performance metrics of an interplanetary
heliocentric Hohmann transfer between two arbitrary planets. Assume a con-
centric-coplanar solar-system model (use Table 10.3 for planetary radii). The
inputs should be two integers for the departure and arrival planets (use 1=Mer-
cury, 2=Venus, 3=Earth, etc.) and the desired launch year. The M-file should
obtain the first feasible Hohmann transfer after January 1 of the desired launch
year. The outputs should be asymptotic speeds on the departure and arrival
hyperbolas, the transfer time (in days), and the departure date (as a calendar
date). Test your M-file by re-solving Examples 10.1 and 10.2 and verifying the
departure dates for concentric Earth–Mars transfers in Table 10.6.
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Mission Applications

Problems 10.13–10.17 involve a future Earth–Mars mission. A trajectory design engi-
neer is searching for possible Earth–Mars transfers in the 2024 time frame. Using an
accurate planetary ephemeris and software that can optimize the patched-conic method,
she obtains a good candidate Earth–Mars transfer with the following heliocentric
coordinates:

Earth-departure date: October 1, 2024

Earth Oct 1, 2024 rE =

0 98879

0 15521

0

AU, vE =

−0 17138

0 98430

0

AU/TU

Spacecraft Oct 1, 2024 r=

0 98879

0 15521

0

AU, v =

−0 18915

1 09683

−0 00665

AU/TU

Mars-arrival date: September 18, 2025

Mars Sept 18, 2025 rM =

−1 13581

−1 07875

0 00532

AU, vM =

0 59085

−0 52030

−0 02542

AU/TU

Spacecraft Sept 18, 2025 r=

−1 13581

−1 07875

0 00532

AU, v =

0 56830

−0 44095

0 00313

AU/TU

10.13 The engineer wants to send a total spacecraft mass of at least 3,000 kg to Mars.
Use NASA’s on-line launch-vehicle performance calculator [5] to determine the
smallest (i.e., cheapest!) possible launch vehicle that can deliver this space-
craft mass.

10.14 Is this candidate Earth–Mars mission a Type 1 or Type 2 transfer? Justify your
answer.

10.15 The mission design team wants to consider a direct entry, descent, and landing
(EDL) profile at Mars. The target state at Mars entry interface (EI) is radius rEI =
3,521 km and flight-path angle γEI = –15.4 . Determine the spacecraft’s velocity
at Mars EI.

10.16 Using the Mars EI target presented in Problem 10.15, determine the B-plane off-
set distance for the Mars-arrival hyperbola.

10.17 TheEDLengineerswant todetermine the sensitivity of theMarsEI flight-path angle
γEI relative to dispersions in the B-plane offset distance. Plot EI flight-path angle vs.
offset distance and determine the range for offset distance such that the flight-path
angle is within its acceptable limits of −15 8 ≤ γEI ≤ −15 0 .
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Problems 10.18–10.21 involve the Mars Science Laboratory (MSL) mission, which
launched on November 26, 2011 and successfully landed on Mars on August 6, 2012.
The patched-conic method and an accurate planetary ephemeris have determined the
approximate heliocentric position and velocity vectors of the MSL spacecraft, Earth,
and Mars for the departure and arrival dates listed below:

Earth-departure date: November 26, 2011

Earth rE =

0 4362

0 8853

0

AU, vE =

−0 9135

0 4382

0

AU/TU

MSL r=

0 4362

0 8853

0

AU, v =

−0 9726

0 5372

−0 0099

AU/TU

Mars-arrival date: August 6, 2012

Mars rM =

−0 9375

−1 2267

−0 0027

AU, vM =

0 6770

−0 4243

−0 0255

AU/TU

MSL r=

−0 9375

−1 2267

−0 0027

AU, v =

0 5716

−0 4205

0 0062

AU/TU

10.18 Determine the launch energy, C3.

10.19 Determine the transfer angle and show that the MSL used a Type 1 trajectory.

10.20 Determine MSL’s hyperbolic arrival velocity v−∞ at Mars.

10.21 It turns out that a Type 2 transfer with a departure date of November 8, 2011
provided a lower launch energy than the Type 1 departure on November 26.
MSL mission planners had hoped to use the November 8 launch, but it became
unavailable because the Juno mission to Jupiter used the same launch pad in
August 2011 and consequently the launch facilities were not ready in time.
The predicted heliocentric positions and velocities for Earth and MSL on
November 8, 2011 are

Earth-departure date: November 8, 2011

Earth rE =

0 6929

0 7082

0

AU, vE =

−0 7312

0 6957

0

AU/TU

MSL r=

0 6929

0 7082

0

AU, v =

−0 7991

0 7647

0 02991

AU/TU
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Determine the launch energy, C3, for the November 8, 2011 launch option.

10.22 In January 2006, an Atlas V 551 booster injected the New Horizons spacecraft
into a hyperbolic departure trajectory with launch energy C3 = 158 km2/s2.
Assuming that the departure asymptote was aligned with Earth’s heliocentric
velocity vector, determine if the New Horizons spacecraft left the Earth’s sphere
of influence with enough energy to “escape” the solar system.

10.23 In February 2007 the New Horizons spacecraft approached Jupiter on a hyper-
bolic trajectory with an asymptotic arrival velocity of v−∞ = 18.427 km/s. If the
probe’s flyby speed at periapsis (“perijove”) was 21.2 km/s, determine the offset
distance d for the B-plane target.

10.24 InMarch 2006, theMars Reconnaissance Orbiter (MRO) spacecraft approached
Mars on a hyperbolic trajectory with eccentricity e = 1.7804 and asymptotic
arrival speed v−∞ = 2.9572 km/s. Determine the offset distance d for the B-plane
target.

10.25 The Juno spacecraft was launched on August 5, 2011. The approximate
heliocentric position and velocity vectors for Earth and the Juno spacecraft
on August 7, 2011 are

Earth August 7, 2011 rE =

0 71097

−0 72325

0

AU, vE =

0 69660

0 69756

0

AU/TU

Juno August 7, 2011 r=

0 71415

−0 71805

0

AU, v =

0 79304

0 86108

0

AU/TU

a) Determine the Juno spacecraft’s distance from the Earth’s SOI on August 7,
2011 (use the SOI radius defined by Table 10.1).

b) Compute the launch energy C3 and use NASA’s on-line launch-vehicle per-
formance calculator [5] to determine Juno’s launch mass (Juno was launched
using an Atlas V 551). Compare this computed value to a published value of
Juno’s launch mass.

10.26 The Juno spacecraft approached Jupiter with hyperbolic arrival speed v−∞ =
5.376 km/s and B-plane offset distance d = 816,600 km. Determine the periapsis
(“perijove”) radius of the hyperbolic arrival trajectory.
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11

Atmospheric Entry

11.1 Introduction

The principle focus of this textbook thus far has been on orbital motion in the vacuum of
space. However, in our discussion of propulsion in Chapter 6, we briefly analyzed the
launch or ascent phase where a booster rocket experiences atmospheric flight during
its path to an orbital target. For missions with a crew, such as the Apollo lunar missions
or visits to an orbiting space station, an entry flight phase is required to return the crew
safely to the Earth’s surface. For a robotic sample-return space probe (such as the Star-
dust spacecraft) or a planetary landing (such as Mars Science Laboratory), an atmos-
pheric entry flight phase must be properly designed to bring the payload safely to the
target planet’s surface. This chapter presents an introduction to atmospheric entry:
the flight mechanics of a spacecraft as it moves from orbital (Keplerian) motion to flight
through a planetary atmosphere.
Whereas the launch phase involves increasing a vehicle’s total energy as it attempts to

reach an orbital target, dissipating the spacecraft’s total energy is the primary challenge of
the entry phase. The vehicle sheds its stored energy in the formof heat due to aerodynamic
drag. An entry vehicle’s total energy is, of course, composed of potential and kinetic
energy, where its maximum potential energy (for the entry phase) occurs at the so-called
“entry interface” (EI) or altitude where aerodynamic drag becomes perceptible. Specific
kinetic energy at EI is v2EI/2, and can range from roughly 30 km2/s2 for a vehicle returning
from low-Earth orbit (LEO) to 60 km2/s2 for a capsule returning from the moon.
Our primary performance metrics for atmospheric entry are peak deceleration (for

structural and safety considerations), down-range distance (for targeting a landing posi-
tion), and heating loads. As we shall soon see, the governing equations of motion for entry
are nonlinear due to the inclusion of aerodynamic forces. We will present the so-called
“first-order” analytical solutions for entry thatweredeveloped in the late1950sby research-
ers such as Eggers et al. [1], Allen and Eggers [2], and Chapman [3]. Although these ana-
lytical solutions have shortcomings, they allow an engineer to quickly evaluate an entry
vehicle or entry scenario, observe trends in trade studies, and generally gain an insight
to theentryproblem.Whileour focus isnotonnumerical solutions,wewill presentnumer-
ically integrated entry trajectories in order tomake comparisonswith the analytical results.
Before delving into the entry equations, let us briefly define different classes of space

flight maneuvers that involve passage through a planet’s atmosphere. Figure 11.1 shows
an aerobraking maneuver where a spacecraft makes several passes through a planet’s
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atmosphere to lower its apoapsis altitude. Aerobraking begins by firing an onboard
rocket to slow down the spacecraft’s hyperbolic approach and establish a highly elliptical
orbit about the target planet. A subsequent small propulsive burn applied at apoapsis
positions the periapsis altitude at the planet’s upper atmosphere. Consequently, the
spacecraft experiences a small amount of atmospheric drag during each periapsis passage
and the apoapsis is slowly reduced over a long time frame. Eventually, the elliptical orbit
becomes nearly circular, whereupon a small propulsive burn raises periapsis out of the
upper atmosphere. Aerobraking greatly reduces the propellant mass requirement for
inserting a spacecraft into a low target orbit. The Mars Global Surveyor (MGS) under-
went an extensive aerobraking maneuver from September 1997 to March 1999 that con-
tracted its original 45-h elliptical orbit to a 2-h circular orbit about Mars. The MGS
mission shows that while aerobraking enables propellant-mass savings, it extends the
mission and delays satellite operations.
Figure 11.2 shows an aerocapture maneuver, where a single high-drag pass through a

planet’s atmosphere greatly reduces the spacecraft’s velocity so that its hyperbolic
approach trajectory becomes a closed (captured) orbit about the target body. Because
aerocapture requires a great deal of kinetic energy dissipation during its single atmos-
pheric pass, it requires a thermal protection system and hence is a much more aggressive
atmospheric maneuver when compared with aerobraking. After the spacecraft exits the
atmosphere, it fires a small propulsive burn at apoapsis to raise periapsis out of the pla-
net’s atmosphere and establish the target orbit. Although it offers significant propellant
mass savings, no space mission to date has employed aerocapture.

11.2 Entry Flight Mechanics

Figure 11.3 presents a free-body diagram of the vertical forces that act on an entry vehicle
during atmospheric flight. Two forces govern the vehicle’s motion: gravitational forcemg
(acting from the vehicle to the planet’s center), and aerodynamic force (resolved into lift

Atmospheric passes at 
periapsis

Aerodynamic drag
at periapsis slowly 
lowers apoapsis

Figure 11.1 Aerobraking maneuver.
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Figure 11.2 Aerocapture maneuver.
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Figure 11.3 Atmospheric entry forces in a vertical plane.
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L and drag D). By definition, lift L is the aerodynamic force component normal to the
flight path and drag D is tangent to the flight path but opposite the velocity vector.
Figure 11.4 shows that the entry vehicle may rotate or “bank” about its velocity vector,
thus rotating lift force L out of the vertical plane. Symbol ϕ denotes the bank angle, and
Figure 11.4 shows a positive bank angle (ϕ > 0, right wing down) where the velocity vector
is pointing out of the page. Except for the elimination of the thrust force and the addition
of the bank angle, Figure 11.3 is identical to Figure 6.4, the free-body diagram for the
ascent phase of a launch vehicle. Hence, the entry-flight dynamical equations are
obtained from the launch trajectory equations (6.17) and (6.18) by simply removing
thrust T and replacing lift with the vertical-plane lift component, Lcos ϕ:

v= −
D
m

−g sinγ (11.1)

vγ =
Lcosϕ
m

− g−
v2

r
cos γ (11.2)

We maintain the familiar symbols here, where v is the vehicle’s inertial velocity, r is the
radial distance from the planet’s center, γ is the flight-path angle, and m is the vehicle’s
mass. Recall that we derived the ascent equations by assuming a stationary planet, and
therefore Eqs. (11.1) and (11.2) neglect the Coriolis and centripetal accelerations caused
by a rotating planet. Gravitational acceleration is

g r = g0
r0
r

2
(11.3)

where g0 is the “standard gravitational acceleration” near the planet’s surface, and r0 is the
mean radius of the planet that corresponds to standard gravity. For Earth, standard grav-
ity is g0 = 9.80665 m/s2. Using g0 = μ/r20 , we find that r0 = 6,375.42 km, which is slightly
less than Earth’s equatorial radius. Aerodynamic lift and drag forces are

L=
1
2
ρv2SCL (11.4)

D=
1
2
ρv2SCD (11.5)

where ρ is the planet’s atmospheric density, S is a vehicle reference area, and CL and CD

are the aerodynamic lift and drag coefficients, respectively. Because we use inertial

Lcos ϕL

mg

Right wing
Velocity vector 
points out of page

ϕ

Figure 11.4 Bank angle ϕ and vertical-plane lift component Lcosϕ.
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velocity v in the aerodynamic force calculations, we have assumed that the planet’s
atmosphere is stationary. In practice, lift and drag coefficients will vary during entry
as the flow-field dynamics transition between the hypersonic, supersonic, and subsonic
regimes. However, because we are interested in analytical solutions, we simplify matters
by treating the aerodynamic coefficients as constants (it turns out that CL and CD are
approximately constant for hypersonic flight at constant angle-of-attack, which com-
prises the majority of the entry profile).
To complete the force models, we need to represent the variation of atmospheric den-

sity ρwith altitude. Because our goal is to obtain approximate analytical solutions, we use
an exponential model of the planet’s density

ρ= ρ0e
−βh (11.6)

where ρ0 is the atmospheric density at the planet’s surface and β is the “inverse scale
height.” Although an altitude-dependent β provides the most accurate density model,
we will use the simplest possible model and treat β as a constant. Table 11.1 presents
the EI altitude hEI, surface density ρ0, and inverse scale height β for Earth, Mars, and
Venus. Although the parameters presented in Table 11.1 are not definitive values, they
are the planetary constants that we will utilize in this textbook.
We include two additional kinematic equations to determine the position of the entry

vehicle:

h= v sin γ (11.7)

s=
r0
r
vcos γ (11.8)

Equations (11.7) and (11.8) define the time-rates for altitude h and down-range distance
s. Note that because radius is r = r0 + h, its time-rate is r = h.
Equations (11.1), (11.2), (11.7), and (11.8) are the governing equations of motion for

atmospheric entry in a vertical plane. Just as the launch trajectory equations, these ordi-
nary differential equations (ODEs) are highly nonlinear and hence there is no analytical
solution. While it is possible to obtain numerical solutions using a computer, we will
develop approximate analytical solutions to gain insight into the behavior of entry flight
mechanics.
A final note regarding planar motion is in order. Figure 11.4 shows that banking the lift

vector will cause a side force, which produces turning or out-of-plane motion. We will
neglect cross-track motion in this chapter because we are primarily concerned with the
entry vehicle’s motion in the vertical plane (i.e., velocity and along-track range). In

Table 11.1 Planetary atmospheric constants.

Planet
Entry interface altitude, hEI
(km)

Atmospheric density at surface, ρ0
(kg/m3)

Inverse scale height, β
(km−1)

Earth 122 1.225 0.1378

Mars 125 0.016 0.0943

Venus 200 65.0 0.0629
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practice, any cross-track excursions caused by banking are removed by so-called “bank
reversals” (e.g., rotating the vehicle from ϕ = 40 to –40 ). The Space Shuttle used bank
reversals to eliminate cross-track deviations while maintaining a desired vertical lift com-
ponent Lcosϕ [4].

11.3 Ballistic Entry

Our first analytical entry solution involves a ballistic entry where the lift force is zero. An
axially symmetric vehicle flown at zero angle-of-attack will follow a ballistic entry trajec-
tory. The Stardust Sample Return Capsule was a blunt-body entry vehicle that followed a
ballistic trajectory when it re-entered Earth’s atmosphere in early 2006 after collecting
dust samples from the tail of comet Wild 2.
In order to derive a first-order analytical solution for ballistic entry, we make two fun-

damental assumptions:

1) Drag acceleration D/m dominates the path-tangent acceleration equation (11.1)
and therefore we can neglect g sin γ.

2) The centrifugal term v2/r cancels gravity g in the path-normal acceleration
equation (11.2).

The first assumption is questionable when the vehicle reaches EI because drag is initially
very small due to the extremely thin upper atmosphere. The first assumption is reason-
able when the drag force is significant and the flight-path angle γ is small. The second
assumption imposes limitations to the first-order ballistic solution. We may express the
second assumption (centrifugal term cancels gravity) as

v2

r
= g

or,

v= gr =
μ

r

which holds because g = μ/r2. In other words, v2/r cancels g only when the vehicle is
entering the planet’s atmosphere at near-circular speed. Therefore, the second assump-
tion is reasonable for a ballistic entry after a de-orbit burn from LEO. However, by enfor-
cing the second approximation, we cannot obtain analytical ballistic trajectories for
vehicles entering the atmosphere at hyperbolic or near-hyperbolic speeds. Furthermore,
even for entry at near-circular speed, the second condition (v2/r = g) only holds during
the initial high-altitude entry. Eventually, aerodynamic drag will slow the vehicle such
that gravity gwill begin to dominate the centrifugal term v2/r. The path-normal equation
(11.2) shows that in the absence of lift, the gravity force will eventually rotate the flight
path downward toward the vertical direction.
Applying the first assumption to Eq. (11.1) yields

v= −
D
m

= −
1
2
ρv2

S
m
CD (11.9)
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Applying the second assumption (v2/r = g) to the path-normal equation (11.2) with zero
lift (L = 0), we see that the time-rate of the flight-path angle is zero (i.e., γ = 0). Therefore,
flight-path angle remains constant and equal to its value at the entry interface, γ = γEI.
Next, let us change the independent variable of Eq. (11.9) from time t to altitude h by
dividing Eq. (11.9) by Eq. (11.7):

v

h
=
dv/dt
dh/dt

=
dv
dh

=
−ρv2SCD

2mv sin γEI
(11.10)

Note that we have used h= vsin γEI because flight-path angle remains constant. At this
point, it is convenient to group the three constants S, CD, and m into a single constant
called the ballistic coefficient, CB

CB
m
SCD

(11.11)

The ballistic coefficient has units of kilograms per meter squared. Substituting
Eq. (11.11) into Eq. (11.10) and separating variables yields

dv
v
=

−ρ

2CB sin γEI
dh (11.12)

Next, substitute the exponential density model (11.6) into Eq. (11.12):

dv
v
=

−ρ0
2CB sin γEI

e−βhdh (11.13)

Integrating both sides of Eq. (11.13) from the initial conditions at entry interface (vEI, hEI)
to the final conditions (v, h) yields

ln
v
vEI

=
ρ0

2βCB sin γEI
e−βh−e−βhEI (11.14)

or,

ln
v
vEI

=B e−βh−e−βhEI (11.15)

where the constant B is the first term on the right-hand side of Eq. (11.14)

B
ρ0

2βCB sin γEI
(11.16)

The constant B is dimensionless and negative because γEI < 0 (the reader should compute
B with care; surface density ρ0 has units of kg/m

3, ballistic coefficient CB has units of
kg/m2, while inverse scale height β is typically given in units of km−1). Finally, we can
solve Eq. (11.15) for the vehicle’s velocity along the ballistic entry trajectory:

v= vEI exp B e−βh−e−βhEI (11.17)

This expression for velocity can be simplified by neglecting the very small term e−βhEI ,
which becomes even more negligible compared with e−βh as the vehicle descends and
altitude h decreases
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v= vEI exp Be−βh (11.18)

Equation (11.18) is the spacecraft’s velocity during ballistic entry as a function of alti-
tude. The vehicle’s entry-velocity history depends on the planet’s inverse scale height β
and the constant B, which in turn is a function of the planet’s surface density, inverse
scale height, ballistic coefficient, and entry flight-path angle. Of course, the vehicle’s
velocity also depends on its initial value, vEI, which must be approximately equal to cir-
cular orbital speed to satisfy the second assumption for ballistic entry.
Vehicle deceleration is an important performance metric for an entry trajectory due to

its correlation with limits for the vehicle’s structural integrity. Furthermore, humans can-
not tolerate sustained exposure to excessive “g-loads.” Using the chain rule, we take the
time derivative of the velocity equation (11.18):

dv
dt

= vEIBexp Be−βh −βe−βh
dh
dt

(11.19)

Substituting dh/dt = vsin γEI = vEI exp Be−βh sinγEI into Eq. (11.19) yields

v= −βBv2EI sin γEIe
−βh exp 2Be−βh (11.20)

Equation (11.20) is the vehicle’s acceleration along the ballistic flight path as a function
of altitude h. Because B < 0 and sinγEI < 0, Eq. (11.20) shows that acceleration dv/dt is
always negative.We will define deceleration a as negative acceleration, a= −v, and hence
it is always positive for a ballistic entry. Deceleration will reach a peak (maximum) value
at a particular altitude during the entry. We obtain maximum deceleration by setting the
derivative of Eq. (11.20) with respect to altitude h to zero:

d
dh

v= β2Bv2EI sinγEIe
−βh exp 2Be−βh + β2Bv2EI sin γEIe

−βh 2Be−βh exp 2Be−βh = 0

(11.21)

Factoring out the common term in Eq. (11.21) yields

d
dh

v= β2Bv2EI sin γEIe
−βh exp 2Be−βh 1 + 2Be−βh = 0 (11.22)

Equation (11.22) is zero only when the parenthetical term is zero, or

1 + 2Be−βh = 0 (11.23)

We may express the above condition for peak deceleration as

e−βh =
−1
2B

(11.24)

We can solve for altitude by taking the natural logarithm of Eq. (11.24):

hcrit =
1
−β

ln
−1
2B

(11.25)

Or,

hcrit =
ln −2B

β
(11.26)
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Equation (11.26) presents the critical altitude hcrit where peak deceleration occurs dur-
ing ballistic entry. Finally, we can substitute Eq. (11.26) into the deceleration equation
(11.20) to determine the peak deceleration. After some algebra, we obtain

amax =
−β v2EI sinγEI

2e
(11.27)

Equation (11.27) is the maximum deceleration along the ballistic flight path. Note that
it is positive because sinγEI < 0. Furthermore, Eq. (11.27) provides deceleration in units of
kilometers per second squared if we express inverse scale height β in units of per kilo-
meter and entry interface velocity vEI in kilometers per second. Typically, we express
vehicle deceleration in terms of an “Earth g-load” which we can easily obtain by dividing
deceleration by Earth’s standard gravitational acceleration g0. The reader should note
that peak deceleration only depends on entry speed vEI, atmospheric inverse scale height
β, and entry flight-path angle γEI. Furthermore, vehicle characteristics (i.e., ballistic coef-
ficientCB) do not influence the peak deceleration along a ballistic entry – this result is not
intuitive. However, Eq. (11.26) shows that the vehicle’s ballistic coefficient does influence
the altitude where peak acceleration occurs.
Equation (11.27) has limitations: note that for a “grazing” entry with flight-path angle

γEI≈0, Eq. (11.27) predicts zero deceleration. Chapman [3] developed and applied a sec-
ond-order method to ballistic entry and showed that for entry from LEO, the peak decel-
eration is about 8g0 even at very shallow flight-path angles. The first-order method
presented here (based on the research of Allen and Eggers [2]) produces peak decelera-
tions that show a goodmatch with Chapman’s second-order method for entry flight-path
angles steeper than about –5 .
The final piece of information regarding ballistic entry is the critical velocity where

peak deceleration occurs. To find this velocity, we substitute the expression for critical
altitude, Eq. (11.26), into the velocity equation (11.18)

vcrit = vEI exp Bexp
−β ln −2B

β
(11.28)

Equation (11.28) reduces to the simple expression:

vcrit = vEIe
−0 5 (11.29)

or,

vcrit = 0 6065vEI (11.30)

The first-order ballistic entry analysis predicts that the peak deceleration always occurs
at a critical velocity vcrit that is 60.7% of the velocity at entry interface regardless of entry
flight-path angle γEI, ballistic coefficient CB, or even the characteristics of the planet’s
atmosphere!
Ballistic entry offers a simple entry strategy. We may control peak deceleration for a

ballistic entry by selecting the EI states, vEI and γEI. However, as previously noted, the
peak deceleration for a shallow entry from LEO exceeds 8g0. As we shall see in the next
section, adding even a small amount of aerodynamic lift will greatly diminish the peak
deceleration. The following example illustrates a ballistic entry trajectory and compares
the first-order analytical solution with a numerically integrated trajectory.
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Example 11.1 The Soviet Union’s Vostok spacecraft was used for the first manned
space flights in the early 1960s. It was spherical in shape (with drag coefficient CD =
2.0), and had a mass of 2,460 kg and diameter of 2.3 m. The Vostok capsule departs a
low-Earth orbit and reaches entry interface (EI) altitude hEI = 122 km with velocity
vEI = 7.74 km/s and flight-path angle γEI = –3.2 . It follows a ballistic entry.

a) Compute the velocity, flight-path angle, and deceleration (in Earth g0) at altitudes of
80, 60, and 40 km.

b) Compute the peak deceleration and associated critical altitude and velocity at peak
deceleration.

c) Create plots of velocity and deceleration vs. altitude for the analytical ballistic entry
and a numerically integrated ballistic entry profile.

a) The analytical ballistic entry equations require the constants CB and B. Ballistic coef-
ficient for the Vostok capsule is

CB =
m
SCD

= 296 05 kg/m2

where the Vostok reference area is S = π(2.3/2)2 = 4.1548 m2. The dimensionless coef-
ficient is

B=
ρ0

2βCB sin γEI
= –268 9650

where the values for Earth’s atmospheric constants ρ0 and β are taken from Table 11.1
(note that β must be expressed in units of m−1 if surface density ρ0 is in units of
kg/m3). Equation (11.18) provides velocity during the ballistic entry as a function
of altitude:

v= vEI exp Be−βh

The velocities at the required altitudes are

h= 80 km v= 7 7062 km/s

h= 60 km v= 7 2239 km/s

h= 40 km v= 2 6126 km/s

Note that the Vostok’s velocity changes very little from EI to h = 80 km (due to low
drag) but dramatically changes between 60 and 40 km altitude.

The analytical ballistic solution for flight-path angle assumes that it remains con-
stant during the entire entry. Therefore, γ = γEI = –3.2 at h = 80, 60, and 40 km.

Equation (11.20) determines the vehicle’s acceleration

v= −βBv2EI sin γEIe
−βh exp 2Be−βh

We compute deceleration in units of meters per second squared by expressing β in per
meter, vEI in meters per second, and h in meters. The values of vehicle deceleration
(a= −v, in g0) at the three altitudes are
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h= 80 km a= 2 003m/s2 = 0 204g0

h= 60 km a= 27 704m/s2 = 2 825g0

h= 40 km a= 57 021m/s2 = 5 814g0

where we have used g0 = 9.80665 m/s2.

b) We use Eq. (11.27) to determine the peak deceleration of the Vostok capsule

amax =
−β v2EI sin γEI

2e
= 84 763m/s2 = 8 643g0

Critical altitude for peak deceleration is computed using Eq. (11.26)

hcrit =
ln −2B

β
= 45 629 km

We use Eq. (11.30) to predict the critical velocity for peak deceleration:

vcrit = 0 6065vEI = 4 694 km/s

c) Finally, we can compute velocity and deceleration (in g0) using Eqs. (11.18) and
(11.20) determined at altitudes ranging from hEI to about zero. We compare the ana-
lytical ballistic entry results with a more precise entry trajectory obtained by numer-
ically integrating Eqs. (11.1), (11.2), and (11.7) with constant CD, CL = 0 (zero lift),
inverse-square gravity (11.3), and an exponential atmosphere modeled by
Eq. (11.6). We employ MATLAB’s M-file ode45.m to numerically integrate the
three nonlinear ODEs. Figure 11.5 shows velocity vs. altitude for the analytical and
numerical entry solutions. The Vostok entry trajectory begins in the upper right
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Figure 11.5 Velocity vs. altitude for Vostok ballistic entry (Example 11.1).
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corner of Figure 11.5 (at hEI = 122 km), and progresses to the left as both altitude and
velocity become smaller (note the arrows on the plots). The analytical velocity solu-
tion shows a good match with the “true” numerically integrated trajectory despite the
major assumption that flight-path angle remains constant. Figure 11.6 presents the
Vostok’s deceleration for the analytical and numerical ballistic trajectories. The ana-
lytical method accurately predicts deceleration until altitude reaches 50 km, which is
slightly before the critical altitude of 45.6 km. The peak deceleration of the analytical
method is about 2.7g0 lower than the “true” peak deceleration from the numerically
integrated trajectory.
Figure 11.7 shows how the Vostok spacecraft’s flight-path angle changes with alti-

tude for the numerically integrated ballistic entry. Flight-path angle remains nearly
constant for the high-altitude portion of the entry (i.e., the centrifugal force approx-
imately cancels gravity) until an altitude of about 50 km. However, the Vostok capsule
continues to decelerate (see Figure 11.5), and below 50 km gravity dominates the v2/r
termand consequently the flight-path angle turns downward toward the vertical direc-
tion. Below 6 km altitude the spacecraft is essentially dropping vertically toward the
ground with γ = –90 . Of course, the first-order analytical method assumes constant
flight-path angle (also shown in Figure 11.7) which is not an accurate approximation
for h < 50 km.

11.4 Gliding Entry

An entry vehicle with aerodynamic lift capabilities offers two significant advantages over
a ballistic entry: (1) lift reduces the peak deceleration; and (2) lift extends the vehicle’s
range and offers options for maneuvering the vehicle. The small lift provided by the
Gemini capsule significantly reduced the peak g-load when compared with the ballistic
entry of the Mercury capsule. The Space Shuttle’s delta wing configuration provided
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Figure 11.6 Deceleration vs. altitude for Vostok ballistic entry (Example 11.1).
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more lift than any entry vehicle to date, which resulted in a long-range shallow glide with
low deceleration loads.
As before, we will develop a first-order analytical solution for lifting entry; to do so, we

employ two principle assumptions:

1) The lifting entry is a shallow glide at small flight-path angle and therefore we can set
sinγ≈γ and cosγ≈1 in Eqs. (11.1) and (11.2).

2) The vertical lift and centrifugal terms, L cos ϕ/m and v2/r, cancel gravity g in the path-
normal acceleration equation (11.2).

The second assumption is the so-called “equilibrium-glide” condition. Applying both
approximations to Eq. (11.2), we obtain

vγ = aL cosϕ−g +
v2

r
= 0 (11.31)

where aL L/m is the lift acceleration. The equilibrium glide is at constant (small) flight-
path angle. Equation (11.31) is an algebraic equation that defines velocity during the glid-
ing entry. However, lift acceleration aL also depends on velocity. A convenient way to
represent lift acceleration is

aL =
L/m
D/m

aD (11.32)

where aD D/m is the drag acceleration, which can be expressed using Eq. (11.5):

aD =
1
2
ρv2

S
m
CD =

ρv2

2CB
(11.33)
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Figure 11.7 Flight-path angle vs. altitude for Vostok ballistic entry (Example 11.1).
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Note that we have used the ballistic coefficient, Eq. (11.11), to simplify Eq. (11.33). Sub-
stituting Eq. (11.33) into the lift acceleration equation (11.32) yields

aL = L/D
ρv2

2CB
(11.34)

where L/D (= aL/aD) is the dimensionless lift-to-drag ratio for the entry vehicle. As with
ballistic coefficient, L/D is an important vehicle design parameter that greatly affects the
gliding entry profile. We will treat L/D as a constant parameter. Substituting Eq. (11.34)
into the equilibrium-glide condition (11.31) yields

L/D
ρv2

2CB
cosϕ−g +

v2

r
= 0 (11.35)

Multiplying all terms by radius r and rearranging, we obtain

v2 1 + L/D
rρ cosϕ
2CB

= gr (11.36)

Solving Eq. (11.36) for velocity yields

v=
gr

1 + L/D
rρ cosϕ
2CB

(11.37)

Equation (11.37) is the velocity along an equilibrium glide. Let us take a closer look
at each term on the right-hand side of Eq. (11.37): we can assume that L/D and CB are
constants; bank angle ϕ can be modulated during the glide; and atmospheric density ρ
changes dramatically with altitude. Because planets have “thin” atmospheres relative
to their planetary radius, r varies less than 2% between EI and sea level for Earth.
Similarly, Eq. (11.3) shows that Earth’s gravity g varies less than 4% between EI and
sea level. For these reasons, we use the surface values r = r0 and g = g0 in Eq. (11.37)
for simplicity. Finally, we substitute the exponential density model (11.6) into
Eq. (11.37) to obtain

v=
g0r0

1 + L/D
r0 cosϕ
2CB

ρ0e
−βh

(11.38)

Equation (11.38) defines the velocity along an equilibrium glide as a function of alti-
tude h. The assumptions leading to Eq. (11.38) have posed an additional limitation to its
use. At entry interface (h= hEI), the term e−βhEI is very small, and hence the EI velocity
predicted by Eq. (11.38) is approximately

vEI≈ g0r0 = vs (11.39)

Because g0 = μ/r20 , Eq. (11.39) shows that vs = μ/r0 is the circular orbital speed at the
planet’s surface. For Earth, vs = 7.907 km/s. Therefore, imposing the equilibrium-glide
condition restricts our first-order method to entry at near-circular speeds and shallow
flight-path angle. It is important to reiterate that we cannot use Eq. (11.38) to compute
velocity for an aerocapture maneuver where the spacecraft enters the atmosphere at
hyperbolic or near-hyperbolic speed.
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Deceleration along the flight path is another important metric. Neglecting the gravity
component along the flight path in Eq. (11.1), we obtain

v= −aD =
−aL
L/D

(11.40)

where we have used Eq. (11.32) to replace drag acceleration aD. The equilibrium-glide
condition (11.31) dictates that the vertical lift component balances g−v2/r

aL cosϕ= g0−
v2

r0
(11.41)

Note that we have used the surface values r = r0 and g = g0 for simplicity. Substituting
Eq. (11.41) for lift acceleration in Eq. (11.40) yields

v=

v2

r0
−g0

L/D cosϕ
(11.42)

Equation (11.42) expresses vehicle acceleration along the flight path as a function of
velocity and bank angle ϕ. Equation (11.38) determines velocity along the equilibrium
glide. Let us observe deceleration (a= −v) at the initial and terminal points of the tra-
jectory. At entry interface vEI≈ g0r0, and hence Eq. (11.42) shows that deceleration
is nearly zero. The (theoretical) peak deceleration occurs at zero velocity, in which case
Eq. (11.42) yields

amax≈
g0

L/D cosϕ
(11.43)

For example, with L/D = 1.1 (e.g., the Space Shuttle) and zero bank angle, the peak decel-
eration is less than 9 m/s2 or less than one g0. Of course, the lifting vehicle cannot sustain
the equilibrium-glide condition at low velocities as lift and centrifugal forces diminish
and can no longer balance gravity.
Up to this point, the assumptions that lead to the equilibrium-glide condition for lifting

entry might seem restrictive. As previously mentioned, we cannot use the first-order
glide analysis for an aerocapture maneuver from super-circular entry speeds. However,
a predominant segment of the Space Shuttle’s entry profile followed an equilibrium glide.
In fact, the Space Shuttle entry guidance algorithm used first-order analytical solutions to
predict its down-range distance during the hypersonic entry. Therefore, it is instructive
to develop an analytical expression for down-range during the equilibrium glide. To
begin, we form the derivative ds/dv by dividing the down-range rate, Eq. (11.8), by
the equilibrium-glide acceleration, Eq. (11.42):

s
v
=
ds
dv

=
v L/D cosϕ

v2

r0
−g0

(11.44)

where we have used the approximations r = r0 and cosγ = 1 in the ds/dt equation. Separ-
ating variables yields

ds=
v L/D cosϕ

v2

r0
−g0

dv (11.45)
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Integrating Eq. (11.45) with constant L/D and constant bank angle ϕ, we obtain

s=
r0
2

L/D cosϕ ln g0r0−v
2

v2

v1
(11.46)

Evaluating the velocity at the boundary conditions and using v2s = g0r0 yields

s=
r0
2

L/D cosϕ ln
v2s − v22
v2s − v21

(11.47)

Equation (11.47) is the ground-track range for an equilibrium glide from initial velocity
v1 to final velocity v2. Note that this range equation is sensitive to the value of initial
velocity v1 and becomes singular when v1 = vs (this singularity makes sense: if
initial velocity v1 is exactly equal to surface-circular velocity vs, then the vehicle remains
in orbit and the ground-track is infinite). Equations (11.38) and (11.39) show that enfor-
cing the equilibrium-glide condition results in an EI velocity that is less than but nearly
equal to vs. As previously mentioned, the Space Shuttle’s onboard guidance computer
used Eq. (11.47) to predict the ground-track range for the equilibrium-glide segment
of its entry profile. We will discuss the Space Shuttle’s entry guidance scheme and range
prediction methods in Section 11.7.

Example 11.2 The Space Shuttle is in a 300-km altitude circular orbit when it per-
forms a de-orbit burn with impulse Δv = 90 m/s (see Figure 11.8). The Space Shuttle
has mass m = 82,000 kg, reference wing area S = 250 m2, drag coefficient CD = 0.8,
L/D = 1.1, and constant bank angle ϕ = 50 during its equilibrium-glide entry.

a) Determine the Shuttle’s velocity and flight-path angle at entry interface.
b) Compute the velocity and deceleration (in Earth g0) at altitudes of 80, 60, and 40 km.
c) Plot velocity and deceleration for the analytical equilibrium-glide entry and anumerically

integrated lifting entry profile. Let the final altitude be 30 km (i.e., the end of the
entry phase).

d) Determine the total ground-track range from EI to an altitude of 30 km.

a) Figure 11.8 shows that the90m/sde-orbit burn (anti-tangent toLEO) creates a transfer
orbit with an apogee that is tangent to LEO. The apogee velocity on the transfer orbit is

va =
μ

rLEO
−Δv= 7 726– 0 090 = 7 636 km/s

where rLEO = 6,678 km. The energy, semimajor axis, angular momentum, parameter,
and eccentricity of the transfer orbit are

Energy ξ=
v2a
2
−

μ

rLEO
=
−μ

2a
= – 30 536 km2/s2

semimajor axis is a = 6,526.8 km

Angular momentum and parameter h= rLEOva = pμ= 50,992 km2/s

parameter is p = 6,523.3 km

Eccentricity e= 1−
p
a
= 0 0232
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The perigee radius of the transfer orbit is

rp =
p

1 + e
= 6,375 6 km ≈ r0

We see that perigee radius of the Keplerian transfer is nearly equal to the Earth’s
mean radius as shown in Figure 11.8 (of course, the perigee radius is fictitious because
the Shuttle does not follow a Keplerian orbit beyond EI). Velocity at EI is obtained
from the energy equation using rEI = RE + 122 km = 6,500 km

ξ=
v2EI
2

−
μ

rEI
= – 30 536km2/s2 vEI = 7 847 km/s

We can compute flight-path angle at EI from angular momentum (h), rEI, and vEI

cosγEI =
h

rEIvEI
= 0 99974 γEI = – 1 306

Of course, flight-path angle at EI is negative because the Shuttle is approaching Earth.
We can use the transfer orbit elements to compute the true anomaly of the Shuttle at
EI: θEI = 278.9 as shown in Figure 11.8.

b) We use Eq. (11.38) to compute the velocity of the Shuttle on an equilibrium glide. We
need the Shuttle’s ballistic coefficient; using Eq. (11.11) we obtain

CB =
m
SCD

= 410 kg/m2

Using Earth’s atmosphere parameters (β and ρ0) from Table 11.1, L/D = 1.1,
ϕ = 50 , r0 = 6,375,416 m, and g0 = 9.80665 m/s2, we may now use Eq. (11.38) to
compute the Shuttle’s velocity on the equilibrium glide at the three altitudes:

At 80 km altitude v=
g0r0

1 + L/D
r0 cosϕ
2CB

ρ0e
−βh

= 7,506 m/s

De-orbit burn
∆v = 90 m/s

EI

LEO

Perigee
(transfer orbit)EI

r

θ

EI

Fictitious 
Keplerian 
transfer

Keplerian transfer 
orbit to EI

Figure 11.8 De-orbit burn from low-Earth orbit (LEO) and transfer to entry interface (EI) (Example 11.2).
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At 60 km altitude v= 4,787 m/s

At 40 km altitude v= 1,489 m/s

Next, we use Eq. (11.42) to compute the deceleration (a= −v) in Earth g0

a
g0

=
g0−

v2

r0
g0 L/D cosϕ

Deceleration is

At 80 km altitude v= 7,506 m/s a= 0 140 g0

At 60 km altitude v= 4,787 m/s a= 0 896 g0

At 40 km altitude v= 1,489 m/s a= 1 364 g0

c) We can compute velocity and deceleration (in g0) using Eqs. (11.38) and (11.42) eval-
uated at altitudes ranging from hEI =122 to 30 km. In addition, we determine a more
precise entry trajectory by numerically integrating Eqs. (11.1), (11.2), (11.7), and (11.8)
with constant CD = 0.8, constant CL = (L/D)CD = 0.88, constant bank angle ϕ = 50 ,
inverse-square gravity and an exponential atmosphere modeled by Eq. (11.6). We use
MATLAB’s ode45.m for the numerical integration process. Figure 11.9 shows veloc-
ity vs. altitude for the analytical and numerical entry solutions. Note that the velocity
of the numerically integrated gliding entry “oscillates” about the analytical equilib-
rium-glide solution. These oscillations occur because altitude increases and decreases
during the “true” gliding entry with fixed bank ϕ = 50 (note that altitude oscillates
left-to-right in Figure 11.9 because h is the x-axis). Therefore, the numerically inte-
grated glide entry is not a “true” equilibrium glide: the vertical lift and centrifugal
forces do not always balance gravity and the flight-path angle experiences both pos-
itive and negative rates during the gliding entry. Figure 11.10 shows the Shuttle’s
deceleration vs. velocity. As with Figure 11.9, deceleration from the numerically inte-
grated glide exhibits oscillations about the analytical solution. Again, these oscilla-
tions occur because the numerically integrated glide experiences regions where the
Shuttle rises above (γ > 0) and dips below (γ < 0) a true equilibrium glide. Below a
velocity of about 3 km/s, the analytical equilibrium-glide solution overestimates
the deceleration. Nevertheless, the analytical solutions illustrate the general trends
of the gliding entry. It is interesting to note that the analytical solution predicts a final
velocity of 758 m/s (at an altitude of 30 km), which shows a good match with the
velocity at the end of the Space Shuttle’s entry phase (about Mach 2.5).

d) We use Eq. (11.47) to predict the total ground-track range:

s=
r0
2

L/D cosϕ ln
v2s − v22
v2s − v21

The initial velocity v1 is the velocity at EI, or vEI = 7,847 m/s, and the final velocity at
altitude h = 30 km is v2 = 758 m/s [as determined by Eq. (11.38); see Figure 11.9]. The
circular orbital velocity at the Earth’s surface is
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vs = μ/r0 = g0r0 = 7,907 m/s

where g0 = 9.80665 m/s2 and r0 = 6,375,416 m. Using these values, the total ground-
track range is

s= 9,425 km

The total ground-track range from the numerically integrated glide is 9,130 km, and
therefore the range error is about 3%.
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Figure 11.9 Velocity vs. altitude for equilibrium-glide entry (Example 11.2).
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Figure 11.10 Deceleration vs. velocity for equilibrium-glide entry (Example 11.2).
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11.5 Skip Entry

A second category of lifting entry maneuvers is the skip entry. Figure 11.11 shows a sche-
matic diagram of a skip entry. The spacecraft enters the planet’s atmosphere with velocity
vEI and flight-path angle γEI. During passage through the atmosphere, the aerodynamic
lift rotates the velocity vector upward (γ > 0) until the flight-path angle is zero and the
vehicle has reached the minimum altitude or “pull-up altitude.” The lift force maintains
the positive flight-path angle rotation and the vehicle ascends and exits the atmosphere
with exit conditions vexit < vEI and γexit > 0. After a second Keplerian flight phase, the
vehicle re-enters the atmosphere down-range of atmospheric exit (not shown in
Figure 11.11). A skip entry can extend and control the down-range distance for targeting
purposes. The Apollo command module used a skip entry as an optional entry flight
profile.
As before, we wish to develop analytical solutions for this particular entry flight profile.

We can develop first-order analytical solutions for a skip entry by imposing two basic
assumptions:

1) The vertical lift term Lcosϕ/m dominates the combined effect of the centrifugal and
gravity terms in the path-normal acceleration equation (11.2).

2) Gravity is negligible in the path-tangent acceleration equation (11.1).

We begin with the dynamical equation for the flight-path angle. Applying the first
assumption, Lcosϕ/m >> v2/r−g, Eq. (11.2) becomes

vγ = aL cosϕ (11.48)

Recall that aL L/m is the lift acceleration. This approximate ODE shows that the
time rate of flight-path angle is always positive for cosϕ > 0 (i.e., the lift vector points

Keplerian
orbit

Entry interface
(EI)

Keplerian orbit
(after skip out)

Pull-up altitude
γ = 0

Enter

Exit

Figure 11.11 Skip entry.
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“up”). We may use Eq. (11.32) to replace lift acceleration with aL = L/D aD.
Equation (11.33) shows drag acceleration aD expressed in terms of density, velocity,
and ballistic coefficient. With these substitutions, Eq. (11.48) becomes

vγ =
ρv2

2CB
L/D cosϕ (11.49)

Next, divide both sides by velocity v

γ =
ρv
2CB

L/D cosϕ (11.50)

We can change the independent variable from time t to altitude h by dividing Eq. (11.50)
by the time-rate of altitude, h= vsin γ, defined by Eq. (11.7). The result is

dγ
dh

=
ρ

2CB sin γ
L/D cosϕ (11.51)

Using the exponential density model (11.6), Eq. (11.51) becomes

dγ
dh

=
ρ0e

−βh

2CB sinγ
L/D cosϕ (11.52)

Separating variables and integrating from EI conditions to an arbitrary state, we obtain

−cosγ γ
γEI

=
−ρ0e

−βh

2βCB
L/D cosϕ

h

hEI

(11.53)

Finally, we can simplify the right-hand side of Eq. (11.53) by neglecting the density term
at EI (i.e., ρ0e

−βhEI ≈0). After rearranging Eq. (11.53), we obtain

cos γ = cos γEI +
ρ0e

−βh

2βCB
L/D cosϕ (11.54)

Equation (11.54) is the variation in flight-path angle during the skip entry as a function
of altitude. Because ρ0e

−βhEI ≈0 at EI altitude, Eq. (11.54) shows that at atmospheric
entrance and exit (i.e., h = hEI), we have cosγexit≈cosγEI. Therefore, the exit flight-path
angle is

γexit = −γEI (11.55)

Of course, the exit flight-path angle must be positive because the vehicle is gaining alti-
tude. We desire the minimum altitude during the skip entry (or, “pull-up altitude”),
which is determined by setting γ = 0 in Eq. (11.54):

1 = cos γEI +
ρ0e

−βhpullup

2βCB
L/D cosϕ (11.56)

We can solve Eq. (11.56) for the atmospheric density at pull-up altitude, hpullup

ρpullup = ρ0e
−βhpullup =

2βCB

L/D cosϕ
1−cos γEI (11.57)
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Taking the natural logarithm of Eq. (11.57) provides the solution for pull-up altitude

hpullup =
−1
β

ln
ρpullup
ρ0

(11.58)

where ρpullup is defined by the right-hand side of Eq. (11.57). We see that pull-up altitude
depends on the planet’s atmosphere (ρ0 and β), the vehicle’s characteristics (CB and L/D),
bank angle ϕ, and entry flight-path angle γEI. Entry speed vEI does not influence pull-up
altitude.
Next, we turn our attention to the velocity of the skip entry. Applying the second

assumption (neglect gravity) to Eq. (11.1), we obtain

v= −aD =
−aL
L/D

(11.59)

Because we have a first-order solution for flight-path angle, we divide Eq. (11.59) by γ to
remove time as the independent variable. Dividing Eq. (11.59) by Eq. (11.48), we obtain

dv
dγ

=
−v

L/D cosϕ
(11.60)

We can separate variables and integrate Eq. (11.60) with constant L/D and constant bank
angle ϕ. Integrating with the EI state as the initial condition, we obtain

ln
v
vEI

=
−1

L/D cosϕ
γ−γEI (11.61)

Using the exponential function, Eq. (11.61) becomes

v= vEI exp
γEI−γ

L/D cosϕ
(11.62)

Equation (11.62) provides the spacecraft’s velocity during the skip entry as a function
of flight-path angle. Recall that flight-path angle during the skip is defined by Eq. (11.54).
It is easy to determine the vehicle’s velocity at pull-up and exit conditions: at pull-up, set
γ = 0 in Eq. (11.62) to obtain

vpullup = vEI exp
γEI

L/D cosϕ
(11.63)

At atmospheric exit, set γ = −γEI in Eq. (11.62) to obtain the skip-out velocity

vexit = vEI exp
2γEI

L/D cosϕ
(11.64)

Equation (11.62) shows that ballistic coefficient and inverse scale height influence the
velocity during the skip through the flight-path angle profile (11.54). However, Eqs.
(11.63) and (11.64) show that the vehicle’s pull-up and exit velocities do not depend
on CB or β.
Vehicle acceleration is the final performancemetric of the skip entry.We focused on the

path-tangent acceleration for ballistic and gliding flight. Because a skip entry can involve a
large lift force, we will determine the path-normal acceleration. Equation (11.59) shows
that vehicle acceleration along the flight path is due solely to drag (recall that we have
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neglected gravity). Using Eq. (11.33) for drag acceleration, the path-tangent vehicle decel-
eration is

at = −v=
ρ0e

−βhv2

2CB
(11.65)

where the new symbol at is the deceleration along the flight path. Equation (11.49)
defines the total acceleration normal to the flight path; we repeat it below in a modified
form:

an = vγ =
ρ0e

−βhv2

2CB
L/D cosϕ (11.66)

Equation (11.66) shows that the path-normal acceleration, an, is solely due to the lift
during a skip entry. Note that aerodynamic lift and drag are the only forces accounted for
in these acceleration expressions because we have neglected gravity and centrifugal
terms. Furthermore, the integration of these two reduced acceleration equations has pro-
duced the first-order solutions for flight-path angle and velocity for the skip entry.
Therefore, we can think of the first-order skip entry as “zero gravity” solutions for a
“flat-planet” dynamical model (no curvature or no centrifugal term).
Peak acceleration occurs just prior to the pull-up altitude. We may determine the

approximate peak deceleration by substituting Eq. (11.57) for pull-up density in the
path-tangent deceleration (11.65)

atmax ≈
2βCB 1−cosγEI
2CB L/D cosϕ

v2pullup (11.67)

Next, substitute Eq. (11.63) for pull-up velocity vpullup and cancel the 2CB terms:

atmax ≈
β 1−cosγEI
L/D cosϕ

v2EI exp
2γEI

L/D cosϕ
(11.68)

Following the same steps, the peak path-normal acceleration is

anmax ≈β 1−cosγEI v
2
EI exp

2γEI
L/D cosϕ

(11.69)

Equations (11.68) and (11.69) show that peak acceleration components depend only
on the atmospheric inverse scale height β, entry conditions (vEI and γEI), lift-to-drag
ratio, and bank angle ϕ. Ballistic coefficient CB (i.e., reference area, vehicle mass, or drag
coefficient) does not affect peak acceleration. Note that for fixed entry conditions,
increasing the L/D ratio decreases the peak deceleration along the flight path
[Eq. (11.68)] but increases the peak normal acceleration [Eq. (11.69)]. Furthermore,
when L/D cos ϕ = 1, the peak tangential and normal accelerations have equal magni-
tudes regardless of the entry conditions. Equations (11.68) and (11.69) show that when
L/D cos ϕ > 1 (i.e., a winged or lifting-body vehicle with small bank angle), the peak
normal acceleration always exceeds the peak tangential deceleration during the
skip entry.
We close this section with a brief discussion of the limitations of the first-order skip

entry solutions. Recall that the fundamental assumption that allowed us to obtain the
analytical skip solutions is that the lift force is much larger than the difference between
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the centrifugal and gravity forces. Hence, the path-normal acceleration, Eq. (11.48), only
contains the vertical component of lift acceleration (the v2/r−g term is neglected). How-
ever, as the vehicle enters the atmosphere, the lift (and drag) force is nearly zero because
density is very small. Therefore, the first-order skip entry solutions are only accurate for a
near-circular entry speed where v2EI/r≈g . For an entry speed significantly greater than
circular speed, the centrifugal term is larger than gravity, and hence it dominates lift dur-
ing the initial high-altitude entry phase. It is for this reason that we cannot use the first-
order skip entry solution to analyze a high-speed entry such as an aerocapture maneuver.
Furthermore, the analytical skip entry solution is only accurate for entry vehicles with a
significant lift-to-drag ratio, such as L/D > 1. For example, the first-order method cannot
accurately predict a skip entry with an Apollo-style capsule (L/D≈0 3) even if the space-
craft enters at near-circular speed; the capsule simply cannot generate enough lift to skip
out of the atmosphere. The Apollo capsule entered Earth’s atmosphere at about 11 km/s
with flight-path angle γEI≈ −6 5 . Applying the first-order method to the Apollo entry
predicts a deep, sustained atmospheric pass where the peak path-tangent deceleration
exceeds 20g0 and the exit velocity is about 5 km/s. The actual Apollo skip trajectory (with
full lift up) is much shallower and exits the atmosphere at a velocity of about 7 km/s (the
peak deceleration is about 10g0). The centrifugal force v2EI/r for the Apollo capsule dom-
inates the initial entry and neglecting it renders the first-order analytical skip solution
useless.
In summary, the first-order method can accurately predict the performance of skip-

entry profiles for vehicles with a significant lift-to-drag ratio (e.g., L/D > 1) entering
the atmosphere at near-circular speeds. The following example illustrates the accuracy
of the analytical skip entry solution by comparing it with a numerically integrated
skip entry.

Example 11.3 A winged entry vehicle with lift-to-drag ratio L/D = 1.5 enters Earth’s
atmosphere with near-circular velocity vEI = 7.8 km/s and flight-path angle γEI = –3
and performs a skip entry. The vehicle has mass m = 100,000 kg, reference wing area
S = 350 m2, drag coefficient CD = 0.8, and zero bank angle during its skip entry.

a) Determine the vehicle’s pull-up altitude and pull-up velocity during the skip entry.
b) Compute the peak deceleration along the flight-path and the peak normal

acceleration.
c) Compute the atmospheric exit velocity and flight-path angle.
d) Compute the maximum altitude of the Keplerian phase after the first skip-out exit.
e) Create plots of altitude vs. velocity and path-normal acceleration for the analytical

skip entry and a numerically integrated skip entry profile.

a) First, we compute the ballistic coefficient for this winged vehicle:

CB =
m
SCD

= 357 143 kg/m2

Next, we use Eq. (11.57) to compute density at the pull-up altitude

ρpullup =
2βCB

L/D cosϕ
1−cos γEI = 8 9929 10−5 kg/m3
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The reader should remember that inverse scale height β must be in units of per meter
in the previous expression because it is multiplied by ballistic coefficient CB (which has
units of kg/m2). Next, we use Eq. (11.58) (with surface density ρ0 = 1.225 kg/m3 and β =
0.1378 km−1) to determine the pull-up altitude in km:

hpullup =
−1
β

ln
ρpullup
ρ0

= 69 08 km

We use Eq. (11.63) to determine the pull-up velocity:

vpullup = vEI exp
γEI

L/D cosϕ
= 7 532 km/s

b) Peak deceleration along the flight path is determined using Eq. (11.68):

atmax =
β 1−cosγEI
L/D cosϕ

v2EI exp
2γEI

L/D cosϕ
= 7 143 m/s2

(it is useful here to use β = 0.1378(10−3) m−1 and vEI = 7,800 m/s). The peak decel-
eration in units of Earth g0 (using g0 = 9.80665 m/s2) is

atmax = 0 728g0

We use Eq. (11.69) to determine the peak acceleration normal to the flight path:

anmax = β 1−cos γEI v
2
EI exp

2γEI
L/D cosϕ

= 10 715 m/s2

Or, in Earth g0: anmax = 1 093 g0

c) Exit flight-path angle is simply γexit = −γEI = 3

We use Eq. (11.64) to determine exit velocity:

vexit = vEI exp
2γEI

L/D cosϕ
= 7 274 km/s

d) The vehicle follows a Keplerian orbit after atmospheric skip-out. We compute the
energy of the orbit using vexit and rEI = 122 km + RE = 6,500 km:

ξ=
v2exit
2

−
μ

rEI
= – 34 8673 km2/s2 = −

μ

2a

Therefore, semimajor axis is a = 5,715.95 km. Angular momentum is

h= rEIvexit cosγexit = 47,216 4 km2/s = pμ

So, parameter is p = 5,593.05 km. Eccentricity of the orbit is

e= 1−
p
a
= 0 1466
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Finally, the apogee radius is

ra =
p

1−e
= 6,554 13 km

Hence, the peak altitude after the skip is ra – RE = 176.13 km, or 54 km above EI
altitude.

e) We determine the analytical skip entry using the following steps: first, use Eq. (11.54)
to compute flight-path angle for a given altitude (repeated below):

cos γ = cos γEI +
ρ0e

−βh

2βCB
L/D cosϕ

Flight-path angle for the “down” phase is computed for altitudes descending from
hEI (122 km) to pull-up altitude hpullup = 69.08 km. The flight-path angle profile for the
“up” phase (h > hpullup) is a mirror image of the “down” phase except with a sign
change because h > 0. Next, the velocity profile is computed using Eq. (11.62)
(repeated below)

v= vEI exp
γEI−γ

L/D cosϕ

where flight-path angle (determined by the previous step) ranges from γEI < γ < γexit.
After competing these steps, we may plot velocity vs. altitude. Although velocity is the
dependent variable and altitude is the independent variable here, it is (perhaps) easier
to visualize their relationship by plotting altitude on the y-axis and velocity on the
x-axis (after all, altitude is the vertical direction).
Equation (11.66) determines the normal acceleration (repeated below):

an =
ρ0e

−βhv2

2CB
L/D cosϕ

Hereweuse the “down-up” altitudeprofile andcorresponding analytical velocity profile
from theprevious calculations. Finally, we compare the analytical skip entry to anumer-
ically integrated skip trajectory obtained by using MATLAB’s ode45.m. As with
Examples 11.1 and 11.2, we numerically integrate the governing nonlinear equations
[Eqs. (11.1), (11.2), and (11.7)] using the given entry conditions and vehicle parameters.
Figure 11.12 shows the analytical and numerical skip trajectories (altitude vs. veloc-

ity). The analytical solution accurately portrays the first skipmaneuver: both solutions
show essentially the same pull-up altitude (about 69 km), pull-up velocity (about
7.55 km/s), and exit velocity (between 7.2 and 7.3 km/s). The winged vehicle re-enters
the atmosphere at a sub-circular velocity (equal to the first exit velocity) and performs
a second skip maneuver. Because the second entry speed is sub-circular, the vehicle
does not achieve a full skip-out exit, and only reaches a peak altitude of about 95 km.
However, the analytical solution (by definition) assumes a full skip-out to EI as shown
in Figure 11.12. Subsequent “reduced skips” with diminishing peak altitudes follow
(see the third numerically integrated skip in Figure 11.12), but the analytical first-
order method does not accurately predict these skips because the centrifugal-gravity
balance no longer holds. In addition, note that the velocity profile of the numerically
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integrated skip entry in Figure 11.12 shifts to the left (slows down) as altitude
increases during skip out, and shifts to the right (speeds up) as altitude decreases dur-
ing re-entry. This velocity shift vs. altitude is, of course, due to gravity. The analytical
skip solution does not include the effect of gravity, and hence the skip-out and re-
entry velocity vs. altitude profiles shown in Figure 11.12 appear as vertical lines.
Figure 11.13 shows normal acceleration computed by the analytical and numerical

methods. The first-order method accurately predicts normal acceleration for the first
two skips but thereafter becomes inaccurate for the reasons previously mentioned.
The reader should note that the “true” numerically integrated skip entry shows small
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negative normal acceleration when the vehicle is at its apogee. This small negative
normal acceleration is due to gravity turning the velocity vector downward. Recall that
the first-order method neglects gravity altogether.

11.6 Entry Heating

As mentioned in Section 11.1, bringing a space vehicle from orbital speed to a safe land-
ing on the surface of a planet requires dissipating an extraordinary amount of energy.
Aerodynamic drag dissipates the vehicle’s energy, and the result is aerodynamic heating.
For entry at circular speed, the initial kinetic energy is over 30 MJ/kg. Several authors
[5,6] point out that much of the vehicle would be vaporized if all of this tremendous
energy was transferred to and absorbed by the vehicle. Fortunately, a significant portion
of this thermal energy is shed to the flow field about the entry vehicle.
Because this textbook focuses on the flight mechanics of space vehicles, we will briefly

discuss the heating problem without delving into the details of heat transfer and hyper-
sonic aerodynamics. To begin our analysis, it is instructive to observe the energy dissi-
pation rate during entry. Total mechanical energy per unit mass is

ξ=
v2

2
−
μ

r
(11.70)

The time derivative of energy is

ξ= vv+
μ

r2
r (11.71)

Substituting Eq. (11.1) for v, μ/r2 = g , and r = h= vsin γ, the time rate of total energy
becomes

ξ= v −
D
m

−g sin γ + gv sin γ (11.72)

The term gvsin γ cancels and the time rate of energy is

ξ= −
Dv
m

(11.73)

Equation (11.73) is a familiar result from basic mechanics: the time rate of energy (i.e.,
power) dissipated by a vehicle is the product of drag force D and velocity v. Using
Eq. (11.5) for the drag force in Eq. (11.73), we obtain

ξ= −
1
2
ρv3

SCD

m
= −

ρv3

2CB
(11.74)

Equation (11.73) shows that aerodynamic drag is the mechanism for energy dissipation
during entry (of course, for Keplerian motion D = 0 and ξ is constant). Equation (11.74)
shows that for a fixed vehicle (i.e., fixed ballistic coefficient CB), the rate of energy loss is
proportional to the product of atmospheric density and the cube of velocity. Several
authors [5,6] have shown that the rate of heat transferred to the body of the entry
vehicle is
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Q=
1
4
ρv3SwCf (11.75)

where Sw is the “body wall” or “wetted” area of the vehicle, and Cf is the “body-averaged”
skin friction coefficient. SymbolQ is the heat or thermal energy transferred to the body in
joules (J). Heat rateQ expressed in Eq. (11.75) has units of joules per second (J/s) or watts
(W), whereas the total specific energy-rate expressed in Eq. (11.74) has units of watts per
kilogram (W/kg). However, Eqs. (11.74) and (11.75) both illustrate that the energy-
dissipation and heat-transfer rates are proportional to ρv3. Aerodynamic drag (i.e., decel-
eration) is proportional to ρv2.
We may obtain the total heat transferred to the body of the entry vehicle by integrating

Eq. (11.75). As with the governing velocity and flight-path angle ODEs, we do not inte-
grate the heat-transfer ODE with respect to time. Instead, we divide Eq. (11.75) by v to
change the independent variable to velocity:

Q
v
=
dQ
dv

=

1
4
ρv3SwCf

−
1
2
ρv2

S
m
CD

= −
v

2

Sw

S

Cf

CD
m (11.76)

Note that we neglected gravity in the along-path acceleration; that is, v≈ −D/m. Separ-
ating variables in Eq. (11.76) leads to

dQ= −
v

2

Sw

S

Cf

CD
mdv (11.77)

Integrating Eq. (11.77) from entry speed (vEI) to the at-rest condition (v = 0) yields the
total heat load:

Qtotal =
1

2

Sw

S

Cf

CD

m v2EI
2

(11.78)

Equation (11.78) is the total thermal energy transferred to the vehicle during entry
from EI conditions to zero velocity. Note that the last term on the right-hand side is
the initial kinetic energy of the vehicle at atmospheric entry. Dividing both sides of
Eq. (11.78) by initial kinetic energy yields

Qtotal

mv2EI 2
=
1

2

Sw

S

Cf

CD
(11.79)

Equation (11.79) expresses the fraction of initial kinetic energy transferred to the vehi-
cle in the form of heat energy. The right-hand side of Eq. (11.79) is one-half of the ratio of
skin-friction drag to total drag. Skin-friction drag coefficient Cf is a function of the tan-
gential shear stress at the wall boundary, whereas the total drag coefficient CD depends
on the tangential shear stress and normal stress due to pressure imbalance. In other
words, the total drag coefficient is

CD =CDp +Cf (11.80)

where CDp is the drag coefficient due to pressure imbalance and flow separation.
Equation (11.79) shows that minimizing the ratio Cf/CD will minimize the total thermal
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energy transferred to the vehicle. Therefore, a blunt entry body, where the majority of the
total drag is “pressure drag” (i.e., CD≈CDp ), will minimize the heat transferred to the
vehicle’s body. At the other extreme, “skin-friction drag” dominates the total drag for
a slender, sleek body (i.e., CD≈Cf ), and hence more heat is transferred to its body when
compared with a blunt body. A blunt body will experience a very strong bow shock wave,
and the resulting high-temperature gas behind the shock wave will flow past the vehicle.
Hence, most of the kinetic energy heats the flow field and only a small portion reaches the
vehicle. It is for these reasons that ballistic and near-ballistic entry vehicles such as the
Mercury, Gemini, Apollo, and Stardust capsules utilized blunt-body aerodynamic
designs (of course, the Gemini and Apollo capsules generated a small amount of lift
to reduce the peak deceleration and provide maneuverability).
Let us return to Eq. (11.75), the instantaneous heating rate. The body-averaged heat-

transfer rate per unit area is

qavg =
Q
Sw

=
1
4
ρv3Cf (11.81)

We may investigate the vehicle’s average heat input rate for various entry strategies by
substituting the appropriate first-order velocity solution into Eq. (11.81). Let us first
obtain the heat input rate for a ballistic entry by substituting Eq. (11.18) for velocity
in Eq. (11.81):

Ballistic entry qavg =
1
4
ρv3EICf exp 3Be−βh (11.82)

Substituting the exponential atmosphere model into Eq. (11.82), we obtain

qavg =
1
4
ρ0v

3
EICf exp −βh+ 3Be−βh (11.83)

Equation (11.83) is the heat-transfer rate as a function of altitude. We are primarily
interested in the critical altitude where the vehicle experiences the maximum heat-
input rate. Therefore, we follow the same process as determining the peak deceleration:
take the derivative of qavg with respect to altitude h and set the result to zero. For the
sake of brevity, we omit the details here; however, the process is very much like
the steps surrounding Eqs. (11.21)–(11.26). Setting dqavg/dh= 0 eventually leads to
the condition

1 + 3Be−βh = 0 (11.84)

which is identical to Eq. (11.23) except that the factor 2 is replaced by 3. The critical alti-
tude for peak heat-input rate is

Ballistic entry hcrit =
ln −3B

β
(11.85)

Recall that constant B is negative and depends on the atmospheric parameters, the vehi-
cle characteristics, and the entry flight-path angle. Comparing Eqs. (11.26) and (11.85),
we see that peak heating rate always occurs before peak deceleration during a ballistic
entry. In fact, the difference in critical altitudes is ln(3/2)/β, which is always 2.94 km for
Earth (where β = 0.1378 km−1).
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Substituting the critical altitude for peak heating rate, Eq. (11.85), into Eq. (11.83)
yields (after some algebra) the peak heat input:

Ballistic entry qavgmax
= −

1
6e

v3EICf βCB sin γEI (11.86)

Equation (11.86) is the peak heat-transfer rate to the vehicle for a ballistic entry.
Because sin γEI < 0, the peak heat rate is positive. Finally, the velocity at the peak heating
rate can be determined by substituting Eq. (11.85) into the ballistic velocity profile,
Eq. (11.18). The result is

Ballistic entry vcrit =
vEI
e1/3

= 0 7165vEI (11.87)

Comparing Eq. (11.87) with Eq. (11.30) also confirms that the peak heat-transfer rate
occurs before peak deceleration in a ballistic entry.

Example 11.4 Using the Vostok vehicle and entry data from Example 11.1, determine
the critical altitude and velocity for peak heating rate during a ballistic entry.
Recall from Example 11.1 that the Vostok’s ballistic coefficient is

CB =
m
SCD

= 296 05 kg/m2

and the dimensionless coefficient is

B=
ρ0

2βCB sin γEI
= –268 9650

We use Eq. (11.85) to determine the critical altitude for peak heating rate:

hcrit =
ln −3B

β
= 48 572 km

Referring back to Example 11.1, we see that the altitude for peak heating rate is about
2.94 km above the altitude for peak deceleration as expected.
We use Eq. (11.87) to compute the critical velocity for peak heating rate:

vcrit =
vEI
e1/3

= 0 7165vEI = 5 546 km/s

Recall that the critical velocity for peak deceleration is 4.694 km/s (see Example 11.1).
Therefore, this result also shows that peak heating rate occurs before peak
deceleration.

The previous discussion identified the critical heat-transfer parameters for a ballistic
entry.We can follow the same basic steps and identify the critical parameters for an equi-
librium-glide entry: (1) substitute the glide-entry velocity profile, Eq. (11.38), into the
averaged heat-rate equation (11.81); (2) set the derivative with respect to altitude equal
to zero; (3) solve the dqavg/dh= 0 expression for the critical altitude; and (4) substitute the
critical altitude into the heat-rate and velocity relations to obtain their critical values. We
summarize the results as:

Equilibrium gliding entry qavgmax
=

g30r0
27

Cf CB

L/D cosϕ
(11.88)
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hcrit = −
1
β
ln

4CB

r0ρ0 L/D cosϕ
(11.89)

vcrit =
g0r0
3

(11.90)

Equation (11.89) requires that r0ρ0 L/D cosϕ > 4CB so that the critical altitude for peak
heating rate is positive [this is relatively easy to accomplish for an Earth entry trajectory
because r0ρ0 = 7 813 106 kg/m2]. Equation (11.90) shows that the critical velocity for
peak heating during an equilibrium glide has no dependence on the entry conditions
or vehicle characteristics – it only depends on the mass and radius of the planet!
The method for computing the critical parameters associated with peak heat-rate

input for a skip entry also follows the basic steps outlined for the gliding entry. However,
the skip-entry velocity profile (11.62) is a function of flight-path angle. We can use
Eq. (11.54) to express the atmospheric density in the heat-rate equation (11.81) in terms
of flight-path angle and ultimately set the derivative dqavg/dγ = 0 to find the critical flight-
path angle where peak heating occurs during the skip. Vinh et al. [7] use a small-angle
approximation for the critical flight-path angle γcrit in order to obtain explicit results. We
omit the details of the derivations here. The results are:

Skip entry qavgmax
=

v3EI γ
2
EICf βCB

4 L/D cosϕ
exp

2γEI
L/D cosϕ

(11.91)

γcrit −
3 γ2EI

2 L/D cosϕ
(11.92)

hcrit = −
1
β
ln

2βCB cos γcrit−cos γEI
ρ0 L/D cosϕ

(11.93)

vcrit = vEI exp
γEI−γcrit
L/D cosϕ

(11.94)

Of course, we must express the entry flight-path angle γEI in radians for use in
Eqs. (11.91) and (11.92); the subsequent critical flight-path angle in Eq. (11.92) is also
in radians.
In summary, we should note that computing quantitative values for the total heat load

and/or peak heating rate requires knowledge of the body-averaged skin-friction coeffi-
cient Cf. Griffin and French suggest estimating the skin-friction coefficient by using flat-
plate theory from classical aerodynamics [5]. As this textbook’s primary focus is space
flight mechanics, we will not pursue this topic any further. Instead, our analysis of the
aerodynamic heating problem will focus on the critical altitude and velocity where
the peak heat rate occurs. The following examples illustrate these concepts.

Example 11.5 Using the Space Shuttle vehicle data and entry conditions in Example
11.2, determine the critical altitude and velocity for peak aerodynamic heating rate for an
equilibrium glide.
We determined the Shuttle’s ballistic coefficient in Example 11.2:

CB =
m
SCD

= 410 kg/m2
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Equation (11.89) is used to determine the critical altitude for peak heating rate on an
equilibrium glide:

hcrit =
−1
β

ln
4CB

r0ρ0 L/D cosϕ

Using β = 0.1378 km−1, r0 = 6,375,416 m, ρ0 = 1.225 kg/m3, L/D = 1.1, and bank angle
ϕ = 50 , we obtain

hcrit = 58 94 km

We use Eq. (11.90) to determine the critical velocity for peak heating during the glide:

vcrit =
g0r0
3

= 4 565 km/s

where we have used g0 = 9.80665 m/s2 as the Earth’s standard gravitational acceleration.

Example 11.6 Using the vehicle data and entry conditions from Example 11.3, deter-
mine the critical flight-path angle, altitude, and velocity corresponding to the peak aer-
odynamic heating rate for a skip entry.
The winged entry vehicle in Example 11.3 has L/D = 1.5, zero bank angle, and enters

the atmosphere with flight-path angle γEI = –3 . Equation (11.92) allows us to compute
the critical flight-path angle for peak heat rate during the skip entry:

γcrit
−3 γ2EI

2 L/D cosϕ
= – 0 002742 rad = – 0 157

The critical flight-path angle is very shallow and hence very close to (but prior to) the
pull-up altitude. The ballistic coefficient for the winged vehicle is

CB =
m
SCD

= 357 143 kg/m2

Using Eq. (11.93), the critical altitude for peak heating during the skip entry is

hcrit =
−1
β

ln
2βCB cosγcrit−cosγEI

ρ0 L/D cosϕ
= 69 10 km

Finally, we use Eq. (11.94) to find the critical velocity for peak heating:

vcrit = vEI exp
γEI−γcrit
L/D cosϕ

= 7 546 km/s

The pull-up altitude and velocity in Example 11.3 are 69.08 km and 7.532 km/s, respec-
tively. The peak heating rate occurs just before the pull-up altitude where γ = 0.

Example 11.7 For the final entry-heating example, consider again the winged vehicle
and entry conditions from Example 11.3. Compute the ratio of peak heating rates for an
equilibrium glide and skip entry. Because the winged vehicle has relatively high L/D
(=1.5), let the constant bank angle be ϕ = 60 for the equilibrium glide to avoid excessive
skipping (the bank angle is zero for the skip entry).
Recall that the vehicle’s ballistic coefficient is CB = 357.143 kg/m2. Using bank angle

ϕ = 60 in Eq. (11.88), we find the maximum heating rate for the equilibrium-glide entry:

Atmospheric Entry 417



Equilibrium glide qavgmax
=

g30r0
27

Cf CB

L/D cosϕ
= 7 106 106 Cf W/m2

Using zero bank in Eq. (11.91) along with γEI = –3 (= –0.05236 rad) and vEI = 7.8 km/s,
the maximum heating rate for the skip entry is

Skip entry qavgmax
=

v3EI γ
2
EICf βCB

4 L/D
exp

2γEI
L/D

= 9 952 106 Cf W/m2

The ratio of peak heating rates is

Gliding peak heat rate
Skip peak heat rate

=
7 106 106 Cf

9 952 106 Cf
= 0 714

Therefore, the peak heating rate is significantly higher for a skip entry as compared with
an equilibrium gliding entry.

We end this section with a brief discussion of the various methods for thermal protec-
tion. At present, three techniques exist for managing heat transferred to the vehicle’s
surface: (1) heat sink; (2) ablation; and (3) heat radiation. The heat sink (or “heat shield”)
method is a brute-force technique where a material with high thermal capacity and high
melting point absorbs the total heat load. The early Mercury capsules used a massive
beryllium blunt-body heat shield to absorb the heat load. The ablation method consists
of a “heat shield” surface (typically a carbon fiber-phenolic resin matrix) that sheds the
heat load by charring, melting, and subliming. Thus, the heat load is transported away in
the flow field surrounding the vehicle. The Gemini, Apollo, and Stardust capsules used
an ablative thermal protection system. The heat radiation method allows the vehicle’s
surface to reach a very high temperature until its radiated heat is in equilibrium with
the incoming heat flux. Once at thermal equilibrium, the surface temperature can no
longer increase. Of course, the heat radiation method requires an excellent insulating
material such as the Space Shuttle’s silica ceramic tiles.

11.7 Space Shuttle Entry

Section 11.4 and Example 11.2 indicated that the Space Shuttle used an equilibrium-glide
entry. In reality, the Shuttle used four distinct flight phases during its entry from near-
circular entry speed (~7.85 km/s) to a terminal speed of about 760 m/s ( Mach 2.5): (1)
temperature control; (2) equilibrium glide; (3) constant drag; and (4) transition. Four dif-
ferent drag-acceleration (aD) profiles define the four flight phases. We will briefly discuss
the Shuttle’s entry strategy in this section. Our primary objective here is to illustrate how
the Space Shuttle’s entry algorithm utilized some of the first-order analytical methods
from this chapter. Harpold and Graves [4] present a detailed description of the Shuttle
entry for the interested reader.
Figure 11.14 is a representation of the Space Shuttle’s entry drag-acceleration profile as

a function of velocity (note that we have reversed the x-axis so that the entry progresses
left to right or from higher to lower velocity). A similar drag profile appears in Harpold
and Graves [4] in British engineering system units. Figure 11.14 shows the Shuttle’s four
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entry flight phases pieced together to form a continuous drag acceleration function that
fits between four constraint boundaries. Before we discuss the flight phases, let us define
the four constraints. The temperature boundary is the maximum allowable temperature
on the surface of the Space Shuttle (typically the wing leading edge); this limit is trans-
formed to the corresponding drag acceleration for a given velocity. The temperature
boundary imposes a maximum (or upper) limit on drag acceleration for 5 < v < 8 km/s
as shown in Figure 11.14. The load-factor boundary defines the maximum allowable lift
(or normal) acceleration. The non-dimensional load factor is lift divided by weight, that
is, L/mg0 or aL/g0. In order to express the load factor limit as a drag acceleration bound-
ary, we use the lift-to-drag relationship L/D= aL/aD with maximum aL = 1.5g0

Load-factor limit in m/s2 aD =
1 5g0
L/D

(11.95)

Using L/D = 1.1 in Eq. (11.95), the drag acceleration corresponding to the load-factor
limit is 13.4 m/s2 during the initial high-speed entry. However, the Shuttle’s L/D begins
to increase at velocity v = 3.2 km/s, which causes the load-factor limit to decrease as illus-
trated in Figure 11.14. The dynamic pressure boundary imposes an upper limit on drag
acceleration at relatively low velocities (<2 km/s) as the vehicle decelerates to the low
hypersonic (Mach 5) region. Dynamic pressure is defined as

q =
1
2
ρv2 (11.96)

and therefore drag acceleration is aD = qSCD/m [the reader should not confuse symbol q
(“q-bar”) with heating rate]. The drag-acceleration boundary for dynamic pressure is

Dynamic-pressure limit aD = qmax
SCD

m
(11.97)
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Figure 11.14 Drag-acceleration profile for Space Shuttle entry.
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where qmax = 16,375 N/m2 (342 psf ). Figure 11.14 shows that the dynamic-pressure limit
is the upper drag boundary for velocity v < 1.1 km/s. The dynamic pressure drag limit
decreases as the Shuttle decelerates because drag coefficient CD decreases as the flow
field transitions from the hypersonic to supersonic regime. The lower drag-acceleration
limit in Figure 11.14 is the equilibrium-glide boundary, Eq. (11.41), where the vertical lift
acceleration balances the difference between the gravity and centrifugal terms:

aL cosϕ= g0−
v2

r0
= aD L/D cosϕ (11.98)

The equilibrium-glide boundary in Figure 11.14 corresponds to full lift “up” (bank ϕ = 0).
Using Eq. (11.98), the drag-acceleration boundary for equilibrium glide is

Equilibrium-glide zero-bank limit aD =
g0−

v2

r0
L/D

(11.99)

The equilibrium-glide drag boundary is a function of velocity and L/D, and hence the
boundary decreases for v < 3.2 km/s because L/D increases as the Shuttle decelerates.
Many of the Shuttle’s drag acceleration boundaries in Figure 11.14 diminish at lower

speeds because L/D increases. The Shuttle’s dramatic change in angle-of-attack (α)
explains the rise in L/D. Figure 11.15 shows the Shuttle’s angle-of-attack profile as a func-
tion of velocity (again, note that we reversed the x- or velocity axis). For v > 3.2 km/s, the
Shuttle glides at α = 40 , which results in a high-drag configuration and degraded L/D
ratio. The primary purpose of the high angle-of-attack profile during the high-speed
entry phase is thermal control. As the Shuttle decelerates and its velocity drops below
3.2 km/s, the angle-of-attack ramps down as shown in Figure 11.15 and consequently
CD decreases and L/D increases.
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Figure 11.15 Angle-of-attack profile for Space Shuttle entry.
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The narrow feasible region between the boundaries in Figure 11.14 is the Shuttle’s
entry corridor. The temperature, load factor, and dynamic pressure boundaries in
Figure 11.14 impose an upper limit on drag known as the undershoot boundary. If the
Shuttle exceeds the upper boundaries in Figure 11.14 (i.e., too much drag), it will violate
heating, g-load, and structural limits. The equilibrium-glide limit in Figure 11.14 is the
overshoot boundary, and it represents a lower limit on drag. If the Shuttle flies below this
boundary (i.e., too little drag), it will not have proper control of its trajectory andmay skip
out of the atmosphere.
Now let us turn our attention to the Space Shuttle’s drag-acceleration profile presented

in Figure 11.14. The basic idea is to select a piecewise-continuous drag acceleration func-
tion aD(v) that fits within the entry corridor. In addition, the drag profile is selected so
that the Shuttle’s subsequent entry trajectory has the proper range to the landing site. To
show the range–drag relationship, let us divide the down-range kinematic equation
(11.8) by the along-path acceleration equation (11.1):

s
v
=
ds
dv

= −
vcos γ
aD

(11.100)

Note that we have assumed r0/r≈1 for the down-range equation, and we have neglected
the small gravity component (g sinγ≈0) in the acceleration equation. Furthermore,
because the glide is shallow, we set cosγ≈1. After separating variables and integrating
Eq. (11.100), we obtain

si = −
vB

vA

v
aD

dv (11.101)

where si is the down-track range flow by the Space Shuttle for a given drag-acceleration
profile aD between velocities vA and vB. The drag accelerations for the four entry flight
phases are

Temperature control aD v = c0 + c1v+ c2v
2 (11.102)

Equilibrium glide aD v =
g0−

v2

r0
L/D cosϕ

(11.103)

Constant drag aD v = c3 (11.104)

Transition aD ξ = c4 + c5ξ (11.105)

Substituting each drag-acceleration profile into Eq. (11.101) yields four analytical range
integrals and their summation provides the predicted “range-to-go”

sgo = s1 + s2 + s3 + s4 (11.106)

The temperature-control phase consists of a drag acceleration profile that is quadratic in
velocity in order to maintain a constant heating rate. Harpold and Graves [4] present the
detailed analytical range integrals (the range integral for the temperature-control phase
is quite involved). Equation (11.47) presents the range integral for the equilibrium-glide
phase (s2) that we derived in Section 11.4. The constant-drag range integral is the easiest
to derive because aD is a constant, that is, c3 = 10 m/s2 (see Figure 11.14). Note that the
drag acceleration profile for the transition phase is a linear function of energy ξ.
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Therefore, we derive the appropriate range integral using ds/dξ= −1/aD; we obtain this
expression by dividing Eq. (11.8) (with r0/r≈1 and cosγ≈1) by Eq. (11.73).
During its entry, the Space Shuttle’s onboard guidance scheme computed the analyt-

ical predicted range-to-go sgo using Eqs. (11.101) and (11.106). The guidance algorithm
then compared the analytical sgo with the actual remaining range to the landing site as
determined by the navigation system. If the predicted range was less than the actual
range, the aD profile was shifted “down” (less drag) to extend the range flown. If sgo
was greater than the actual range, the aD profile was shifted “up” (more drag) to reduce
the range. Figure 11.16 illustrates two scenarios early in the entry where the temperature-
control and equilibrium-glide phases are shifted up or down in tandem to reduce or
extend the range-to-go. Changing the polynomial coefficients ci and bank angle ϕ in
Eqs. (11.102)–(11.105) shifts the aD profile. Of course, the shifted aD profile must remain
within the entry corridor shown in Figure 11.14. The Shuttle’s guidance algorithm
adjusted the free coefficients until the predicted sgo matched the actual range to the land-
ing site. After establishing the reference drag-velocity function, the Space Shuttle used a
closed-loop control law to modulate bank angle ϕ and keep the vehicle on the desired aD
profile. The entire process was repeated every 2 s so that the Shuttle constantly updated
its drag-velocity profile to achieve the desired down-range distance. The interested
reader should consult Harpold and Graves [4] to learn more about this application of
first-order entry methods to the Space Shuttle entry problem.

11.8 Summary

In this chapter, we presented the so-called first-order methods for analyzing atmospheric
entry. Our overall goal was to develop closed-form analytical solutions for three entry
profiles: ballistic entry (no lift); gliding entry; and skip entry. The reader should go back
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Figure 11.16 Adjusting the Shuttle’s drag-acceleration profile for range control.
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and review the assumptions that are required for each first-order analytical solution. On
a related note, the reader should understand the limitations of each method; for example,
when he or she can and cannot use the first-order solutions. Later in the chapter, we
illustrated how the tremendous kinetic energy at entry interface is dissipated by aerody-
namic drag in the form of aerodynamic heating. The principle metrics for entry flight are
deceleration and heating rate. We developed closed-form expressions for peak deceler-
ation and peak heating rate and the corresponding critical altitudes and velocities where
these peak values occur. Finally, we concluded this chapter with a discussion of the Space
Shuttle’s entry strategy. We illustrated how the various drag acceleration boundaries
form the so-called entry corridor and how the first-order methods define a feasible entry
profile that meets the down-range requirements.
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Problems

Conceptual Problems

11.1 A capsule de-orbiting from a space station in low-Earth orbit (LEO) is entering the
Earth’s atmosphere (entry interface, EI) at velocity vEI = 7.85 km/s. Assume that
the vehicle’s total specific energy is referenced to the surface of the Earth (i.e.,
ξ= v2/2 + g0h). Note that with this definition, total energy is zero when the capsule
is at rest on the surface of the Earth.
a) Compute the total specific energy at entry interface.
b) Determine the percentages of kinetic and potential energy at EI with respect to

the total energy.
c) Show that the time rate of the surface-referenced energy is identical to the

result presented by Eq. (11.73).
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11.2 A spent satellite is entering the Earth’s atmosphere at velocity vEI = 7.75 km/s and
flight-path angle γEI = –6 . The satellite has a ballistic coefficient of 90 kg/m2 and
does not generate lift during entry.
a) Estimate the satellite’s velocity at an altitude of 65 km.
b) What is the critical altitude for peak deceleration?
c) Compute the peak deceleration of the satellite in units of Earth g0.

11.3 A blunt-body capsule is at Earth’s entry interface altitude with velocity vEI =
7.8 km/s and flight-path angle γEI = –5.5 . The capsule has ballistic coefficient
CB = 80 kg/m2 and follows a ballistic entry. Compute the drag acceleration D/m
and centrifugal acceleration v2/r at altitudes of 122 (EI), 90, 70, and 50 km. Com-
pare these acceleration terms to Earth-surface g0 and comment on the accuracy
of the first-order ballistic entry solution at each altitude.

11.4 Using the blunt-body capsule data and entry conditions from Problem 11.3,
determine the critical altitudes for peak deceleration and peak heat rate for
the ballistic entry.

Problems 11.5–11.8 involve an Apollo-style capsule with lift-to-drag ratio L/D
= 0.4, massm = 6,000 kg, reference area S = 14 m2, and drag coefficient CD = 1.6.

11.5 The capsule is at an altitude of 98 km with velocity v = 9,750 m/s and flight-path
angle γ = –5.5 . If the bank angle is 180 (lift “down”), is the flight-path angle
increasing or decreasing at this instant?

11.6 The capsule is on an entry trajectory at an altitude of 80 km with velocity v =
8,250 m/s and flight-path angle γ = –5 . Determine the bank angle required
at this instant for an equilibrium glide.

11.7 Repeat Problem 11.6 if the capsule’s altitude, velocity, and flight-path angle are
70 km, 6,930 m/s, and –6.8 , respectively.

11.8 Determine the drag acceleration (in Earth g0) of the Apollo-style capsule at alti-
tudes of 80 and 70 km. Use the information in Problems 11.6 and 11.7.

11.9 Spacecraft designerswant todetermine the effect of entry flight-path angle onpeak
deceleration for aballistic entry.The spacecraft’s entry interface velocity (forEarth)
is vEI = 7.8 km/s and its ballistic coefficient is 85 kg/m2. Plot peak deceleration in
units of Earth-surface g0 (=9.80665 m/s2) for entry angles –15 ≤ γEI ≤ –5 and
determine the entry flight-path angle where peak deceleration is 20g0.

11.10 Spacecraft designers want to determine the effect of ballistic coefficient on the
critical altitudes for peak deceleration and peak heating for a ballistic entry. The
spacecraft’s Earth entry interface velocity is vEI = 7.8 km/s and its flight-path
angle is γEI = –5.8 . Plot the critical altitudes for peak deceleration and peak heat-
ing for ballistic coefficients 50 < CB < 200 kg/m2.

Problems 11.11–11.14 involve a winged entry vehicle with lift-to-drag ratio
L/D = 1.35, massm = 1,800 kg, reference wing area S = 6 m2, and drag coefficient
CD = 0.8.
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11.11 The winged entry vehicle enters Venus’ atmosphere (hEI = 200 km) with near-
circular velocity vEI = 7.2 km/s and flight-path angle γEI = –2 and performs a
skip entry. The vehicle has zero bank angle during its skip entry.
a) Determine the vehicle’s pull-up altitude and pull-up velocity during the

skip entry.
b) Compute the peak deceleration along the flight-path and the peak normal

acceleration in units of Earth-surface g0 (= 9.80665 m/s2).
c) Compute the atmospheric exit velocity and flight-path angle.
d) Compute the peak altitude during the Keplerian “skip out” phase (use μV =

3.2486(105) km3/s2 for Venus’ gravitational parameter and rV = 6,052 km
for the radius of Venus).

11.12 Using the Venus entry conditions from Problem 11.11, determine the critical
flight-path angle, altitude, and velocity corresponding to the peak aerodynamic
heating rate for a skip entry.

11.13 Repeat Problem 11.11 for a skip entry at Mars. Let the Mars entry conditions
(hEI = 125 km) be vEI = 3.5 km/s and γEI = –2 .

11.14 Using the Mars entry conditions from Problem 11.13, determine the critical
flight-path angle, altitude, and velocity corresponding to the peak aerodynamic
heating rate for a skip entry.

11.15 A blunt-body capsule is at Earth’s entry interface with entry speed vEI = 7.8 km/s.
The capsule has ballistic coefficient CB = 65 kg/m2. Plot the body-averaged
heat-rate input (per unit skin-friction coefficient Cf ) for a ballistic entry. Plot
qavg/Cf as a function of altitude for two entry flight-path angles: γEI = –5
and –7 (place both plots on the same figure). Compute the critical altitudes
for peak heating and the peak qavg/Cf values for both entry angles – do these
values correspond to the peaks from the two plots?

Mission Applications

11.16 The Mercury spacecraft carried the first US astronauts to space and back to
Earth in the early 1960s. The Mercury capsule used a ballistic entry and its para-
meters were massm = 1,200 kg, reference area S = 2.812 m2, and drag coefficient
CD = 1.6. Repeat parts (a) and (b) of Example 11.1 using the same EI states as the
Vostok capsule. Compare the peak decelerations and critical altitudes of the two
ballistic entry profiles.

Problems 11.17–11.24 involve the Space Shuttle’s entry flight. Use mass m =
82,000 kg, reference wing area S = 250 m2, drag coefficient CD = 0.8, and L/D =
1.1 for all problems.

11.17 The Shuttle is currently in the equilibrium-glide phase and has velocity v =
5.4 km/s (the Shuttle defines the equilibrium-glide phase as the velocity range
4 27 < v < 5 8 km/s). Compute the constant bank angle ϕ so that the remaining
down-range distance of the equilibrium glide is 700 km.
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11.18 The Shuttle is currently in an equilibrium glide at velocity v = 5.6 km/s and bank
angle ϕ = 52.5 . The constant-drag phase has a drag acceleration of 10 m/s2. The
constant-drag phase ends at velocity v = 3.2 km/s.
a) Compute the Shuttle’s current drag acceleration in m/s2.
b) Determine the velocity that marks the beginning of the constant-drag phase.
c) Estimate the down-range distances of the remaining equilibrium-glide phase

and the entire constant-drag phase.

11.19 The Shuttle is currently in the constant-drag phase and has velocity v = 4 km/s
(the Shuttle defines the constant-drag phase as the velocity range 3 2 < v < 4 27
km/s). The down-track range estimate for the transition phase (0 76 < v < 3 2
km/s) is 600 km. The Shuttle’s actual range-to-go is 890 km. Compute the
required constant drag acceleration so that the estimated range-to-go matches
the actual remaining down-range distance (assume that the range for the tran-
sition phase does not change).

11.20 Estimate the down-track range of the Shuttle’s transition phase where the
drag acceleration profile is a linear function of energy. The drag acceleration
and energy at the beginning and end of the transition phase are 10 m/s2 and
–5.708(107) m2/s2, and 6.3 m/s2 and –6.195(107) m2/s2, respectively.

11.21 Plot drag acceleration vs. velocity for the Space Shuttle’s equilibrium-glide
boundary for three bank angles: ϕ = 0, 25 , 50 (place all three plots on the same
figure). Use the following simple piecewise linear function for L/D vs. velocity:

L/D= 1 1 for v ≥ 3,200 m/s

L/D= 2 22−0 00035v for v≤ 3,200 m/s

11.22 Plot the critical altitude (in km) for peak heating rate during the Shuttle’s equi-
librium glide vs. bank angle for 0 ≤ ϕ ≤ 80 .

11.23 Determine the bank angle ϕ where the peak heat-rate input increases by 50%
when compared to the peak heating using a zero-bank equilibrium glide.

11.24 Consider again the derivation surrounding Eq. (11.18), the spacecraft’s velocity
on a ballistic entry. The first-order ballistic entry method assumes (1) drag
dominates gravity for entry at a shallow flight-path angle, and (2) flight-path
angle is constant because the centrifugal force cancels gravity. Therefore,
we can also use Eq. (11.18) to estimate velocity on a shallow equilibrium
glide where flight-path angle is constant. The Space Shuttle’s velocity at
EI is vEI = 7,850 m/s.
a) Starting from the state conditions h = 85 km and γ = –1.2 , compute the Shut-

tle’s bank angleϕ required tomaintain an equilibrium glide [use Eq. (11.18) to
compute velocity at h = 85 km].

b) At what altitude is it impossible for the Shuttle to maintain γ = –1.2 ? Again,
use Eq. (11.18) to compute the Shuttle’s velocity as a function of altitude.

c) Plot bank angle ϕ vs. the altitude range where it is possible to maintain a true
equilibrium glide (assume constant L/D = 1.1).
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Problems 11.25–11.29 involve the entry flight of the Intermediate Experi-
mental Vehicle (IXV), an unmanned, wingless, lifting-body entry vehicle
designed and successfully flown by the European Space Agency (ESA) on
February 11, 2015. Figure P11.25 shows the IXV. The IXV entered Earth’s
atmosphere (hEI = 122 km) with velocity vEI = 7.7 km/s and flight-path angle
γEI = –1.2 and followed an equilibrium glide. Use massm = 1,845 kg, reference
area S = 7.26 m2, drag coefficient CD = 0.84, and L/D = 0.7 for all problems.

11.25 Determine the velocity and deceleration (in g0) of the IXV during its equilibrium
glide at altitudes of 80, 60, and 40 km if the bank angle is zero.

11.26 RepeatProblem11.25 (find thevelocity anddeceleration) if thebankangle isϕ=50 .

11.27 Determine the constant bank angle of the IXV so that its range is 5,860 km on an
equilibrium glide from EI velocity v1 = 7.7 km/s to final velocity v2 = 1 km/s.

11.28 Determine the critical altitude and velocity for peak aerodynamic heating rate
for an equilibrium glide with zero bank angle.

11.29 Repeat Problem 11.28 (determine the critical altitude and velocity for peak heat-
ing) if the bank angle is ϕ = 50 .

11.30 The Stardust capsule returned from deep space after sampling cosmic dust. It
entered the Earth’s atmosphere (EI) at velocity vEI = 12.9 km/s. The capsule’s
mass is 46 kg and its reference and wetted areas are 0.52 and 1.2 m2, respectively.
Its drag coefficient isCD = 1.5 and its skin-friction drag coefficient is 0.14. Deter-
mine the total thermal energy transferred to the Stardust capsule during its bal-
listic entry from EI conditions to zero velocity.

Figure P11.25 Intermediate Experimental Vehicle. Source: Courtesy of Huart.
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12

Attitude Dynamics

12.1 Introduction

All chapters up to this point have treated a satellite or spacecraft as a particle. In other
words, we have only considered the motion of its center of mass. The satellite orbits,
interplanetary trajectories, and atmospheric entry profiles analyzed in Chapters 2–11
are examples of particle dynamics: the application of Newton’s laws to a single particle.
In this chapter, we begin to consider a space vehicle’s angular orientation and angular
motion or attitude dynamics.
The distinction between particle dynamics and attitude dynamics is illustrated in

Figure 12.1. Figure 12.1a shows a satellite’s orbit about the Earth. The satellite is a
particle where vectors r and v are the position and velocity of the satellite’s center of
mass as it moves along its orbit. All analysis of satellite motion thus far (such as
orbital energy, orbital angular momentum, conic sections, etc.) has dealt with par-
ticle dynamics as depicted in Figure 12.1a. Figure 12.1b and 12.1c show two possible
angular orientations of the satellite (vectors r and v are still the position and velocity
of the satellite’s center of mass). In Figure 12.1b, the satellite is oriented such that its
antenna is pointed away from the Earth whereas in Figure 12.1c the antenna is
pointed toward the Earth. The attitude is the satellite’s angular orientation with
respect to a reference frame. Attitude dynamics is the study of a satellite’s rotational
motion about its center of mass. Clearly, it is important to understand the attitude
dynamics of a satellite so that it can be pointed in the correct direction for commu-
nication or scientific observations. In addition, a satellite powered by solar cells must
maintain an attitude so that its solar arrays can collect the maximum amount of the
sun’s energy.
This chapter is an introduction to rigid body dynamics and satellite attitude dynamics.

Some of this material should be familiar to readers who have taken a dynamics or
mechanics course. Because most satellites operate in the vacuum of space where external
moments or torques are zero, we will focus on a satellite’s “torque-free” angular motion
about its center of mass. This chapter will also address the stability of spinning satellites
and disturbance torques. We will discuss methods for controlling a satellite’s attitude in
Chapter 13.
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12.2 Rigid Body Dynamics

Before we delve into the three-dimensional dynamics of a rotating body, let us consider
the very simple case of a rotor or disk spinning about a fixed axis as shown in Figure 12.2.
The disk in Figure 12.2 has moment of inertia I about its axis of symmetry defined by

I = r2dm (12.1)

where dm is an infinitesimal mass with radial distance r from the symmetry axis (we have
assumed that the rotation axis coincides with the disk’s axis of symmetry). Figure 12.2
also shows an external torque (or moment) M applied to the disk. Positive angular dis-
placement θ is counterclockwise (when viewed from above) as shown in Figure 12.2. We
know from a dynamics course that the sum of the external torques is equal to the
moment of inertia multiplied by the angular acceleration. For the rotor in Figure 12.2,
we have

M = Iθ = Iω (12.2)

Satellite

Orbit

r
Satellite

Orbit

(b)

(c)

Satellite

Orbit

(a)

r

r

v

v

v

Figure 12.1 Earth-orbiting satellite: (a) satellite as a particle; (b) satellite attitude with antenna pointing
away from Earth; and (c) satellite attitude with antenna pointing toward Earth.
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Equation (12.2) is Newton’s second law for a rotational mechanical system. We have
assumed that the disk is rotating on frictionless bearings and therefore the applied torque
M is the only moment acting on the disk. The disk shown in Figure 12.2 is called a one
degree-of-freedom (1-DOF) system because it only requires one displacement coordinate
(angle θ) to completely define its orientation.
Now let us derive the angular momentum of the symmetrical 1-DOF spinning disk.

Figure 12.3 shows the disk rotating about the fixed z axis. The orthogonal xyz axes
are rotating body axes fixed to the disk with its origin at the disk’s center of mass
(c.m.). The z body axis is an axis of symmetry. Furthermore, let us assume that the z axis
is a fixed axis of rotation (e.g., a shaft as shown in Figure 12.2). Next, consider the incre-
mental mass mi shown in Figure 12.3. The incremental angular momentum associated
with mi is the moment of its linear momentum (mivi) about the z axis:

Hi = ri ×mivi (12.3)

where radial vector ri is the perpendicular distance from the z axis tomi. Because the disk
is spinning about the fixed z axis, the velocity of mass mi is vi =ω× ri which is always
perpendicular to the spin axis and radius ri. It is easy to see that for this 1-DOF system

Fixed reference

θ
Torque, M

Moment of 

Fixed axis

inertia, I

θω =

Figure 12.2 One degree-of-freedom system: disk rotating about a fixed axis.
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yx
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rotation
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h

Figure 12.3 Homogeneous disk rotating about its fixed z body axis.

Attitude Dynamics 431



the incremental angular momentumHi is always along the z axis and therefore the cross
product in Eq. (12.3) can be replaced by simple multiplication:

Hi = r
2
i miω (12.4)

where it is understood that Hi and ω are along the z axis. Now, let us add up all of the
angular momentum increments, that is, integrate Eq. (12.4), and make use of the defi-
nition of the moment of inertia (12.1). The integration result is

H = Iω (12.5)

For the simple 1-DOF rotational system, the angular momentum is the disk’s moment of
inertia I (about the z axis) multiplied by the angular velocity ω (also about the z axis).
Comparing Eqs. (12.2) and (12.5), we see that the time derivative of angular momentum
is equal to the applied torque (or moment).

12.2.1 Angular Momentum of a Rigid Body

Now let us extend the 1-DOF results to three dimensions. Figure 12.4 shows a satellite
moving along its orbital path. Coordinate system XYZ is an inertial (fixed) frame fixed to
the center of the gravitational body. Coordinate system xyz is a rotating body frame that is
fixed to the spacecraft at its c.m. Therefore, frame xyz rotates relative to the inertial frame
XYZ due to the satellite’s angular motion. The satellite’s angular velocity vector is ω,
which is not necessarily aligned with a particular body axis. Let us consider the absolute
(inertial) position of the incremental satellite mass mi

Ri =Rcm + ri (12.6)
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Rcm

Orbital path
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z

Inertial 
frame

X
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ω

Satellite

c.m.
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O

Figure 12.4 General satellite motion.
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where Rcm is the absolute position of the satellite’s center of mass and ri is the position of
mi relative to the c.m. as expressed in the rotating xyz frame. The absolute velocity of
incremental mass mi is

vi =Ri =Rcm + ri rot +ω× ri (12.7)

where ri rot is the velocity ofmi relative to the rotating xyz body-fixed frame. We assume
that the satellite is a rigid body and therefore ri rot = 0. Next, let us compute the incre-
mental angular momentum of massmi relative to originO, the center of the gravitational
body:

Hi =Ri ×mivi

=Ri ×mi Rcm +ω× ri
(12.8)

Summing all incremental masses over the entire satellite, we obtain the total angular
momentum about the center of the gravitational body

HO = Ri ×mivcm + Ri ×mi ω× ri (12.9)

where vcm =Rcm is the absolute velocity of the satellite’s c.m. The first summation on the
right-hand side of Eq. (12.9) involves the inertial position of the satellite’s c.m., or

Rimi =mRcm where m is the total mass of the satellite. The second summation must

be expanded by using Eq. (12.6) for inertial position Ri; the result is

HO =Rcm ×mvcm + Rcm + ri ×mi ω× ri

=Rcm ×mvcm + Rcm ×mi ω× ri + ri ×mi ω× ri
(12.10)

The middle cross-product term in Eq. (12.10) is zero because miri = 0 is the definition
of the c.m. Allowing mi to become infinitesimally small permits us to replace the sum-
mation with an integral; hence Eq. (12.10) becomes

HO =Rcm ×mvcm + r× ω× r dm (12.11)

where r is the position of infinitesimal mass dm as expressed in the rotating body-fixed
frame. We may express the satellite’s total angular momentum as

HO =Horbit +Hbody (12.12)

where Horbit =Rcm ×mvcm is the orbital angular momentum, or angular momentum
due to the motion of the c.m. along its orbital path. The component Horbit is
the angular momentum we utilized in Chapters 2–10 when we treated the
satellite as a point mass and it is identical to Eq. (2.13). The second component in

Eq. (12.12), Hbody = r× ω× r dm, is the body angular momentum due to the satellite’s

rotation about its own c.m. Chapters 2–10 showed that orbital angular momentum is a
key to analyzing orbital motion, or “orbital dynamics.” Likewise, body angular momen-
tum Hbody is crucial for analyzing “attitude dynamics,” or a satellite’s rotational motion.
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Let us express the body angular momentum in a simpler form. First, we can express the
angular velocity vector in body-fixed (or xyz) coordinates:

ω=

ωx

ωy

ωz

(12.13)

Consider the cross product ω× r

ω× r=

i j k

ωx ωy ωz

x y z

= ωyz−ωzy i+ −ωxz +ωzx j+ ωxy−ωyx k

(12.14)

Equation (12.14) is a vector of the relative velocity components of mass dm as expressed
in the body-fixed frame (unit vectors ijk are along the xyz coordinates of the rotating
frame). Multiplying Eq. (12.14) by dm yields ω× r dm, that is, the linear momentum
components of mass dm. Next, cross the relative position vector r with ω× r dm

r× ω× r dm=

i j k

x y z

ωyz−ωzy −ωxz +ωzx ωxy−ωyx

dm

=

ωx y2 + z2 −ωyxy−ωzxz

−ωxxy+ωy x2 + z2 −ωzyz

−ωxxz−ωyyz +ωz x2 + y2

dm

(12.15)

We can distribute the dm factor in Eq. (12.15) and write the 3 × 1 vector result as a
matrix-vector product:

r× ω× r dm=

y2 + z2 dm − xy dm − xz dm

− xy dm x2 + z2 dm − yz dm

− xz dm − yz dm x2 + y2 dm

ωx

ωy

ωz

(12.16)

Note that the 3 × 3 matrix in Eq. (12.16) is symmetric with positive diagonal terms (recall
that x, y, and z are the position coordinates of infinitesimal mass dm as expressed in the
rotating, body-fixed frame). We can obtain body angular momentum Hbody by integrat-
ing Eq. (12.16) over the satellite’s mass distribution. The result of the integration may be
succinctly written as

Hbody = r× ω× r dm=

Ix − Ixy − Ixz

− Ixy Iy − Iyz

− Ixz − Iyz Iz

ωx

ωy

ωz

(12.17)
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We may write Eq. (12.17) in a more compact form

Hbody = Iω (12.18)

where I is the 3 × 3 inertia matrix

I=

Ix − Ixy − Ixz

− Ixy Iy − Iyz

− Ixz − Iyz Iz

(12.19)

The diagonal elements of the inertia matrix are the moments of inertia:

Ix = y2 + z2 dm (12.20a)

Iy = x2 + z2 dm (12.20b)

Iz = x2 + y2 dm (12.20c)

Clearly, the moments of inertia are always positive. The off-diagonal elements of I are the
products of inertia:

Ixy = xydm (12.21a)

Ixz = xzdm (12.21b)

Iyz = yzdm (12.21c)

The products of inertia may be positive, negative, or zero.
The moments and products of inertia are functions of the satellite’s shape and mass

distribution. As a relatively simple example, consider the disk shown in Figure 12.3.
Let us assume that the disk is homogeneous (i.e., uniform mass distribution) with outer
radius R, total massm, and height h (see Figure 12.3). Themoments of inertia for a homo-
geneous disk (cylinder) are

Homogeneous cylinder x,y axes Ix = Iy =
1
12

m 3R2 + h2 (12.22)

Homogeneous cylinder z axis Iz =
1
2
mR2 (12.23)

Because the homogenous cylinder is symmetric about the xy, xz, and yz planes, all three
products of inertia are zero. Hence, I is a diagonal matrix for a homogeneous cylinder.
In this simple example, the xyz body-fixed axes are the so-called principal axes. By def-
inition, the principal axes are the orthogonal coordinates chosen so that the products of
inertia are zero. We will discuss the principal axes in a bit more detail in the next sub-
section. The following example demonstrates the relationship between the rigid-body
angular momentum Hbody and the angular velocity vector ω for symmetrical and asym-
metrical rigid bodies.
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Example 12.1 Consider the two cylindrically shaped satellites shown in Figure 12.5.
Figure 12.5a shows a symmetrical satellite with homogeneous mass distribution, whereas
Figure 12.5b shows an asymmetrical cylinder that is “unbalanced” due to the 50-kg mass
m1 offset from the origin. The offset distances for m1 are c = 0.5 m (along the +y body
axis) and d = 0.3 m (along the +z axis). Both cylindrical satellites have a radius of 1 m,
height of 1.5 m, and total mass of 2,000 kg (without offset mass m1). Both satellites
are rotating about the +z body axis with an angular velocity of 5 revolutions per minute
(rpm). Compute the angular momentum of the symmetrical and asymmetrical rigid
bodies.
We will consider the symmetrical satellite in Figure 12.5a first. Because the satellite is a

homogeneous cylinder, its moments of inertia can be computed using Eqs. (12.22) and
(12.23), radius R = 1m, height h = 1.5 m, and mass m = 2,000 kg:

Ix = Iy =
1
12

m 3R2 + h2 = 875 kg-m2

Iz =
1
2
mR2 = 1,000 kg-m2

The homogeneous satellite has zero products of inertia due to its symmetry. Therefore,
its inertia matrix is

Symmetrical satellite I=

Ix 0 0

0 Iy 0

0 0 Iz

=

875 0 0

0 875 0

0 0 1,000

kg-m2

The angular velocity is ωz = (5 rpm)(2π rad/1 rev)(1 min/60 s) = 0.5236 rad/s. Expressed
as a vector, the angular velocity is

ω=

0

0

0 5236

rad/s

x

z

y

ω

Hbody

O x

z

ω

Hbody

(b)

y

m1

Total mass m

c

(a)

d
O

Figure 12.5 (a) Symmetrical homogeneous satellite and (b) asymmetrical satellite (Example 12.1).
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The angular momentum is computed using Eq. (12.18):

Symmetrical satellite Hbody = Iω=

875 0 0

0 875 0

0 0 1,000

0

0

0 5236

=

0

0

523 6

kg-m2/s

Therefore, all angular momentum is in the + z body-axis direction. For a symmetrical
satellite, the angular momentum Hbody is aligned with the angular velocity ω or the
“spin axis” as shown in Figure 12.5a.
Next, we consider the asymmetrical (unbalanced) satellite shown in Figure 12.5b. We

must re-compute the satellite’s moments and products of inertia about the body-fixed
xyz axes by adding the inertia elements for the homogeneous cylinder to the contribution
due to the discrete offset mass m1. The moments of inertia for the unbalanced satel-
lite are

Ix = Ix + c2 + d2 m1 = 875 + 17 = 892 kg-m2

Iy = Iy + 02 + d2 m1 = 875 + 4 5 = 879 5 kg-m2

Iz = Iz + 02 + c2 m1 = 1,000 + 12 5 = 1,012 5 kg-m2

Note that the moments of inertia for the homogeneous (symmetrical) satellite are Īx,
Īy, and Īz. The position components of the mass m1 offset are x = 0, y = c = 0.5 m, and
z = d = 0.3 m. The products of inertia for the unbalanced satellite are

Ixy = Ixy + 0 c m1 = 0

Ixz = Ixz + 0 d m1 = 0

Iyz = Iyz + c d m1 = 0 + 7 5 = 7 5 kg-m2

where Ixy = Ixz = Iyz = 0 are the products of inertia associated with the symmetrical sat-
ellite. Because the yz plane remains a plane of symmetry for the unbalanced satellite,
the two products of inertia associated with the x axis (Ixy and Ixz) are zero.
Assembling the inertia matrix for the unbalanced satellite yields

Asymmetrical satellite I=

Ix − Ixy − Ixz

− Ixy Iy − Iyz

− Ixz − Iyz Iz

=

892 0 0

0 879 5 −7 5

0 −7 5 1,012 5

kg-m2
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The angular momentum is the matrix-vector product:

Asymmetrical satellite Hbody = Iω=

892 0 0

0 879 5 −7 5

0 −7 5 1,012 5

0

0

0 5236

=

0

−3 93

530 14

kg-m2/s

The angular momentumHbody for the asymmetrical satellite is not aligned with the angu-
lar velocity vectorω. The majority ofHbody is along the +z axis, but a small component is
along the –y body axis as shown in Figure 12.5b (not drawn to scale). The angle between
Hbody and the spin axis is tan−1 3 93/530 14 = 0.42 . Note that the magnitude (i.e., vec-
tor norm) of the asymmetrical Hbody is greater than the magnitude of the symmetrical
angular momentum due to the additional 50-kg mass m1 that is offset from the axis of
rotation.

12.2.2 Principal Axes

From our previous discussion of angular momentum, we see that the inertia matrix I
consists of moments of inertia (diagonal elements) and products of inertia (off-diagonal
elements). Example 12.1 shows that the products of inertia are zero with respect to body-
fixed orthogonal axes that lie in the planes of symmetry. The coordinate axes are said to
be the principal axes for the body if all products of inertia vanish. We will denote the
principal axes as the 1, 2, and 3 axes (instead of x, y, and z axes). Therefore, a satellite’s
inertia matrix with respect to its principal axes is

I=

I1 0 0

0 I2 0

0 0 I3

(12.24)

The diagonal elements I1, I2, and I3 are the principal moments of inertia. It is important to
remember that (1) the center of mass is the origin of the principal axes, and (2) the prin-
cipal axes are body-fixed coordinates that rotate with the satellite.
A satellite’s angular momentum with respect to the principal axes is

H= Iω=

I1 0 0

0 I2 0

0 0 I3

ω1

ω2

ω3

=

I1ω1

I2ω2

I3ω3

(12.25)

where ω1, ω2, and ω3 are the angular velocity components along the principal axes (note
that we have dropped the “body” subscript on H because we are only concerned with
rotational motion). Another way to express Eq. (12.25) is
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H= I1ω1u1 + I2ω2u2 + I3ω3u3 (12.26)

where u1, u2, and u3 are unit vectors along the principal axes.
For a homogeneous body of revolution, it is fairly easy to select the principal axes. It is

always possible to determine the principal axes where the products of inertia are zero.
From linear algebra, we know that the eigenvectors of an arbitrary inertia matrix will
determine the coordinates of the principal axes and the associated eigenvalues are the
principal moments of inertia. We will not pursue the eigenvector problem and the deter-
mination of principal axes (see Kaplan [1; pp. 43–46] for details). Because using principal
axes greatly simplifies the attitude dynamics and control problem, we will use them for
the remainder of this chapter and Chapter 13.

12.2.3 Rotational Kinetic Energy

Just as the total energy of a point-mass spacecraft aided the solution of orbital mechanics
problems, a satellite’s rotational kinetic energy helps us solve attitude dynamics pro-
blems. The rotational kinetic energy of a rigid body consisting of particles mi is

Trot =
1
2
mivi vi (12.27)

where vi is the velocity of incremental mass mi due to the body’s rotation:

vi =ω× ri (12.28)

Equation (12.28) is equal to Eq. (12.7) with zero absolute velocity of the body’s center of
mass, or Rcm = 0 (i.e., we are only considering rotational kinetic energy here and not the
kinetic energy due to the speed of the body’s center of mass). Substituting Eq. (12.28) for
the second velocity vector term in Eq. (12.27) yields

Trot =
1
2

mivi ω× ri (12.29)

Using the scalar triple product [see Eq. (B.27) in Appendix B], we can swap the vectors so
that Eq. (12.29) becomes

Trot =
1
2

ω ri ×mivi (12.30)

Next, factor vectorω out from the summation and substitute Eq. (12.28) for velocity vi in
Eq. (12.30):

Trot =
1
2
ω ri ×mi ω× ri (12.31)

Note that the summation term in Eq. (12.31) is the body angular momentum; see the
third term on the right-hand side of Eq. (12.10). Thus, Eq. (12.31) becomes

Trot =
1
2
ω H (12.32)
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Finally, we may substitute Eq. (12.18) for angular momentum H to yield

Trot =
1
2
ω Iω (12.33)

It is important to note that rotational kinetic energy Trot is a scalar, as illustrated by
Eqs. (12.32) and (12.33) which show the dot product between angular velocity vector ω
and angular momentum vectorH = Iω. Suppose we selected a body frame where one axis
is instantaneously aligned with the angular velocity vector ω. In this case, the rotational
kinetic energy is

Trot =
1
2
Ispinω

2 (12.34)

where Ispin is the satellite’s moment of inertia about its “spin axis” or the axis of rotation
(i.e., alongω), and ω is the magnitude of the angular velocity. Rotational kinetic energy is
analogous to translational kinetic energy mv2/2. However, note that a translating fixed-
mass particle can change its kinetic energy only by changing its speed v, whereas a rotat-
ing body can change its kinetic energy by altering its angular velocity or its rotation axis
(i.e., rotational inertia Ispin). Equation (12.34) is not very useful because Ispin is continu-
ously changing due to the continuous change in the axis of rotation (i.e., vectorω). How-
ever, if a satellite is exhibiting a pure spin about a body axis (say the 3 axis), then the
associated rotational kinetic energy is Trot = I3ω2

3/2.
To illustrate this concept, consider a thin, pencil-shaped cylinder called a prolate body

shown in Figure 12.6. A prolate body is a solid of revolution about itsminor axis or axis of
smallest moment of inertia. For the prolate body in Figure 12.6, the 3 axis is the minor
axis because I3 < I1 and I3 < I2 (of course, I1 = I2 for the cylinder in Figure 12.6).
Figure 12.6a shows the prolate body spinning about its (minor) 3 axis with angular veloc-
ity ω3 whereas Figure 12.6b shows the prolate body spinning end-over-end about its
major axis (the 1 axis) with the same angular velocity, ω1 =ω3. For the minor-axis rota-
tion (Figure 12.6a), we have angular momentum H3 = I3ω3 that is less than the angular
momentum for themajor-axis rotation (Figure 12.6b),H1 = I1ω1. Similarly, the rotational

3

1 2

3

1
2

ω = ω3u3

H = H3u3 ω3 = ω1

H3 < H1

Trot3 < Trot1

ω = ω1u1

H = H1u1

(a) (b)

2
333rot 2

1 ωIT =

2
111rot 2

1 ωIT =

Figure 12.6 Prolate body: (a) spin about the minor 3 axis; and (b) spin about the major 1 axis.
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kinetic energy for the minor-axis rotation (Trot3) is smaller than the kinetic energy asso-
ciated with the major-axis rotation (Trot1) even though the angular velocities are
the same.
Figure 12.7 shows a flat, squat cylinder called an oblate body. An oblate body is a solid

of revolution about its major axis (axis of greatest moment of inertia; i.e., I3 > I1 and I3 >
I2). Similar to Figure 12.6, the two scenarios in Figure 12.7 show rotations about the
major and minor axes with the same angular velocity, ω1 =ω3. For the major-axis rota-
tion of an oblate body, we have greater angular momentum (H3 >H1) and greater rota-
tional kinetic energy (Trot3 > Trot1) compared with the minor-axis rotation at the same
angular velocity.
Figures 12.6 and 12.7 demonstrate that rotational kinetic energy depends on the angu-

lar velocity, the spin axis, and the body’s inertia distribution (i.e., a prolate vs. oblate
body). Unlike the total energy of a point-mass satellite moving in a two-body gravita-
tional field, the rotational kinetic energy of a satellite may dissipate over time due to
the motion of flexible appendages or internal damping devices. We will revisit rotational
kinetic energy in a later section in order to characterize the stability of a spinning satellite.

12.2.4 Euler’s Moment Equations

Thus far we have developed expressions for rotational angular momentum and rota-
tional kinetic energy. These expressions are simplified by using the principal axes as
the body-fixed coordinate frame. The next step is to characterize the motion of a rotating
satellite; in other words, we want to solve the governing differential equations stemming
from the rotational equivalent of Newton’s second law.
Recall that Newton’s second law may be stated as follows: the sum of external forces is

equal to the time rate of linear momentum in an inertial frame. Similarly, for rotational
motion, the sum of external torques (or moments) is equal to the time rate of angular
momentum in an inertial frame, or

M=H fix (12.35)

3

1
2

ω = ω3u3

H = H3u3
ω3 = ω1

H3 > H1

Trot3 > Trot1

ω = ω1u1

(a) (b)

3

1

2

H = H1u1

2
111rot 2

1 ωIT =

2
333rot 2

1 ωIT =

Figure 12.7 Oblate body: (a) spin about the major 3 axis; and (b) spin about the minor 1 axis.
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whereM is the summation of all torques ormoments about the body’s center ofmass and
the subscript “fix” indicates the time derivative with respect to an inertial (non-rotating)
frame. However, our previous expressions for angular momentum, Eqs. (12.18) and
(12.25), use a body-fixed frame that rotates with the satellite (i.e., H= Iω). Using a
body-fixed frame is the only way to ensure a constant inertia matrix I, a very desirable
feature! Therefore, we can express the absolute time-rate of angular momentum as

H
fix
=H

rot
+ω×H (12.36)

The time-rate of angular momentum with respect to the rotating (body) frame is

H rot = Iω= I1ω1u1 + I2ω2u2 + I3ω3u3 (12.37)

Note that we are using principal axes as the body-fixed frame. The cross-product term
(due to the rotation of the principal axes) is

ω×H=

u1 u2 u3

ω1 ω2 ω3

I1ω1 I2ω2 I3ω3

= I3ω2ω3− I2ω2ω3 u1− I3ω1ω3− I1ω1ω3 u2 + I2ω1ω2− I1ω1ω2 u3

(12.38)

Summing Eqs. (12.37) and (12.38) and setting the result equal to the external torque M,
yields the three component equations along the 1, 2, and 3 principal axes:

M1 = I1ω1 + I3− I2 ω2ω3 (12.39a)

M2 = I2ω2 + I1− I3 ω1ω3 (12.39b)

M3 = I3ω3 + I2− I1 ω1ω2 (12.39c)

Equations (12.39a), (12.39b), and (12.39c) are called Euler’s moment equations. They are
three nonlinear, coupled, first-order differential equations. The external moment vector
M has components M1, M2, and M3 along the principal axes. Solving Euler’s moment
equations will give us the evolution of the angular velocity components in the body-fixed
frame (i.e., ω=ω1u1 +ω2u2 +ω3u3).

12.3 Torque-Free Motion

The primary objective of this chapter is to characterize a satellite’s attitude dynamics or
rotational motion about its center of mass. Euler’smoment equations (12.39) are the gov-
erning dynamical equations of motion for a rotating satellite. However, they are nonlin-
ear and a closed-form solution cannot be obtained for an arbitrary moment vector M.
A closed-form solution for the angular motion can be obtained in the absence of external
torques.
Satellites are frequently “spin stabilized” by imparting an external torque until the

rotating body achieves a desired angular velocity about a particular principal axis. For
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example, satellites are often spin stabilized before firing an onboard rocket for an orbital
maneuver. Spinning the satellite provides “gyroscopic rigidity” or resistance to distur-
bance torques caused by misaligned engine thrust. We will investigate the advantages
of spin stabilization in a later section. In this section, we will analyze the motion of a
spinning satellite with zero external moments, or “torque-free motion.”
Let us consider the spinning oblate satellite with principal axes 1, 2, and 3 as shown in

Figure 12.8. Note that the angular velocity vectorω has “spin components”ω1,ω2, andω3

along the principal axes as shown in Figure 12.8. Because the satellite is axisymmetric, we
have I1 = I2. Assuming that all external torque components are zero (M1 =M2 =M3 = 0),
Euler’s moment equations (12.39) become

I1ω1 + I3− I2 ω2ω3 = 0 (12.40)

I2ω2 + I1− I3 ω1ω3 = 0 (12.41)

I3ω3 = 0 (12.42)

Clearly, Eq. (12.42) shows that the angular velocity component about the 3 axis does not
change (i.e., ω3 = n= constant). Next, let us define the constant

λ=
I3− I2
I1

n=
I3− I1
I2

n (12.43)

Equation (12.43) is satisfied because I1 = I2. Note that λ has units of angular velocity or
radians per second. Using Eq. (12.43) in the 1- and 2-axis Euler equations (12.40) and
(12.41), we obtain

ω1 + λω2 = 0 (12.44)

ω2−λω1 = 0 (12.45)

Equations (12.44) and (12.45) are linear and coupled. One way to obtain a solution is to
take the time derivative of Eq. (12.44) to yield ω1 + λω2 = 0 and use Eq. (12.45) to

3
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2

ω

ω1

ω3

ω2

λω12

γ

Aligned with ω
12

 λ

Figure 12.8 Spinning oblate satellite with zero external torques.
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substitute ω2 = λω1. The result is an uncoupled second-order differential equation for
angular velocity about the 1 axis:

ω1 + λ
2ω1 = 0 (12.46)

The general solution to Eq. (12.46) is an undamped harmonic oscillator:

ω1 t =C1 cos λt +C2 sin λt (12.47)

where C1 and C2 are constants that depend on the initial conditions ω1(0) and ω1 0 . It is
not difficult to see that the two constants are C1 =ω1 0 and C2 =ω1 0 /λ; therefore, the
1-axis spin component is

ω1 t =ω1 0 cos λt +
ω1 0
λ

sin λt (12.48)

Solving Eq. (12.44) for the 2-axis spin component, we obtain ω2 = −ω1/λ. Thus, we can
differentiate Eq. (12.48) and divide by −λ to yield

ω2 t =ω1 0 sin λt−
ω1 0
λ

cos λt (12.49)

The projection of vector ω onto the 1–2 plane is component ω12 (see Figure 12.8), and it
is the hypotenuse of the right triangle formed by legs ω1 and ω2

ω2
12 =ω2

1 +ω
2
2 (12.50)

Squaring Eqs. (12.48) and (12.49) and adding yields

ω2
12 =ω

2
1 0 +

ω2
1 0

λ2
= constant (12.51)

Therefore, the length of projection ω12 remains constant.
Another way to determine the spin components ω1 and ω2 is to project the vector ω12

onto the 1 and 2 axes; the result is

ω1 t =ω12 cos λt + β (12.52)

ω2 t =ω12 sin λt + β (12.53)

where β is a phase angle. Clearly, Eq. (12.50) holds for solution set (12.52) and (12.53).
We can summarize our torque-free motion analysis for the oblate satellite shown in

Figure 12.8:

1) Angular-velocity projection vectorω12 has constant magnitude and rotates in the 1–2
plane at constant angular velocity λ.

2) Because I3 > I1 for an oblate cylinder, Eq. (12.43) shows that angular velocity λ > 0 and
thus the vector ω12 rotates counterclockwise about the 3 axis (see Figure 12.8).

3) The angular velocity vector ω exhibits a counterclockwise coning motion about the
symmetric 3 axis as shown by the dashed circle in Figure 12.8. An observer fixed
to the satellite’s 3 axis would see the vector ω trace a cone with a period of 2π/λ.

Figure 12.9 shows a spinning prolate body. Equations (12.48) and (12.49) or Eqs. (12.52)
and (12.53) still provide the general solutions for the 1- and 2-axis spin components.
Because I3 < I1 for a prolate cylinder, the angular velocity λ is negative and hence the
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vectorω12 rotates clockwise as shown in Figure 12.9. Consequently, the coning motion of
ω is clockwise for a prolate body.
Our torque-free motion analysis thus far has identified the coning motion of the angu-

lar velocity vector ω relative to the rotating body-fixed frame. We have not (yet) estab-
lished an inertial vector. Equation (12.35) shows that when M = 0, the angular
momentum vector H is constant and fixed in inertial space. The angular momentum
vector (in body-fixed coordinates) for an axisymmetric satellite is

H= Iω= I1ω1u1 + I1ω2u2 + I3ω3u3 (12.54)

Note that we have substituted I1 = I2 in Eq. (12.54). It turns out that vectorH is in a plane
that contains the angular velocity vector ω and the 3-axis unit vector u3. We can use the
scalar triple product to show that vectors u3, H, and ω are coplanar:

u3 H×ω =

0

0

1

u1 u2 u3

I1ω1 I1ω2 I3ω3

ω1 ω2 ω3

(12.55)

Because the third element of u3 is the sole non-zero element, we only need to compute
the 3-axis component of the cross product H×ω. Using Eq. (12.55), we see that the u3
component of the cross product is I1ω1ω2− I1ω1ω2 = 0. Therefore, the scalar triple prod-
uct is zero (regardless of the values of the spin components ω1 and ω2) and vectors u3,H,
and ω are always in the same plane. We can compute the angle between u3 (the sym-
metric body axis) and angular velocity ω using the trigonometric relationship:

γ = tan−1 ω12

ω3
= tan−1 ω12

n
(12.56)

Note that although we are using symbol γ here it is not the flight-path angle. The angle γ
(shown in Figures 12.8 and 12.9) is constant because ω12 and n are constants. In a similar
fashion, the angle between the 3 axis and H can be determined by

θ = tan−1 H12

H3
(12.57)
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Figure 12.9 Spinning prolate satellite with zero external torques.
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Again, although we use symbol θ here it is not the true anomaly. The magnitude H12 can
be computed from the projection of H onto the 1–2 plane:

H12 =H1 +H2 = I1ω1u1 + I1ω2u2 = I1ω12 (12.58)

Using this result, Eq. (12.57) becomes

θ = tan−1 I1ω12

I3n
(12.59)

The angle θ is also constant. It is called the nutation angle, and it determines the “tilt” of the
3 axis relative to the inertially fixed vectorH. The tangents of γ and θ differ by the inertia
ratio I1/I3. Therefore, when I1 < I3 (oblate body), the nutation angle θ is less than γ and
angular momentum H lies between the 3 axis and the angular velocity ω (Figure 12.10).
Figure 12.11 attempts to show the complex “coning” torque-free motion for a spinning

oblate satellite. First, the reader should note that the angular momentum vector H is
fixed; it does not move or rotate relative to an inertial frame. Figure 12.11 shows H as
a vertical vector so that the reader can more easily visualize its fixed direction. Secondly,
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Figure 12.10 Spinning oblate satellite with zero external torques: angular momentum H
and nutation angle θ.
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Figure 12.11 Spinning oblate satellite with zero external torques: body cone rolls along
fixed space cone.
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our analysis has shown that body axis u3, angular velocity ω, and angular momentum H
always remain in the same plane. Because H is fixed in space, vectors u3 and ω rotate
aboutH with angular velocity λ. Furthermore, ω traces a cone (with half angle γ) around
the body axis u3 in a counterclockwise direction with angular velocity λ (see Figure 12.8).
This conical trace is called the body cone and it is fixed to the satellite’s body axes. The
angular velocity vector ω also traces a smaller cone (the space cone shown in
Figure 12.11) about fixed vector H. The space cone has half angle γ−θ and is fixed in
inertial space. Thus, the body cone “rolls” along the fixed space cone in a counterclock-
wise direction such that ω is the contact line between the two cones (for an oblate disk,
the fixed skinny space cone is always inside the rotating broad body cone). An observer in
a fixed frame would see the satellite “wobble” as the body-axes rotate about the angular
momentumH. In summary, vectorH is fixed in inertial space, the plane containing u3,ω,
and H rotates about fixed direction H, and orientation angles γ and θ remain constant.
This discussion should reinforce the notion that angular momentum H and angular
velocity ω are aligned only for a “pure spin” about the symmetric 3 axis. For a pure spin
about the 3 axis, we have γ = θ = 0 and the coning motion vanishes.
Figure 12.12 shows the coning torque-freemotion for a spinning prolate (pencil-shaped)

satellite. Because the prolate satellite’s symmetry axis is the minor axis (I3 < I1),
the nutation angle θ is greater than angle γ; see Eq. (12.59). Consequently, the angular
velocity vector ω is betweenH and the 3 axis as shown in Figure 12.12. For a prolate sat-
ellite, the body cone is outside the space cone (vector ω is still the contact line between
the two cones). In addition, Eq. (12.43) shows that the coning frequency λ is negative;
in other words, the body cone rolls in a clockwise direction about the fixed space cone.

12.3.1 Euler Angle Rates

Our analysis thus far has not fully described the motion of the 123 body axes with respect
to an inertial frame. Knowledge of the satellite’s body-frame orientation is obviously
important because its instruments (antennas, cameras, etc.) have knownbody coordinates.

u3

ω

θ

γ

H

Body cone

Space 
cone (fixed)

Satellite

Figure 12.12 Spinning prolate satellite with zero external torques: body cone rolls along fixed
space cone.
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It is customary to use Euler angles (ψ , θ, and ϕ) to define the angular orientation of the
satellite’s bodyaxes relative toan inertial frame.Figure12.13 shows theEuler angles and the
123bodyaxes.TheOXYZ coordinates are anon-rotating inertial framewhere the +Z axis is
alignedwith the angularmomentumvectorH (remember that for torque-freemotion,H is
constant in magnitude and direction). We can align theOXYZ frame with the body-fixed
123 frame by employing three successive rotations: (1) rotate theOXYZ frame by angle ψ
about +Z (orH); (2) rotate the intermediate frame about the “node line”by angle θ to estab-
lish the (symmetric) 3 axis; (3) rotate the intermediate frame about the +3 body axis by
angleϕ to establish the complete 123 body frame. The reader should note that this rotation
sequence is identical to the set of rotations required to align the Earth-centered inertial
(ECI) framewith theperifocal (PQW) frame for transformingorbital elements toCartesian
coordinates (seeSection3.5). Figure12.13 also shows thedirectionsof theEuler angle rates:
ψ is along the +Z axis; θ is along the node line; and ϕ is along the 3 axis.
Next, we can use Figure 12.13 to express the angular velocity components along the

123 body axes in terms of the Euler angle rates:

ω1 =ψ sin θ sin ϕ (12.60)

ω2 =ψ sin θcos ϕ (12.61)

ω3 =ϕ+ψ cos θ (12.62)

Note that we did not include terms involving the Euler angle rate θ because our previous
analysis demonstrated that θ is constant for torque-free motion. Adding the squares of
Eqs. (12.60) and (12.61) results in

ω2
1 +ω2

2 =ω2
12 =ψ

2sin2θ (12.63)

Because component ω12 is constant (and θ is constant), we conclude that the Euler angle
rate ψ is also constant. Furthermore, because ω3 is constant [see Eq. (12.42)], Eq. (12.62)
shows that the Euler angle rate ϕ is constant.

H

ψ

 θ

Node line

X
Y

Z

3

2

1
ϕ

O

Satellite

θ

ϕ ψ

Figure 12.13 Euler angles and Euler angle rates.
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Let us characterize the Euler angle rates ϕ and ψ . Equations (12.52) and (12.53) provide
the 1- and 2-axis spin-component solutions, or the left-hand sides of Eqs. (12.60) and
(12.61). Using Eq. (12.63), we can substitute ψ sinθ =ω12 in the right-hand sides of
Eqs. (12.60) and (12.61). The result is

ω1 =ω12 cos λt + β =ω12 sin ϕ (12.64)

ω2 =ω12 sin λt + β =ω12 cos ϕ (12.65)

which leads to the following relationship between the cosine and sine arguments in Eqs.
(12.64) and (12.65).

ϕ=
π

2
−λt−β (12.66)

Recall that (constant) phase angle β is determined by the initial conditions ω1(0) and
ω1 0 . Taking the time derivative of Eq. (12.66) yields the Euler angle rate

ϕ= −λ (12.67)

Therefore, the Euler angle rate ϕ has the same magnitude but opposite direction as the
coning angular velocity λ [Eq. (12.43) shows that λ depends on the 3-axis spin component
n and moments of inertia I1 and I3]. Next, we can solve Eq. (12.62) for the Euler angle
rate ψ

ψ =
ω3−ϕ

cosθ

=
n−ϕ
cosθ

(12.68)

Recall that ω3 = n. Equation (12.43) shows that n= I1λ/ I3− I1 for an axisymmetrical sat-
ellite with I1 = I2. Using Eq. (12.67), we can substitute n= I1ϕ/ I1− I3 into Eq. (12.68) to
obtain

ψ =

I1
I1− I3

ϕ−ϕ

cosθ
Or,

ψ =
I3ϕ

I1− I3 cosθ
(12.69)

Equation (12.69) is the precession rate ψ in terms of the inertial spin component ϕ. Refer-
ring again to Figure 12.13, we see that precession is the angular velocity of the node line.
For an oblate satellite (as depicted in Figure 12.13), we have I3 > I1 and the precession rate
is in the opposite direction of Euler angle spin rate ϕ; this scenario is called retrograde
precession. For a prolate (pencil-shaped) satellite, I3 < I1 and the Euler angle rates ψ and ϕ
are in the same direction for direct precession. Precession is the apparent “wobbling”
motion as seen by an inertial observer. Because

I3
I1− I3 cosθ

> 1 (12.70)
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always holds for an oblate satellite, the magnitude of the resulting precession rate ψ is
greater than the coning angular velocity λ.
As a final note, let us consider the problem of determining the orientation of a spinning

satellite in a torque-free environment. Suppose we know the initial Euler angles ψ0 and
ϕ0 at time t = 0. The nutation angle θ0 can be computed from Eq. (12.59) and knowledge

of themoments of inertia and the instantaneous angular velocity vectorω= ω1 ω2 ω3
T

as measured in the body frame using sensors (gyroscopes) mounted along the 1, 2, and
3 axes. Of course, the nutation angle θ0 remains constant during the ensuing
coning/wobbling motion. Next, we can determine the constant Euler angle spin rate
ϕ from the coning frequency, Eq. (12.43), using the constant 3-axis spin component
n. Equation (12.69) allows us to compute the constant precession rate ψ . Using angular
rate information, we can compute the Euler angles at any future time

ψ t =ψ0 +ψ t (12.71)

θ t = θ0 (12.72)

ϕ t =ϕ0 +ϕt (12.73)

Knowledge of the instantaneous Euler angles at any time t allows us to compute a rota-
tion matrix that transforms an arbitrary vector in the inertialOXYZ frame to the rotating
123 body frame. A more practical scenario involves transforming a vector expressed in
the 123 body frame (such as the position vector of a camera or antenna) to the inertial
OXYZ frame. This transformation requires the inverse rotation matrix, or the rotation

matrix R defined by Eq. (3.39) where we substitute the Euler angles (ψ , θ, ϕ) for the
orbital elements longitude of the ascending node, inclination, and argument of periapsis,
respectively. The rotation matrix for the Euler angles is

R=

cψcϕ−sψ sϕcθ −cψ sϕ−sψcϕcθ sψ sθ

sψcϕ + cψ sϕcθ −sψ sϕ + cψcϕcθ −cψ sθ

sϕsθ cϕsθ cθ

(12.74)

We have used the short-hand notation cα = cosα and sα = sinα for the cosine and sine of

the three rotation angles. Multiplying rotation matrix R and any vector expressed in the
rotating 123 body frame will transform it to inertial coordinates.

Example 12.2 The Intelsat II series of communication satellites were deployed in geo-
stationary-equatorial orbit (GEO) in the late 1960s. Intelsat II was an oblate cylinder with
a diameter of 1.42 m and height of 0.67 m. Before firing the apogee rocket engine for
insertion into GEO, the Intelsat II was spun along its (symmetric) 3 axis at 12.57 rad/s
(about 120 rpm). The mass of the Intelsat II was 162 kg before the apogee engine was
fired. Let us assume that a pure spin about the 3 axis was not achieved and that at time
t = 0 the angular velocity is ω(0) = 0.3419u1 – 0.1974u2 + 12.5638u3 rad/s along the 123
principal body axes as shown in Figure 12.14.

a) Compute the angular momentum vector H in body coordinates.
b) Determine the nutation angle θ and angle γ.
c) Compute the coning period and compare it with the spin period.
d) Compute the precession period and compare it with the spin period.
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a) We know that angular momentum is H= Iω and we are given the angular velocity
vector ω in 123 (or body) coordinates. Therefore, we need the inertia matrix of
the Intelsat II. Assuming a homogeneous cylinder, the moment of inertia about
the symmetric 3 axis is

I3 =
1
2
mR2 = 40 8321 kg-m2

where the cylinder radius is R = (1/2)(1.42 m) = 0.71 m and mass is m = 162 kg. The
moments of inertia about the transverse 1 and 2 axes are

I1 = I2 =
1
12

m 3R2 + h2 = 26 4762 kg-m2

where height h = 0.67 m. Because I3 > I1, the Intelsat II is an oblate (“flat”) cylinder.
Angular momentum is

H= Iω=

26 4762 0 0

0 26 4762 0

0 0 40 8321

0 3419

−0 1974

12 5638

=

9 052

−5 226

513 006

kg-m2/s

Or, we can express angular momentum asH = 9.052u1 – 5.226u2 + 513.006u3 kg-m
2/s.

b) The nutation angle is determined from the body-axis components of H; we may use
either Eq. (12.57) or (12.59). Thus, we need to compute either the 1–2 projection H12

or ω12. The projection of ω onto the 1–2 plane is

21

3ω(0)

Figure 12.14 Intelsat II and its initial angular velocity (Example 12.2).
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ω12 = ω2
1 +ω

2
2 = 0 3948 rad/s

Using Eq. (12.59), the nutation angle is

θ = tan−1 I1ω12

I3ω3
= 1 17

The angle between ω and the 3 axis is computed using Eq. (12.56)

γ = tan−1 ω12

ω3
= 1 80

Because the Intelsat II is an oblate satellite, θ < γ and the angular momentum vectorH is
between the 3 axis and the angular velocity vector ω as shown in Figure 12.10.

c) We use Eq. (12.43) to compute the coning angular velocity

λ=
I3− I2
I1

n

where I1 = I2 = 26.4762 kg-m2, I3 = 40.8321 kg-m2, and n =ω3 = 12.5638 rad/s (i.e., the
constant spin component along the 3 axis). Using these values, we obtain λ = 6.8123
rad/s. The period of this coning frequency is

τconing =
2π
λ

= 0 922 s

Therefore, the ω vector completes one cycle of coning motion in 0.922 s. The “spin
period” is

τspin =
2π
ω

= 0 500 s

where ω= ω = ω2
1 +ω2

2 +ω
2
3= 12.57 rad/s. The spin period is the time required for the

satellite tomake one complete revolution (recall that the satellitemakes two revolutions per
second, or 120 rpm). Therefore, the ratio of the coning-to-spin period is 0.922/0.5 = 1.84;
in other words, the Intelsat II makes 1.84 revolutions during one coning cycle.

d) The precession rate is computed using Eq. (12.69)

ψ =
I3ϕ

I1− I3 cosθ

where the Euler angle spin rate is ϕ= −λ = –6.8123 rad/s. Using this value and the
moments of inertia and cos θ = 0.99979, we obtain

ψ = 19 3802 rad/s

The precession period is

τprecess =
2π
ψ

= 0 324 s

As expected, the precession rate is greater than the coning angular velocity; it is also
greater than the angular velocity magnitude. The ratio of the precession wobble-to-spin
period is 0.324/0.5 = 0.65 and the Intelsat II makes 0.65 revolutions during one “wobble”
precession cycle.
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As previously mentioned in this section, satellites are often “spin stabilized” before
firing an onboard rocket. The Intelsat II was spin stabilized in order to provide
“gyroscopic resistance” to any disturbance torques encountered during the second
Hohmann-transfer burn.

Example 12.3 An axisymmetric oblate satellite has the principal moments of inertia
I1 = I2 = 50 kg-m2 and I3 = 90 kg-m2. Its initial angular velocity vector (in body-fixed
123 coordinates) is

ω 0 =

0

0 18

0 30

= 0 18u2 + 0 30u3 rad/s

The initial Euler angles are ψ0 = 0 and ϕ0 = 0. The satellite is equipped with a camera with
body-fixed position vector rcam = 0.9u1 m (i.e., the camera points along the satellite’s
1 axis) as shown in Figure 12.15.

a) Determine the nutation angle θ and angle γ.
b) Compute the angular momentum vector H in inertial coordinates at time t = 0.
c) Determine the satellite’s angular velocity vector ω in 123 body coordinates at time

t = 25 s.
d) Determine the position vector of the satellite’s camera at time t = 0 and t = 25 s as

expressed in the inertial OXYZ frame.
e) Recalculate the angular momentum vector H in inertial coordinates at time t = 25 s

using the satellite’s angular velocity vector ω (expressed in body coordinates) and
show that it remains constant.

a) Figure 12.15 shows the initial configuration of the spinning oblate satellite. Note that
there is no angular velocity component along the 1 axis at t = 0 and therefore ω12

=ω2(0) = 0.18 rad/s. Using Eq. (12.56), we can determine the angle γ

γ = tan−1 ω12

ω3
= tan−1 0 18

0 30
= 30 964

3

1 2

 ω(0) = 0.18u2 + 0.30u3 rad/s

θ
γ

H

ω12(0)

Camera

rcam

Figure 12.15 Spinning oblate satellite at time t = 0 (Example 12.3).
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Using Eq. (12.59), the nutation angle is

θ = tan−1 I1ω12

I3ω3
= tan−1 9

27
= 18 435

b) First, we compute the angular momentum vector in 123 body coordinates:

Hbody = Iω0 =

50 0 0

0 50 0

0 0 90

0

0 18

0 30

=

0

9

27

kg-m2/s

To obtain H in the inertial frame, we need the rotation matrix R evaluated with the
appropriate Euler angles. Using Eq. (12.74) with initial Euler angles ψ0 = 0, ϕ0 = 0, and
θ0 = 18.435 , we obtain

R0 =

cψcϕ−sψ sϕcθ −cψ sϕ−sψcϕcθ sψ sθ

sψcϕ + cψ sϕcθ −sψ sϕ + cψcϕcθ −cψ sθ

sϕsθ cϕsθ cθ

=

1 0 0

0 0 9487 −0 3162

0 0 3162 0 9487

We see that the initial rotation matrix is a pure rotation about the inertial X axis;
intuitively this makes sense if we revisit Figure 12.13 with ψ0 = 0 and ϕ0 = 0. Hence,
the angular momentum in the inertial frame OXYZ is

Hfix =R0Hbody =

1 0 0

0 0 9487 −0 3162

0 0 3162 0 9487

0

9

27

=

0

0

28 4605

kg-m2/s

We know that for torque-free motion the satellite’s angular momentum vector Hfix is
constant; we will verify this fact in (e).

c) We will show two ways to determine the satellite’s angular velocity at a future time.
Because the satellite is axisymmetric (I1 = I2), we may use Eqs. (12.52) and (12.53) to
project the 1–2 spin components to a future time:

ω1 t =ω12 cos λt + β , ω2 t =ω12 sin λt + β

Because ω12 =ω2(0) = 0.18 rad/s (as shown in Figure 12.15), the phase angle must be
β = 90 (= π/2 rad). Next, we use Eq. (12.43) to find the “coning-motion frequency”

λ=
I3− I2
I1

n=
90−50
50

0 3 rad/s = 0 24 rad/s

where n =ω3 is the constant spin rate about the 3 axis. Hence, the two spin compo-
nents at t = 25 s are

ω1 25 =ω12 cos 0 24 25 + π/2 = 0 0503 rad/s = 2 88 deg/s

ω2 25 =ω12 sin 0 24 25 + π/2 = 0 1728 rad/s = 9 90 deg/s
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The angular velocity vector at t = 25 s is ω(25) = 0.0503u1 + 0.1728u2 + 0.3u3 rad/s.
We can also determine the body-spin components from the Euler rates by using

Eqs. (12.60)–(12.62):

ω1 =ψ sinθ sinϕ, ω2 =ψ sinθcosϕ, ω3 =ϕ+ψ cosθ

Recall that the nutation angle θ is constant for torque-free motion. Equation (12.67)
shows that the Euler angle rate ϕ is constant and opposite the coning frequency, that
is, ϕ= −λ = –0.24 rad/s. The precession rate ψ is determined using Eq. (12.69):

ψ =
I3ϕ

I1− I3 cosθ
= 0 5692 rad/s = 32 61 deg/s

The Euler angles ϕ and ψ at time t = 25 s are

ϕ 25 =ϕ0 +ϕt = 0− 0 24 25 = – 6 rad = – 343 77 = 16 23
ψ 25 =ψ0 +ψt = 0+ 0 5692 25 = 14 230 rad = 95 32

Using the Euler angles and their rates, the body-frame spin components at t = 25 s are

ω1 =ψ sinθ sinϕ = 0 0503 rad/s

ω2 =ψ sinθcosϕ = 0 1728 rad/s

ω3 =ϕ+ψ cosθ = 0 3 rad/s

These alternate calculations match the previous solutions.

d) We can easily determine the inertial position of the satellite’s camera at time t = 0 by

multiplying matrix R0 with the camera’s body-fixed coordinates rcam:

rfix =R0rcam =

1 0 0

0 0 9487 −0 3162

0 0 3162 0 9487

0 9

0

0

=

0 9

0

0

m

Because the body 1 axis is initially aligned with the inertial X axis (recall that ψ0 = ϕ0

= 0) and the camera points along the 1 axis, the inertial and rotating coordinates of the
camera are coincident at time t = 0.
Determining the inertial position of the camera at 25 s requires the rotation matrix

R evaluated with the Euler angles at t = 25 s, that is, ψ(25) = 95.32 , ϕ(25) = –343.77 ,
and θ = 18.435 :

R25 =

cψcϕ−sψ sϕcθ −cψ sϕ−sψcϕcθ sψ sθ

sψcϕ + cψ sϕcθ −sψ sϕ + cψcϕcθ −cψ sθ

sϕsθ cϕsθ cθ

=

−0 3532 −0 8810 0 3149

0 9314 −0 3629 0 0294

0 0884 0 3036 0 9487

The inertial position of the camera at t = 25 s is

rfix 25 =R25rcam =

−0 3532 −0 8810 0 3149

0 9314 −0 3629 0 0294

0 0884 0 3036 0 9487

0 9

0

0

=

−0 318

0 838

0 080

m
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Figure 12.16 shows the orientation of the satellite with respect to the inertial
OXYZ frame at times t = 0 and t = 25 s. At t = 0 (Figure 12.16a), the satellite’s camera
is pointing along the inertial +X axis which is collinear with the body 1 axis because
ψ0 = ϕ0 = 0. Figure 12.16b shows that at t = 25 s the camera is primarily pointing along
the +Y axis with a negative X-axis component.

e) The angular momentum vector in 123 body coordinates at t = 25 s is

Hbody = Iω 25 =

50 0 0

0 50 0

0 0 90

0 0503

0 1728

0 30

=

2 515

8 640

27

kg-m2/s

H

 θ

X, 1

Y

Z

3

2

O
 θ

(a)

Camera

H

θ

X

Y

Z
3

O

(b)

Camera

1

ϕ ψ

Figure 12.16 Inertial orientation of a spinning oblate satellite: (a) t = 0; and (b) t = 25 s (Example 12.3).
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The angular momentum in the inertial frame OXYZ is determined by multiplying this
result by the rotation matrix at t = 25 s:

Hfix 25 =R25Hbody =

−0 3532 −0 8810 0 3149

0 9314 −0 3629 0 0294

0 0884 0 3036 0 9487

2 515

8 640

27

=

0

0

28 4605

kg-m2/s

This calculation verifies that the satellite’s angularmomentum vector remains constant in a
torque-free environment when referenced to the inertial OXYZ frame (see Figures 12.16a
and 12.16b).

12.4 Stability and Flexible Bodies

Spinning a rigid body gives it angular momentum and gyroscopic “stiffness” or resistance
to a disturbance torque. A spinning toy top is a simple example of “spin stability.” Spin-
ning a satellite about a principal axis is a simple method for maintaining a fixed orien-
tation in space. It is therefore natural to investigate the stability of a spinning satellite.
Exactly how do we characterize the “stability” of a spinning satellite? Here we define

stability in the “bounded output” sense. Suppose we have a satellite in a “pure spin” about
a particular principal body axis such as the 3 axis. If the satellite is perturbed such that the
angular velocity vector ω becomes misaligned with u3, the spin is said to be stable if vec-
tor ω remains “close” to the 3 axis for all time (in other words, the spin perturbations
remain bounded). Hence, the coning torque-free motion of an axisymmetric oblate or
prolate satellite (illustrated in Figures 12.11 and 12.12) is stable.
One stability-analysis method is Poinsot’s geometric approach based on two ellipsoids

constructed from the angular momentum and rotational kinetic energy. The inter-
section of these two ellipsoids is called a polhode and it represents the path of the angular
velocity vector ω as seen in the body frame. We will not present the ellipsoid method
here; instead we will discuss stability using a more heuristic approach. The interested
reader may consult Kaplan [1; pp. 57–61], Thomson [2; pp. 121–126], or Wiesel
[3; pp. 141–151] for details of the ellipsoid method.

12.4.1 Spin Stability about the Principal Axes

Wewill assess the stability of a satellite’s torque-free motion when spinning about a prin-
cipal axis by analyzing Euler’s moment equations (12.39), repeated here with zero
moments M1 =M2 =M3 = 0:

I1ω1 + I3− I2 ω2ω3 = 0 (12.75)
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I2ω2 + I1− I3 ω1ω3 = 0 (12.76)

I3ω3 + I2− I1 ω1ω2 = 0 (12.77)

Let us consider a satellite with three distinct principal moments of inertia, that is,
I1 I2 I3. It is easy to see that a satellite will maintain a pure spin about any principal
axis in the absence of any disturbance torques. For example, if ω2 = 10 rad/s and ω1 =ω3

= 0, we have a “pure spin” about the 2 axis and Eqs. (12.75)–(12.77) show that this spin-
ning state does not change with time. This scenario holds for a pure spin about any prin-
cipal axis. Our stability analysis will consider the consequences where the pure spin is
slightly perturbed from its principal axis.
We characterize stability by employing the classic strategy of linearizing the governing

equations of motion. Suppose the satellite is nominally spinning about the 3 axis with con-

stant angular velocityω∗ = 0 0 n T where n is the reference spin rate.We use the super-
script asterisk (∗) to indicate the reference or nominal state just as we did in Chapter 8
when we developed the linear Clohessy–Wiltshire equations for relative orbital motion.

Next, we define the satellite’s perturbation state δω= δω1 δω2 δω3
T as the difference

between the actual and reference angular velocities:

δω=ω−ω∗ =

ω1

ω2

ω3−n

(12.78)

The perturbations δω1 and δω2 are equal to the actual angular velocity components ω1

and ω2, respectively, because the reference spin rates about the 1 and 2 body axes are
zero. Using Eq. (12.78) to substitute for the angular velocity components in Euler’s tor-
que-free equations (12.75)–(12.77) yields

I1δω1 + I3− I2 δω2 δω3 + n = 0 (12.79)

I2δω2 + I1− I3 δω1 δω3 + n = 0 (12.80)

I3δω3 + I2− I1 δω1δω2 = 0 (12.81)

Equations (12.79)–(12.81) are Euler’s moment equations written in terms of the pertur-
bation spin rates and the reference spin rate n. We can linearize these governing equa-
tions by neglecting the products of two (small) perturbations, for example, δω2δω3≈0,
δω1δω3≈0, and δω1δω2≈0:

I1δω1 + I3− I2 δω2n= 0 (12.82)

I2δω2 + I1− I3 δω1n= 0 (12.83)

I3δω3 = 0 (12.84)

Equation (12.84) is stable; any small spin perturbation from the 3 axis will not change
over time. Equations (12.82) and (12.83) are linear and coupled. Taking the time deriv-
ative of Eq. (12.82) yields

I1δω1 + I3− I2 δω2n= 0 (12.85)

Substituting Eq. (12.83) for δω2, we obtain

δω1 +
I3− I2 I3− I1

I1I2
n2 δω1 = 0 (12.86)
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Following the same steps, Eq. (12.83) can also be written as a linear second-order differ-
ential equation:

δω2 +
I3− I2 I3− I1

I1I2
n2 δω2 = 0 (12.87)

Note that Eq. (12.86) is identical to Eq. (12.46) for the axisymmetric satellite with equal
moments of inertia, I1 = I2. For an axisymmetric satellite, the bracket term in Eqs. (12.86)
and (12.87) is always positive, and hence the solutions for perturbation spins δω1 and δω2

are harmonic functions (sine and cosine functions) and we have the coning motion
depicted in Figures 12.11 and 12.12. This scenario is stable.
For a satellite with three distinct moments of inertia, the bracket term in Eqs. (12.86)

and (12.87) is positive for two cases: (1) I3 > I2 and I3 > I1; and (2) I3 < I2 and I3 < I1. In the
first case, I3 is the maximum moment of inertia and the 3 axis is the major axis. There-
fore, if an oblate satellite is perturbed from a pure spin about its major axis, the subse-
quent motion is stable (e.g., Figure 12.11). In the second case, I3 is the minimummoment
of inertia and the 3 axis is the minor axis; therefore a prolate satellite perturbed from a
spin about its minor axis will exhibit stable oscillations (e.g., Figure 12.12). Now consider
the case where the 3 axis is the intermediate axis, where I1 < I3 < I2 or I2 < I3 < I1. For a
perturbed spin about the intermediate axis, the bracket term is negative and the linear
solutions for δω1 and δω2 are hyperbolic sine and cosine functions (i.e., the solutions con-
tain a divergent exponential function with a real exponent). This scenario is unstable
because the angular velocity perturbations δω1 and δω2 are unbounded functions with
magnitudes that increase with time.
These stability concepts can be demonstrated by spinning a tennis racket about its

three principal axes as seen in Figure 12.17. It is intuitive that a perturbed spin about
the minor 3 axis or major 1 axis will simply “wobble” about the original spin axis; that
is, the perturbed spin is stable. However, a perturbed spin about the intermediate 2 axis
will produce a “tumbling” motion or an unstable spin.

12.4.2 Stability of Flexible Bodies

To this point, we have considered the rotating satellite to be a rigid body where its mass
distribution remains fixed relative to the center of mass. In reality, all spacecraft are semi-
rigid or flexible to some degree. For example, during a rotational maneuver the solar
array panels may bend or twist, whip antennas may flex, and liquid fuel may slosh around
inside its tanks. This internal relative motion will dissipate the satellite’s kinetic energy in
the form of friction (heat). However, because these friction forces are internal forces, the
corresponding torques appear in equal-and-opposite pairs and hence angular momen-
tumH is conserved. Consequently, flexible or semi-rigid spacecraft present the scenario
where rotational kinetic energy decreases with time while angular momentum remains
constant.
Let us investigate the consequences of dissipating kinetic energy by observing an axi-

symmetric satellite in a pure spin about a principal axis. The magnitude of angular
momentum and the rotational kinetic energy are

H = Iω= constant (12.88)
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Trot =
1
2
Iω2 (12.89)

where it is understood that I is the moment of inertia about the principal axis that coin-
cides with the spin axis. We can solve Eq. (12.88) for angular velocity (ω=H/I) and sub-
stitute this result into the kinetic energy expression (12.89) to obtain

Trot =
H2

2I
(12.90)

Suppose that the satellite is initially spinning about its minor axis or principal axis with
theminimummoment of inertia. Equation (12.90) shows that aminor-axis spin results in
themaximum kinetic energy for a constant angular momentum H. A flexible spacecraft
will dissipate rotational kinetic energy, and therefore Trot must decrease over time while
H remains constant. Equation (12.90) shows that kinetic energy is minimized when the
satellite is in a pure spin about the major axis (or principal axis with the maximum
moment of inertia). This heuristic argument shows that a prolate (pencil-shaped) flexible
satellite initially spinning about its longitudinal minor axis will eventually transition to a
pure spin about its transverse major axis.
The first US satellite, Explorer 1, is a classic example of a spin-axis transition caused by

energy dissipation. Explorer 1 was a prolate satellite with length and radius of approx-
imately 2 m and 0.16 m, respectively. When Explorer 1 reached its orbit, it was initially
spinning about its longitudinal minor 3 axis as shown in Figure 12.18a. During this initial
spin, the four “whip antennas” on Explorer 1 began to flex and dissipate rotational kinetic
energy. Consequently, the nutation angle steadily increased as Explorer 1 began to wob-
ble and change its spin axis. Eventually, the kinetic energy dissipation ceased when
Explorer 1 reached its minimum-energy state (H2/2Imax) consisting of a “flat spin” about

I3 < I2 < I1

2

3

1

Unstable spin

Stable spin

Stable spin

Figure 12.17 Spinning a tennis racket: stable spin about the minor 3 axis; stable spin about the major
1 axis and unstable spin about the intermediate 2 axis.
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its transverse axis or end-over-end tumbling as shown in Figure 12.18b. The reader
should note that the angular momentum vectorH remained constant as Explorer 1 tran-
sitioned from a minor-axis spin (Figure 12.18a) to a major-axis spin (Figure 12.18b). The
following example illustrates the spin-axis transition of the Explorer 1 satellite.

Example 12.4 The approximate mass properties of the Explorer 1 satellite are

Mass: m = 14 kg
Minor-axis moment of inertia: I3 = 0.17 kg-m2

Major-axis moment of inertia: I1 = I2 = 5 kg-m2

Initially Explorer 1 was spinning at 750 rpm (ω0 = 78.54 rad/s) about its minor axis.
Determine the initial and final rotational kinetic energies and the final spin rate ωf.
We use Eq. (12.89) to determine the initial kinetic energy:

Trot,0 =
1
2
I3ω

2
0 = 524 3252 kg-m2/s2 or units of joules, J

Alternatively, we can compute rotational kinetic energy from the constant angular
momentum:

H = I3ω0 = 13 3518 kg-m2/s = constant

(a) (b)

1 2

3

ω0

H = constant = I3ω0u3

2

1

3

ωf

H = constant = I1ωf u1

Whip antennas

3

2

rot a 2I

H
T = T

I

H
T rot a

1

2

rot b 2
<=

fωω >0

Figure 12.18 Explorer 1 energy dissipation: (a) initial spin about its minor axis; and (b) final “flat spin”
about its major axis.
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Using Eq. (12.90)

Trot,0 =
H2

2I3
= 524 3252 kg-m2/s2 same result

The final rotational kinetic energy can be determined using Eq. (12.90) and the maxi-
mum moment of inertia I1:

Trot, f =
H2

2I1
= 17 8271 kg-m2/s2

Rotational kinetic energy has decreased by nearly a factor of 30.
The final spin rate about the major axis can be computed from the constant angular

momentum H or final kinetic energy Trot, f. Using angular momentum, the final spin
rate is

ωf =
H
I1

= 2 6704 rad/s or 25 5 rpm

Thus, the angular velocity of the “flat spin” shown in Figure 12.18b is nearly 1/30 the
initial spin rate along the minor axis. This 1/30 factor is the ratio of the minimum
and maximum moments of inertia, or I3/I1.

The previous discussion of spinning flexible satellites and Example 12.4 illustrate the
so-called “major-axis rule”: a flexible spinning body will eventually transition to a pure
spin about its principal axis of maximum moment of inertia. Unlike prolate satellites
like Explorer 1, an oblate satellite can take advantage of the major-axis rule by inten-
tionally including energy-dissipation devices to ensure a pure spin about its major axis.
One such device is a nutation damper. In its simplest form, this device consists of a
mass–spring mechanical system enclosed in a tube partially filled with a fluid. The tube
is aligned with the spin axis so that any wobbling motion (nutation) causes the mass to
vibrate and damp out the wobble. Hence, the nutation damper dissipates rotational
kinetic energy and causes the major axis to realign with the angular momentum vector
H (i.e., the nutation angle is removed). Nutation dampers provide a simple passive
strategy for stabilizing a spinning oblate satellite. Of course, a spinning prolate satellite
cannot use a passive damper. Other nutation damper designs exist; the interested
reader may consult Hughes [4; pp. 391–400] for an excellent discussion of options
for nutation dampers.
As we end this section, let us summarize the stability of spinning satellites:

1) A rigid spinning satellite can maintain a stable spin about its major or minor prin-
cipal axes. Spin about the intermediate axis is unstable and leads to tumbling
motion.

2) A semi-rigid (or flexible) satellite can maintain a stable spin about its major axis only
(i.e., the so-called “major-axis rule”). An initial spin about the minor axis will lead to
tumbling motion that eventually ends in a pure spin about the major axis. Nutation
dampers may be used on oblate satellites to remove “wobble” and realign the major
axis with the angular momentum vector H.
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Example 12.5 An axisymmetric oblate satellite has principal moments of inertia I3 =
1,100 kg-m2 (major axis) and I1 = I2 = 700 kg-m2 (minor axes). At time t = 0, the satellite
has the angular velocity vector (in body-fixed coordinates)

ω0 = −0 2u1 + 0 1u2 + 8 3u3 rad/s

The satellite is equipped with a nutation damper mounted along the 3 axis. Determine
the following:

a) The initial nutation angle.
b) The initial rotational kinetic energy.
c) The final angular velocity vector in body-frame coordinates.
d) The final rotational kinetic energy.

Neglect the effect of the mass-spring nutation damper on the satellite’s moments of
inertia.

a) First, let us compute the angular momentum vector using Eq. (12.18)

H= Iω0 =

700 0 0

0 700 0

0 0 1,100

−0 2

0 1

8 3

= −140u1 + 70u2 + 9,130u3 kg-m
2/s

Remember that the angular momentum vectorH computed above is expressed in the
body frame at time t = 0, and that the body axes are not inertially fixed due to the con-
ing motion (however, H is a fixed vector relative to an inertial frame).
Equation (12.57) shows that the nutation angle is

θ = tan−1 H12

H3

where the component of H in the 1–2 plane of the body frame is

H12 =H1 +H2 = −140u1 + 70u2

The magnitude of H12 is H12 = −140 2 + 702= 156.5248 kg-m2/s. Therefore, the

initial nutation angle is

θ = tan−1 H12

H3
= tan−1 156 5248

9,130
= 0 0171 rad = 0 9822

The oblate satellite is spinning with a very slight wobble at time t = 0.

b) We can use Eq. (12.33) to compute the initial rotational kinetic energy

Trot,0 =
1
2
ω0 Iω0 =

1
2

−0 2 0 1 8 3

−140

70

9,130

= 37,907 kg-m2/s2

where the 3 × 1 column vector H= Iω0 was computed in (a). Because we are using
principal axes, the rotational kinetic energy may be computed using
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Trot,0 =
1
2
I1ω

2
1 +

1
2
I2ω

2
2 +

1
2
I3ω

2
3 = 37,907 kg-m2/s2 same result

c) The nutation damper will eventually remove the wobble and realign the major axis
(the 3 axis) with the angular momentum vector. Because the nutation angle eventually
goes to zero, the final angular velocity vector (and H) will only contain a component
along the 3 axis (remember that the 3 axis is a coordinate of the rotating body frame
and not a coordinate of an inertial frame). BecauseH is a constant vector, we can easily
compute the final spin rate using

ωf =
H
I3

= 8 3012 rad/s

where the angular momentum magnitude is H = H = 9,131.34 kg-m2/s. The final
angular velocity vector expressed in body-fixed coordinates is

ωf = 8 3012u3 rad/s

Note that the angular momentum is H= Iωf = 9,131 34u3 kg-m2/s, which has the
same magnitude as H= Iω0 as computed in (a).

d) The final rotational kinetic energy is easy to compute because the satellite is in a pure
spin about its major axis:

Trot, f =
1
2
I3ω

2
f = 37,900 64 kg-m2/s2

Comparing this result to (b), we see that the nutation damper has dissipated a very
small percentage of the initial rotational kinetic energy.

12.5 Spin Stabilization

We have alluded to the advantages of stabilizing a satellite by spinning it about a prin-
cipal axis. The major-axis rule states that an oblate satellite equipped with a nutation
damper will remove any wobbling motion and realign the major principal axis with the
inertially fixed angular momentum H. Therefore, a properly designed “oblate spinner”
will eventually point and hold its 3 axis in a fixed direction. This simple strategy is an
example of passive attitude control (in Chapter 13 we will discuss active attitude con-
trol, i.e., using feedback from sensors to provide an actuating torque). Spin stabilization
is often used to maintain a fixed direction during an onboard rocket burn for an orbit
transfer. For example, the third stage of a launch vehicle is often a solid rocket intended
for final orbit insertion (such as an apogee burn to establish GEO) or an injection burn
to escape Earth and begin the interplanetary cruise phase. Before the burn, the mated
third stage and spacecraft are “spun up” in order to provide gyroscopic stiffness and
maintain a fixed direction during the burn (small thrusters mounted on the periphery
of the stage are fired in pairs to produce a pure spin about the symmetric axis). Because
the burn is relatively short (on the order of 1 min), it is possible to use this strategy for
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oblate and prolate satellites (the time scale for the spin divergence of a prolate minor-
axis spinner is on the order of 1 h). Another example of spin stabilization is the Stardust
capsule which collected samples from the comet Wild-2 and returned them to Earth.
The oblate capsule was spun-up to 13.5 rpm prior to entering the Earth’s atmosphere so
that it could maintain a fixed attitude for the proper angle of attack at entry interface.
Let us demonstrate the “gyroscopic stiffness” caused by spinning a satellite.

Figure 12.19 shows a symmetric spin-stabilized satellite performing a rocket burn.
The satellite is initially spinning about the 3 axis when the burn is started.
Suppose the thrust vector F has a slight angular misalignment β so that it does
not perfectly point along the 3 axis. Consequently, the thrust misalignment pro-
duces an external disturbance moment Md that is initially aligned with the 2 axis,
that is

Md = Fd sin βu2 (12.91)

where d is distance from the center of mass to the thrust chamber along the 3 axis.
Because moment Md is initially perpendicular to H, it causes a rotation of the angular
momentum vector without changing its magnitude. The time-rate of angular momen-
tum is the equal to the external moment:

Md =
dH
dt

≈
ΔH
Δt

(12.92)

Expressing Eq. (12.92) in terms of magnitudes and using ΔH =HΔθ (see Figure 12.19),
we obtain

Md =
HΔθ
Δt

(12.93)

1

2

3

β
F

d

H Md = Fdsinβ u2

H∆H

∆θ
ω

c.m.

Figure 12.19 Spin-stabilized satellite with thrust misalignment.
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Therefore, the change in nutation angle is

Δθ =
MdΔt
H

=
MdΔt
I3ω3

(12.94)

Equation (12.94) shows that the effect of a given disturbancemomentMd on the nutation
angle Δθ (i.e., the “wobble”) can be diminished by making the satellite’s initial angular
momentum H large, or providing a high spin rate ω3. In other words, a rapidly spinning
satellite exhibits resistance (or “gyroscopic stiffness”) to external moments that are per-
pendicular to the spin axis. Although this simple example involved a moment caused by
thrust misalignment during a burn, Md can represent any disturbance moment. A final
note is in order here.We cannot use Eq. (12.94) to compute the nutation angle after burn
time Δt because the subsequent satellite motion is governed by Euler’s moment equa-
tions (12.39) which are nonlinear and coupled. This simple example is intended to illus-
trate the effect spinning a satellite has on resisting a disturbing moment.

12.5.1 Dual-Spin Stabilization

The first GEO communication satellites of the early 1960s were oblate satellites spinning
about their major axis for stability. Although spinning the entire satellite provided direc-
tional stability, it greatly hindered the ability to point the satellite’s antennas at a fixed
location on Earth. One solution to this problem is the dual-spin satellite consisting of
two sections that spin at different rates about a common axis. The Intelsat III series
of GEO satellites of the late 1960s were oblate spinners with a “de-spun” antenna
mounted on top that rotated at one revolution per sidereal day. Launched in the early
1970s, the Intelsat IV series of GEO communication satellites marked a dramatic
achievement in dual-spin stabilization. Figure 12.20 shows the Intelsat IV in geostation-
ary orbit. Intelsat IV consisted of a platform section and rotor section. The platform
section (top half of satellite shown in Figure 12.20) contains the communication anten-
nas and rotates at 1 revolution per day so that it always points at Earth. The rotor
section (bottom half ) spins at a higher rate in order to provide gyroscopic rigidity
(i.e., the angular momentum vector H shown in Figure 12.20).

Rotor spins for
gyroscopic stiffness 

Platform spins at
1 rev/day

GEO

Orbit normal

H

Figure 12.20 Schematic diagram of the dual-spinning satellite Intelsat IV in geostationary orbit.
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The early GEO satellites were oblate spinners; the dual-spin Intelsat IV was a prolate
spinner. Although Explorer 1 demonstrated the instability of prolate spinners, the geo-
metric constraints imposed by the long, slender payload shroud of launch vehicles forced
satellite designers to consider prolate configurations. The major-axis rule, however, dic-
tated that only oblate satellites could utilize internal dampers to maintain a stable spin.
Research in the mid-1960s revealed an exception to the major-axis rule: a prolate dual-
spin satellite is stable about its minor axis if the majority of the energy dissipation is per-
formed by the slowly spinning platform section. Demonstrating the stability of a prolate
dual-spin satellite is beyond the scope of this textbook; the interested reader may consult
Kaplan [1; pp. 178–188] or Wiesel [3; pp. 168–171] for details.

12.6 Disturbance Torques

Our analysis of attitude dynamics to this point has focused on torque-free motion. In
general, the external torques caused by the satellite’s environment are very small. How-
ever, all sources of disturbance torques must be considered in the design and operation of
spacecraft. This section provides a brief overview of the disturbance torques that act on
an orbiting satellite. The interested reader may consult Hughes [4; pp. 232–272] for an
in-depth discussion of spacecraft torques.

12.6.1 Gravity-Gradient Torque

We know that gravitational force is proportional to 1/r2 where r is the radial distance from
the center of the planet to the satellite. For particle dynamics (i.e., Chapters 2–11), the grav-
itational force acts on the center of mass. For attitude dynamics (i.e., rotational motion
about the mass center), the gravitational force acts on the satellite’s distributed mass.
Figure 12.21 shows a cylindrical satellite in an Earth orbit where incremental mass dm
is “below” the orbital path. The incremental gravitational force on dm is

dF= −dm
μ

r3
r (12.95)

The position vector from the Earth’s center to mass dm is

r= rcm + ρ (12.96)

where rcm is the position vector of the mass center and ρ is the relative position of dm
with respect to the mass center. It should be clear to the reader that Eq. (12.95) is New-
ton’s second law (F =ma) where the inverse-square gravitational acceleration is μ/r2 and
the unit vector −r/r points from dm to the center of the Earth. Equation (12.95) shows
that the satellite will experience a larger attractive gravitation force on its “lower” side
below the orbital path compared with its “upper side.” Intuitively, the summation of
dF on the satellite shown in Figure 12.21 will result in a net torque about the mass center
that causes a counterclockwise rotation so that the long axis is aligned with the vertical
direction. Mathematically we can sum all of the incremental gravitational torques
dM= ρ× dF over the entire satellite body to obtain
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Mgg = ρ× dF (12.97)

Equation (12.97) is a general expression for the gravity-gradient torque. Substituting
Eq. (12.95) for the incremental gravitational force on dm, Eq. (12.97) becomes

Mgg = −μ
ρ× r
r3

dm (12.98)

The gravity-gradient torque equation (12.98) can be expanded by carrying out the cross
product and simplified by approximating the 1/r3 term with a binomial expansion. We
will not show the complete results here; the interested reader may consult Hughes [4;
pp. 233–238] for details. In the end, the gravity-gradient torque depends on the orbital
radius rcm, the satellite’s inertia matrix I, and the satellite’s angular attitude. We will
develop a complete expression for the gravity-gradient torque about one axis in the next
section when we show how the gravitational torque can be used to provide a stable point-
ing direction.

12.6.2 Aerodynamic Torque

In Chapter 5, we briefly discussed how aerodynamic drag perturbs a satellite’s orbit. The
same drag force will result in a net torque if the aerodynamic center-of-pressure is offset
from the satellite’s center for mass. We know from basic mechanics that torque is the
cross product of the position and force vectors; therefore a general equation for the aer-
odynamic torque is

c.m.

ρ Orbit

dm

r

rcm

Satellite

Figure 12.21 Geometry for determining the gravitational force on mass dm.
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Maero = rcp ×Faero (12.99)

where rcp is the position of the aerodynamic center-of-pressure (i.e., the location of the
resultant aerodynamic force vector) in body-frame coordinates relative to the center of
mass. The aerodynamic (drag) force vector is

Faero = −
1
2
ρv2relSCDuv (12.100)

where ρ is the atmospheric density, vrel is the satellite’s velocity relative to the planet’s
atmosphere, S is the satellite’s cross-sectional area, CD is the drag coefficient, and uv
is a unit vector in the direction of the relative velocity. We insert a minus sign in
Eq. (12.100) because aerodynamic drag is always opposite the vehicle’s (atmospheric-
relative) velocity vector. Equations (12.99) and (12.100) show that the aerodynamic
torqueMaero depends on many variables such as orbital altitude (i.e., density ρ), satellite
area and shape (S and CD), and location of the aerodynamic center-of-pressure. Further-
more, a great deal of uncertainty exists because atmospheric density can vary dramati-
cally due to solar activity and rcp andCD vary with the satellite’s attitude as it moves along
its orbit.
Let us demonstrate the magnitude of the aerodynamic torque using a satellite

configuration presented in Chapter 5. Consider a satellite with ballistic coefficient
CB = 85 kg/m2 ( =m/SCD) in a 350-km altitude circular orbit. Table 5.4 shows that the
drag acceleration Faero/m is 2.13(10–6) m/s2 for this satellite and orbit combination. If
the satellite has mass m = 1,000 kg, then the magnitude of the aerodynamic force is
0.00213 N. For a center-of-pressure offset of 1 cm (=0.01 m), the aerodynamic torque
acting on the satellite is 2.13(10–5) N-m.

12.6.3 Solar Radiation Pressure Torque

Chapter 5 also presented the perturbing force caused by solar radiation pressure (SRP).
The resulting SRP torque is computed in a manner similar to the aerodynamic torque:

MSRP = roc ×FSRP (12.101)

where roc is the position of the optical center-of-pressure (i.e., the location of the result-
ant SRP force vector) in body-frame coordinates. The SRP force vector is

FSRP =CRPSRPAsus (12.102)

where CR is the satellite’s surface reflectivity, PSRP is the solar radiation pressure, As is the
satellite’s area normal to the sun vector, and us is a unit vector from the sun to the Earth
(i.e., essentially the unit vector from the sun to the satellite) expressed in body-frame coor-
dinates. Recall fromChapter 5 that the surface reflectivityCR varies fromzero (a translucent
body) to a value of 2 (a perfectly reflective body, such as an idealmirror). A “black body” that
absorbs all sunlight has reflectivity CR = 1. We also saw in Chapter 5 that the mean SRP is
PSRP≈4.5(10–6) N/m2, which is computed using the mean solar intensity.
We can demonstrate the magnitude of the SRP torque using the following represen-

tative values: let As = 5m2, CR = 1.5, PSRP = 4.5(10
–6) N/m2, and roc = 0.1 m. The resulting

SRP torque magnitude is 3.4(10–6) N-m, which is an order of magnitude smaller than the
aerodynamic torque for a 400-km circular orbit. However, unlike aerodynamic torque,
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the SRP torque does not depend on the satellite’s altitude. Therefore, the SRP torque is
typically the dominant disturbance torque for geocentric satellites in high-altitude orbits
such as a geostationary orbit.

12.6.4 Magnetic Torque

Planets that have a significant magnetic field produce a torque if the satellite has its own
magnetic moment. This magnetic torque on the satellite is

Mmag =Msat ×B (12.103)

whereMsat is the satellite’s magnetic (dipole) moment and B is the magnetic flux density
of the central gravitational body. The satellite’s magnetic moment Msat could be due to
permanent magnets on the satellite and/or electrical current flowing through circuits on
the satellite (i.e., Faraday’s laws of induction). The planet’s magnetic field B is propor-
tional to 1/r3. Clearly, the orientation of the satellite’s dipole moment Msat relative to
the Earth’s magnetic field B is critical to the calculation of the magnetic torque.
Let us demonstrate the magnitude of the magnetic torque with a basic example. Sup-

pose a satellite has several current-carrying loops with a total dipole moment Msat = 0.1
A-m2 (where A is one ampere or 1 amp). At 200-km altitude, the Earth’s magnetic flux
density is approximately B = 3(10–5) Wb/m2 (where Wb is one weber; note 1Wb/m2 = 1
tesla). IfMsat andB are at right angles, the magnetic torque is roughly 3(10–6) N-mwhich
is on the order of the SRP torque.

12.7 Gravity-Gradient Stabilization

The previous section briefly presented and discussed disturbance torques that act on an
orbiting satellite. It is possible to design a satellite so that the gravity-gradient torque
provides a stable pointing direction. Intuitively, we may reason that a long, thin satellite
withmass concentrated at each end will induce a gravitational torque when it is displaced
from a vertical attitude. We will demonstrate gravity-gradient stabilization by consider-
ing a “dumbbell” satellite configuration (shown in Figure 12.22) consisting of two equal
masses separated by a long slender rod of length 2 L. The dumbbell satellite in
Figure 12.22 is in a circular orbit with radius r0 and constant angular velocity ω0. Its atti-
tude angle θ is measured clockwise from the local vertical direction. Each mass is influ-
enced by a gravitational force (Fg1 and Fg2) and a centrifugal force (Fcf1 and Fcf2) as shown
in Figure 12.22. Although these forces act in radial directions, they are shown as parallel
forces in Figure 12.22 because orbit radius r0 is much larger than rod length 2 L. Let us
compute the net vertical force (with positive convention toward the Earth) acting on each
mass in Figure 12.22:

Massm1 F1 = + F = Fg1−Fcf1

=m1
μ

r21
−
v21
r1

(12.104)
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Massm2 F2 = + F = Fg2−Fcf2

=m2
μ

r22
−
v22
r2

(12.105)

The radial distance to each mass (for small attitude angle θ) is approximately

r1 = r0 + Lcosθ≈r0 + L (12.106)

r2 = r0−Lcosθ≈r0−L (12.107)

We approximate the inertial velocities of each mass using the product of the respective
radial distance and the constant angular velocity of the circular orbit:

v1 = r1ω0 (12.108)

v2 = r2ω0 (12.109)

Any relative velocity components caused by attitude rotation (i.e., Lθ) are extremely
small compared with orbital speeds and are therefore neglected. Substituting Eqs.
(12.106)–(12.109) into the net-force equations (12.104) and (12.105) yields

θ

 ω0

r0

m1

m2

c.m.

Fg1

L

Fg2

Fcf1

Fcf2

Orbit

Figure 12.22 Gravity-gradient stabilization of a dumbbell satellite.
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F1 =m1
μ

r0 + L 2 − r0 + L ω2
0 (12.110)

F2 =m2
μ

r0−L
2 − r0−L ω2

0 (12.111)

The net torque about the dumbbell satellite’s center of mass is

Mgg = F1Lsinθ−F2Lsinθ (12.112)

Recall that the net forces F1 and F2 are considered positive in the downward direction
(i.e., toward Earth). After substituting Eqs. (12.110) and (12.111) and assuming a small
attitude angle (sinθ≈θ), Eq. (12.112) becomes

Mgg =mLθ μ
1

r0 + L 2 −
1

r0−L
2 −ω2

0 r0 + L − r0−L (12.113)

Because the masses are equal, we use m =m1 =m2. The first bracket term on the right-
hand side of Eq. (12.113) can be simplified to

1

r0 + L 2 −
1

r0−L
2 =

−4r0L

r20 −L2
2 ≈

−4L
r30

(12.114)

The final approximation in Eq. (12.114) is valid because r0 >> L. Using Eq. (12.114) in the
torque equation (12.113), we obtain

Mgg =mLθ
−4μ
r30

L−2ω2
0L (12.115)

Recall from our previous chapters on orbital dynamics that the square of the orbital
angular velocity is ω2

0 = μ/r30 . Using this orbital relationship, Eq. (12.115) becomes

Mgg = −6mL2ω2
0θ (12.116)

Equation (12.116) represents the gravity-gradient torque acting on the dumbbell satellite
shown in Figure 12.22. Clearly, Mgg is a restoring torque because is it negative for a pos-
itive attitude rotation (θ > 0) and positive for a negative rotation (θ < 0). Hence, the grav-
ity-gradient torque will cause a long, slender dumbbell satellite to rotate toward its local
vertical attitude (i.e., θ = 0). Because the moment of inertia of the dumbbell satellite is
I = 2mL2 (relative to an axis along the orbit normal), the gravity-gradient torque becomes

Mgg = −3ω2
0Iθ (12.117)

Next, let us include the gravity-gradient torque in Euler’s moment equations. Recall
that Eq. (12.39) utilizes the absolute angular velocity as expressed in a body-frame coor-
dinates (the 123 principal axes). Let us assume that the dumbbell satellite in Figure 12.22
has its 2 axis pointing into the page; therefore the corresponding angular velocity com-
ponent is

ω2 = θ−ω0 (12.118)
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Therefore, if the dumbbell satellite maintains a vertical attitude (θ = 0 = constant), the
spin component along the 2 axis is the negative orbital angular velocity (note that the
vector ω0 is out of the page in Figure 12.22). Recall Euler’s equation (12.39b) about
the 2 axis

M2 = I2ω2 + I1− I3 ω1ω3 (12.119)

Because the orbital rate ω0 is constant, Eq. (12.118) shows that ω2 = θ . Assuming
that the dumbbell satellite is not rotating about its 1 or 3 axes (i.e., ω1 =ω3 = 0) and
moment M2 is the gravity-gradient torque as expressed by Eq. (12.117), Eq. (12.119)
becomes

I2θ = −3ω2
0Iθ (12.120)

Noting that I2 = I, we obtain

θ + 3ω2
0θ = 0 (12.121)

At this point we should summarize the results we have obtained thus far.
Equation (12.121) represents the angular attitude dynamics of a dumbbell satellite influ-
enced by the gravity-gradient torque. The only motion considered here is the attitude
angle θ measured clockwise from the local vertical direction. Equation (12.121) is an
undamped second-order differential equation, and hence its solution is a harmonic func-
tion with frequency 3ω0

θ t =C1 sin 3ω0t +C2 cos 3ω0t (12.122)

where constants C1 and C2 depend on the initial conditions. Therefore, a dumbbell sat-
ellite displaced from the local vertical will “rock” back and forth with frequency 3ω0.
Unless onboard damping is present, the amplitude of this rocking or libration motion
will remain constant. Furthermore, because the 2 axis is the maximummoment of inertia
for the dumbbell satellite, the libration motion is in its minimum-energy configuration
and hence it is stable. The libration frequency 3ω0 exhibits no dependence on the
dumbbell satellite’s moment of inertia (i.e., m and L) and instead solely depends on

the radius of the circular orbit because ω0 = μ/r30 .
This example has focused on the 1-DOF attitude motion of a satellite subject to the

gravity-gradient torque. We can describe the general 3-DOF attitude motion using
angles relative to the so-called local vertical/local horizontal (LVLH) frame pre-
sented in Figure 12.23. The LVLH frame is defined by the local vertical axis (pointing
from the satellite’s mass center to the center of the Earth) and the local horizontal
axis (perpendicular to the vertical axis and in the orbital plane in the direction of
orbital motion). Roll angle ϕ is rotation about the horizontal axis, yaw angle ψ is
rotation about the vertical axis, and pitch angle θ is rotation about an axis normal
to the orbital plane but in the opposite direction as the orbital angular momentum
h. Figure 12.23 should help the reader to see that the pitch axis in Figure 12.22 points
into the page. Nominally, the 123 principal body axes point along the roll, pitch, and
yaw axes shown in Figure 12.23. Because the origin of the LVLH frame is fixed at the
satellite’s center of mass (with its vertical axis pointing to the Earth), it is a moving
and rotating frame.
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It is possible to develop a general expression for the gravity-gradient torque vector in
the body frame using the LVLH-frame angles and small-angle approximations; the
result is

Mgg = 3ω
2
0

I3− I2 ϕ

I3− I1 θ

0

(12.123)

The torque components in Eq. (12.123) (from top to bottom) are along the roll, pitch, and
yaw axes, respectively. Deriving Eq. (12.123) is a bit tedious and requires carrying out the
cross product in Eq. (12.98) and a coordinate transformation between the body and
LVLH frames (the interested reader may consult Kaplan [1; pp. 199–204], Wiesel [3;
pp. 162–168], or Hughes [4; pp. 233–238, 282–283] for details). Note that the 2-axis
gravity-gradient torque component, 3ω2

0 I3− I1 θ, is identical to the pitch-axis torque
presented by Eq. (12.117) because I = I1 = I2 and I3 = 0 for a dumbbell satellite with point
masses at each end.
Inspection of Eq. (12.123) allows us to draw the following conclusions about the grav-

ity-gradient torque Mgg:

1) If I3 < I2, then the roll-axis gravity-gradient torque is restorative and stabilizing. In
other words, a small positive roll angle (ϕ > 0) will produce a negative roll torque that
returns the satellite to the local vertical orientation.

2) If I3 < I1, then the pitch-axis gravity-gradient torque is restorative and stabilizing.
A small positive pitch angle (θ > 0) will produce a negative pitch torque that returns
the satellite to the local vertical orientation.

3) A yaw angle rotation ψ does not affect the gravity-gradient torque. This result makes
sense intuitively because a rotation along the vertical axis does not induce a gravita-
tional torque.

Pitch, θ

Satellite

Orbital angular 
momentum, h

Orbit

Roll, ϕYaw, ψ

Local
horizontal

Local
vertical

Figure 12.23 Local vertical/local horizontal (LVLH) frame.
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4) The magnitude of the restoring gravity-gradient torques for the roll and pitch axes
can be increased by designing a long, thin satellite configuration so that the moment
of inertia differences I2 – I3 and I1 – I3 are “large.” Therefore, the 3 axis is the long axis
of the satellite.

5) Gravity does not induce a torque about the vertical (or yaw) axis.

Equation (12.123) provides the gravitational torques in the body frame; that is, the left-
hand sides of Euler’s moment equations (12.39). Instead of dealing with body-axis angu-
lar accelerations (ω1, ω2, and ω3) and body-axis spin rates (ω1, ω2, and ω3), we can use a
linearized coordinate transformation to rewrite Euler’s moment equations in terms of
roll, pitch, and yaw angles and their derivatives. Neglecting the products of angular velo-
cities, the linearized gravity-gradient roll, pitch, and yaw equations are

Roll I1ϕ = 3ω2
0 I3− I2 ϕ (12.124)

Pitch I2θ = 3ω2
0 I3− I1 θ (12.125)

Yaw I3ψ = 0 (12.126)

The pitch equation (12.125) is identical to the dumbbell satellite’s dynamical equation
(12.120); recall that I1 = I2 and I3 = 0 for the dumbbell satellite. The general solutions
for the roll and pitch motions are

Roll ϕ t =C1 sinΩrt +C2 cosΩrt (12.127)

Pitch θ t =C3 sinΩpt +C4 cosΩpt (12.128)

where the roll and pitch libration frequencies are

Roll Ωr =ω0
3 I2− I3

I1
(12.129)

Pitch Ωp =ω0
3 I1− I3

I2
(12.130)

Again, for stable libration motion, we have the conditions I1 > I3 and I2 > I3. A long, thin,
rod-like satellite aligned along the local vertical axis will be stabilized by the gravitational
torque.
Gravity-gradient stabilization has been used successfully on satellites that require

“nadir pointing” where the satellite must always point “down” toward the center of
the Earth. The long/thin inertia requirement for a sizeable gravitational torque is often
achieved by extending a “tip mass” on a boom. An example of this strategy is GEOSAT,
which was an Earth-observing satellite deployed by the US Navy in 1985. Figure 12.24
shows GEOSAT in its orbital configuration with its long, thin axis aligned with the local
vertical direction. GEOSATwas equipped with a radar altimeter designed tomeasure the
distance from the satellite to the ocean surface. Gravity-gradient stabilization was used to
keep the long axis (and thus the radar) pointed downward in the vertical direction. GEO-
SAT’s long/thin inertia distribution was achieved by using a rigid boom to extend a tip
mass away from themain satellite body. GEOSAT removed libration oscillations through
a passive magnetic damper in its tip mass. As a result, GEOSATwas able to keep its libra-
tion angle amplitude to about 1 .
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Example 12.6 Suppose GEOSAT (shown in Figure 12.24) has principal moments of
inertia I3 = 100 kg-m2 (longminor axis) and I1 = I2 = 2,600 kg-m2 (transverse major axes).
If GEOSAT operated in an 800-km altitude circular orbit, compute the frequency and
period of the pitch libration motion caused by the gravity-gradient torque.
Equation (12.130) provides the libration frequency for the pitching motion

Ωp =ω0
3 I1− I3

I2

We need the orbital angular velocityω0. The orbital radius is r0 = RE + 800 km = 7,178 km
(recall that the Earth’s equatorial radius is RE = 6,378 km). The orbital angular velocity is

ω0 =
μ

r30
= 0 001038 rad/s

Using this value for ω0 and the moments of inertia, the libration frequency is

Ωp =ω0
3 I1− I3

I2
= 0 001763 rad/s

The period of the pitch libration motion is τlib = 2π/Ωp = 3,563 5 s = 59 4 min

Note that GEOSAT’s orbital period is 2π/ω0 = 6,053.2 s = 100.9 min.

12.8 Summary

All prior chapters (Chapters 2–11) involved particle dynamics, that is, the motion of a
space vehicle’s center of mass along its flight path. This chapter analyzed a satellite’s

GEOSAT

Orbit

Local
vertical

Tip mass

Figure 12.24 Schematic diagram of GEOSAT in orbit.

Space Flight Dynamics476



angular orientation (or attitude) and rotational motion about its center of mass. Attitude
dynamics is an especially challenging discipline because it involves vectorial quantities
with analysis based on rotating (i.e., non-inertial) coordinate frames. Our analysis meth-
ods rely on knowledge of the satellite’s moments of inertia and angular velocity vector
relative to a rotating, body-fixed coordinate system. We derived Euler’s moment equa-
tions (i.e., the governing equations of motion for a rotating satellite) by equating the
external torques (or moments) on a satellite to the time-rate of angular momentum rel-
ative to an inertial frame. Although these equations are nonlinear, we are able to obtain
closed-form solutions for the torque-free motion of an axisymmetric satellite. We also
investigated “spin stability” to show that a rigid spacecraft will maintain a stable (albeit
“wobbly”) spin about its axes of maximum andminimummoments of inertia. However, a
spinning rigid body cannot maintain a stable spin about an axis with an intermediate
moment of inertia. The situation is even more restrictive for flexible bodies, that is,
spacecraft with moving internal parts, damping devices, or flexing appendages: flexible
bodies can only maintain a stable spin about an axis of maximummoment of inertia (the
so-called “major-axis rule”). It is important to remember that a satellite’s angular
momentum vector remains inertially fixed in space in the absence of external torques
even though internal damping and flexure may cause the satellite to “tumble” and even-
tually spin about its major axis. We ended this chapter with a discussion of environmen-
tal disturbance torques that influence attitude dynamics. We showed that the so-called
gravity-gradient torque causes a long, slender satellite to align its minor axis with the
local vertical direction as it moves in orbit.
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Problems

Conceptual Problems

12.1 A satellite has the following inertia matrix

I=

550 0 0

0 550 0

0 0 280

kg-m2

and angular velocity ω = 5u2 + 16u3 rad/s in 123 body coordinates.
a) Is the satellite oblate or prolate? Explain your answer.
b) Determine the angular momentum vector in 123 body coordinates.
c) Determine the rotational kinetic energy.
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12.2 A satellite’s principal moments of inertia are I3 = 95 kg-m2 and I1 = I2 = 60 kg-m2.
The satellite is to be “spun up” from zero rotational kinetic energy to a pure spin
of ω3 = 0.7 rad/s about its 3 axis using reaction jets that produce a total torque
M3 = 5.5 N-m about the 3 axis. Determine the total thruster time to complete
the spin-up maneuver.

12.3 Show that the time-rate of rotational kinetic energy for an axisymmetric satellite
(where I1 = I2) subjected to external torques M =M1u1 +M2u2 +M3u3 is

T rot =ω M

where ω =ω1u1 +ω2u2 +ω3u3 and u1, u2, and u3 are unit vectors along the satel-
lite’s 123 body-fixed axes.

12.4 A rigid-body satellite has 123 body-fixed coordinates that correspond to principal
axes. At a particular time instant, the satellite has angular velocityω = 0.1u1 – 0.2u2
+ 0.6u3 rad/s and angular momentum H = 3u1 – 6u2 + 57u3 kg-m

2/s.
a) Determine the satellite’s moment of inertia about its spin axis at this

instant.
b) Determine the satellite’s inertia matrix. Is this an oblate or prolate satellite?
c) Determine the nutation angle for torque-free motion.

12.5 A rigid axisymmetric satellite has principal moments of inertia I1 = I2 = 90
kg-m2 and I3 = 140 kg-m2. At time t = 0, the satellite has angular velocity
ω0 = 0.126040u1 – 0.072769u2 + 0.684703u3 rad/s as expressed in 123 body-
frame coordinates. Determine if the following angular velocity vectors at
arbitrary time t = t1 represent a feasible solution to torque-free motion. Explain
your answers.
a) ω(t1) = 0.126040u1 + 0.072769u2 + 0.684703u3 rad/s
b) ω(t1) = 0.126040u1 – 0.072769u2 + 0.598277u3 rad/s
c) ω(t1) = –0.118275u1 + 0.084807u2 + 0.684703u3 rad/s
d) ω(t1) = 0.017155u1 + 0.055209u2 + 0.684703u3 rad/s.

12.6 An axisymmetric satellite has principalmoments of inertia I1 = I2 = 240 kg-m2 and
I3 = 80 kg-m2. At time t = 0, the satellite has angular velocity ω0 = 0.9u3 rad/s as
expressed in 123 body-frame coordinates. The satellite has flexible antennas that
dissipate energy over time. Determine if the following angular velocity vectors at
arbitrary time t = t1 represent a feasible solution to torque-free motion. Explain
your answers.
a) ω(t1) = 0.051262u1 + 0.034882u2 + 0.870288u3 rad/s
b) ω(t1) = 0.1u2 + 0.848528u3 rad/s
c) ω(t1) = 0.245746u1 + 0.172073u2 rad/s.

Problems 12.7–12.11 involve the torque-free motion of an axisymmetric rigid sat-
ellite. The satellite’smoments of inertia about the 123 principal axes are I1 = I2 = 150
kg-m2 and I3 = 30 kg-m2, and the 3-axis spin rate is ω3 = 0.6 rad/s. Figure P12.7
shows the 1- and 2-axis angular velocity components for the torque-free motion.

12.7 Determine the nutation angle θ.

Space Flight Dynamics478



12.8 Determine the angle γ between u3 and ω.

12.9 Determine the precession rate ψ (in deg/s).

12.10 Determine the Euler angle rate ϕ (in deg/s).

12.11 Determine the Euler angle ϕ at time t = 0.

12.12 A flexible satellite has the following inertia matrix

I=

220 0 0

0 220 0

0 0 90

kg-m2

At time t = 0, its angular velocity isω0 = 0.6u3 rad/s in 123 body coordinates. The
satellite’s flexible appendages dissipate energy. Determine the satellite’s spin rate
(i.e., the magnitude of angular velocity vectorω) after the satellite has reached its
minimum-energy state.

Problems 12.13–12.18 involve the torque-free motion of an axisymmetric rigid
satellite. The satellite’s moments of inertia about the 123 principal axes are I1 =
I2 = 90 kg-m2 and I3 = 140 kg-m2. Figure P12.13 shows the time histories of the
satellite’s Euler angles for the torque-free motion.
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12.13 Determine the satellite’s angular velocity vectorω at t = 0 in the 123 body frame.

12.14 Determine the angle γ between the 3 axis and the angular velocity vector ω.

12.15 Determine the satellite’s angular momentum vector H at t = 0 in the 123 body
frame and in the inertial OXYZ frame.

12.16 Determine the satellite’s angular velocity vector ω at t = 20 s in the 123
body frame.

12.17 Determine the satellite’s angular momentum vectorH at t = 20 s in the 123 body
frame and in the inertial OXYZ frame.

12.18 A sensor is located at body-frame coordinates r = 1.2 u2 m. Determine its inertial
position vector (relative to the OXYZ frame) at t = 0 and t = 20 s.

12.19 A satellite is spin stabilized by a pure spin about its 3 axis with angular velocity
ω3 = 2.1 rad/s (≈20 rpm). Its principal moments of inertia are I3 = 90 kg-m2 and
I1 = I2 = 50 kg-m2. Suppose that a sinusoidal disturbance torque Md = 5cosω3t
N-m acts on the satellite such that it only changes the “tilt” of the satellite’s
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angular momentum vector, that is, dH/dt =Hdθ/dt, where angular momentum
magnitude H is constant and θ is the nutation angle. Estimate the maximum
amplitude of the nutation angle (in degrees).

Problems 12.20–12.21 involve a long, slender satellite with principal moments
of inertia I3 = 200 kg-m2 (long minor axis) and I1 = I2 = 1,800 kg-m2 (transverse
major axes). The satellite is in a 600-km altitude circular orbit about the Earth.

12.20 The satellite has a roll angle of 5 (i.e., the minor axis is not aligned with the
vertical direction). Compute the gravity-gradient torque and angular accel-
eration about the roll axis at this instant. Assume that the satellite has the
angular velocity components ω1 = –0.00043656 rad/s and ω2 = ω3 = 0 at this
instant.

12.21 Compute the maximum amplitude of the roll angle (in degrees) during the libra-
tion motion caused by the gravity gradient.

MATLAB Problem

12.22 Write an M-file that computes the torque-free motion of a rigid axisymmet-
ric satellite. The inputs should be the principal moments of inertia about the
axial (3 axis) and transverse axes (in kg-m2), the magnitude of the satellite’s
angular velocity, the angle γ between the 3 axis and the angular velocity
vector, the initial Euler angles ψ0 and ϕ0, and the simulation time t1. The
outputs should be the satellite’s initial angular momentum vector expressed
in the inertial OXYZ frame, the initial angular velocity vector (in 123 body-
frame coordinates), the angular velocity vector at time t1 (in body coordi-
nates), the angular momentum vector at time t1 expressed in the inertial
OXYZ frame, and the Euler angles ψ , θ, ϕ at time t1. Test your M-file by
verifying the solution of Example 12.3.

Mission Applications

12.23 Figure P12.23 shows the Juno space probe that reached Jupiter on July 5,
2016. The Juno spacecraft is powered by three very large solar array “wings.”
During launch, the solar arrays were folded up so that the spacecraft could
fit within the payload shroud of the Atlas V launch vehicle. Prior to the
upper-stage rocket burn that sent the Juno spacecraft on a hyperbolic
escape trajectory, the probe was spin stabilized along its longitudinal axis.
After the burn, the folded Juno probe was separated from the rocket stage.
The spin rate of the folded (compact) Juno probe was 1.4 rpm and its
momentum of inertia about the longitudinal (spin) axis was 7,500 kg-m2.
After stage separation, the solar arrays were deployed (unfolded) so that
the Juno probe could achieve full power and charge its batteries. Compute
the spin rate of the unfolded Juno probe if the spacecraft’s moment of
inertia is 22,300 kg-m2 after the arrays are fully deployed as shown in
Figure P12.23.
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Problems 12.24–12.26 involve the Galileo spacecraft. Galileo (Figure P12.24)
was a spin-stabilized spacecraft that arrived at Jupiter in late 1995. Its approximate
principal moments of inertia are I1 = I2 = 3,450 kg-m2 and I3 = 5,370 kg-m2. Galileo
was a flexible spacecraft that used a nutation damper mounted along its 3 axis so
that it could maintain a spin rate of nearly 3 rpm. Suppose that Galileo’s angular
velocity vector is ω0 = –0.04u1 + 0.02u2 + 0.3u3 rad/s in 123 body coordinates.

12.24 Determine themagnitude of the angular momentum vectorH and the rotational
kinetic energy Trot,0 at this instant.

Figure P12.23 Juno spacecraft. Source: Courtesy of NASA.
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Figure P12.24 Galileo spacecraft. Source: Courtesy of NASA.
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12.25 Determine the initial nutation angle of the Galileo spacecraft.

12.26 Determine the magnitude of the angular momentum vectorH and the rotational
kinetic energy Trot,f after the nutation damper has removed the “wobble” and
returned the Galileo spacecraft to a pure spin about its 3 axis. What is the final
spin rate?

Problems 12.27–12.29 pertain to the Stardust sample return capsule (SRC). The
SRC was spin stabilized about its 3 axis during its Earth entry phase at 13.5 rpm.
The approximate principal moments of inertia for the SRC are I1 = I2 = 1.8 kg-m2

and I3 = 2.45 kg-m2. Suppose that the SRC angular velocity vector ω (with mag-
nitude of 13.5 rpm) was slightly tilted away from its 3 axis by an angle of 1.5 .

12.27 Determine the nutation angle θ of the SRC.

12.28 Determine the SRC’s precession rate ψ (in deg/s).

12.29 Determine the SRC’s Euler angle rate ϕ (in deg/s).

12.30 The Long Duration Exposure Facility (LDEF) was an unmanned orbiting plat-
form for conducting scientific experiments and collecting information on the
space environment (Figure P12.30). It was placed in a 475-km altitude circular
low-Earth orbit by the US Space Shuttle Challenger in April 1984 and retrieved
and returned to Earth by the Space Shuttle Columbia in January 1990. It was a
large (9,700 kg), 12-sided, nearly cylindrical satellite that used gravity-gradient
stabilization. Its principal moments of inertia are approximately I1 = 59,670
kg-m2, I2 = 60,890 kg-m2, and I3 = 22,100 kg-m2. Determine the roll and pitch
libration frequencies for the LDEF.

Figure P12.30 Long Duration Exposure Facility. Source: Courtesy of NASA.
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13

Attitude Control

13.1 Introduction

The previous chapter analyzed a satellite’s rotational motion or attitude dynamics. We
primarily investigated torque-free rotational motion, spin stability, and the various dis-
turbance torques that act on a satellite in its orbital environment. We briefly discussed
two strategies for controlling a satellite’s attitude or angular orientation: (1) spin stabi-
lization; and (2) gravity-gradient stabilization. Both methods are used to maintain a fixed
pointing direction; spin stabilization is often used to hold a fixed attitude for aΔvmaneu-
ver, whereas gravity-gradient stabilization is used to keep a long, thin satellite aligned
with its local vertical direction for nadir pointing. As mentioned in Chapter 12, both stra-
tegies are examples of passive attitude control, where the satellite exploits the “natural
dynamics” associated with gyroscopic stiffness or gravitational torque. This chapter
introduces active attitude control techniques, where onboard sensors provide attitude
feedback information to control algorithms that determine the appropriate actuator
commands. Onboard actuators (such as thruster jets or spinning reaction wheels) are
then operated to change the satellite’s attitude until it reaches the desired orientation.
Feedback control theory is an expansive subject that is often introduced in a required

undergraduate course inmostmechanical and aerospace engineering curricula. Although
we will discuss some feedback control concepts, this chapter is not intended to be an
exhaustive treatment of control theory (References [1–3] provide a thorough study of con-
trol systems). Therefore, we will not focus on the traditional control-system analysis tools
such as Laplace transforms, the root-locus method, and frequency-response analysis
using Bode diagrams. Instead, we will use rudimentary closed-loop analysis methods
coupled with the time-domain solutions of ordinary differential equations. This chapter
will also focus on automatic attitude control strategies that use reaction jets (onboard
thrusters) and momentum-exchange devices such as reaction wheels.

13.2 Feedback Control Systems

This section will present a brief overview of control systems sufficient for the purposes of
this chapter. Figure 13.1 shows a block diagram of a general closed-loop feedback system
for attitude control. The block labeled satellite dynamics essentially represents Euler’s
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moment equations (12.39). The block labeled sensor in Figure 13.1 denotes the physical
measuring devices and algorithms that provide attitude feedback information. Most
satellites use a combination of horizon sensors, sun sensors, star sensors, and gyroscopes
coupled with an attitude determination scheme to discern the current rotational state of
the spacecraft. The controller block in Figure 13.1 denotes the “control rules” and the
physical actuating device that alters the satellite’s attitude. The input to the controller
block is usually an error signal which is the difference between the reference attitude
command (a desired satellite orientation) and the actual satellite attitude (feedback sig-
nal) as measured by the sensor. The output of the controller is the control signal that
drives the satellite dynamics. For example, the controller logic might decide to fire a pair
of onboard thruster jets to create a torque that rotates the satellite in the desired direc-
tion. If the attitude control system is designed properly, the satellite’s angular orientation
will eventually match the reference attitude command. Finally, Figure 13.1 shows that the
satellite may be subjected to disturbance torques due to solar radiation pressure, the
gravity gradient, and so on.

13.2.1 Transfer Functions

The controller, satellite dynamics, and sensor blocks in Figure 13.1 are often represented
by transfer functions. A transfer function of a linear, time-invariant differential equation
is the Laplace transform of the output divided by the Laplace transform of the input with
the assumption of zero initial conditions. Transfer functions provide a convenient
method for representing and analyzing the input–output relationship of a dynamic sys-
tem. Although they are formally defined by the Laplace transformation, we may develop
a system’s transfer function by utilizing the so-called differential operator (or “D
operator”):

D
d
dt

Therefore, time derivatives can be written as powers of operator D: for example, Dy= y,
D2y= y, and so on.

Controller Satellite
dynamics

Sensor

Attitude
feedback

Satellite
attitude

Control
signal

–

+
Attitude
error

Reference
attitude
command

Disturbance
torque

Figure 13.1 General closed-loop attitude control system.
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Let us demonstrate the D-operator by considering a simple second-order linear differ-
ential equation:

2y + 6y+ 20y= 3u+ 18u (13.1)

where y is the output and u is the input. Applying theD-operator to Eq. (13.1), we obtain

2D2 + 6D+ 20 y= 3D+ 18 u (13.2)

Next, we use Eq. (13.2) to form the ratio of output over input, or y/u

y
u
=

3D+ 18
2D2 + 6D+ 20

(13.3)

In Laplace transform theory, the differentiation theorem states that the Laplace trans-
form of y is equal to sY(s) – y(0), where s is the complex Laplace variable. Furthermore,
the Laplace transform of ÿ is s2Y s −sy 0 −y 0 , and so on for higher-order derivatives.
Because all initial conditions [y(0),y 0 , etc.] are assumed to be zero for a transfer func-
tion, we can conclude that multiplying by the kth power of s in the Laplace domain is
equivalent to the kth derivative in the time domain. If we are primarily interested in
representing dynamic systems, we can simply interchange theD and s symbols to produce
transfer functions. Using this approach, Eq. (13.3) becomes

G s =
3s+ 18

2s2 + 6s+ 20
(13.4)

Function G(s) defined in Eq. (13.4) is the transfer function that represents the second-
order differential equation (13.1). Figure 13.2 shows how the transfer function G(s) is
used in a block diagram. We show the input and output signals in Figure 13.2 as
time-domain functions u(t) and y(t), respectively. The reader should note that multiply-
ing input signal u(t) by the transfer function G(s) in Figure 13.2 yields the solution to the
second-order differential equation (13.1) (remember that multiplying by s is equivalent
to a time derivative). It is important to note that the transfer function G(s) represents
the system dynamics and does not depend on the nature of the input function.
Therefore, the block diagram shown in Figure 13.2 may be used to simulate the dynamic
system (13.1) for any input u(t); that is, the input could be a constant, a sinusoid, or a
random signal.
Now let us turn our attention to Euler’s moment equations and rotation about a single

axis. Figure 13.3 shows a cylindrical satellite with a control torque Mc about the 3 axis.
The control torque could be produced by firing a pair of thruster jets mounted on the
periphery of the satellite (not shown in Figure 13.3). Euler’s moment equation (12.39c)
for the 3 axis is

M3 = I3ω3 + I2− I1 ω1ω2 (13.5)

G(s)
u(t) y(t)

Dynamic
system

u(t) y(t)

Dynamic
system

2062s2

183

++

+

s

s

Figure 13.2 Transfer function representations of the input–output differential equation (13.1).

Attitude Control 487



For a pure spin about the 3 axis, we have ω1 = ω2 = 0 and Eq. (13.5) becomes

Mc = I3ω3 = I3ϕ (13.6)

where the control torque Mc is the external torque along the 3 axis and ϕ is the satellite
rotation angle about the 3 axis (therefore, ϕ=ω3 and ϕ =ω3). We should also note that
Eq. (13.5) is reduced to Eq. (13.6) for general rotational motion of an axisymmetric sat-
ellite (i.e., I1 = I2) as shown in Figure 13.3. Applying the D-operator to Eq. (13.6) yields

Mc = I3D
2ϕ (13.7)

Forming the ratio of output (rotation angle ϕ) to input (control torque Mc), we obtain

ϕ

Mc
=

1
I3D2

(13.8)

Finally, we may replace theD-operator with the Laplace variable s to obtain the satellite’s
transfer function

G s =
1
I3s2

(13.9)

Equation (13.9) is the transfer function that represents the satellite’s attitude dynamics
for a single-axis rotation about the 3 axis. Figure 13.4 shows two block diagram repre-
sentations of the satellite dynamics (13.6). Figure 13.4a shows how transfer function G(s)
is used as a single block to represent the satellite dynamics I3ϕ =Mc. Figure 13.4b pre-
sents an equivalent block diagram of the satellite dynamics by using a chain of two inte-
grator blocks. It should be clear to the reader that multiplying the three series blocks in
Figure 13.4b produces transfer function G(s) defined by Eq. (13.9). It should also be clear
that the first block multiplication in Figure 13.4b represents Eq. (13.6); that is, torque
divided by moment of inertia is equal to angular acceleration. Angular acceleration ϕ

3

1 2

Mc

Control 
torque

Figure 13.3 Satellite with a control torque and single-axis rotation.
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Figure 13.4 Equivalent block diagrams for single-axis satellite attitude dynamics: (a) single transfer
function; and (b) “double-integrator” representation.
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is then integrated once to produce angular velocity ϕ, which in turn is integrated to pro-
duce rotational angle ϕ. The 1/s blocks in Figure 13.4b represent integration (recall that
multiplication by s is equivalent to a time derivative; therefore, multiplication by its
inverse is integration with time).

13.2.2 Closed-Loop Control Systems

Next, we will briefly investigate a feedback system for satellite attitude control.
Figure 13.5 shows a closed-loop control system for satellite rotation angle ϕ about its
3 axis. Note that the “double-integrator” representation of the satellite dynamics is
employed. Comparing Figure 13.5 with Figure 13.1, we see that the sensor block in
the feedback path is missing. Here we are assuming that the sensor (and the embedded
attitude determination algorithm) provides perfect feedback information to the sum-
ming junction. Thus, we have used a unity-feedback systemwhere the actual satellite atti-
tude ϕ is compared with the reference attitude command ϕref to form the attitude error.
For real-world control systems, the feedback will be imprecise due to imperfect measure-
ments and sensor noise. Finally, note that the controller algorithm in Figure 13.5 is repre-
sented by the transfer function GC(s).
The purpose of this subsection is to develop a closed-loop transfer function for the sys-

tem in Figure 13.5. The satellite’s attitude can be expressed as

ϕ=GC s G s ϕe (13.10)

which is obtained bymultiplying the blocks in the forward path in Figure 13.5 from left to
right. Figure 13.5 shows that the attitude error is simply the output of the summing junc-
tion, or ϕe =ϕref −ϕ. Substituting this result for ϕe in Eq. (13.10) yields

ϕ=GC s G s ϕref −ϕ (13.11)

Rearranging Eq. (13.11), we obtain

ϕ 1 +GC s G s =GC s G s ϕref (13.12)

Finally, we can solve Eq. (13.12) for the ratio of the output ϕ to the input ϕref to yield

ϕ

ϕref
=

GC s G s
1 +GC s G s

(13.13)

Equation (13.13) is the closed-loop transfer function that relates the control system out-
put (satellite attitude ϕ) to the control system input (reference attitude angle ϕref). The
satellite dynamics are represented by transfer function G(s), that is, Eq. (13.9).
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Figure 13.5 Closed-loop feedback control for single-axis satellite attitude dynamics.
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The performance of the closed-loop control system (i.e., response speed, system damp-
ing, etc.) is dictated by the poles of the closed-loop transfer function (13.13). The closed-
loop poles are the values of s that make the denominator of the closed-loop transfer func-
tion equal to zero, that is

1 +GC s G s = 0 (13.14)

The closed-loop poles determine the transient response of the closed-loop system. This
result stems from the homogeneous solution of the governing differential equation that
can be derived from Eq. (13.13). Hence, Eq. (13.14) is the closed-loop characteristic equa-
tion that determines the poles or roots. Readers with experience in feedback control sys-
tems may recall that Eq. (13.14) is the basis for the graphical root-locus method which
determines the paths of the closed-loop poles (or roots) as a control gain varies.

13.2.3 Second-Order System Response

As stated in Section 13.1, we will not focus on traditional analysis tools such as the root-
locus method or Bode diagram. Instead, we will concentrate on directly calculating the
poles (or roots) of Eq. (13.14) for a given controller transfer functionGC(s). For single-axis
rotational maneuvers, the closed-loop characteristic equation (13.14) will be a second-
order polynomial in s because the satellite dynamics G(s) are second order; see
Eq. (13.9). A general form of an underdamped second-order characteristic equation is

s2 + 2ζωns+ω2
n = 0 (13.15)

where ζ is the damping ratio and ωn is the undamped natural frequency. The two roots
(or poles) of Eq. (13.15) are

s= −ζωn ± jωn 1−ζ2 (13.16)

where j= −1 is the imaginary number. Hence, the two roots are complex numbers with
a negative real part and conjugate imaginary parts. The “free response” or homogeneous
solution of an underdamped second-order system is

ϕH t =Ke−ζωnt cos ωdt + β (13.17)

where ωd =ωn 1−ζ2 is the damped frequency or imaginary part of the complex conju-
gate roots defined by Eq. (13.16), and β is a phase angle that depends on the initial
conditions. The coefficient K is the initial amplitude of the sinusoidal response, and it
also depends on the initial conditions. Equation (13.17) shows that the transient response
of an underdamped second-order system is a damped sinusoid; that is, a harmonic
oscillation with an exponentially decaying envelope. Note that the transient response
oscillates at frequency ωd and eventually “dies out” at time t = 4/ζωn because the
exponential term becomes e−4 = 0 018 (i.e., less than 2% of its initial value). Therefore,
we can define the “settling time” as

tS =
4

ζωn
(13.18)

Clearly, the damping ratio ζ and undamped natural frequency ωn greatly affect the
transient response. Figure 13.6 shows the transient responses of second-order systems
with an undamped natural frequency ωn = 2 rad/s and damping ratios ζ = 0.4, 0.5,
0.7, and 0.9. Decreasing the damping ratio increases the number of oscillations before
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the settling time and increases the under- and overshoot peaks of the damped sinusoidal

response. The damped frequency of the response with ζ = 0.4 is ωd =ωn 1−ζ2= 1.833
rad/s, and therefore its period is 2π/ωd = 3.43 s as seen in Figure 13.6. Note that when ζ =
0.7, the transient response seen in Figure 13.6 exhibits very little undershoot and essen-
tially “dies out” at settling time tS = 2.86 s as predicted by Eq. (13.18).
This subsection has presented a very brief overview of an underdamped second-order

system response. Detailed analysis of second-order system response can be found in
Kluever [4; pp. 213–230] and Ogata [5; pp. 388–398]. The following example involves
a single-axis satellite attitude maneuver and is intended to illustrate the nature of a
second-order system response for a closed-loop feedback system.

Example 13.1 Figure 13.7 shows a cylindrical-shaped satellite equipped with two pairs
of reaction jets (thrusters). Firing the two jet pairs as shown in Figure 13.7b imparts a
positive control torque Mc about the 3 axis (of course, firing the opposite jet pairs pro-
duces a negative torque). Suppose the satellite’s moment of inertia about the 3 axis is I3 =
1,000 kg-m2. The jet pairs are located 1.5m from the 3 axis. Assuming that each jet can be
throttled to produce variable thrust up to a maximum value of 20 N, design a feedback
controller that provides a fast, well-damped response to a constant attitude-rotation
command of π rad (i.e., a 180 attitude maneuver). We will assume that the satellite
is initially at rest [ϕ 0 = 0] with zero attitude angle ϕ(0) = 0.
Figure 13.8 shows the closed-loop attitude control system for this example (it is essen-

tially the same as Figure 13.5 with the satellite dynamics represented by a single transfer
function). Let us begin by investigating an extremely simple controller strategy known as
proportional control, that is, the control torque is proportional to the attitude error:

Proportional control Mc =KPϕe (13.19)
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Figure 13.6 Transient responses for an underdamped second-order system with undamped natural
frequency ωn = 2 rad/s.
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where KP is called the proportional gain. In this case, KP has units of torque/angular dis-
placement or N-m/rad. For this fictitious example, we have assumed that each thruster
can be throttled from zero to 20 N, and therefore the maximum control torque magni-
tude is (2)(20 N)(1.5 m) = 60 N-m (recall that the jets are fired in pairs and that each jet
has a moment arm of 1.5 m from the 3 axis). Because the initial attitude error is π rad for
this example (i.e., a 180 rotation maneuver), the maximum proportional gain is
(60 N-m)/π rad = 19.1 N-m/rad.
Comparing Eq. (13.19) with Figure 13.8, we see that the controller is simplyGC(s) = KP.

Let us determine the closed-loop transfer function using Eq. (13.13):

ϕ

ϕref
=

GC s G s
1 +GC s G s

=
KP

1
I3s2

1 +KP
1
I3s2

I3s2

I3s2

=
KP

I3s2 +KP

(13.20)

Equation (13.20) is the closed-loop transfer function with a proportional controller
GC(s) = KP. The poles (or roots) of the denominator polynomial determine the nature
of the closed-loop transient response. Using I3 = 1,000 kg-m2 and KP = 19 N-m/rad,
the closed-loop characteristic equation is

(a)

(b)

Thruster
jets
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1 2

Mc

Thruster
jets

2

1

Satellite

Satellite

ϕ

Figure 13.7 Thruster jets for attitude control: (a) jet configuration; and (b) top-down view and positive
control torque Mc (Example 13.1).
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1,000s2 + 19 = 0
or,

s2 + 0 019 = 0 (13.21)

The closed-loop poles are s= ± j0 1378, which are purely imaginary poles. Comparing
the closed-loop characteristic equation for a system with proportional control with
Eq. (13.15) (i.e., the “standard” second-order characteristic equation), we see that damp-
ing ratio ζ = 0 and undamped natural frequency ωn = 0 019 = 0.1378 rad/s. In other
words, the closed-loop system has no damping mechanism and subsequently the satel-
lite’s angular response ϕ(t) is an undamped harmonic oscillation with a frequency of
0.1378 rad/s (or, period = 2π/ωn = 45.6 s).
Figure 13.9 shows the closed-loop satellite attitude angle ϕ(t) for the reference com-

mand ϕref = π rad and proportional controller KP = 19 N-m/rad. Here we see that the
attitude angle oscillates without damping about the reference (ϕref = π rad) with a period
of 45.6 s. The satellite attitude continually overshoots the reference attitude by 180 (or
one-half of a revolution). Figure 13.10 shows the control torque history for a proportional
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Figure 13.8 Closed-loop attitude control system (Example 13.1).
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Figure 13.9 Closed-loop attitude response with proportional control (Example 13.1).
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controller with KP = 19 N-m/rad. The control torque oscillates between its extreme
values of ± 60 N-m with a period of 45.6 s. Clearly, the proportional control scheme pro-
vides very poor closed-loop performance because it cannot drive the satellite attitude to
the desired reference angle.
A proportional controller will not work because the resulting closed-loop system does

not possess a damping term [i.e., the denominator of Eq. (13.20) does not contain a first-
order s term]. A well-known solution to this problem is to employ proportional-deriv-
ative (PD) control defined by

PD control Mc =KPϕe +KDϕe (13.22)

where KD is called the derivative gain (with units of N-m-s/rad in this case). Now the
control torque is proportional to the attitude error and the derivative of the attitude
error. The PD controller transfer function is

PD control
Mc

ϕe
=GC s =KP +KDs (13.23)

Using the PD transfer function, the closed-loop transfer function is

ϕ

ϕref
=

GC s G s
1 +GC s G s

=
KP +KDs

1
I3s2

1 + KP +KDs
1
I3s2

I3s2

I3s2

=
KP +KDs

I3s2 +KDs+KP

(13.24)
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Figure 13.10 Control torque with proportional control (Example 13.1).
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The characteristic equation of the closed-loop system using PD control is

I3s
2 +KDs+KP = 0

or,

s2 +
KD

I3
s+

KP

I3
= 0 (13.25)

Comparing Eq. (13.25) with the standard second-order system (13.15), we see that
the zeroth-order term in Eq. (13.25) determines the closed-loop undamped natural
frequency, that is,ωn = KP/I3. The first-order term in Eq. (13.25) determines the damp-
ing ratio:

KD

I3
= 2ζωn

These expressions show that we can achieve any desired natural frequencyωn and damp-
ing ratio ζ by proper selection of control gains KP and KD. However, we cannot “over
gain” the system because control torque is limited to 60 N-m. Therefore, let us use
KP = 19 N-m/rad (as before) and set ζ = 0.7 for good closed-loop damping. Using these
values, we find that the derivative gain must be KD = 192.98 N-m-s/rad.
Figure 13.11 shows the closed-loop attitude response using a PD controller. Note that

the satellite attitude converges to the desired reference attitude ϕref = π rad in less than
45 s. In fact, the settling time can be estimated from the undamped natural frequency and
damping ratio as tS = 4/ζωn= 41.5 s. Furthermore, the attitude response shows very good
damping with a slight overshoot of the desired attitude angle. If the overshoot is too large,
we can reduce it by increasing the derivative gain KD. Figure 13.12 shows the control
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Figure 13.11 Closed-loop attitude response with proportional-derivative control (Example 13.1).
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torque as commanded by the PD controller. The control torque is near its maximum
value of 60 N-m at time t = 0 because the proportional gain was chosen to be KP =
19N-m/rad and the initial angular error is 3.1416 rad. The positive control torque causes
the satellite to initially rotate toward the reference attitude. However, after time t = 8 s,
the PD controller switches the control torque to a negative value (i.e., jet reversal) in
order to provide a “braking torque” to decelerate the rotation as the satellite approaches
its target attitude angle. This braking action is attributed to the derivative-control term.
The control torque steadily diminishes to zero as the attitude angle matches the refer-
ence and the attitude error goes to zero.

Example 13.1 illustrates some basic feedback control concepts that are summarized as
follows:

1) Because the satellite attitude dynamics do not possess any natural damping, a simple
proportional controller will not work. The solution is to add “artificial” damping by
using a PD controller where the control torque is proportional to the attitude error
and its time derivative.

2) Because the satellite dynamics are second order, the closed-loop transfer function
using PD control will also be second order. The control engineer may achieve any
desired closed-loop natural frequency ωn and damping ratio ζ by proper selection
of the PD gains KP and KD. However, the system cannot be over gained; if the gains
are too large, the control torque will exceed physical limitations (i.e., “control satu-
ration” will occur).

Finally, we should note that Example 13.1 presented a satellite with variable-thrust jets
that allowed the control torque to be continuously modulated. In reality, the relatively
small thrusters used for attitude control cannot be throttled, and instead operate in an
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Figure 13.12 Control torque with proportional-derivative control (Example 13.1).

Space Flight Dynamics496



“on–off” switching or pulsed mode. Hence, the magnitude of the control torque is a sin-
gle value and the control scheme depicted in Figure 13.8 is not realistic or feasible. The
reader should remember that the purpose of Example 13.1 (and Section 13.2) is to illus-
trate the basic attributes of a closed-loop control system. We will discuss a realistic atti-
tude control system that uses pulsed (on–off ) jets in Section 13.5.

13.3 Mechanisms for Attitude Control

In this section, we will discuss the devices or actuators that are used to control a satellite’s
attitude. The three major mechanisms for active attitude control are: (1) reaction jets; (2)
momentum-exchange devices; and (3) magnetic torquers. We will briefly discuss each
device.

13.3.1 Reaction Jets

Reaction jets (or thrusters) produce an external torque on the satellite by expelling mass.
They may be “hot-gas” or “cold-gas” thrusters. Hydrazine is often the propellant of
choice for hot-gas thrusters that produce a force via a chemical reaction. Cold-gas thrus-
ters produce relatively small forces by opening a valve and expelling a compressed neu-
tral gas such as nitrogen. In either case, a reaction-jet control system must use
consumables (propellant or compressed gas) that obviously contribute to the usable life-
time of the satellite. Reaction jets are typically on–off devices that deliver a fixed thrust
magnitude (and hence fixed control torque) when activated. This pulsed mode of oper-
ation results in a discontinuous (or nonlinear) control signal and complicates the control
design. We present control systems that use reaction jets in Sections 13.5 and 13.6.

13.3.2 Momentum-Exchange Devices

Momentum-exchange devices operate on the principle of conservation of angular
momentum in a torque-free environment. These devices consist of spinning wheels
attached to the satellite. Reaction wheels, momentum wheels, and control moment gyros
(CMGs) are all momentum-exchange devices.
Reaction wheels are small rotating disks attached to the satellite and driven by an elec-

tric motor. The basic operation of a reaction wheel is fairly intuitive: spinning a wheel
mounted along the 3 axis in a clockwise direction will cause a counterclockwise satellite
spin about the 3 axis so that total angular momentum is conserved. Figure 13.13 illus-
trates this concept. In Figure 13.13, a person is standing on a platform mounted on (the-
oretical) frictionless bearings. Suppose the person has a hand-held electric drill
connected to a flywheel and is pointing the drill’s spin axis along his or her longitudinal
(vertical) axis. In Figure 13.13a, the person is motionless and the drill’s flywheel is not
rotating, and hence the total angular momentum of the system (person + platform + fly-
wheel) is zero. In Figure 13.13b, the person turns on the drill so that the rotating flywheel
adds positive (“upward”) angular momentum ΔHw. Consequently, the person and plat-
form rotate in the opposite direction as the flywheel. The opposite spin of the person and
platform contributes “downward” angular momentum change ΔHp so that the total
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angular momentum is conserved, that is Htotal = ΔHw + ΔHp = 0 as shown in
Figure 13.13b. After the person has rotated to the desired attitude, he or she turns off
the drill and comes to rest so that total angular momentum remains zero. The reader
should note that the drill’s torque acting on the flywheel is an internal torque that does
not change the total angular momentum of the system.
Figure 13.13 illustrates how one rotating flywheel can control one rotational axis.

A minimum of three orthogonally mounted reaction wheels are required to fully control
the rotational motion of a satellite. Figure 13.14 shows a satellite with three independent
reaction wheels aligned with the 123 principal axes. Each reaction wheel is driven by a
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Htotal = 0

E
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Figure 13.13 Reaction wheel concept and the conservation of angular momentum: (a) person and
flywheel are at rest; and (b) spinning flywheel causes person and platform to spin in the opposite
direction.
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Figure 13.14 Three reaction wheels mounted along the 123 principal axes.
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separate electric motor, and hence the satellite’s rotational motion about any axis can be
controlled.
Momentum wheels are essentially reaction wheels that maintain a nominal spin rate

for gyroscopic rigidity. Because reaction wheels are used to change the angular orienta-
tion of a satellite whose normal state is zero angular velocity, the wheels also normally
have zero angular velocity (hence the total angular momentum of a satellite with reac-
tion-wheel control is zero). Conversely, a satellite equipped with one or more momen-
tum wheels has non-zero angular momentum due to the wheel’s nominal spin rate. The
satellite’s attitude may be controlled by changing the spin rate of the momentum wheel.
Attitude control systems that use momentum wheels are sometimes called momentum-
bias systems because they maintain a constant non-zero angular momentum in the
absence of external torques.
Control moment gyros are relatively large spinning momentum wheels mounted on

movable gimbals. The gimbal mounts can be rotated by electric motors in order to
change the direction of the wheel’s spin axis. Consequently, the directional change of
the CMG’s angular momentum vector causes the satellite’s angular momentum vector
to undergo an opposite change for momentum conservation. Whereas reaction wheels
have variable spin rates along a fixed axis, CMGs typically have constant spin rates and a
variable-direction axis.
Figure 13.15 illustrates the momentum-exchange concept of a CMG. Consider again a

person standing on a frictionless platform with a hand-held electric drill capable of rotat-
ing a flywheel. In Figure 13.15a, the person is stationary and pointing the drill axis in a
direction perpendicular to his or her longitudinal (or vertical) axis. The drill is turned on
and rotating the flywheel so that it has angular momentum Hw along a transverse axis
pointing away from the person as shown in Figure 13.15a. Hence the flywheel’s angular
momentum is the total angular momentum of the system (person + platform + flywheel),
or Htotal = Hw. In Figure 13.15b, the person rotates the drill axis downward (using an
internal torque) to change the direction of Hw. If the flywheel’s change in angular
momentum is vector ΔHw (downward), then the person and platform must rotate coun-
terclockwise to produce an opposite momentum change ΔHp (upward) so that Htotal

remains constant. Of course, pointing the drill upward will cause the person to rotate
clockwise. The person’s rotational motion can be stopped by pointing the drill axis along
its original transverse direction shown in Figure 13.15a.
Figure 13.16 shows a satellite with a CMG aligned with its 1 axis. The single gimbal

shown in Figure 13.16 allows the CMG to be rotated about the 2 axis, which would
create a satellite spin about its 3 axis. Adding a second (outer) gimbal (not shown in
Figure 13.16) would allow the CMG to be rotated about the 3 axis. Consequently, a
dual-gimbaled CMG can control the satellite’s spin about the 2 and 3 axes. Two dual-
gimbaled CMGs will provide attitude control about three orthogonal axes.
Momentum-exchange devices allow smooth and continuous control signals because

the wheel speed (or CMG axis) can be continuously modulated between upper and lower
bounds. As a result, the feedback control system is linear and easier to analyze and design
when compared with nonlinear control systems.
There is one significant disadvantage to using momentum-exchange devices for active

attitude control. Consider a scenario where we wish to keep a satellite in an inertially
fixed attitude with zero angular momentum. Suppose that an external disturbance tor-
que (possibly due to solar radiation pressure) acts on the satellite and causes a small but
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steady increase in angular momentum (remember that external torque is equal to the
time-rate of angular momentum). A reaction wheel can absorb the added angular
momentum by spinning in the opposite direction of the disturbance torque. Eventually,
the wheel will spin at its maximum angular velocity; at this point, it has become saturated
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Htotal Htotal + ∆Hw + ∆Hp = Htotal
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Figure 13.15 Control moment gyro concept and the conservation of angular momentum: (a) person is
at rest and flywheel is spinning; and (b) rotating axis of spinning flywheel downward causes person and
platform to spin.
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Figure 13.16 Single-gimbal control moment gyro initially spinning along the 1 axis.
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and cannot absorb additional angular momentum. The satellite needs to “dump” the
wheel’s stored momentum by using an external torque provided by a separate actuation
device. Typically, the “momentum dump” is performed by a reaction-jet system. Requir-
ing a second attitude-control device for themomentum dump complicates the spacecraft
design.

13.3.3 Magnetic Torquers

Magnetic torquers (or magnetic torque rods) interact with a planet’s magnetic field to
create an external torque on the satellite. This external torque is the cross product of
the magnetic dipole (produced by passing current through a wire coil) and the planet’s
magnetic field vector. Hence, the external torque on the satellite is always perpendicular
to the planet’s magnetic field. Magnetic torquers are wire-coil electromagnetic rods that
are mounted along a satellite’s body axis. The direction of the dipole moment may be
reversed by switching the flow of current in the coils. Because the planet’s magnetic field
strength varies with altitude, the effectiveness of magnetic torquers diminishes with alti-
tude. Furthermore, magnetic torquers produce relatively small external torques.

13.4 Attitude Maneuvers Using Reaction Wheels

The previous discussion of momentum-exchange devices introduces the concept of uti-
lizing conservation of angular momentum as a mechanism for controlling a satellite’s
attitude. Altering the spin rate of an internal reaction wheel causes a counteracting sat-
ellite spin rate, which can control the satellite’s attitude. In this section, we will only con-
sider attitude control about a single axis (the 3 axis).
Figure 13.17 shows a cylindrical satellite with 123 principal axes with a single reaction

wheel mounted along the 3 axis. The satellite’s moment of inertia about the 3 axis is Isat,
while the wheel’s moment of inertia is Iw. We must stress two very important points here
before continuing:

1) For the analysis to follow, the satellite’s moment of inertia Isat does not include the
inertia contribution from the reaction wheel.

2) The reaction wheel spins on an axis that is fixed to the satellite and aligned with the
3 axis.

The satellite’s principal moments of inertia are I1, I2, and I3. Using our prior definitions,
the 3-axis principal moment of inertia is I3 = Isat + Iw.
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Reaction wheel, Iw
Satellite

Figure 13.17 Reaction wheel mounted along the satellite’s 3 axis.
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Next, let us define the independent spin rates about the body-fixed 3 axis. The satel-
lite’s (inertial) angular velocity (or spin) component along its 3 axis is defined as ϕ= ω3.
The reaction wheel’s angular velocity ωw is defined as the wheel’s spin rate relative to the
satellite. Therefore, the absolute or inertial angular velocity of the wheel is

ωw,abs =ω3 +ωw (13.26)

Equation (13.26) shows that if the wheel is not spinning relative to the satellite (i.e., ωw =
0), then the wheel’s absolute angular velocity is equal to the absolute angular velocity of
the satellite, ω3.
Let us only consider rotational motion about the 3 axis. The satellite’s angular

momentum is

H = Isat + Iw ω3 + Iwωw (13.27)

Substituting Isat + Iw = I3, the angular momentum is

H = I3ω3 + Iwωw (13.28)

Equations (13.27) and (13.28) both show that the satellite’s angular momentum is the
sum of the momentum contributions from the spinning satellite (I3ω3) and the spinning
wheel (Iwωw). Next, take the time derivative of Eq. (13.28)

H = I3ω3 + Iwωw = 0 (13.29)

Angular momentum is constant because there are no external torques. Substituting
ϕ =ω3 into Eq. (13.29), we obtain

I3ϕ = − Iwωw

or,

ϕ =
− Iw
I3

ωw (13.30)

Equation (13.30) is the governing dynamical equation if the satellite only rotates about
its 3 axis. The satellite’s absolute angular acceleration is always opposite the wheel’s rel-
ative angular acceleration. Because the inertia ratio Iw/I3 = Iw/ Isat + Iw is always less than
unity, the magnitude of the satellite’s angular acceleration is less than the wheel’s accel-
eration.When the wheel stops accelerating and spins at a constant rate, the satellite must
also spin at a constant rate so that Eq. (13.29) is satisfied.
Next, we need to understand the governing dynamics of the reaction wheel.

Figure 13.18 shows a free-body diagram of the external torques that act on the reaction
wheel: motor torque Tm and friction torque Tf. Summing torques on the wheel and
applying Newton’s second law yields

Iwωw,abs =Tm−bωw (13.31)

Note that we must use the reaction wheel’s absolute angular acceleration in Newton’s
second law.We can obtain the wheel’s absolute acceleration by taking the time derivative
of Eq. (13.26):

ωw,abs =ω3 +ωw (13.32)
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Equation (13.32) shows that the wheel’s absolute angular acceleration is the sum of the
satellite’s absolute acceleration (ϕ =ω3) and the wheel’s acceleration relative to the sat-
ellite (ωw). The right-hand side of Eq. (13.31) is the sum of the motor torque Tm and the
opposing linear friction torque bωw, where b is the viscous friction coefficient (in units of
N-m-s/rad). Substituting Eq. (13.32) into Eq. (13.31) and solving for the wheel’s accel-
eration relative to the satellite yields

ωw =
1
Iw

Tm−bωw −ϕ (13.33)

We can substitute Eq. (13.30) for the satellite’s acceleration ϕ in Eq. (13.33) to yield

ωw =
1
Iw

Tm−bωw +
Iw
I3
ωw (13.34)

Or,

I3− Iw ωw =
I3
Iw

Tm−bωw (13.35)

Finally, using Isat = I3 – Iw, we obtain

ωw =
I3

IsatIw
Tm−bωw (13.36)

Equation (13.36) is our model of the reaction-wheel dynamics.
Torque for a direct current (DC) motor is a linear function of motor current im

Tm =Kmim (13.37)

where Km is called the motor-torque constant (in N-m/A), and it depends primarily on
the strength of the DC motor’s magnetic field, the total length of wire wrappings about
the rotating armature, and the radius of the rotor. The DCmotor’s electrical circuit con-
sists of a voltage source ein (in volts, V), electrical resistance R (in ohms, Ω), and induc-
tance L (in henries, H) of the wire wrappings. We can apply Kirchhoff’s voltage loop law
to the DC motor circuit to obtain

L
dim
dt

+Rim = ein−Kbωw (13.38)

Motor torque, Tm

Friction torque, Tf

Wheel axis 
(fixed to the satellite)

ωw

Figure 13.18 Free-body diagram of the reaction wheel.
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where Kb is called the back-emf constant (in V-s/rad), which arises from Faraday’s laws of
induction. It turns out that the back-emf constant Kb and motor-torque constant Km

have identical numerical values when expressed in SI units [i.e., the units N-m/A are
equivalent to V-s/rad because volts can be written as power (in watts, 1 W = 1 N-m/s)
divided by current (in amps, A)]. Additional details for modeling electromechanical
systems (such as a DC motor) can be found in Kluever [4; pp. 57–62]. Typically, the
“time constant” τ = L/R for a DC motor is very small relative to the mechanical (rotor)
time constant. Consequently, the current response to the input voltage ein is extremely
rapid and reaches a steady-state value in a very short time. We can obtain the steady-state
current response of Eq. (13.38) by neglecting the derivative term dim/dt. In this case, the
DC motor current is

im =
1
R

ein−Kbωw (13.39)

We may think of the back-emf term Kbωw as a parasitic voltage that reduces the input
voltage ein when the motor is rotating. Equation (13.39) is Ohm’s law: current is equal to
the net voltage divided by resistance. Finally, we may multiply the motor current,
Eq. (13.39), by Km to obtain the motor torque:

Tm =
Km

R
ein−Kbωw (13.40)

Figure 13.19 presents a block diagram that illustrates the interaction between the DC
motor, reaction wheel, and satellite. The reader should be able to trace the block diagram
signal paths and identify the corresponding modeling equations. For example, the first
summing junction in Figure 13.19 produces the voltage difference (ein−eb), which is mul-
tiplied by Km/R to produce the motor torque. The inner loop in Figure 13.19 shows the
summation of the motor torque and friction torque in order to determine the reaction
wheel’s angular acceleration ωw in accordance with Eq. (13.36). Note that the wheel
acceleration is integrated to produce wheel velocity, which is needed to compute the

Tm +

b

–

+

Kb

–

ein

eb

Tf

Reaction wheel
dynamics

Satellite 
dynamics

DC motor

ωw

ϕωw

ωw

IsatIw

I3

I3

–Iw

s
1

R

Km

Figure 13.19 Open-loop control system: direct current motor, reaction wheel, and satellite dynamics.
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friction torque and back-emf terms. The final block shows the conservation of angular
momentum, Eq. (13.30), where multiplying the wheel’s relative acceleration by the iner-
tia ratio − Iw/I3 produces the satellite’s angular acceleration. Figure 13.19 is an open-loop
control system because the control signal (DC motor input voltage ein) does not depend
on the satellite’s attitude or angular velocity. In other words, we could apply a constant
input voltage to the DC motor, and it will produce a motor torque that accelerates the
reaction wheel, which ultimately causes an opposite angular acceleration of the satellite.
However, the ensuing satellite motion will not necessarily meet our desired objective.
The following examples illustrate the operation of a DC motor and reaction wheel in
an open-loop setting.

Example 13.2 Satellite operators want to accurately determine a spacecraft’s principal
moment of inertia after it has fired an onboard rocket and expended propellant mass.
The spacecraft is equipped with a reaction wheel, and both the spacecraft and wheel
are initially at rest (i.e., zero angular momentum). The satellite operators command
the reaction wheel to spin up to a constant angular velocity vector of ωw = 3,000 u3
rpm by using the DC motor’s speed control mode. After the wheel reaches its
constant spin rate, the onboard gyroscope measures the satellite’s angular velocity vector
as ω3 = –0.182 u3 rpm. If the reaction wheel’s moment of inertia is Iw = 0.055 kg-m2,
determine the satellite’s moment of inertia about its 3 axis without the inertia contribu-
tion from the reaction wheel.
Because the satellite and wheel are initially at rest, the angular momentum is zero. We

use Eq. (13.28) to determine the angular momentum

H = I3ω3 + Iwωw = 0

where I3 is the total moment of inertia (satellite + wheel) about the 3 axis. Solving this
expression for the total moment of inertia, we obtain

I3 = − Iw
ωw

ω3
= – 0 055 kg-m2 3,000 rpm / – 0 182 rpm = 906 5934 kg-m2

Note that we set the satellite’s spin rate ω3 as a negative value because it spins in the
opposite direction as the reaction wheel. Finally, the satellite’s moment of inertia without
the reaction wheel is

Isat = I3− Iw = 906 5384 kg-m2

Example 13.3 The DC motor associated with the reaction wheel and spacecraft
from Example 13.2 has the following parameters: motor torque constant Km = 0.043
N-m/A, back-emf constant Kb = 0.043 V-s/rad, resistance R = 2.8 Ω, and friction coef-
ficient b = 6(10–5) N-m-s/rad. Determine the input voltage to the DC motor required to
maintain a constant wheel spin rate of 3,000 rpm.
We can manipulate Eq. (13.40) to obtain the DC motor’s input voltage in terms of

motor torque and the wheel’s angular velocity:

ein =
R
Km

Tm +Kbωw
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Equations (13.33) or (13.36) show that the motor torque Tm is balanced by the wheel’s
friction torque bωw when the wheel reaches a constant angular velocity. Hence, the
motor torque is

Tm = bωw = 6 10– 5 N-m-s/rad 314 1593 rad/s = 0 018850N-m

Note that the wheel’s angular velocity ωw must be expressed in rad/s (i.e., 3,000 rpm =
314.1593 rad/s). Therefore, the input voltage is

ein =
R
Km

Tm +Kbωw

= 2 8 Ω 0 018850N-m 0 043N-m/A+ 0 043V-s/rad 314 1593 rad/s

= 14 736 V

The back-emf voltage from the motor rotation is eb = Kbωw = 13.509 V, and the motor
current is im = (ein – eb)/R = 0.438 A.

Figure 13.20 presents a closed-loop block diagram for single-axis attitude control with a
reaction wheel. Note that the desired satellite attitude angle ϕref (rotation angle about the
3 axis) is compared with the satellite’s actual attitude ϕ to form the attitude error ϕe,
which is the input to the controller transfer function GC(s). Electrical voltage input ein
to the DC motor is produced by the controller block GC(s). Our open-loop model of
the motor, wheel, and satellite dynamics (Figure 13.19) resides in the forward path of
Figure 13.20.
At this point, we would like to design the controller GC(s) using similar methods that

were employed in Example 13.1. In particular, we will determine the feedback gains
based on the desired closed-loop response characteristics. We can greatly simplify the
controller design by ignoring the back-emf and friction torque terms in Figure 13.19.
Figure 13.21 shows the simplified open-loop models of the DC motor, reaction wheel,
and satellite dynamics when back-emf and friction torque are eliminated from
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Figure 13.20 Closed-loop attitude control using a reaction wheel.
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Figure 13.19. Multiplying the three gains in the forward path, we obtain the approximate
relationship between input voltage and satellite acceleration:

ϕ = −
Km

RIsat
ein (13.41)

Figure 13.22 shows the closed-loop attitude control system with Eq. (13.41) approximat-
ing the combinedmodels for the DCmotor, reaction wheel, and satellite dynamics. Using
Eq. (13.13), the closed-loop transfer function is

ϕ

ϕref
=

GC s
a
s2

1 +GC s
a
s2

=
GC s a

s2 +GC s a
(13.42)

where a= −Km/RIsat. Using a PD controller GC s =KP +KDs, the denominator of
closed-loop transfer function is

s2 + KP +KDs a= s
2 + aKDs+ aKP (13.43)

= s2 + 2ζωns+ω
2
n (13.44)

Comparing Eq. (13.43) with the “standard” second-order characteristic equation (13.44),
we can express the first- and zeroth-order coefficients in terms of the undamped natural
frequency ωn and damping ratio ζ:

First-order term aKD = 2ζωn

Zeroth-order term aKP =ω2
n

The undamped natural frequency ωn and damping ratio ζ affect the response of a sec-
ond-order system. Because the PD controller has two free gains (KP and KD), we can
achieve any desired ωn and ζ for the closed-loop system [however, we must remember
that the closed-loop system depicted in Figure 13.22 and Eq. (13.42) is an approximation
of the actual system because we have ignored the back-emf and friction torque]. The pro-
portional and derivative gains are

Proportional gain KP =
ω2
n

a
=
−RIsat ω2

n

Km
(13.45)

Derivative gain KD =
2ζωn

a
=
−2RIsatζωn

Km
(13.46)
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Figure 13.21 Simplified models of the direct current motor, reaction wheel, and satellite dynamics for
controller design.
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Equations (13.45) and (13.46) can be used to “tune” the PD controller gains in order to
achieve a desired closed-loop system response. However, we must emphasize that a can-
didate PD controller designed using Eqs. (13.45) and (13.46) must ultimately be tested
with a closed-loop simulation that includes the accurate system dynamics, that is, the
system depicted in Figure 13.20. The following example illustrates a single-axis attitude
control system using a reaction wheel.

Example 13.4 Figure 13.17 shows a satellite with a reaction wheel mounted along its
3 axis. The satellite’s moment of inertia about the 3 axis is Isat = 500 kg-m2 (not
including the inertia of the reaction wheel), and the wheel’s inertia about its spin axis
is Iw = 0.06 kg-m2. The DC motor that drives the reaction wheel has the following para-
meters: motor torque constant Km = 0.04 N-m/A, back-emf constant Kb = 0.04 V-s/rad,
resistance R = 3 Ω, and friction coefficient b = 6(10–5) N-m-s/rad. The DC motor has
voltage limits of ± 28 V. Design a PD controller for the reaction wheel that can provide
a single-axis attitude maneuver with good damping and fast response speed. Demon-
strate the closed-loop control system with an attitude maneuver starting from ϕ0 = 0,
ϕ0 = 0 with a target attitude ϕref = π/3 (i.e., 60 ). Because the satellite begins and ends
with zero angular velocity, this maneuver is known as a “rest-to-rest maneuver.”
Figure 13.20 shows the closed-loop attitude control system using the reaction wheel.

The PD controller transfer function is

GC s =KP +KDs

The attitude error ϕe (in rad) is the input to the controller, and its output is the voltage
signal to the DC motor:

ein =KPϕe +KDϕe

Clearly, the PD controller gains have units of V/rad (KP) and V-s/rad (KD).
Equations (13.45) and (13.46) show that the gains can be obtained by specifying the
desired undamped natural frequency ωn and damping ratio ζ. However, we cannot “over
gain” the controller because the motor’s input limit is ± 28 V. Let us select a “good”
damping ratio ζ = 0.7 and a settling time of tS = 250 s. Using the definition of settling
time, Eq. (13.18), we can compute the undamped natural frequency:

ωn =
4
tSζ

= 4 250 s 0 7 = 0 0229 rad/s

ein+

–
Motor + RW + satellite

GC(s)
ϕref ϕϕ

RIsat

–Km 1
s

1
s

ϕ

Figure 13.22 Closed-loop attitude control with approximate models for the direct current motor,
reaction wheel, and satellite dynamics.
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We use Eqs. (13.45) and (13.46) to obtain the PD controller gains:

Proportional gain KP =
−RIsat ω2

n

Km
= –19 5918 V/rad

Derivative gain KD =
−2RIsatζωn

Km
= –1,200 V-s/rad

Recall that Eqs. (13.45) and (13.46) were derived using a simplified model of the reaction-
wheel system that ignored the friction torque and back-emf. At time t = 0, the attitude
error is ϕe(0) = ϕref – ϕ0 = π/3 rad, and hence the motor’s initial voltage input is
ein 0 =KPϕe 0 +KDϕe 0 = –20.52 V which is within the ± 28 V limits (recall that
the satellite’s initial angular velocity is zero).
We can use MATLAB’s Simulink to numerically simulate the closed-loop attitude

control system presented in Figure 13.20 (we should again emphasize that although
the PD controller was designed using approximate models, its performance is tested
using the accurate modeling equations for the DC motor and reaction wheel).
Figure 13.23 shows the satellite’s attitude response. Note that the satellite achieves
the desired 60 reference angle in about 230 s without any discernable overshoot.
Figure 13.24 shows the angular momentum contributions due to the angular velocity
of the complete satellite (I3ω3) and spinning reaction wheel (Iwωw). Note that both angu-
lar momentum components start at zero (the satellite and wheel are initially at rest), and
that they are “mirror images” of each other because the total angular momentum is con-
served and therefore remains zero, that is,H = I3ω3 + Iwωw= 0. The wheel spins with neg-
ative angular velocity (i.e., opposite the 3 axis) so that the satellite spins with
positive angular velocity. Because the reaction wheel’s moment of inertia is very small
(Iw = 0.06 kg-m2) relative to the moment of inertia of the complete satellite and wheel
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Figure 13.23 Satellite attitude response using a closed-loop reaction wheel controller (Example 13.4).
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(I3 = 500.06 kg-m2), it must spin at a much higher rate in order to counteract the satel-
lite’s angular momentum. For example, the wheel’s peak angular velocity is approxi-
mately –742 rpm at about t = 45 s, whereas the satellite’s peak angular velocity is
about 0.09 rpm (≈0 5 deg/s). Finally, Figure 13.25 shows the input voltage to the DC
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Figure 13.24 Satellite and reaction-wheel angular momentum (Example 13.4).
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Figure 13.25 Input voltage to the DC motor (Example 13.4).
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motor during the closed-loop response. The initial voltage of –20.5 V (due to the initial
attitude error) is observed, and the motor voltage (and consequently the motor torque)
go to zero as the satellite comes to rest at the desired 60 attitude.
We can speed up the closed-loop attitude response by increasing the PD controller

gains. However, we must keep the motor’s input voltage within the ± 28 V limits. We
do this by inserting a saturation block (or “limiter block”) immediately after the PD con-
troller block as shown in Figure 13.26. The saturation block will allow a voltage com-
mand (eCMD) that is between ± 28 V to reach the DC motor unaltered. However, the
saturation block will limit the motor voltage ein to +28 V or –28 V if the controller com-
mands an excessive voltage (i.e., eCMD > 28 V). We can repeat this example with a set-
tling time of 60 s and damping ratio ζ = 0.7; the resulting PD gains are KP = −340 1361
V/rad andKD = –5,000 V-s/rad. Figure 13.27 shows that the satellite’s attitude reaches its
60 reference in about 100 s (less than half the time of the previous case) and with a slight
overshoot. Figure 13.28 shows that the satellite and reaction wheel both store more than
twice asmuch angular momentum for this high-gain case when compared with the initial
low-gain case. For example, the peak angular velocity of the reaction wheel is –2,090 rpm
and the satellite’s peak spin rate is 0.25 rpm (1.5 deg/s). While the wheel’s peak spin rate

eCMD
GC (s)

ϕe ein

Saturation
±28 V

PD controller

28

–28

Figure 13.26 Saturation block for limiting input voltage to the DC motor.
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Figure 13.27 Satellite attitude response using the high-gain wheel controller and saturation block
(Example 13.4).
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is quite large, many reaction wheels have maximum angular velocities as high as 5,000
rpm. Figure 13.29 presents the input voltage to the DC motor. Here we see that the high
controller gains and saturation block initially produce the largest possible (negative)
input voltage (–28 V) to the motor in order to provide the greatest (negative) torque
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Figure 13.29 Input voltage to the DC motor using the high-gain wheel controller and saturation block
(Example 13.4).
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Figure 13.28 Satellite and reaction-wheel angular momentum using the high-gain wheel controller
and saturation block (Example 13.4).
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and angular acceleration for the wheel. At t = 42 s, the controller’s damping term KDϕe
causes the input voltage to switch toward +28 V so that the motor torque slows down the
wheel’s spin rate as seen in Figure 13.28. For t > 72 s, the motor’s input voltage is no
longer saturated at its maximum value.
This example has demonstrated that we can adjust the PD controller gains to speed up

the closed-loop attitude response. Consequently, many closed-loop controllers have
“low-gain” and “high-gain” settings for added flexibility. Furthermore, the presence of
a saturation block for limiting the control signal is a common feature in most operational
systems. However, an active saturation block results in a nonlinear system, and therefore
its closed-loop response can no longer be predicted by analytical formulas.

13.5 Attitude Maneuvers Using Reaction Jets

This section involves closed-loop attitude control using on–off reaction jets. Just as reac-
tion-wheel control, we will demonstrate the concept by considering single-axis attitude
maneuvers. The resulting reaction-jet control law will be nonlinear due to its discontin-
uous (on–off ) pulsed operation.

13.5.1 Phase-Plane Analysis of Satellite Attitude Dynamics

Let us begin our analysis with the single degree-of-freedom attitude dynamics for satel-
lite rotation about a principal axis as shown in Figure 13.30

Mc = Iϕ (13.47)

where it is understood that I is the satellite’s moment of inertia about the axis normal to
the page. Firing the reaction jets in pairs produces the control torque Mc

Mc = ± 2Fr (13.48)

Fixed 
direction

Jet force, F

Jet force, F

r

ϕref = 105°

ϕ

Figure 13.30 Attitude control using reaction jets (positive control torque is shown).
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where F is the thrust of a single jet and r is the radial moment-arm distance from the jet
location to the spin axis. Equation (13.48) shows that the control torque may be positive
or negative depending on which pair of jets is fired. Figure 13.30 shows reaction jets fired
to create a positive control torque on the satellite; obviously, firing the opposite jets
causes a negative control torque. Because the jet force is produced by opening the valve
to a hot-gas or cold-gas thruster, the force F is constant and consequently the control
torque Mc has a constant magnitude.
In Figure 13.30, the satellite’s attitude angle ϕ is the angular position of an antenna-

pointing direction relative to a fixed direction. Our attitude-control problem might
demand that the satellite rotates so that its antenna points in a new direction as spe-
cified by the desired attitude angle ϕref. Figure 13.30 and Eq. (13.47) show that a pos-
itive control torque causes positive angular acceleration in the counterclockwise
direction.
We will develop a control logic based on the attitude error dynamics. Therefore, let us

define the attitude error as

Attitude error ϕe =ϕ−ϕref (13.49)

Referring again to Figure 13.30, the satellite’s current attitude is ϕ= 60 . If the reference
(desired) attitude is fixed at ϕref = 105 , then the current attitude error is –45 . Because
the reference attitude is fixed, successive time derivatives of the attitude error are equal
to the satellite’s angular velocity and angular acceleration; that is

Attitude error rate:  ϕϕϕϕ =−= refe

0
13 50

Attitude error acceleration:  ϕϕϕϕ =−= refe

0
13 51

Note that our definition of attitude error, Eq. (13.49), is the opposite of attitude error
shown in Figure 13.8 (Example 13.1) and Figure 13.20 (Example 13.4). We choose to
define attitude error as ϕe =ϕ−ϕref so that the time derivatives of attitude error and sat-
ellite attitude angle are equal as shown in Eqs. (13.50) and (13.51).
We can obtain a closed-form solution of the satellite’s angular motion by using a state-

variable approach. Our analysis will eliminate the motion’s dependency on time. Let us
begin by defining two state variables based on the attitude error: x1 =ϕe and x2 =ϕe. The
two state-variable equations are simply the time derivatives of the two states:

x1 =ϕe = x2 (13.52)

x2 =ϕe =ϕ =
Mc

I
=u (13.53)

where the control term u is the ratio of the control torque and moment of inertia (note
that u has units of rad/s2). Because control torqueMc has a fixedmagnitude, control term
u also has a fixed magnitude, and can switch signs depending on which jet pairs are fired.
Next, we can eliminate time by dividing Eq. (13.52) by Eq. (13.53):

x1
x2

=
dx1/dt
dx2/dt

=
dx1
dx2

=
x2
u

(13.54)
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Separating variables, we obtain

udx1 = x2dx2 (13.55)

Equation (13.55) is easily integrated with respect to state variables x1 and x2 to yield

ux1 =
1
2
x22 +C (13.56)

where C is a constant of integration. Let us express Eq. (13.56) in terms of the attitude
error (x1 =ϕe) and the attitude error rate (x2 =ϕe):

1
2
ϕ2
e −uϕe +C = 0 (13.57)

Equation (13.57) is the satellite’s angular motion in terms of attitude error, attitude
error rate, and torque acceleration u (remember that the control acceleration can only
take on two values, i.e., u= ± 2Fr/I). We can create a plot of attitude error rate (ϕe) vs.
attitude error (ϕe) for positive jet torque u= 2Fr/I and different values of constant C.
Figure 13.31 shows solutions to Eq. (13.57) for u = +0.25 rad/s2 and C = –0.5, 0, and
0.5 rad/s2. Equation (13.57) and Figure 13.31 show that a “sideways parabola” represents
the attitude error rate plotted against the attitude error for a given value of C. The arrows
on the parabolic curves in Figure 13.31 show the direction of the satellite’s angular
motion for positive jet torque. Equation (13.53) shows that ϕ =ϕe > 0 when the satellite
fires the positive torque jets (u > 0), and therefore attitude error rate ϕe is always increas-
ing as illustrated in Figure 13.31.
Figure 13.31 is called a phase portrait and it represents the trajectories of a dynamic

system in the so-called phase plane, where the x axis is the attitude error and the y axis is
its time derivative. Because our goal is to drive the attitude error and attitude error rate to

–4 –2 0 2 4 6
Attitude error, rad

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

A
tti

tu
de

 e
rr

or
 r

at
e,

 r
ad

/s

C = 0 C = 0.5C =  –0.5

Figure 13.31 Attitude motion in the phase plane with positive jet torque, u = 0.25 rad/s2.
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zero, we desire the sideways parabolic path that intersects the origin of the phase plane.
Figure 13.31 shows that the bottom half of the path withC = 0 (the solid curve) is the only
possible path to the origin when using positive jet torque. The bottom half of the path
with C = 0 describes a satellite with positive attitude error (ϕe > 0) and negative angular
velocity (ϕe < 0), and hence the positive jet torque is performing a braking maneuver.
Consequently, the phase-plane trajectory to the origin with positive torque satisfies

Path to origin with u > 0
1
2
ϕ2
e =uϕe with ϕe > 0, ϕe < 0 (13.58)

For example, a satellite with torque acceleration u = +0.25 rad/s2, ϕe = 2 rad (114.6 ), and
ϕe = −1 rad/s (–57.3 deg/s), will follow a parabolic path to the origin in the phase plane as
shown in Figure 13.31. The reader should note that a satellite with attitude error ϕe = 2
rad and positive error rate ϕe = +1 rad/s with u = +0.25 rad/s2 will follow the upper-half
parabolic path withC = 0; however, the positive torque will cause the satellite’s attitude to
drift away from the origin.
Figure 13.32 presents the phase portrait for negative torque jets, or u = –0.25 rad/s2.

The arrows on the phase-plane trajectories show that attitude error rate ϕe is always
decreasing along a parabolic path when u < 0. Figure 13.32 shows that the top half of
the parabola with C = 0 (the solid curve) is the only path to the origin with negative tor-
que. In this case, attitude error rate must be positive and attitude error must be negative:

Path to origin with u < 0
1
2
ϕ2
e =uϕe with ϕe < 0, ϕe > 0 (13.59)

As with the positive-torque scenario, the reaction jets are producing a torque in the
opposite direction as the satellite’s angular velocity (again, a braking maneuver).
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Figure 13.32 Attitude motion in the phase plane with negative jet torque, u = –0.25 rad/s2.
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The previous discussion shows that a satellite has only two paths to the origin of the
phase plane (i.e., ϕe = 0 and ϕe = 0) when using a constant-torque magnitude: the bot-
tom-half parabola with positive jet torque (Figure 13.31) or the top-half parabola with
negative jet torque (Figure 13.32). Figure 13.33 shows these two parabolic paths (with
C = 0) pieced together in the phase plane. The composite of these two half-parabolic
paths joined at the origin is called the switching curve. The top-half parabola is the neg-
ative-torque switching curve and the bottom-half parabola is the positive-torque switch-
ing curve. We may use Figure 13.33 to describe an attitude-control strategy for driving
the satellite to the desired reference attitude (i.e., ϕe = 0 and ϕe = 0) starting from any
initial conditions. If the satellite’s state (ϕe,ϕe) is “below” the switching curve in
Figure 13.33, fire the positive torque jets in order to follow an “upward” parabolic path
as shown in Figure 13.31.When the phase-plane path intersects the upper-half switching
curve in Figure 13.33, the positive jets are turned off and the negative torque jets are fired.
Consequently, the satellite follows the upper-half switching curve to the origin. If
the satellite’s state (ϕe,ϕe) is “above” the switching curve in Figure 13.33, the opposite
strategy is employed: fire the negative torque jets until the parabolic path reaches the
bottom-half switching curve, and then switch to positive torque jets. Figure 13.33 shows
the “positive torque jet” region below the switching curve and the “negative torque jet”
region above the switching curve.
Let us consider a satellite with an initial attitude error of 0.4 rad (≈23 ) and initial

angular velocity of 0.2 rad/s (≈11 5 deg/s). This initial state is shown in the phase plane
in Figure 13.34. Because this initial state is “above” the switching curve, the negative
torque jets are fired, and the phase-plane trajectory follows a “downward” parabola as
shown in Figure 13.34. The satellite’s phase-plane state reaches the bottom-half switch-
ing curve at attitude errorϕe = 0 24 rad (≈13 8 ) and attitude error rate ϕe = −0 346 rad/s
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(≈ −19 8 deg/s). At this point, the positive torque jets are fired and the phase-plane tra-
jectory follows the switching curve to the origin as shown in Figure 13.34.
Figure 13.34 shows that the error states can be driven to zero with one switch in the

reaction jets (of course, the initial phase-plane conditions could lie exactly on a switching
curve and hence either positive or negative torque will drive the errors to zero without
the need for switching). This one-switch scenario represents the idealized case. In a real
attitude control system, the decision to switch jets is based on sensors that measure the
attitude angle and angular velocity. If the measurement (or sampling) rate is too slow or
inaccurate, the switching may be delayed as illustrated in Figure 13.35. A combination of
slowmeasurement rates or slow thruster dynamics causes the phase-plane trajectories to
overshoot the switching curve. Eventually, the error states (ϕe,ϕe) become “close” to the
origin and enter a limit cycle where the reaction jets “chatter” between positive and neg-
ative at high frequency. Consequently, the attitude error and its rate are never driven to
zero and instead “loop” around the origin.

13.5.2 Reaction Jet Control Law

Our phase-plane analysis of satellite attitude dynamics with on–off reaction jets has led
to the switching-curve concept illustrated in Figures 13.33 and 13.34. In this subsection,
we will present an explicit feedback control equation that mechanizes the switch-
ing curve.
Equations (13.58) and (13.59) define the top-half and bottom-half switching curves

depicted in Figure 13.33. The basic switching-curve equation is

1
2
ϕ2
e =uϕe (13.60)
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where u= ± 2Fr/I is the torque acceleration. The top-half switching curve in
Figure 13.33 uses negative torque (u= −2Fr/I), while the bottom-half curve uses positive
torque (u= +2Fr/I). We can manipulate Eq. (13.60) to develop a feedback control equa-
tion that determines when to use positive or negative reaction jets. Because we desire an
equation that will determine the correct sign for the control torque, let us rewrite
Eq. (13.60) and eliminate the torque acceleration u

1
2
ϕe ϕe = −αϕe (13.61)

where themagnitude of the torque acceleration (or, torque-to-inertia ratio) is defined as

α
2Fr
I

> 0 (13.62)

Equation (13.61) uses ϕe ϕe instead of ϕ2
e in order to retain the correct sign for attitude

rate when the attitude error ϕe is positive. Note that Eq. (13.61) holds for the top-half
switching curve (i.e., the second quadrant of the phase plane where ϕe < 0 and ϕe > 0)
and the bottom-half switching curve (i.e., the fourth quadrant where ϕe > 0 and
ϕe < 0). Next, rearrange Eq. (13.61) to define the switching signal σ

σ = −αϕe−
1
2
ϕe ϕe (13.63)

We will use the switching signal σ to determine which reaction jets to fire for attitude
control. It should be clear to the reader that σ = 0 on the switching curve by simply com-
paring Eqs. (13.60), (13.61), and (13.63).
Let us check the sign of the switching signal σ in all four quadrants of the phase plane

shown in Figure 13.33 (remember that constant α is always positive). In the first
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quadrant, the attitude error and its rate are both positive (ϕe > 0,ϕe > 0), and therefore the
switching signal σ is always negative. In the second quadrant (ϕe < 0, ϕe > 0), the switch-
ing curve denotes the condition where σ = 0. For the second-quadrant region above the
switching curve, the quadratic term ϕe ϕe/2 dominates the term αϕe and therefore σ < 0.
Below the second-quadrant switching curve the reverse is true: αϕe dominates the quad-
ratic term and hence switching signal σ > 0. In the third quadrant, we have ϕe < 0 and
ϕe < 0, and therefore the switching signal σ is always positive. Finally, the fourth quadrant
(ϕe > 0, ϕe < 0) is divided by the switching curve (σ = 0). Below the fourth-quadrant
switching curve, the quadratic term ϕe ϕe/2 dominates αϕe and therefore σ > 0; above
the switching curve, the reverse is true and σ < 0.
Table 13.1 summarizes the switching signal results and correlates them with the neg-

ative and positive torque regions in the phase plane depicted in Figure 13.33. It is clear
that the switching signal σ defined by Eq. (13.63) dictates the reaction jet selection for
attitude control: if σ < 0 fire the negative-torque reaction jets, if σ > 0 fire the posi-
tive-torque jets. Because the attitude error is ϕe =ϕ−ϕref , the attitude error rate is equal
to the satellite’s angular velocity (i.e., ϕe =ϕ) when the reference attitude angle is con-
stant. Using this assumption, we may use Eq. (13.63) to develop the following feedback
equation for control torque Mc

Mc =
+ 2Fr if σ = −αϕe−0 5 ϕ ϕ > 0

−2Fr if σ = −αϕe−0 5 ϕ ϕ < 0
(13.64)

Equation (13.64) is a nonlinear feedback control law that determines the control torque
Mc. It is nonlinear because the control signal (torque Mc) is discontinuous; that is, the
control torque will instantly jump from positive to negative (or vice versa) depending
on the sign of the switching signal σ. Equation (13.64) dictates that control torque
can only be two values ( ± 2Fr) that correspond to firing the positive or negative jets.
Figure 13.36 shows a closed-loop reaction-jet control system that utilizes Eq. (13.64)

for satellite torque. The reader should be able to match the signal-path labels in
Figure 13.36 with the respective equations: attitude error ϕe [Eq. (13.49)], switching sig-
nal σ [Eq. (13.63)], and control torque Mc [Eq. (13.64)]. The output w of the “relay with
dead zone” block in Figure 13.36 is

Table 13.1 Switching signal and corresponding reaction-jet torque.

Phase-plane region Switching signal Reaction-jet torque

First quadrant σ < 0 Negative

Second quadrant (above switching curve) σ < 0 Negative

Second quadrant (below switching curve) σ > 0 Positive

Third quadrant σ > 0 Positive

Fourth quadrant (below switching curve) σ > 0 Positive

Fourth quadrant (above switching curve) σ < 0 Negative
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w=

+1 if σ > ε

0 if −ε≤ σ ≤ ε

−1 if σ < −ε

(13.65)

where ± ε is the width of the “dead zone.” Therefore, the series connection of this relay
block and the gain 2Frmechanizes the jet torqueMc prescribed by Eq. (13.64). Setting ε =
0 (no dead zone) turns the relay in Figure 13.36 into a pure signum (or sign) function, that
is, w= sgn σ . Using a pure signum switching function in an operational setting is not
desirable because the switching signal σ will never exactly equal zero as the satellite
approaches zero attitude error and zero angular velocity. Hence, a relay without dead
zone will result in “chattering” control between positive and negative jets when the sat-
ellite attitude error approaches zero. This control strategy is obviously undesirable
because it wastes onboard fuel even though the satellite’s attitude error may be infinites-
imally small.
The following examples illustrate the performance of a closed-loop reaction-jet sys-

tem. We will show what effect the dead zone has on the control torque and system
response.

Example 13.5 Consider again a single-axis attitude maneuver depicted in Figure 13.30.
In this case, each reaction jet can supply a force of 400 N when fired (the jet thrust is
constant and cannot be throttled). The satellite has moment of inertia I3 = 6,400
kg-m2 and the moment arm of each jet is 2 m (these satellite parameters are based
on the roll axis of the Apollo capsule). Suppose the satellite’s current attitude angle
and angular rate are ϕ0 = 60 and ϕ0 = −10 deg/s, respectively, and that the reference
(desired) attitude is ϕref = 105 as shown in Figure 13.30. Obtain the closed-loop attitude
response using the nonlinear feedback control law that utilizes the switching signal σ.
Figure 13.36 shows the reaction-jet control system using the switching signal. There is

no way to obtain the system response using analytical methods because the control sys-
tem is nonlinear; we must use a numerical simulation to obtain the response. We can

Mc

5.0

Fr2
I

1–

0.5

–
s

1

s

1ϕref +

+

ϕe
–α

w = ±1, 0

Relay with 
dead zone

1

–1 

x
abs( )

Jet 
torque

Switching 
signal

Satellite
attitude

Reference
attitude

σ ϕ ϕ

ϕ

ϕ

ϕ

ϕϕ

ϕ

Figure 13.36 Closed-loop attitude control using reaction jets and switching signal.
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create a block-diagram simulation of Figure 13.36 using MATLAB’s Simulink software.
The Simulink details are not presented here; the interested reader may consult Kluever
[4; pp. 162–183, 469–484] for a primer on Simulink.
For this satellite, the magnitude of the control torque is

Mc = 2Fr = 2 400N 2m =1,600N-m

The constant torque acceleration (magnitude) is α= Mc /I3 = 0 25 rad/s2.
First, let us obtain the closed-loop attitude response with dead-zone ε = 0.0004

(rad/s)2. The switching-signal equation (13.63) shows that when the angular velocity
is very small (ϕ≈0), the switching signal σ is in the dead zone when the magnitude of
the attitude error is less than ε/α. For α = 0.25 rad/s2 and ε = 0.0004 (rad/s)2, the jets
are inactive when ϕe < 0 0016 rad (or, ϕe < 0 1 ). Figures 13.37 and 13.38 show the time
histories of the closed-loop attitude error (ϕe) and angular velocity (ϕ), respectively.
Figure 13.37 shows that the attitude error begins at –45 and eventually goes to zero
at about 4.1 s. Figure 13.38 shows that satellite’s angular velocity starts at –10 deg/s
and steadily increases at a linear rate with time due to the positive torque jets. Positive
torque jets are initially used because σ > ε at time t = 0 [see Eq. (13.63)]. At time t = 2.5 s,
the switching signal σ becomes less than –ε, and control switches to negative torque jets.
At approximately t = 4.4 s, Figures 13.37 and 13.38 show that the attitude error and atti-
tude rate become small enough so that the switching signal is in the dead zone (i.e.,
−ε ≤ σ ≤ ε) and the jets are turned off. Figure 13.39 shows the time history of the reac-
tion-jet control torque: the switching at t = 2.5 s is apparent in this figure. At t = 4.4 s, the
jets are turned off because the attitude error and attitude rate are small enough so that
σ ≤ ε. However, at time t = 4.9 s, the satellite’s attitude angle has drifted away from the
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reference attitude (note the very small negative attitude rate in Figure 13.38 for t > 4.4 s),
and consequently σ > ε and a very short positive torque pulse is applied to null the small
negative attitude rate. Figure 13.40 shows the closed-loop attitude motion in the phase
plane. The initial error state, ϕe = –45 and ϕe = −10 deg/s, is in the positive-torque
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region, and therefore the switching-signal control law (13.64) correctly calls for positive
torque at t = 0. Figure 13.40 also shows that the feedback control system correctly
switched to negative torque jets when the error states reached the switching curve.
Finally, let us obtain the closed-loop attitude response with a much smaller dead-

zone ε = 5(10−8) (rad/s)2. The closed-loop attitude error and error rate responses
are essentially the same as the responses shown in Figures 13.37 and 13.38; that is,
the satellite initially exhibits positive angular acceleration (positive torque) between
t = 0 and t = 2.5 s, whereupon the torque jets switch to a negative value for
2 5 ≤ t ≤ 4 4 s. The major effect of the tiny dead zone is displayed by the torque history
after the satellite has essentially reached its zero-error state. Figure 13.41 shows the reac-
tion-jet control torque history for the case with ε = 5(10−8) (rad/s)2. The torque profile
matches the control torque for dead zone ε = 0.0004 (rad/s)2 (Figure 13.39) until t = 4.4 s.
For t > 4.4 s, the attitude error ϕe and attitude rate ϕ are very small (i.e., these states are
essentially at the origin of the phase plane), and hence the switching signal σ is also very
small. However, because ε is tiny, the switching signal rapidly “drifts” in and out of the
dead zone due to very small changes in ϕe and ϕ. The result is the high-frequency jet
switching shown in Figure 13.41 for t > 4.4 s. This “chattering” control is undesirable
because it wastes reaction-jet fuel as it attempts to keep the attitude errors within an
unreasonable error threshold.
A final note is in order. In this example, the fixed step size of the numerical integra-

tion scheme is Δt = 0.002 s, which implies that the feedback switching signal σ is com-
puted 500 times each second (i.e., the sample rate is 1/Δt = 500 samples per second =
500 Hz). If the sampling (or feedback measurement) rate is too slow, then the jet
switching will be delayed as shown in Figure 13.35. Increasing the sampling rate
reduces the switching delay and extraneous control pulses when the error states
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approach zero. These issues are associated with digital control systems and are beyond
the scope of this textbook.

Example 13.6 Consider again the satellite and its initial conditions presented in Exam-
ple 13.5. Determine the point in the phase plane where the first jet switching occurs
(assuming a zero dead-zone for the relay), and estimate the total maneuver time to bring
the satellite to rest at the desired attitude.
The initial state in the phase plane is attitude error ϕe 0 =ϕ0−ϕref = −45 (= −0 7854

rad) and ϕe 0 = −10 deg/s (= –0.1745 rad/s). Because the initial state is “below” the
switching curve (Figure 13.40), we select the positive torque jets [or, we can show that
the initial switching signal determined by Eq. (13.64) is positive]. The phase plane profile
is determined by Eq. (13.57):

1
2
ϕ2
e −uϕe +C = 0 (13.66)

where u = +2Fr/I = 0.25 rad/s2 is the positive torque acceleration. Substituting the initial
error state into Eq. (13.66), we find that C = –0.2116 (rad/s)2. The switching point in the
phase plane is the intersection of the positive-torque parabolic curve [Eq. (13.66] and the
negative-torque switching curve (with C = 0; see Figure 13.32). The intersection of these
two parabolic curves is

1
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Figure 13.41 Closed-loop reaction-jet torque with dead-zone ε = 5(10−8) (rad/s)2 and high-frequency
chatter at steady state (Example 13.5).
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Using C = –0.2116 (rad/s)2, we find that intersection occurs at the attitude error ϕe =
−0 4232 rad (= –24.25 ). The attitude error rate at the switching curve can be deter-
mined by setting the switching signal, Eq. (13.63), to zero:

σ = −αϕe−
1
2
ϕe ϕe = 0 (13.67)

Using ϕe = –0.4232 rad and α = 0.25 rad/s2 in Eq. (13.67), we find that the attitude rate at
the switching curve is ϕe = 0 4560 rad/s. In summary, the switching point is

ϕe t1 = −0 4232 rad, ϕe t1 = 0 4560 rad/s

Or,

ϕe t1 = −24 25 , ϕe t1 = 26 35 deg/s

Time t1 is the switching time. This switching point matches the numerical simulation
results presented in Example 13.5 (see Figure 13.40).
The second part of this problem involves estimating the total maneuver time. We

neglect the effect of the relay’s dead-zone and assume “perfect switching” when σ = 0.
Because the torque acceleration is constant, it is easy to integrate the angular acceleration
of the attitude error by combining Eqs. (13.51), (13.47), and (13.48):

ϕe =
± 2Fr
I

= ± 0 25 rad/s2

The integral is

ϕe t =ϕe 0 ± 0 25t rad/s (13.68)

For the initial positive-torque segment, we use positive torque acceleration, +0.25 rad/s2.
Using the initial attitude rate [ϕe 0 = –0.1745 rad/s] and the attitude rate on the switch-
ing curve [ϕe t1 = 0 4560 rad/s], we determine the switching time:

t1 =
ϕe t1 −ϕe 0

0 25
= 2 538 s

This switching time corresponds to the numerical simulation results from Example 13.5,
and can be seen in Figures 13.38, 13.39, and 13.41. The remaining maneuver time to the
origin (time on the negative-torque switching curve) can be computed using a modified
version of Eq. (13.68):

Δt =
ϕe tf −ϕe t1

−0 25
= 1 840 s

where ϕe tf = 0 is the final attitude rate (the origin of the phase plane). The total maneu-
ver time is tf = t1 + Δt = 4.38 s. This calculation shows a good match with the simulation
results of Example 13.5 shown in Figures 13.38 and 13.39.
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13.6 Nutation Control Using Reaction Jets

Sections 13.4 and 13.5 discussed single-axis attitude maneuvers using reaction wheels
and reaction jets. In both cases, we developed feedback control systems that automati-
cally performed a rotation about a single axis to a desired attitude angle. In this section,
we will present a feedback control scheme for removing the nutation angle (or “wobble”)
of a spinning satellite.
Recall that the nutation angle θ is the “tilt” of the satellite’s body-fixed 3 axis relative to

the inertially fixed angular momentum vector H (see Section 12.3). Figure 13.42
(Figure 12.12 from Chapter 12) shows the nutation angle θ and angle γ for a prolate sat-
ellite. For torque-free motion, the space cone (i.e., vector H) is fixed and the body cone
(containing the 3 axis) rolls along the space cone as shown in Figure 13.42. A satellite is
often spin stabilized before firing an onboard rocket for a large-scale orbital maneuver.
Recall that a semi-rigid oblate satellite is stable about its major axis (the “major-axis
rule”), and hence a passive nutation damper may be used to remove the nutation angle
over time. However, the geometry of a launch vehicle’s payload shroud favors prolate
(“pencil-shaped”) satellites. Therefore, spinning a semi-rigid prolate satellite about its
minor axis will eventually lead to instability. An active feedback control scheme for
removing nutation can be used on prolate satellites. We will briefly investigate a nutation
control using on–off reaction jets.
Figure 13.43 shows one possible reaction-jet configuration for controlling rotational

motion about all three axes. The six jets are in two clusters of three, where each cluster
is offset from the 3 axis by radial distance r, and has vertical height z above the 1–2 plane.
All six reaction jets are identical and produce thrust force F when fired. Jets a and d each
produce force F in the +u1 direction, and jets c and f produce force F in the –u1 direction.
Firing jet b produces a force in the +u2 direction, while firing jet e produces a force in the
–u2 direction. No jets produce a force component along the 3 axis. Table 13.2 sum-
marizes the jet combinations that produce positive and negative torques about the body
axes. Note that the control torque about the 1 axis is half the magnitude of the 2-axis
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Figure 13.42 Spinningprolate satellitewith zero external torques: body cone rolls along fixed space cone.
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control torque because a 1-axis control torque involves a single jet and a 2-axis torque
involves firing two jets (jets a, d or c, f must be fired in pairs for a pure 2-axis torque,
otherwise a 3-axis torque component exists).
Let us develop a control law for reducing a satellite’s nutation angle θ. The satellite’s

nutation angle is

θ = tan−1 H12

H3
(13.69)

whereH12 is the projection ofH onto the 1–2 plane, andH3 is the component ofH along
the 3 axis. For an axisymmetric satellite (I1 = I2), the nutation angle is

θ = tan−1 I1ω12

I3ω3
(13.70)

where ω12 is the component of the angular velocity vector ω projected onto the
1–2 plane

ω12 = ω2
1 +ω2

2 (13.71)

and ω3 is the spin component along the 3 axis. Therefore, a control law that drives both
1- and 2-axis spin components ω1 and ω2, respectively, to zero will remove the nutation
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Figure 13.43 Reaction jet placement for three-axis control.

Table 13.2 Reaction jet torques corresponding to the jet
configuration in Figure 13.43.

Jets fired Control torque in 123 body frame

a, f 2Fru3

c, d –2Fru3

e Fzu1

b –Fzu1

a, d 2Fzu2

c, f –2Fzu2

Space Flight Dynamics528



angle and align the 3 axis and angular velocity vector ω with the angular momentum
vector H. Because control torques exist, the angular momentum H is not constant.
Recall Euler’s moment equations, Eq. (12.39), for general rotational motion with

respect to principal 123 body axes:

M1 = I1ω1 + I3− I2 ω2ω3 (13.72)

M2 = I2ω2 + I1− I3 ω1ω3 (13.73)

M3 = I3ω3 + I2− I1 ω1ω2 (13.74)

whereM1,M2, andM3 are the control torques about the principal body axes. For an axi-
symmetric satellite (I1 = I2), Eq. (13.74) shows that I3ω3 = 0 ifM3 = 0, orω3 = n= constant.
Using I1 = I2,ω3 = n, and the constant a= I3− I2 n, the first two Euler moment equations
become

M1 = I1ω1 + aω2 (13.75)

M2 = I1ω2−aω1 (13.76)

The analysis becomes difficult from this point because the jet torques M1 and M2 can
only take the positive or negative values presented in Table 13.2; that is, M1 = ± Fz
andM2 = ± 2Fz. Hence, any feedback scheme for control torquesM1 andM2 will be non-
linear because it can only command three values: positive, negative, or zero torque. We
will arrive at a feasible nonlinear control law by using a heuristic argument that is based
on the fictional linear control laws:

M1 = −K1ω1, M2 = −K2ω2 (13.77)

where K1 and K2 are feedback gains. Using these (fictional) control laws in Eqs. (13.75)
and (13.76), we obtain

I1ω1 = −aω2−K1ω1 (13.78)

I1ω2 = aω1−K2ω2 (13.79)

The next step involves state-variable methods. We may define the two-element state
vector

x=
x1

x2
=

ω1

ω2
(13.80)

Hence, Eqs. (13.78) and (13.79) may be written as

x=
x1

x2
=

ω1

ω2
=

−K1/I1 −a/I1

a/I1 −K2/I1
x (13.81)

The stability of this linear system can be determined by computing the so-called eigen-
values of the 2 × 2 matrix in Eq. (13.81). A detailed discussion of linear system analysis is
beyond the scope of this section (besides, the linear control law is fictional and the actual
system is not linear). The eigenvalues are the roots of the following quadratic equation:

s2 +
K1 +K2

I1
s+

K1K2 + a2

I1
= 0 (13.82)
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Closed-loop stability of the linear system is ensured if the first-order and zeroth-order
polynomial coefficients in Eq. (13.82) are positive (the interested readermay consult Klu-
ever [4; pp. 232–234] for a discussion of eigenvalues and stability). Therefore, the linear
system is stable if both gains K1 and K2 are positive. Recall that the fictional linear control
laws are M1 = −K1ω1 and M2 = −K2ω2. Both linear controls command jet torques in
directions that are the opposite of the respective spin components. Because the control
torques can only take on a fixed magnitude (Table 13.2), we can use the linear-analysis
results to determine the sign of the controls:

M1 = −Fz sgn ω1 (13.83)

M2 = −2Fz sgn ω2 (13.84)

Equations (13.83) and (13.84) are nonlinear nutation control laws for the reaction-jet
torques about the 1 and 2 principal axes. Recall that the linear system is stable when
the controls are M1 = −K1ω1 and M2 = −K2ω2 (with positive gains), but this feedback
law requires reaction jets with variable thrust. The nonlinear control laws (13.83) and
(13.84) use the signs of the angular velocity feedback (ω1 and ω2) to determine which
jets to fire (i.e., positive or negative torque).
Because the feedback torque laws (13.83) and (13.84) are nonlinear, there is no way to

develop analytical expressions for the ensuing satellite motion with nutation control.
Therefore, we must resort to numerical integration methods to determine the satellite’s
response. The following example illustrates the nonlinear nutation control system.

Example 13.7 Consider an axisymmetric prolate satellite with a reaction-jet con-
figuration as shown in Figure 13.43. The principal moments of inertia are I1 = I2 =
4,317 kg-m2 and I3 = 2,800 kg-m2 (these moments of inertia correspond to a cylindrical
satellite with a mass of 1,400 kg, radius of 2 m, and height of 5 m). Each reaction jet
provides force F = 50 N when fired, and the vertical height from the jet clusters to the
1–2 plane is z = 2.5 m. At time t = 0, the satellite’s angular velocity isω = 6 rad/s. However,
the angular velocity vectorω is initially tilted 8 from the 3 axis (i.e., γ = 8 ), which causes a
wobbling motion. Demonstrate the effectiveness of the nonlinear nutation control laws
(13.83) and (13.84) by using a numerical simulation of the closed-loop system.
First, we should note that because the satellite is axisymmetric (I1 = I2) and no torque is

produced about the 3 axis (M3 = 0), Euler’s moment equations are reduced to Eqs. (13.75)
and (13.76). Next, let us substitute the nonlinear nutation control laws (13.83) and
(13.84) for control torques M1 and M2 in Eqs. (13.75) and (13.76). The result is

I1ω1 = −aω2−Fz sgn ω1 (13.85)

I1ω2 = aω1−2Fz sgn ω2 (13.86)

where a= I3− I2 n and n = ω3. BecauseM3 = 0 and I1 = I2, the spin component along the
3 axis is constant, that is,

n=ω3 =ωcosγ = 5 9416 rad/s constant

Using the 3-axis spin component n and moments of inertia I3 and I2, we determine the
constant a = –9,013.42 kg-m2/s. Figure 13.44 shows the closed-loop nutation control
system for the axisymmetric satellite. Although it requires carefully tracing the signal
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paths, the reader should be able to identify the governing equations (13.85) and (13.86) in
Figure 13.44. Note also that a relay with dead zone is used in the feedback path instead of
a pure “sign” or signum function (again, the dead zone will reduce the control “chatter”
when spin components ω1 and ω2 become acceptably small). In an operational setting,
the jet selection is simply determined by checking the signs of the feedback from rate
gyroscopes mounted along the 1 and 2 axes. For example, if ω1 > 0 and ω2 < 0, fire
the reaction jet b (for M1 = –Fz) and jets a, d (for M2 = +2Fz). If either spin component
is smaller than the threshold of the dead zone, the jets are not fired.
Simulink was used to create and simulate the closed-loop system shown in

Figure 13.44. The initial value of the component of the angular velocity vector ω pro-
jected onto the 1–2 plane is

ω12 =ωsin γ = 0 8350 rad/s

Suppose the ω12 vector is initially 30 (counterclockwise) from the 1 axis (recall for
torque-free motion, the ω12 vector will rotate clockwise for a prolate satellite; see
Figure 12.9). The initial spin components are ω1 0 =ω12 cos 30o = 0.7232 rad/s, and
ω2 0 =ω12 sin 30o = 0.4175 rad/s. Each dead zone threshold is set to 0.001 rad/s
(≈0 06 deg/s). Figure 13.45 shows the time histories of the spin components ω1(t)
and ω2(t), respectively. The results of the nutation control effort are apparent in these
figures as both off-axis spin components ω1 and ω2 are driven to zero in about 15 s.
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Relay with dead zone

Relay with dead zone
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1
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M1
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+

+
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+

M2
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ω2
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ω2

ω1

ω2

1
s

1
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1
s

Figure 13.44 Nutation control system for an axisymmetric satellite (Example 13.7).
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After 15 s, the satellite’s angular velocity vector ω is essentially aligned with the 3 axis
[recall that ω3 = 5.9416 rad/s (constant) at all times becauseM3 = 0 and I1 = I2; therefore,
the magnitude of the final angular velocity is equal to ω3]. Figure 13.46 shows the 1- and
2-axis control torques,M1 andM2, respectively. Each control switching corresponds to a
sign change of the appropriate spin component. Note that the magnitude of torqueM1 =
Fz = 125 N-m (one jet), whereas the 2-axis torquemagnitude isM2 = 2Fz = 250N-m (two
jets). Both control torques go to zero for t > 15 s because each spin component is within
the dead zone and the nutation has been removed.
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Figure 13.45 Response using nutation control: (a) 1-axis spin; and (b) 2-axis spin (Example 13.7).
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Finally, Figure 13.47 shows the time histories of the nutation angle θ and “tilt” angle γ.
The initial nutation angle is

θ = tan−1 I1ω12

I3ω3
= 12 23

Figure 13.47 shows that angles θ and γ steadily decrease as the nutation control torques
remove the off-axis spin componentsω1 andω2. At t = 15 s, both angles have been driven

(a)

(b)

0 2 4 6 8 10 12 14 16 18 20
Time, s

–300

–200

–100

0

100

200

300

1-
ax

is
 c

on
tr

ol
 to

rq
ue

, M
1,

 N
-m

0 2 4 6 8 10 12 14 16 18 20
Time, s

–300

–200

–100

0

100

200

300

2-
ax

is
 c

on
tr

ol
 to

rq
ue

, M
2,

 N
-m

Figure 13.46 Nutation control: (a) 1-axis control torque; and (b) 2-axis control torque (Example 13.7).
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to zero, and hence the 3 axis is aligned with the angular velocity vector ω and angular
momentum vector H.
As a final note, we can determine the change in angular momentum for the nutation

control. At t = 0, the initial angular momentum is

H0 = Iω0 =

4,317 0 0

0 4,317 0

0 0 2,800

0 7232

0 4175

5 9416

=

3,122

1,802

16,637

kg-m2/s

The magnitude is H0 = 17,023 kg-m2/s. For t > 15 s, the satellite is essentially in a pure
spin about its 3 axis, and therefore the final angular momentum is Hf = I3ω3 = 16,637
kg-m2/s. The external torque from firing reaction jets has reduced the magnitude of
the angular momentum by about 2%.

13.7 Summary

This chapter has presented examples of feedback schemes for satellite attitude control.
We began with a short introduction to feedback control concepts, including closed-loop
transfer functions and simple design rules for tuning a PD controller. This chapter has
focused on single-axis rotational maneuvers for satellites equipped with a reaction wheel
or on–off reaction jets. Reaction wheels offer smooth, continuous control by exchanging
the angular momentum between the satellite and the spinning wheel. Hence, reaction-
wheel controllers can be designed using linear control concepts. Reaction jets, on the
other hand, are on–off devices that deliver a fixed positive or negative control torque
when fired. Therefore, the control torque is discontinuous and the control system is
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Figure 13.47 Nutation control: nutation angle θ and angle γ vs. time (Example 13.7).
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nonlinear. We developed a switching-curve control law by using phase-plane analysis of
the satellite dynamics with on–off reaction jets. Finally, we investigated a nutation con-
trol scheme for removing the “wobbling”motion about the primary spin axis. Our nuta-
tion controller also used pulsed reaction jets and a nonlinear control law. Although this
chapter does not provide an exhaustive treatment of three-axis attitude control, it does
offer an introduction to realistic attitude control schemes.
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Problems

Conceptual Problems

13.1 Given the ordinary differential equation relating input u to output y

3y+ 8y= 0 2u

determine the corresponding transfer function G(s).

13.2 Given the ordinary differential equation relating input u to output y

2y + 7y+ 50y= 3u

determine the corresponding transfer function G(s).

13.3 Given the ordinary differential equation relating input u to output y

0 2y + 4y+ 12y= 0 2u+u

determine the corresponding transfer function G(s).
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13.4 Determine the undamped natural frequency ωn and damping ratio ζ for the sys-
tem defined by the differential equation in Problem 13.2.

Problems 13.5–13.8 involve the closed-loop control system shown in
Figure P13.5.

13.5 Determine the closed-loop transfer function if the controller is a simple
gain, GC s =KP .

13.6 Determine the closed-loop transfer function for a proportional-derivative (PD)
controller, GC s =KP +KDs.

13.7 Determine the closed-loop system’s undamped natural frequency ωn and damp-
ing ratio ζ for the proportional controller GC s = 10.

13.8 Determine the closed-loop system’s undamped natural frequency ωn and damp-
ing ratio ζ for the PD controller GC s = 10 + 12s.

13.9 A satellite is equipped with a reaction wheel. The wheel is mounted along the
3 axis and has moment of inertia Iw = 0.1 kg-m2. The satellite’s total moment
of inertia about the 3 axis (including the wheel) is I3 = 852.4 kg-m2. At time
t = 0, the satellite is spinning with angular velocity ω3 = 5 revolutions per minute
(rpm) about the 3 axis (i.e., ω3 = 5 u3 rpm). At t = 0, the reaction wheel’s angular
velocity relative to the satellite is zero.
a) Determine the angular momentum of the satellite.
b) A direct current (DC) motor brings the reaction wheel to the spin rate ωw =

3,500 u3 rpm. Determine the satellite’s angular velocity vector after the wheel
reaches this constant spin rate.

c) A DC motor brings the reaction wheel to the spin rate ωw = –3,500 u3 rpm.
Determine the satellite’s angular velocity vector after the wheel reaches this
constant spin rate.

13.10 A satellite is equipped with a reaction wheel mounted along the 3 axis. The satel-
lite’s moment of inertia about its 3 axis (not including the wheel) is Isat = 1,030
kg-m2. At time t = 0, the satellite is spinning with angular velocity vector ω3 =
0.35 u3 rpm and the reaction wheel’s angular velocity vector (relative to the sat-
ellite) is ωw = –2,751 u3 rpm. The DC motor driving the wheel is turned off and
eventually the reaction wheel comes to rest. The satellite’s spin rate also goes to

–

+ e(t) r(t)
GC(s)

1 y(t)

6s2

Figure P13.5
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zero when the wheel stops spinning relative to the satellite. Determine the
moment of inertia of the reaction wheel.

Problems 13.11–13.14 involve a satellite equipped with on–off reaction jets
for attitude control about all three axes. The satellite’s three principal moments
of inertia are I1 = 1,210 kg-m2, I2 = 1,080 kg-m2, and I3 = 1,730 kg-m2. Pairs of
reaction jets can provide the following external torques to the satellite: M1 =
± 95 N-m, M2 = ± 190 N-m, and M3 = ± 260 N-m. Figure 13.36 presents the
basic structure of the three feedback control laws for each body-fixed axis
(for simplicity assume perfect switching with a zero dead zone). In all cases
the attitude error is the satellite’s actual attitude angle minus the reference atti-
tude for a particular body axis. Assume single-axis maneuvers in all problems.

13.11 The satellite’s attitude error about the 1 axis is 25 and its 1-axis gyroscope is
sensing zero angular velocity. Determine the control-torque sequence and the
total maneuver time to reach zero attitude error and zero attitude rate.

13.12 The satellite’s attitude error about the 3 axis is –95 and its angular velocity
about the 3 axis is 2.5 deg/s. Determine the control-torque sequence and the
total maneuver time to reach zero attitude error and zero attitude rate.

13.13 The satellite’s 2-axis gyroscope is sensing –15 deg/s at time t = 0. The closed-
loop control system selects positive reaction-jet torque at t = 0 and the satellite
reaches zero attitude error and zero attitude rate without switching to negative
torque jets. Determine the satellite’s attitude error at t = 0 and the maneu-
ver time.

13.14 At time t = 0, the satellite’s attitude error about the 3 axis is 11 and its 3-axis
angular velocity is 20 deg/s.
a) Determine the point in the phase plane where torque switching occurs.
b) Determine the maneuver time to the torque-switching point.
c) What is the satellite’s maximum attitude error during the closed-loop

maneuver?

13.15 Consider again the demonstration of nutation control presented in Example
13.7. Figure 13.45 shows that the 1- and 2-axis spin rates during nutation damp-
ing are periodic with an amplitude that appears to be linear with time. Therefore,
we can approximate their time histories as

ω1 t = c0 + c1t cos λt + β (13.P1)

ω2 t = c0 + c1t sin λt + β (13.P2)

where c0 and c1 are constants that define the linear “amplitude envelop” seen in
Figures 13.45a and 13.45b. The “coning motion” angular velocity λ is defined by
the principal moments of inertia and the 3-axis spin rate ω3 [see Eq. (12.43) in
Chapter 12] and β is a phase angle that depends on initial conditions. Use Eqs.
(13.P1) and (13.P2) to estimate the time history of the angular velocity projection
onto the 1–2 plane, that is, ω12(t). Take the time-derivative of the nutation angle
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θ = tan−1 I1ω12

I3ω3

and use the approximate solution for ω12(t) to estimate the time rate of nutation
removal. Does the approximate nutation rate match the numerical simulation
results as seen in Figure 13.47?

Mission Applications

Problems 13.16–13.19 involve the ARTEMIS spacecraft which was launched by
the European Space Agency (ESA) in July 2001. Due to a partial failure of the Ariane
5 launch vehicle, the ARTEMIS spacecraft used its electric propulsion (EP) ion thrus-
ters to complete the final phase of the transfer to geostationary-equatorial orbit
(GEO). During the EP thrusting phase, the spacecraft must maintain a negative
rotation about its pitch axis at the orbital angular velocity so that the body-fixed
thrust vector remains aligned with the local horizon and the velocity vector (see
Figure P13.16). The satellite’s thrust vector intersects the center of mass and
therefore does not impart an external torque. Assume that the ARTEMIS spacecraft
had zero angular momentum when it was placed in sub-geostationary orbit by the
launch vehicle.

The spacecraft and wheel properties are Isat = 590 kg-m2 (satellite moment of inertia
about its pitch axis without the reaction wheel) and Iw = 0.03 kg-m2 (reaction wheel
moment of inertia mounted along the pitch axis). The DC motor properties are Km =
0.025 N-m/A (motor torque constant), Kb = 0.025 V-s/rad (back-emf constant), resist-
ance R = 2 Ω, and b = 4(10–5) N-m-s/rad (friction-torque coefficient).

13.16 The ARTEMIS spacecraft began its orbit transfer to GEO in a circular orbit with
an altitude of 31,000 km. Determine the reaction wheel’s angular velocity (mag-
nitude and direction) in order to maintain the satellite’s angular velocity
required to “steer” the EP thrust vector.

+ Pitch axis

Satellite

Orbit

Local horizontal
(velocity vector)

Local vertical

Figure P13.16
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13.17 Using the orbital conditions in Problem 13.16, determine the DC motor torque
Tm, the armature current im, and the input voltage to the DC motor ein.

13.18 Repeat Problems 13.16 and 13.17 for the case where the ARTEMIS spacecraft is
in a quasi-circular orbit at an altitude of 35,000 km (i.e., near GEO).

13.19 When the ARTEMIS spacecraft reached its GEO target, it needed to point its
communication antenna toward Earth (along the local vertical direction shown
in Figure P13.16). Therefore, the mission operators want the ARTEMIS space-
craft to achieve a spin rate of 0.02 rad/s (about 1 deg/s) about its negative pitch
axis. Determine the reaction wheel’s spin rate ωw (in rpm) and input voltage ein
required for this attitude maneuver about the pitch axis.

13.20 A communication satellite in GEO must keep its antenna pointed in the local
vertical direction (i.e., pointing to Earth). Therefore, the satellite must maintain
a constant (negative) angular velocity about its pitch axis (Figure P13.16 shows
that the positive pitch axis is in the opposite direction as the orbital angular
momentum vector). Suppose that the communication satellite is disturbed by
the following solar radiation pressure (SRP) torque about its pitch axis:

MSRP = 10
−4 cosω0t N-m

where ω0 is the orbital angular velocity for GEO and time t is measured relative
to local sunrise so that zero SRP torque occurs at noon and midnight. Control
engineers propose a pitch-axis reaction wheel for absorbing the SRP torque. The
wheel has the following angular velocity profile:

ωw t =ωw +ωw t

where ωw is the wheel’s constant (nominal) spin rate and ωw t is the wheel’s
time-varying spin rate. If the satellite’s moment of inertia about its pitch axis
is 560 kg-m2 (without the reaction wheel) and the wheel’s moment of inertia
is Iw = 0.06 kg-m2, determine the time-varying wheel spin rate ωw t (in rpm)
required to absorb the SRP torque.
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Appendix A

Physical Constants

We need the physical parameters for planetary bodies to numerically calculate two-body
orbits. Table A.1 presents the equatorial radius and gravitational parameter for celestial
bodies in our solar system. Table A.2 presents the physical characteristics of the Earth,
including equatorial and polar radii, standard gravitational acceleration, and the second
zonal harmonic coefficient.

Table A.1 Physical parameters for celestial bodies.

Body
Equatorial radius
(km)

Gravitational parameter, μ
(km3/s2)

Sun 695,700 1.32712440(1011)

Mercury 2,439.7 2.2033(104)

Venus 6,051.8 3.24860(105)

Earth 6,378.137 3.98600442(105)

Earth’s moon 1,737.5 4.902801(103)

Mars 3,396.19 4.28283(104)

Jupiter 71,492 1.266865(108)

Saturn 60,268 3.793119(107)

Uranus 25,559 5.793940(106)

Neptune 24,764 6.836530(106)

Pluto 1,151 8.719(102)
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Table A.2 Physical characteristics of the Earth.

Characteristic Value

Equatorial radius, RE 6,378.137 km

Polar radius, RP 6,356.752 km

Gravitational parameter, μE 3.98600442(105) km3/s2

Standard acceleration due to gravity, g0 9.80665m/s2

Rotation rate, ωE 7.29211576(10–5) rad/s

Second zonal harmonic coefficient (oblateness), J2 0.0010826267
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Appendix B

Review of Vectors

B.1 Introduction

This appendix presents a very brief review of vectors and operations involving vectors.
Much of the material discussed here will likely be familiar to engineering students.

B.2 Vectors

We will denote vectors with bold-face typeset, such as position vector r. A vector is a
quantity that has magnitude and direction. Figure B.1 shows vector a in Cartesian coor-
dinate systemOXYZ. Vector a points from originO to particle P. The length of vector a is
its magnitude, whereas its direction can be defined by using the directions of the three
orthogonal axes X, Y, and Z.
A unit vector has a magnitude of one (unity) and a direction. A unit vector ua that

points in the same direction as vector a is defined by

ua =
a
a

(B.1)

where a is themagnitude (or length) of vector a. We can define Cartesian unit vectors I, J,
and K along the +X, +Y, and +Z axes, respectively. Thus, we may express vector a in
terms of its Cartesian components shown in Figure B.1:

a= aXI+ aY J+ aZK (B.2)

The magnitude of vector a is

a= a = a2X + a2Y + a2Z (B.3)
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B.3 Vector Operations

B.3.1 Vector Addition

Figure B.2 illustrates vector addition: c = a + b. Resultant vector c denotes the position of
particle Q. We can obtain the IJK coordinates of vector c by individually adding the IJK
components of vectors a and b as follows:

c= a+b= aX + bX I+ aY + bY J+ aZ + bZ K (B.4)

Or, we may rewrite Eq. (B.4) as a three-element column vector:

c= a+ b=

aX + bX

aY + bY

aZ + bZ

(B.5)

X

O

Y

aZ

P

Z

a

aY
aX

Figure B.1 Vector in a Cartesian coordinate system.

O

X

Y

b

P

Z

Q

a

c

Figure B.2 Vector addition.
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where it is understood that the top, middle, and bottom elements of vector c are the I, J,
and K components. The time derivative of the vector addition operation is

d
dt

a+ b = a+b (B.6)

B.3.2 Cross Product

The cross (or vector) product of vectors a and b is vector c, written as

c= a×b (B.7)

and read as “vector c equals a cross b.” The direction of resultant vector c can be deter-
mined by the “right-hand rule,”where the fingers of the right hand are curled from vector
a to vector b, and the right-hand thumb points in the direction of c. Hence, resultant
vector c is perpendicular to the plane containing vectors a and b. The magnitude of
the cross product c= a× b is

c= absinθ (B.8)

where θ is the smallest angle between vectors a and b if we place their “tails” together
(therefore, angle θ is between zero and 180 ). It is important to note that the cross prod-
uct is not commutative, that is, a×b b× a. However, the cross product does follow

a×b= −b× a (B.9)

The distributive rule for the cross product is

a× b+ c = a×b+ a× c (B.10)

and the associative law for the cross product is

α a× b = αa ×b= a× αb = a× b α (B.11)

where α is any (scalar) constant.
The cross product of two parallel vectors is the zero or null vector. For example,

a× a= 0 (B.12)

It is important to note that although the right-hand side of Eq. (B.12) is zero, it is a 3 × 1
column vector with three zero elements. Hence, we can write the cross products of the
IJK unit vectors for the Cartesian frame as

I× I= J× J=K×K= 0 (B.13)

Because the cross product c is perpendicular to vectors a and b, we can express the
Cartesian frame unit vectors as cross products:

I× J=K

J×K= I

K× I= J

(B.14)
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We can compute the cross product of vectors a and b expressed in Cartesian coordi-
nates by using the determinant expansion:

c= a×b=

I J K

aX aY aZ

bX bY bZ

= aYbZ−aZbY I− aXbZ −aZbX J+ aXbY −aYbX K

(B.15)

The time derivative of the cross product is

d
dt

a×b = a×b+ a×b (B.16)

B.3.3 Dot Product

The dot (or scalar) product of vectors a and b is a scalar, and is written as

a b= abcosθ (B.17)

and read as “a dot b.”As with the cross product, θ is the smallest angle between vectors a
and b when we place their tails together. The order of the dot product does not make a
difference, and hence

a b= b a (B.18)

The distributive law for the dot product is

a b+ c = a b+ a c (B.19)

Multiplication by scalar α can be performed in any order:

α a b = αa b= a αb = a b α (B.20)

The dot product of two orthogonal vectors is zero. For example, consider the IJK unit
vectors for the Cartesian coordinate system:

I J= J K=K I= 0 (B.21)

Note that the right-hand side of Eq. (B.21) is a scalar zero. If vectors a and b are expressed
in IJK (Cartesian) coordinates, their dot product is

a b= aXbX + aYbY + aZbZ (B.22)

The dot product of a vector with itself is its magnitude squared:

a a= aXaX + aYaY + aZaZ = a2 (B.23)

The time derivative of the dot product is

d
dt

a b = a b+ a b (B.24)
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We can determine the time derivative of the dot product of a vector with itself by differ-
entiating both sides of Eq. (B.23) and making use of Eq. (B.24):

d
dt

a a = a a + a a = 2aa (B.25)

Dividing Eq. (B.25) by 2, we obtain

a a= aa (B.26)

We used the above dot-product property in Section 2.3 to demonstrate conservation of
energy for the two-body problem.

B.3.4 Scalar Triple Product

The scalar triple product is an operation involving three vectors. As the name implies, the
result is a scalar. The scalar triple product is defined by

a b× c = b c× a = c a×b (B.27)

We used the scalar triple product in Section 2.4 in the derivation of the trajectory
equation.

B.3.5 Vector Triple Product

The vector triple product involves two cross products and thus the result is a vector. It is
defined by

a× b× c =b a c −c a b (B.28)

Note that the two parenthetical dot-product terms on the right-hand side of Eq. (B.28)
are scalar multiplying factors for vectors b and c. The vector triple product was utilized in
the derivation of the trajectory equation in Section 2.4.
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Appendix C

Review of Particle Kinematics

C.1 Introduction

Many of the scenarios we encounter in space flight dynamics involve motion of a particle
relative to a “fixed” or inertial frame (absolute motion) or relative to a moving and/or
rotating frame (relative motion). Often it is advantageous to express the particle’s motion
in a moving frame. This appendix presents position, velocity, and acceleration of a point-
mass particle in a variety of coordinate systems.

C.2 Cartesian Coordinates

Figure C.1 shows a fixed, non-rotating (inertial) Cartesian frame O XYZ and a moving
Cartesian frame Oxyz. Cartesian frame Oxyz can translate and rotate. The absolute posi-
tion of particle P is

r= rO + ρ (C.1)

where rO is the absolute position vector of the moving frame Oxyz relative to fixed frame
O XYZ, and ρ is the relative position of P expressed in the moving coordinates. Let us
express vectors in the inertial frame using the unit vectors IJK aligned with the Cartesian
axes XYZ. Therefore, the absolute position of the moving frame is

rO =XOI+YOJ+ZOK (C.2)

In a similar fashion, the position of P relative to the moving/rotating frame is

ρ= xux + yuy + zuz (C.3)

where unit vectors uxuyuz are aligned with the moving/rotating axes xyz. The absolute
velocity of P is obtained by taking the time derivative of Eq. (C.1):

v = r= rO + ρ (C.4)

where the time derivatives of vectors rO and ρ are

rO =
d
dt

XOI+YOJ+ZOK =XOI+YOJ+ZOK (C.5)
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ρ=
d
dt

xux + yuy + zuz = xux + yuy + zuz + xux + yuy + zuz (C.6)

Note that the derivatives of unit vectors uxuyuz must be included in Eq. (C.6) because
their directions change due to the rotation of frame Oxyz. The derivatives of unit vectors
IJK are zero because their lengths and directions remain constant because frame O XYZ
is fixed in inertial space. Let ω be the angular velocity vector of the rotating frame Oxyz
relative to the fixed frame. The time rates of the unit vectors of the moving frame are due
to angular velocity ω and can be expressed as cross products:

ux =ω×ux (C.7)

uy =ω×uy (C.8)

uz =ω×uz (C.9)

Using Eqs. (C.7)–(C.9) in Eq. (C.6), we obtain

ρ= ρ rot +ω× ρ (C.10)

where

ρ rot = xux + yuy + zuz (C.11)

is the time derivative of position vector ρ with respect to the moving/rotating frame.
Substituting Eq. (C.10) in Eq. (C.4) yields

r= rO + ρ rot +ω× ρ (C.12)

Equation (C.12) is absolute velocity of particle P.
We obtain the absolute acceleration of particle P by taking the time derivative of

every term in Eq. (C.12):

a= r = rO +
d
dt

ρ
rot

+
d
dt

ω× ρ (C.13)

X

Y

rO

P

Z

O

O'XYZ: inertial frame

x

y

z

r ρ

Oxyz: moving/rotating frame

O'

Figure C.1 Inertial and moving Cartesian coordinate systems.
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Using Eq. (C.11), the time derivative of ρ rot is

d
dt

ρ rot =
d
dt

xux + yuy + zuz

= xux + yuy + zuz + xux + yuy + zuz

= ρ rot +ω× ρ rot

(C.14)

The time derivative of the third right-hand side term in Eq. (C.13) is

d
dt

ω× ρ =ω× ρ+ω× ρ

=ω× ρ+ω× ρ rot +ω× ρ
(C.15)

Combining Eqs. (C.14) and (C.15), we obtain

r = rO + ρ rot + 2ω× ρ rot +ω× ρ+ω× ω× ρ (C.16)

Equation (C.16) is the absolute acceleration of particle P. A description of each term is:

rO = absolute acceleration of the origin of the moving frame Oxyz
ρ rot = acceleration of P relative to the moving/rotating frame
2ω× ρ rot = Coriolis acceleration
ω× ρ= acceleration due to the changing angular rate ω of frame Oxyz
ω× ω× ρ = centrifugal acceleration.

We may generalize the results of this section by presenting the Coriolis theorem

dx
dt fix

=
dx
dt rot

+ω× x (C.17)

where dx/dt|fix is the time derivative of vector x with respect to an inertial, non-rotating
(fixed) reference frame and dx/dt|rot is the time derivative of x with respect to a rotating
frame. The angular velocity of the rotating frame relative to the fixed frame is vector ω.

C.3 Polar Coordinates

Figure C.2 shows particle Pmoving in the plane XY. Cartesian coordinate frameOXY is a
fixed, non-rotating or inertial reference frame. Let ur and uθ be unit vectors along
the radial and transverse directions, respectively, as shown in Figure C.2. The absolute
position vector of particle P is

r= rur (C.18)

where ur always points from the originO to P. The absolute velocity of P is determined by
taking the time derivative of all terms in Eq. (C.18)

v =
dr
dt

= r= rur + rur (C.19)
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Note that we must include the time derivative of unit vector ur because it changes direc-
tion as particle P moves along its path (note also that r is the time rate of change of the
magnitude of vector r). Figure C.2 shows that ur rotates with angular velocity ω = θuk

where uk is a unit vector normal to the OXY plane with direction out of the page (i.e.,
uk =ur ×uθ). Hence, the time derivative of ur is the cross product of the angular velocity
vector θuk and ur

ur =ω×ur = θuθ (C.20)

which is a vector in the transverse direction (perpendicular to position vector r). Substi-
tuting Eq. (C.20) into Eq. (C.19) yields the absolute velocity of particle P

v = rur + rθuθ = vrur + vθuθ (C.21)

where vr = r and vθ = rθ are the radial and transverse velocity components.
The absolute acceleration of P is determined by taking the time derivative of all terms

in the velocity equation (C.21):

a=
dv
dt

= v = rur + rur + rθuθ + rθuθ + rθuθ (C.22)

Substituting the cross products ur =ω×ur = θuθ and uθ =ω×uθ = −θur for the time
derivatives of the unit vectors, Eq. (C.22) becomes

a= r −rθ
2
ur + rθ + 2rθ uθ (C.23)

Equation (C.23) is the absolute acceleration of particle P where the bracketed terms are
the radial and transverse acceleration components. Note that the transverse acceleration
term 2rθ is the Coriolis acceleration.

C.4 Normal-Tangential Coordinates

For launch and entry scenarios, it is usually convenient to express the absolute acceler-
ation in components that are tangent and normal to the flight path. Figure C.3 shows

O X

Y

uruθ

r
P

Path of particle P

vLocal
horizon

θ

Figure C.2 Planar motion of particle P and polar coordinates.
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particle P moving along its path in the plane XY where OXY is a fixed, non-rotating ref-
erence frame. Absolute velocity is

v = vut (C.24)

where unit vector utmoves with P and remains tangent to the path along the direction of
motion. The unit vector un is always normal to the path and is chosen so that the cross
product un ×ut =uk where uk is perpendicular to OXY and out of the page in Figure C.3.
Using Eq. (C.17), the absolute acceleration is

a=
dv
dt fix

=
dv
dt rot

+ω× v (C.25)

From Figure C.3, we see that the angular velocity of the rotating coordinates is

ω= θuk =
vcosγ

r
uk (C.26)

where γ is the angle measured from the local horizon (i.e., the uθ direction; see
Figure C.2) to the velocity vector. In flight mechanics problems, angle γ is called the
flight-path angle, and it is positive when r > 0 as shown in Figure C.3. The time derivative
of velocity with respect to the rotating normal-tangential frame is

dv
dt rot

= vut + vγun (C.27)

where v is the tangential acceleration due to the change in magnitude of the velocity vec-
tor and vγ is a normal acceleration component due to the rotation of the velocity vector
with respect to the local horizon. The cross-product term in Eq. (C.25) is

ω× v =
vcosγ

r
uk × vut = −

v2 cosγ
r

un (C.28)

Hence, the absolute acceleration of particle P expressed in normal-tangential coordinates
is the summation of Eqs. (C.27) and (C.28):

a= vut + vγ−
v2 cosγ

r
un (C.29)

O X

Y

un

ut

r

P

Path of particle P

v
Local 
horizon  γ

θ

Figure C.3 Planar motion of particle P and normal-tangential coordinates.
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Equation (C.29) can also be obtained from the absolute acceleration in polar coordinates,
Eq. (C.23), by using the following substitutions

r = vsinγ (C.30)

r = vsinγ + vγ cosγ (C.31)

rθ = vcosγ (C.32)

rθ + rθ = vcosγ−vγ sinγ (C.33)

and with the polar coordinates expressed in terms of the normal-tangential coordinates:

uθ = cosγut −sinγun (C.34)

ur = sinγut + cosγun (C.35)

The remainder of this alternative derivation is left to the reader.
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