AeroMACS An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems

Kamali, Behnam (2019) AeroMACS An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems. IEEE Press, USA. ISBN 9781119281108

[thumbnail of AeroMACS An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems by Behnam Kamali (z-lib.org).pdf] Text
AeroMACS An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems by Behnam Kamali (z-lib.org).pdf

Download (18MB)
Official URL: https://z-lib.org/

Abstract

Civil aviation plays a major role in driving sustainable global and national economic and social development. During the year 2015, civil aviation
created 9.9 million jobs inside the industry, and directly and indirectly supported the employment of 62.7 million people around the world. The total global economic impact of civil aviation was $2.7 trillion (including the effects of tourism). In the same year, approximately 3.6 billion passengers were transported through air. The volume of freight carried via air reached 51.2 million tons. Today, the value of air-transported goods stands at $17.5 billion per day. Accordingly, in the year 2015, approximately 3.5% of global GDP was supported by civil aviation. Research conducted in the United States suggests that every $100 million dollars invested in aerospace yields an extra $70 million in GDP year after year 1. In addition to economic prosperity, civil aviation brings about a number of social and human relation benefits, ranging from swift delivery of health care, emergency services, and humanitarian aid, to the promotion of peace and friendship among various groups of people through trade, leisure, and cultural experiences and exchanges.

The global air transportation system is a worldwide network, consisting of four components of airport and airport infrastructures, commercial aircraft operators, air navigation service providers, and the manufacturers of aircraft and associated components. The airport component plays a central role in air traffic management, air traffic control, and the management of national and global airspace systems. From the technical point of view air transportation operation is centered around three elements of communications, navigation, and surveillance. The safety of air transportation is critically linked to the availability of reliable aeronautical communication systems that support all aspects of air operations and air traffic management, including navigation and surveillance. Owing to the fact that flight safety is the highest priority in aviation, extreme measures must be taken to protect the aeronautical communication systems against harmful interference, malfunction, and capacity limitation.

In the early days of commercial aviation, the 1940s, analog AM radio over VHF band was adopted for aeronautical communications. This selection was made mostly for the reason that analog AM was the only fully developed and proven radio communications technology at the time. However, by the late 1980s, spectrum congestion in aeronautical VHF band, due to rapid growth in both commercial and general sectors of civil aviation, became a concern for the aviation community in the United States and in Europe. The concerns about inability of the legacy system to safely manage future levels of air traffic, called for modernization of air transportation systems. This in turn led to the initiatives of Next Generation Air Transportation System Integrated Plan (NextGen) in the United States, and European Commission Single European Sky ATM Research (SESAR) in Europe. A joint FAA EUROCONTROL technology assessment study on communications for future aviation systems had already come to the conclusion that no single communication technology could satisfy all physical, operational, and functional requirements of various aeronautical transmission domains. Based on recommendations made by that study, a broadband wireless mobile communications technology based on IEEE 802.16e (Mobile WiMAX) was selected for airport surface domain, leading to the advent of aeronautical mobile airport communications system, AeroMACS, the subject of focus in this book.

Over the past few years AeroMACS has evolved from a technology concept to a deployed operating communications network over a number of major U.S. airports. Projections are that AeroMACS will be deployed across the globe by the year 2020. It is worth noting that AeroMACS, as a new broadband data link able to support the ever-expanding air traffic management communications requirements, is emerging out of the modernization initiatives of NextGen and SESAR, and therefore should be considered to be an integral and enabling part of both NextGen and SESAR visions.

The main feature of this book is its pioneering focus on AeroMACS, representing, perhaps, the first text written entirely on the technology and how it relates to its parental standards (although book chapters on the subject have been published previously). The text is prepared, by and large, from a system engineering perspective, however, it also places emphasis on the description of IEEE 802.16e standards and how they can be tied up with communications requirements on the airport surface. A second contribution that this book aspires to make; when viewed on the whole, is to provide a complete picture of the overall process of how a new technology is developed based on an already established standard, in this case IEEE 802.16e standards. AeroMACS, like its parent standards, mobile WiMAX and IEEE 802.16-2009 WirelessMAN, is a complex technology that is impossible to fully describe in a few hundred pages. Nonetheless, it is hoped that this book will be able to provide an overall understanding of several facets of this fascinating technology that will be a key component of modern global air transportation systems. Another feature of this text is the simplicity of the language that is used for the description of complicated concepts. Efforts have also been made, to the extent possible and despite all the challenges, to make this book self-contained.

Item Type: Book
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Politeknik Penerbangan
Depositing User: Mr Perpustakaan Poltekbang Surabaya
Date Deposited: 09 Mar 2021 09:36
Last Modified: 09 Mar 2021 09:36
URI: https://repo.poltekbangsby.ac.id/id/eprint/89

Actions (login required)

View Item
View Item